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Main Observation and Conclusions

Empirically, near-optimal hard real-time schedulability
— usually 299% schedulable utilization —
can be achieved with simple, well-known and well-
understood, low-overhead techniques (+ a few tweaks).

-> Global, optimal scheduling not required
(for the considered type of workloads!)

Pragmatically speaking, little reason to favor complex algorithms
that are (more) difficult to understand, to implement, and to extend
it @ simple approach will do.

-> Future work should focus on more demanding workloads
(on preemptive multiprocessor real-time scheduling)

Static, independent, implicit-deadline tasks are by now very well supported.

MPI-SWS B. Brandenburg and M. Giil
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Multiprocessor Real-Time Scheduling

Partitioning

1. Assign tasks to
cores (offline).

2. Schedule each core
independently (like
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= simple to implement
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= simple to extend

= KISS-compatible
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Multiprocessor Real-Time Scheduling

. Assign tasks to

Partitioning

cores (offline). @

. Schedule each core 2\

O 6

independently (like s
a uniprocessor).

=N

Partitioned Scheduling
= simple to implement
= simple to understand
= simple to extend

= KISS-compatible

But: non-optimal
need to place tasks (bin packing)
mapping may be difficult to find

)

)
)
)

mapping may not exist

—— e —

worst-case utilization bound ~50%
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. Schedule each core

Partitioning

cores (offline).

independently (like
a uniprocessor).

Partitioned Scheduling
= simple to implement
= simple to understand
= simple to extend

= KISS-compatible

But: non-optimal

)

)
)
)

need to place tasks (bin packing)
mapping may be difficult to find
mapping may not exist

worst-case utilization bound ~50%

Scheduling

Global/Optimal Scheduling

1. Keep all cores busy with
sequential tasks.

2. Globally coordinate to
reschedule and migrate
tasks as needed.
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Multiprocessor Real-Tim

. Assign tasks to

. Schedule each core

Partitioning

cores (offline).

independently (like
a uniprocessor).

Partitioned Scheduling
= simple to implement
= simple to understand
= simple to extend

= KISS-compatible

But: non-optimal
need to place tasks (bin packing)
mapping may be difficult to find

)

)
)
)

mapping may not exist

ElE
—

Global Scheduling

Scheduling

Global/Optimal Scheduling

. Keep all cores busy with

sequential tasks.

. Globally coordinate to

reschedule and migrate
tasks as needed.

= optimality possible: 100% utilization
» under restrictive assumptions

= many elegant algorithms: PD?, BF,
LLRef, EKG, U-EDF, RUN, QPS,

worst-case utilization bound ~50%

MPI-SWS
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Multiprocessor Real-Time Scheduling

Partitioning Global/Optimal Scheduling

1. Assign tasks to
cores (offline).

1. Keep all cores busy with
sequential tasks.

2. Schedule each core
independently (like
a uniprocessor).

2. Globally coordinate to
reschedule and migrate
tasks as needed.

Partitioned Scheduling . Global Scheduling

= simple to implement . = optimality possible: 100% utilization
= simple to understand » under restrictive assumptions

= simple to extend .= many elegant algorithms: PD?, BF,
= KISS-compatible LLRef, EKG, U-EDF, RUN, QPS, ...
But: non-optimal . But: high conceptual complexity

= need to place tasks (bin packing) : = difficult to understand

= mapping may be difficult to find . = difficult to implement (efficiently)

= mapping may not exist . = difficult to extend

= worst-case utilization bound ~50% : = difficult to test/validate/certify

MPI-SWS B. Brandenburg and M. Giil
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The Question

(How) can we make
global scheduling
work In practice?

Much work In the last 10 years, both theory and systems...
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The Real Question

The “claim to fame” of global, optimal multiprocessor
scheduling is 100% schedulable utilization...

How to get close to
100% without giving
up on simplicity?

...and how close can we get?

Assumptions in Optimality Proofs: = periodic or sporadic tasks
= static set of tasks w/ static parameters = Implicit deadlines
= independent tasks = no Jitter, no overheads, etc.

MPI-SWS B. Brandenburg and M. Giil
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(Anderson et al., 2005)
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Hybrid: Semi-Partitioned Scheduling
(Anderson et al., 2005)
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» Statically assign most tasks ..

» Tasks are split-"':
into subtasks with
precedence constraints
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(Anderson et al., 2005)
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Hybrid: Semi-Partitioned Scheduling
(Anderson et al., 2005)

| PRI 7 T5 — y T6 o
] 15 Lgl<—{16
 Statically assign most tasks . | |6 |3
» Tasks are split- : o o 9

Into subtasks with

precedence constraints
» Assign subtasks to cores.—
— some original tasks migrate

»this Is a process migration E %

— no code changes in the task

MPI-SWS B. Brandenburg and M. Giil



ni-Partitioned Reservations

Task 75 split into two logical subtasks (= two budgets)

At runtime, Ts migrates between cores 1 and 2. ng
e S T5
K T5/ < T5,/
» Statically assign most tasks . T
» Tasks are split'"" o o

Into subtasks with

precedence constraints
» Assign subtasks to cores-
— some original tasks migrate

»this Is a process migration m m

— no code changes in the task
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ni-Partitioned Reservations

Task 75 split into two logical subtasks (= two budgets)

At runtime, Ts migrates between cores 1 and 2. ng
e S T5
K T5/ < T5,/
» Statically assign most tasks . T
» Tasks are split-" o o

Into subtasks with

precedence constraints
» Assign subtasks to cores-
— some original tasks migrate

»this Is a process migration m m

— no code changes in the task

Many heuristics for how to split, when to migrate, and where to assign subtasks...

MPI-SWS B. Brandenburg and M. Giil



Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Hybrid: Semi-Partitioned Scheduling

é’A Q@o@ G:(-\C:e-: T scheduled on processor 1
Té } T‘"'i v [ ] scheduled on processor 2
T { T v } release | deadline
T ) .Y. | completion
O||||5||||]I0||||]5||||2I0||||>ﬁme
Simple Example One approach: split Ts
= Three identical tasks = into two subtasks T’3, T"3
» period P =15 = C=C"=5
» WCET C = 10 - P’=P” =15
= D'=8,D"=7

MPI-SWS B. Brandenburg and M. Giil
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Semi-Partitioning
Still core-local decisions, one cross-core activation.

scheduled on processor 1

- scheduled on processor 2

T release l deadline

Tcompletion
L L1 I T I I O O L Lt ime
0 5 10 15 20
Simple Example One approach: split Ts
= Three identical tasks = into two subtasks T’3, T3
» period P =15 = C=C"=5
» WCET C =10 = P'=P”"=15
= D'=8,D"=7

MPI-SWS B. Brandenburg and M. Giil
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The C=D Splitting Strategy

(Burns et al., 2012)

Assumption
= Earliest-Deadline First (EDF) policy is in use on each core
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The C=D Splitting Strategy

(Burns et al., 2012)

Assumption
= Earliest-Deadline First (EDF) policy is in use on each core

Suppose Ts does not fit (in its entirety) onto Core 1
= How to allocate some part of Ts on Core 17 -
/

5@T'

4l |n
N4

MPI-SWS B. Brandenburg and M. Giil



Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

The C=D Splitting Strategy

(Burns et al., 2012)

Assumption
= Earliest-Deadline First (EDF) policy is in use on each core

Suppose Ts does not fit (in its entirety) onto Core 1
= How to allocate some part of Ts on Core 1? -
/

T/
C=D Approach 5 H
»C'+ C’=C /] split execution cost
D’'=C // zero-laxity subtask

= Given parameters (C, D, P)... - H
»D"=D-0D // remaining laxity subtask

...Identify largest C’ and matching C” such that
»P'=P’=P // period remains unchanged
» and first subtask is schedulable on Core 1

MPI-SWS B. Brandenburg and M. Giil
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zero laxity « forced to be scheduled immediately

laxity = relative deadline - execution cost

Suppose Ts does not fit (in its entir &ty) onto Core 1
= How to allocate some part of Ts -h Core 1? -
/

T/
C=D Approach 5 S -
D =C ") I/ zero-laxity subtask
) - [

» (7 + ("= (C /[ split ex Zution cost

= Given parameters (C, D, P) 4 - H
// remaining laxity subtask

...Identify largest C’ and ratching C” such that
»P' =P’ =P /[ period remains unchanged
» and first subtask is schedulable on Core 1

MPI-SWS B. Brandenburg and M. Giil
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Reservation-Based Scheduling
(Mercer et al., 1993)

Two-Level Scheduling

= threads / tasks encapsulated
IN reservations

= to schedule:
» first pick reservation
» then pick thread

top- Ievel scheduler (EDF)

W
@
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Reservation-Based Scheduling
(Mercer et al., 1993)

Two-Level Scheduling

= threads / tasks encapsulated
IN reservations

= to schedule:
» first pick reservation
» then pick thread

top-level scheduler (EDF)

( ) a )

reservation reservation

T &

Reservations (or Servers)
= many algorithms available in
the literature
= Most simple one:
» sporadic polling server
= sporadic task
+ budget enforcement

MPI-SWS B. Brandenburg and M. Giil
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Reservation-Based Scheduling
(Mercer et al., 1993)

Two-Level Scheduling

= threads / tasks encapsulated
IN reservations

= t0 schedule:

» first pick reservation " "
» then pick thread Jtesevation, - [Teseivallol

Hard vs. Soft Reservations
(Rajkumar et al., 1998)

top-level scheduler (EDF)

Reservations (or Servers)
= many algorithms available in

the literature When running out of budget:
= Most simple one: |
= sporadic task soft = may consume idle time
+ budget enforcement _; with background priority

MPI-SWS B. Brandenburg and M. Giil
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Approach in a Nutshell

1) Partitioned Reservation Scheduler @ @ @ @

= EDF-based, completely local
= simple to implement efficiently
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Approach in a Nutshell

1) Partitioned Reservation Scheduler @ @ @ @

= EDF-based, completely local
= simple to implement efficiently

2) One Task <~ One Reservation ‘ @ @ .

= Initially, reservation parameters = task parameters
= soft sporadic polling reservations
(or CBS or...)
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Approach in a Nutshell

1) Partitioned Reservation Scheduler @ @ @ @

= EDF-based, completely local
= simple to implement efficiently

2) One Task <~ One Reservation . @ @ .

= Initially, reservation parameters = task parameters
= soft sporadic polling reservations FE
(or CBS or...) \ .

3) Use C=D + Some Tweaks...
= place all reservations, splitting some if necessary

|| O

/N N

= potentially tweak reservation parameters @ Q @ @
= {ry to avoid migrations whenever possible

€5 €5
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Approach in a Nutshell

1) Partitioned Reservation Scheduler @ @ @ @

= EDF-based, completely local
= simple to implement efficiently

2) One Task <~ One Reservation . @ @ .

= Initially, reservation parameters = task parameters
= soft sporadic polling reservations FE
(or CBS or...) \ .

3) Use C=D + Some Tweaks...
= place all reservations, splitting some if necessary

|| O

/N N

= potentially tweak reservation parameters @ Q @ @
= {ry to avoid migrations whenever possible

€5 €5

...and that’s it!

MPI-SWS B. Brandenburg and M. Giil
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Most heuristics are cheap...
= _..SO0 don’t choose, run them “all.”
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Most heuristics are cheap...
= _..SO0 don’t choose, run them “all.”

Observation: It pays to play with details
=- to split, how much to split off, where to place subtasks...
= Minor differences add up.
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Tweak 1: Try Many Heuristics

—

Most heuristics are cheap...
= _..SO0 don’t choose, run them “all.”

Observation: It pays to play with details
=- to split, how much to split off, where to place subtasks...
= Minor differences add up.

Observation: C=D works also well with worst-fit decreasing (WFD)

= Trivial...

= _..but prior evaluations of C=D have focused primarily on first-fit
decreasing (FFD) and thus not exploited its full potential.

MPI-SWS B. Brandenburg and M. Giil
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Tweak 2: Pre-Assign Failures (PAF) Meta-Heuristic

Idea: Use Heuristic Failure as a Signal in a Feedback Loop
= The tasks that couldn’t be placed must be difficult somehow...
...S0 try to place them first!
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Tweak 2: Pre-Assign Failures (PAF) Meta-Heuristic

Idea: Use Heuristic Failure as a Signal in a Feedback Loop
= The tasks that couldn’t be placed must be difficult somehow...

...S0 try to place them first!

Procedure PAF(hl, h2, taskset)

ITnitialize:

e rest = taskset
e faillures = O

While no solution is found:

1. Assign all tasks 1n failures with hl
— give up 1f this fails

2. Assign all tasks 1in rxest with h2 while respecting
pre—-assignment by hl

— success 1f complete solution 1s found
— otherwise move any unplaced tasks to failures

MPI-SWS B. Brandenburg and M. Giil
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Tweak 2: Pre-Assign Failures (PAF) Meta-Heuristic

Idea: Use Heuristic Failure as a Signal in a Feedback Loop
= The tasks that couldn’t be placed must be difficult somehow...

...S0 try to place them first!

Procedure PAF(hl, h2, taskset)

ITnitialize:

regular task-placement
) heuristics (e.q.,
e failures = @ ~ WFD, FFD + C=D)

e rest = taskset

-----------------------------------------------------------------------------------------------------------
* *

0
-----------------------------------------------------------------------------------------------------------

While no solution is found:

1. Assign all tasks 1n failures with hl
— give up 1f this fails

2. Assign all tasks 1in rxest with h2 while respecting
pre—-assignment by hl

— success 1f complete solution 1s found
— otherwise move any unplaced tasks to failures

MPI-SWS B. Brandenburg and M. Giil
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Tweak 3: Reduce Periods (RP) Meta-Heuristic

Observation: the C=D splitting heuristic is not “scale invariant”
= splitting off a subtask with C’=D’=1 from a (C=2, P=10) task
VS.
splitting off a subtask with C’=D’=100 from a (C=200, P=1000) task

= Both subtasks have 10% utilization and 100% density...
...but C’=D’=1 s much easier to accommodate.

MPI-SWS B. Brandenburg and M. Giil
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Tweak 3: Reduce Periods (RP) Meta-Heuristic

Observation: the C=D splitting heuristic is not “scale invariant”
= splitting off a subtask with C’=D’=1 from a (C=2, P=10) task
VS.
splitting off a subtask with C’=D’=100 from a (C=200, P=1000) task

= Both subtasks have 10% utilization and 100% density...
...but C’=D’=1 s much easier to accommodate.

Idea: transform period prior to semi-partitioning
= apply period transformation to spread out the load of “difficult” tasks
= very effective at reducing the “chunk size” that C=D must deal with

MPI-SWS B. Brandenburg and M. Giil



Example

If a task requires 2 ms every 10 ms,
we can instead also schedule it for 1 ms every 5 ms:

1 1 1 1 1 1
0 5 10 15 20 o5

= apply period tran= Srmation to spread out the load of “difficult” tasks
= very effective at reducing the “chunk size” that C=D must deal with

MPI-SWS B. Brandenburg and M. Giil
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Tweak 3: Reduce Periods (RP) Meta-Heuristic

Observation: the C=D splitting heuristic is not “scale invariant”
= splitting off a subtask with C’=D’=1 from a (C=2, P=10) task
VS.
splitting off a subtask with C’=D’=100 from a (C=200, P=1000) task

= Both subtasks have 10% utilization and 100% density...
...but C’=D’=1is much easier to accommodate.

Idea: transform period prior to semi-partitioning
= apply period transformation to spread out the load of “difficult” tasks
= very effective at reducing the “chunk size” that C=D must deal with

Practical Considerations
= trivial to support: no code changes, just tweak reservation parameters
= tradeoff: increased

MPI-SWS B. Brandenburg and M. Giil
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Tweak 4: Flip the C=D Subtask Order

normal
order

T

Ijob arrival job deadline

l > time
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Tweak 4: Flip the C=D Subtask Order

zZero laXIty ............ .

C=D subtask normal
order

T

Ijob arrival job deadline

l > time
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Tweak 4: Flip the C=D Subtask Order

zZero IaXIty ............

non-zero laxity,
.- Subject to interference

normal

T- - > time
job arrival job deadllne
flipped
Yrder
Idea: execute zero-laxity subtask(s) last

= |rrelevant from theory point of view: order is arbitrary.
= Quite useful from systems point of view...
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Tweak 4: Flip the C=D Subtask Order

zZero IaXIty ............

non-zero laxity,

T

I . > lime
job arrival job deadllne
SRR KT C < D subtask
. zZero IaXIty ............
.. non-zero laxity, C=D subtask flipped
“.....subject to interference Yrder
Idea: execute zero-laxity subtask(s) last

= |rrelevant from theory point of view: order is arbitrary.
= Quite useful from systems point of view...
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T

Ijob arrival job deadline
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Tweak 5: Use Slack to Avoid Migrations

S KT C < D subtask
: Zero IaXIty ............ worst
, case
.. non-zero laxity, C=D subtask
~.....subject to interference
T. . _ _ l > time
job arrival job deadline
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Tweak 5: Use Slack to Avoid Migrations

S KT C < D subtask
: Zero IaXIty ............ worst
, case
~.....Subject to interference
T. . _ _ l > time
job arrival job deadline
lucky

\\\\iése
Idea: use a simple slack reclamation scheme
= finish job before it must migrate (= thanks to flipped subtask order)
= our implementation uses CASH (Caccamo et al., 2000)
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S KT C < D subtask
: Zero IaXIty ............ worst
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~.....subject to interference
T. . _ _ l > time
job arrival job deadline
& C < D subtask ucky

Yase
Idea: use a simple slack reclamation scheme
= finish job before it must migrate (= thanks to flipped subtask order)
= our implementation uses CASH (Caccamo et al., 2000)
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Tweak 5: Use Slack to Avoid Migrations

S— e C < D subtask
-. zero laxity .. worst
. case
,. non-zero laxity, C=D subtask \
~.....Subject to interference
T. . _ _ l > time
job arrival job deadline
& C < D subtask consume slack lucky

non-zero laxity, recipient of .
dynamically reclaimed slack -

Idea: use a simple slack reclamation scheme
= finish job before it must migrate (= thanks to flipped subtask order)
= our implementation uses CASH (Caccamo et al., 2000)
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Tweak 5: Use Slack to Avoid Migrations

S KT C < D subtask
: Zero IaXIty ............ worst
, case
~.....subject to interference
T. . _ _ l > time
job arrival job deadline

migration avoided

. lucky
' i : " case
non-zero laxity, recipient of
dynamically reclaimed slack -

Idea: use a simple slack reclamation scheme
= finish job before it must migrate (= thanks to flipped subtask order)
= our implementation uses CASH (Caccamo et al., 2000)
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Does it work in theory?

— schedulability experiments —
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Schedulability Experiments — Setup

Metric

. number of schedulable task sets
= schedulability =

total number of tested task sets

= optimal < schedulability = 1
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Schedulability Experiments — Setup

Metric

. number of schedulable task sets
= schedulability =

total number of tested task sets

= optimal < schedulability = 1

Number of Processors m
= considered range: 2, 4, 8, 16, 24, 32, 64 processors
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Schedulability Experiments — Setup

Metric

. number of schedulable task sets
= schedulability =

total number of tested task sets

= optimal < schedulability = 1

Number of Processors m
= considered range: 2, 4, 8, 16, 24, 32, 64 processors

Number of Tasks n
= considered range: m+ 1, ..., 3m
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Schedulability Experiments — Setup

Metric

. number of schedulable task sets
= schedulability =

total number of tested task sets

= optimal < schedulability = 1

Number of Processors m
= considered range: 2, 4, 8, 16, 24, 32, 64 processors

Number of Tasks n
= considered range: m+ 1, ..., 3m

Task Periods

= chosen from {1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, 1000}
uniformly at random (in milliseonds)

= range commonly found in automotive systems
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Schedulability Experiments — Setup

Metric

. number of schedulable task sets
= schedulability =

total number of tested task sets

= optimal < schedulability = 1

Number of Processors m
= considered range: 2, 4, 8, 16, 24, 32, 64 processors

Number of Tasks n
= considered range: m+ 1, ..., 3m

Task Periods

= chosen from {1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, 1000}
uniformly at random (in milliseonds)

= range commonly found in automotive systems

Task Utilization
= Emberson et al. (2010) task-set generator (designed to be unbiased)
= “UNC style” task-set generator (used in prior LITMUS"' studies)

MPI-SWS B. Brandenburg and M. Giil
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Expected Outcome

0.8

0.6

“higher is better”

0.4

Kk'sets that could be scheduled

0.2

S

ratio of schedulable task sets
#ia

20

Smaller n = more difficult bin-packing instance

higher utilization

40 60 80

system utilization (in percent)

= fewer, larger items = harder problem

Higher utilization = more difficult bin-backing instance

= |ess spare capacity = harder problem

MPI-SWS
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Expected Outcome

gap: measure
of sub-optimality

1 - _
s “— 1 up to 100% utilization
%’ 0.6 | -
3 g -heuristic (illustration)
g _ —~partitioning utilization bound
0 20 20 50 20 100 1 up to 50% utilization,
system utilization (in percent) no guarantee thereafter

Smaller n = more difficult bin-packing instance
= fewer, larger items = harder problem

Higher utilization = more difficult bin-backing instance
= |ess spare capacity = harder problem
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Performance of Partitioned Scheduling (8 Cores)
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Performance of Partitioned Scheduling (8 Cores)

n=9 N=12 = a= = N=10 ccem «- e N=24 = = N=32
N=10 cccccceo N=14 c= cce N=20 ccce= = N=28 a= == ==
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75% utilization.
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Performance of Partitioned Scheduling (8 Cores)

n=9
n=10
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Large n.
(32 = 3m)

MPI-SWS
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n=9
n=10

Close to optimal (>95% schedulable utilization) for n = 3m = 24
— scheduling with implicit deadlines is difficult
only for small n, high-utilization task sets

N=12 = = = N=

N=14 c= ce= N=20 <--

© o o o
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MPI-SWS
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system utilization (in percent)
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ISemi-Partitioned Reservations

Global Scheduling Not Required: 4

Not a big gap for optimal algorithms to
Pe I'fO FMANC| exploit: much complexity for little gain! 8 Ccres)

Lets try semi-partitioning...
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Before: Partitioning Only
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MPI-SWS

o

fraction of schedulable task sets

O

O

With Basic Semi-Partitioning
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With Basic Semi-Partitioning [Zoomed In]
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With Basic Semi-Partitioning [Zoomed In]
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fraction of schedulable task sets

n=9
n=10
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Even smaller gap

at 95% utilization, lowest curve
at ~75% schedulablity

Still, can’t we get there
somehow...?
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MPI-SWS
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MPI-SWS

fraction of schedulable task sets

With Pre-Assign Failures Heuristic (PAF)
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With Pre-Assign Failures Heuristic (PAF) [2X Zoomed In]

MPI-SWS
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With Pre-Assign Failures Heuristic (PAF) [2X Zoomed In]

n=9 N=12 @ = = N=10 coem == e N=24 = = N=32

N=10 cccccceo N=14 cc ce= N=20 cccem == N=28 a= == ==

1 I I | | | B
(dp)
©
(dp)
X 0.8 _
©
Q@
§ 0.6 _
S -
2 04 | Scale starts at No problems up to )
§ 95% utilization! 98% utilization!
o
_5 0.2 L -
©
©

O | | | | L

95 96 97 08 99 100

MPI-SWS

system utilization (in percent)

B. Brandenburg and M. Gl




Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

With Pre-Assign Failures Heuristic (PAF) [2X Zoomed In]
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Semi-Partitioning with PAF + Period Transformation

MPI-SWS
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Semi-Partitioning with PAF + Period Transformation

MPI-SWS
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MPI-SWS

fraction of schedulable task sets

Summary for 8 Cores, 16 Tasks (n=2m)

For overview, let's consider just one task count (n=16).

1

0.8

0.6

0.4

O
N

with both meta-heuristics

with PAF meta-heuristiC «ecececee-

basic semi-partitioning = = =

partitioning only ce= =
I

75

I
80 85 90
system utilization (in percent)

B. Brandenburg and M. Gl



Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Summary for 8 Cores, 16 Tasks (n=2m)

For overview, lett pasic semi-partitioning ount (n=16)
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Summary for 8 Cores, 16 Tasks (n=2m)
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O
N

O
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fraction of schedulable task sets

" PAF surprisingly effective & period transformation closes the
last gap — empirically, virtually optimal schedulability
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What about other core counts?¢ (n=2m)
— trends largely independent of m
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What about other core counts?¢ (n=2m)
— trends largely independent of m
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MPI-SWS
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What about other core counts?¢ (n=2m)
— trends largely independent of m
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Empirically, near-optimal hard real-time schedulability
— usually =99% schedulable utilization —
can be achieved with simple, well-known and well-understood,
low-overhead techniques (+ a few tweaks).
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— Implementation in LITMUSR! —

LiITMusr!

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

www.litmus-rt.org
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LITMuUusSsr~!

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

Linux-based Multiprocessor Research RTOS.

: : : _ oy
=\ THE UNIVERSITY Actively maintained since 2006 o
II]II of NORTH CAROLINA 17 pUbIlC releaSGS, % Institute
— . : | f
@ CHAPBLHILL spanning 40 Linux kernel versions S°;ﬂware Syaiome
[2006—2011] Latest release: 2016.1 2011—]

www.litmus-rt.org
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Experiments with the Real System

Experiment 1: Comparison with stock LITMUS"®" schedulers
= Partitioned Fixed-Priority (P-FP)

= Partitioned Earliest-Deadline First (P-EDF)

= Global Earliest-Deadline First (G-EDF)

Experiment 2: Comparison with RUN and QPS
= |atest and greatest optimal multiprocessor schedulers
= Implementations kindly provided by Compagnin et al. (2014, 2015)

Experiment 3: Effect of Slack on Frequency of Migrations
= How effective is “flipped C=D + slack reclamation”?

Platform: Stress Scalability

= 44 cores: 2 x 22-core Xeon E5-2699 v4 @ 2.2 GHz L ITM L' SRT

- 256 KIB prlvate L2, 55 MIB Shared L3 Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

Data

= traced overhead with Feather-Trace, schedule with sched-trace
= over six billion samples collected over 12+ hours of execution
= here: scheduling overhead — picking the next process to run
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Software Malleability

= This schedulabllity study is biased against partitioned / semi-
partitioned scheduling (as are many before it).

= [f no mapping is found, engineers may be able to refactor
“large” tasks and redistribute or pipeline some functionality.

= Example: remapping runnables in AUTOSAR.
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Study Limitations

Software Malleability

= This schedulabllity study is biased against partitioned / semi-
partitioned scheduling (as are many before it).

= [f no mapping is found, engineers may be able to refactor
“large” tasks and redistribute or pipeline some functionality.

= Example: remapping runnables in AUTOSAR.

Task Set Generation
= Randomly generated task sets, based on standard methods.
= |s there a practically relevant class of independent, implicit-
deadline workloads for which all semi-partitioning heuristics
consistently fail?
(/ don’t think so.)

MPI-SWS B. Brandenburg and M. Giil



Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Practical Extensions

MPI-SWS B. Brandenburg and M. Giil



Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Practical Extensions

What about constrained/arbitrary deadlines?

MPI-SWS B. Brandenburg and M. Giil



Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Practical Extensions

What about constrained/arbitrary deadlines?
...everything but the RP meta-heuristic still works.
...no optimal online schedulers exist (Fisher et al., 2010).

MPI-SWS B. Brandenburg and M. Giil



Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Practical Extensions

What about constrained/arbitrary deadlines?
...everything but the RP meta-heuristic still works.
...no optimal online schedulers exist (Fisher et al., 2010).

What about precedence constraints?

MPI-SWS B. Brandenburg and M. Giil



Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Practical Extensions

What about constrained/arbitrary deadlines?
...everything but the RP meta-heuristic still works.

...no optimal online schedulers exist (Fisher et al., 2010).

What about precedence constraints?
...can reuse uniprocessor techniques (jitter).

...can introduce additional heuristics.

MPI-SWS B. Brandenburg and M. Giil



Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Practical Extensions

What about constrained/arbitrary deadlines?
...everything but the RP meta-heuristic still works.

...no optimal online schedulers exist (Fisher et al., 2010).

What about precedence constraints?
...can reuse uniprocessor techniques (jitter).

...can introduce additional heuristics.

What about self-suspensions?

MPI-SWS B. Brandenburg and M. Giil



Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Practical Extensions

What about constrained/arbitrary deadlines?
...everything but the RP meta-heuristic still works.

...no optimal online schedulers exist (Fisher et al., 2010).

What about precedence constraints?
...can reuse uniprocessor techniques (jitter).
...can introduce additional heuristics.

What about self-suspensions?
...already supported (slack).
...Implementation already supports deferrable servers.
...semi-partitioned deferrable servers?

MPI-SWS B. Brandenburg and M. Giil



Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Practical Extensions

What about constrained/arbitrary deadlines?
...everything but the RP meta-heuristic still works.
...no optimal online schedulers exist (Fisher et al., 2010).

What about precedence constraints?
...can reuse uniprocessor techniques (jitter).
...can introduce additional heuristics.

What about self-suspensions?
...already supported (slack).

...Implementation already supports deferrable servers.
...semi-partitioned deferrable servers?

What about locking?

MPI-SWS B. Brandenburg and M. Giil



Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Practical Extensions

What about constrained/arbitrary deadlines?
...everything but the RP meta-heuristic still works.
...no optimal online schedulers exist (Fisher et al., 2010).

What about precedence constraints?
...can reuse uniprocessor techniques (jitter).
...can introduce additional heuristics.

What about self-suspensions?
...already supported (slack).
...Implementation already supports deferrable servers.
...semi-partitioned deferrable servers?

What about locking?
...multiprocessor bandwidth inheritance (MBWI).
...Spin locks (Biondi et al., 2015).
...future work (MC-IPC, MrsP, ??77?).
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Further Overheads and Challenges

What about migration overheads?
...lower than under global scheduling.
...can control precisely which tasks migrate (= PAF).

What about cache/bus/memory interference?
...orthogonal concern (known techniques apply).
...no worse than under global scheduling.

What about energy/power/thermal constraints?
...much prior work available (uni + partitioned).
...but race-to-idle might favor global scheduling.

What about adaptive, dynamic, or open systems?
...this is were global scheduling really shines.
...future work on on-the-fly repartitioning and load-balancing.
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Summary

Simple Approach
= semi-partitioned scheduling + reservations + try many heuristics
= effective: pre-assign failures (PAF), period transformation (RP)

Theoretical performance: Schedulability
= near optimal: empirically, ~99% schedulable utilization
= under same conditions as assumed in proofs of optimality

Practical performance: Overheads
= similar to a plain partitioned scheduler (— quite low)
= migration frequency can be reduced with slack reclamation

Subjective Complexity

= Much simpler to understand and explain than optimal schedulers
= Much simpler to build and maintain than optimal schedulers

= Future work: hopefully much simpler to extend, too.
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Companion Web Page

https://mpi-sws.org/~bbb/papers/details/rtss16

Code

= |llustrative pseudo code (not in paper)
= LITMUSRT scheduler plugin + libraries
= schedulability experiments (SchedCAT)

Artifact Evaluation Instructions
= how to run our experiments (quite detailed)
= also a good LITMUSRT tutorial / recipe

All Data & Graphs

= including comparisons of all individual heuristics
(not in paper)

= Including all “UNC style experiments “ (not in paper)

= including all overhead CDFs and plots

MPI-SWS B. Brandenburg and M. Giil
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Max
Planck
Institute

for

Thanks! Questions?

Companion page
https://mpi-sws.org/~bbb/papers/details/rtss16

LITMUsR!

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

http://www.litmus-rt.org

Bjorn B. Brandenburg
bbb@mpi-sws.org
http://www.mpi-sws.org/~bbb

Software Systems
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Call for Papers
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International Conference on Embedded Software
October 15-20, 2017 Seoul, South Korea

The ACM SIGBED International Conference on Embedded Software (EM-
SOFT) brings together researchers and developers from academia, indus-
try, and government to advance the science, engineering, and technology
of embedded software development. Since 2001, EMSOFT has been the
premier venue for cutting-edge research in the design and analysis of soft-
ware that interacts with physical processes, with a long-standing tradition
for results on cyber-physical systems, which compose computation, net-
working, and physical dynamics.

Abstract Submission:
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Full Paper Submission:
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Venue:
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Individual Heuristics — Basic Semi-Partitioning
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Individual Heuristics — Semi-Partitioning + PAF
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Individual Heuristics — Semi-Partitioning + RP

MPI-SWS

fraction of schedulable task sets

0.8

0.6

—
N

O
N

Mm=8, n=16
I I I I I
R e e o o ._._ | ' A e R e e tcecacce., B
.-~,.§. ~’\~.~
- “am
- .\ ® —_
Nen
AN
_ ‘\‘ —
\
- ‘ —_
\
~ any RP-based heuristic -
RP: h = WWFD ..cec--.
u RP: h=WFD-C=D e o= _
I I I I I
95 96 97 08 99 100

system utilization (in percent)

B. Brandenburg and M. Gl



Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

UNC Style Experiments, Varying Task Count
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Release Overhead (1/2)
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Release Overhead (2/2)
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Extra Overheads (1/2)
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Percentile Plots — Schedule Overhead (1/2)
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Percentile Plots — Schedule Overhead (2/2)
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Percentile Plots — Release Overhead (1/2)
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Percentile Plots — Release Overhead (1/2)
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Percentile Plots — Release Overhead (2/2)
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