—
C‘V MAX PLANCK INSTITUTE

- FOR SOFTWARE SYSTEMS
- J

An Exact and Sustainable Analysis of
Non-Preemptive Scheduling

Mitra Nasri* Bjorn B. Brandenburg

Max Planck Institute for Software Systems (MPI-SWS)
Germany

RTSS, December 2017

Our Work in a nutshe" “An exact and sustainable schedulability

analysis for non-preemptive scheduling”

Non-preemptive jobs

Hard or soft timing
constraints

[Uniprocessor]7

Exact best-case and
worst-case response time

Our
analysis .
y A wide class of
| non-work conserving
Execution time scheduling algorithms
variation R —— T~ -
| CW-EDF [Nasril6] I
l\ Precautious-RM [Nasril4] J
Boundked L 3 2 2 5 0 T —————————=
jitter \\\f _______ A
A Bounded variation \ EDF I
111 +------- > l | Fixed priority |
L .~ J
“release execution deadline

Why non-preemptive scheduling?

’ \
. . 1« Control systems are |
f Examples E ,,' sensitive to 1/0 delay
1 * GPU device ! /.. and preemptions |
i * Hardware accelerators ‘. f77 Nemmmmmmmm e ’
1

Inevitable | Improves

(where preemption is not
supported by the QOS
platform/network)

Improves timing

predictability

Simplifies
system
design

[« Simpler resource

! management policies
1

1

==
\\ ¢ Grants exclusive

N

\ resource access
\

Low

* A more accurate estimation of ‘:
worst-case execution-time (WCET) | . ~~<
1

|
1
1
1
1
1
1
1
1
\

* More predictable cache

Why do we need a new analysis?

Most of NPS policies are NOt sustainable

Simulation-based schedulability
tests cannot be used

(w.r.t. execution time variation, release jitter, etc.)

Pessimistic for

N\ . "
11 eriodic tasks
SChedl;E::;';?Catgz:fes for ::> P » Existing analyses are not Z:S

[effay91, Tindel94, Davis07] Not applicable to enough
arbitrary job sets

4)

Existing schedulability analyses based
on model checking, timed automata,

Not ver -

abstraction refinements, etc. Otl EI Y Existing analyses are not
SCalabie ici

[Sun97, Baker07, Guan07, BonifacilO, efficient

_ Burmyakov15, Stigge15])
Many non-work-conserving scheduling algorithms .
{ do NOT have a schedulability analysis yet No solution yet

_

What do we want?

An efficient, exact, general

schedulability analysis

THAT includes

a wide class of scheduling algorithms and task models

Agenda

» Main idea:

Searching all possible schedules efficiently and accurately

» Constructing the search graph
» Evaluation

» Conclusion

Basic scenario: no runtime variation in the workload

Task| Period | Execution time

Non-preemptive fixed-priority scheduling
T3 | 30 13
T2 | 30 8
Tq 10 2
13
T3 T

@ schedulable

I w1
o) / 10 120 ECM
;oo N '
One job ordering .11,1 “]21. 11,2‘]3,1 ‘]1,3‘.

Both existing tests for sporadic tasks reject

this task set [Jeffay91, Davis07]
Values are integer.

Scheduling algorithm: Non-preemptive fixed-priority (NP-FP)
A schedule is an assignment of execution intervals to the jobs.

‘

Scenario: execution time variation and release jitter

Execution time ‘ ‘

Task| Period | Min Max |Release jitter A 13 A
T3 30 [3' 13] 15 o T3 v A > @
T2 | 30 | [7, 8 0 .1 S |
73 | 10 [1, 2] 0 2= >
2 2 2
71 h h T 4 >
0 10 20 30
More than 100 4 - 4
e T3 t - - @ Deadline miss
different schedules 7 A -
. T — P
@ Not schedulable 2 . 2 2 g
T4 h T Missed T-- T B
0 10 20 30
J31 2 J13
000
Only two J14
different job orderings]1,2‘.]1,3 .0 e
Values are integer. A graph of job orderings

Scheduling algorithm: NP-FP
A schedule is an assignment of execution intervals to the tasks.

Challenges e o s |

For an exact analysis, we need to consider
all possible execution scenarios

Observation Research question
4) 4)
.. Is there a way to use
There are fewer permissible ‘

job orderings than schedules Job-ordering abstracru.on
.) to analyze schedulability?

How to abstract How to efficiently How to identify

schedules in a graph find all timing violations in
of job orderings? job orderings? the resulting graph?

Abstracting schedules in a graph of job orderings

Requirement Solution

Verification of schedulability

Knowing when a job Encode the earliest and Check if the latest finish time is
misses its deadline latest finish time of a job

not larger than the deadline

o J31 J13
]1,2 @ @
]1 1]2 1 [11, 12] [14, 25] [21, 27]
@ @ @
[0, 0] [1, 2] [8, 10] J1,2 J13
J31 ® @
6 (1122 f [12, 26] [21, 26]
Earliest Latest
finish time finish time Deadline of J 5
is at time 20
Each path shows a job ordering
13 13 Executiontime
T3 T < T3 — f\ Task| Period | Min Max |Jitter
8 » 7 i 3| 10 |3 131 |15
T2 T - T) Tz 12 _— ?> T, 30 [7’ 8] 0
T hz ﬁ T -2 T - T4 h T Missed T-- T S 7 30 [1, 2] 0
0 10 20 30 0 10 20 30

10

Agenda

» Main idea: Searching all possible execution scenarios efficiently and accurately

» Constructing the search graph

» Evaluation

» Conclusion

Constructing the search graph

_—— =

,rJob set I f

< start > SV ht y ,' Fixed-!'ob-prior‘ity :
Vo222, scheduling algorithm |

-

Sort the jobs according to their
priorities (scheduling policy)

Merge two paths if they have the same set of jobs
‘ H .t. I. t. . . . °
Createihe frst vertexuLwith Initialization and their final intervals intersect
interval [0, 0]

Is there a path that
can be expanded?

Select the shortest path P

Find eligible jobs)

For each eligible job, find the > Grow
earliest and latest finish time

and add them to P

Breadth-first
search [1,2]

share the same Shrink

Merge any two paths that >
set of jobs

Report deadline misses < j

The graph grows
more slowly

12

Growing the graph

An eligible job for path P is a job that can be
scheduled after P in at least one execution scenario

Select the shortest path P

Find eligible jobs

For each eligible job, find the
earliest and latest finish time Low t
and add them to P 4

Vv

\l
w
1 ‘SP
1
|
|
|
|
|
4
FIN
\

7 S
w
: Jip !t
High L > time
t
€; = the earliest finish time of path P 3

l; = the latest finish time of path P

Requirements of an exact analysis

Sort the jobs according to their
priorities (scheduling policy)

“Eligibility conditions” are

v
Create the first vertex v; with necessa y a nd SUffiCient
interval [0, 0]

Is there a path that
can be expanded?

The “final interval” of each is exact:
For any time t in the interval, there must be an
execution scenario that ends at ¢t

Select the shortest path P

Find eligible jobs
Final intervals remain “exact” after

merging process

For each eligible job, find the
earliest and latest finish time
and add them to P

Merge any two paths that

share the same .
set of jobs In our work, we have proved these properties for

* Fixed-job-priority scheduling algorithms 5

» e Tasks with release jitter and execution time variation T

Report deadline misses

* Hard and soft timing constraints
* Work-conserving and non-work-conserving scheduling algorithms

—

How to apply the analysis to a new system or algorithm?

Deflne eligibility Define how to obtain Prove the aforementioned
conditions the final intervals properties

Agenda

» Evaluation

» Conclusion

Image from https://searchengineland.com/answer-box-experiment-journey-known-unknown-factors-270948 = 16

Main questions

oo

» Is our analysis effective?

> Does it actually improve the accuracy of schedulability analysis?
° What is our achievement for non-work-conserving scheduling policies?

ﬂ.’
» |s our analysis efficient?

° How fast is the analysis? / é’
769 L~
97

e

Evaluation setup

Automotive benchmark .
Synthetic task sets
task sets [Kramer15] y
No jitter * Variable parameter: utilization * Variable parameter: maximum number
\ J of jobs in a hyperperiod
p N * Generate runnables according to
AA [Kramer15] until the given utilization * Periods are from [1, 1000]ms with log-
Small Jitter is reached uniform distribution
L (up to 100 microseconds))
* Pack a random number of runnables * Up to 50% runtime variation in the
f .. A together to build a task execution time
Large jitter
(up to 20% of the period) * Up to 30 tasks per task set « 10 tasks per task set
o /
To evaluate the effectiveness To evaluate the efficiency
in a realistic setup and different utilization values when there are a large number of jobs

[Kramer15] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automotive benchmark for free,” in WATERS, 2015.
Note: only task sets that pass the necessary schedulability condition of non-preemptive scheduling were considered.

m

Automotive J

How effective is our schedulability analysis? { benchrmark, no jitter

- @« NP-FP classic test Many task sets do not pass the test

1
O o9
d
© 08
> 0.7
)
= 06
O
© 0.5
-g 0.4
o 0.3
.5 0.2
v 0.1
0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
utilization

Task sets in this experiment have up to 35 tasks and 3500 jobs

—

Automotive }

How effective is our schedulability analysis? [benchrmark, no jitter

« @+ NP-FP classic test —=©-This paper: NP-EDF Still, many task sets
4

== This paper: NP-FP are not schedulable

Are these task sets not

About 40% more

schedulable task sets
are found

schedulability ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
utilization

Q

Automotive }

How effective is our schedulability analysis? [benchmark, no jitter

« @+ NP-FP classic test —©—This paper: NP-EDF -+~ This paper: NP-FP
-¥- This paper: Precautious-RM e=e=This paper: CW-EDF+

1 - —_—— =W ——— W ——— W ——— W ——— W —— — A
Q 09 el f
© "
c 038 . Non-work-conserving
= 07 policies
= 0.6 .
o "
© 0.5)
_g 0.4
o 0.3
.5 0.2 .
®» 01 e
O

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
utilization

m

How efficient is our schedulability analysis? | automotive benchmark |

Large jitter

—©— This paper: NP-EDF
= <= This paper: Precautious-RM

3.5
o 3.0
L
o 25
€ 20
e
D 15
Q.
O 10
0.5
0.0

0.1

0.2

0.3

== This paper: NP-FP

04 05

Utilization

—0==This paper: CW-EDF+

CPU time (sec)

6,000
5,000
4,000
3,000
2,000

1,000

________ Al
r-About 1.5 hours |

(D208 0 oM
~

5,472

01 02 03 04 05 06 07 08 059

utilization

—

How efficient is our schedulability analysis? [Synthetic tasks }

Small jitter

—©—this paper: NP-EDF -+- this paper: NP-FP
-+- this paper: P-RM —o—this paper: CW-EDF+

2,000 1,865
1,800 S
1,600 (S TN ~
1,400 |
1,200
1,000

800

600

/
‘Z‘gg P 89

0 e o=

10,000 20,000 30,000 40,000 50,000 100,000

x maximum number of jobs f
(per hyperperiod)

——————— —— —

CPU time (sec)

m

Agenda

» Main idea: Searching all possible execution scenarios efficiently and accurately
» Constructing the search graph

» Evaluation

» Conclusion

Image from http://zworth.net/

Conclusion

Goal An efficient, exact, and general schedulability
@ analysis for a wide class of scheduling algorithms

Solution

i

Method
]

Constructing a precise abstraction of
all possible schedules

Building a schedule-abstraction graph

L based on job orderin
[) ' ©

Key idea
2\ An efficient merge technique to]

a\ defer the state-space explosion

]
’— ~~

Future directions ,~ Global and semi- =

\ Partitioned scheduling / _ - =~ =
S~ < -7 (Shared Y,

resources

N — -

P e

- ~
o Ve
Multiprocessor Precedence *
i imi \ Constraints
Preemptive and limited systems g " /

— e ==

preemptive scheduling

Parallelizing
the analysis framework
to make it even faster

analysis

yy MAX PLANCK INSTITUTE
& —
- FOR SOFTWARE SYSTEMS

Source code available at

Non-preemptive job set
(or periodic tasks)

Exact best-case and worst-
case response time

Hard or soft timing
constraints

h

Uniprocessor }> @) A wide class of

non-work conserving

Our
N . scheduling algorithms
Release jitter analysis
Execution time Fixed-job priority
variation scheduling algorithms

https://people.mpi-sws.org/~bbb/papers/details/rtss17/index.html

https://people.mpi-sws.org/~bbb/papers/details/rtss17/index.html

