Global Scheduling Not Required:

Simple, Near-Optimal Multiprocessor Real-Time Scheduling
with Semi-Partitioned Reservations

November 30, 2016
RTSS 2016

Bj6rn B. Brandenburg and Mahircan Gul

LiITMusr!

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

http://www.litmus-rt.org

Max
Planck
Institute

for
Software Systems

http://www.litmus-rt.org

~

for static sets of independent implicit-deadline sporadic tasks

Global Scheduling Not Required\g

Simple, Near-Optimal Multiprocessor Real-Time Scheduling
with Semi-Partitioned Reservations

November 30, 2016
RTSS 2016

Bj6rn B. Brandenburg and Mahircan Gul

LiITMusr!

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

Max
Planck
Institute

for
Software Systems

http://www.litmus-rt.org

http://www.litmus-rt.org

~

for static sets of independent implicit-deadline sporadic tasks

Global Scheduling Not Required\g

Simple, Near-Optimal Multiprocessor Real-Time Scheduling
/\ with Semi-Partitioned Reservations

empirically

November 30, 2016
RTSS 2016

Bj6rn B. Brandenburg and Mahircan Gul

(I,) r= RT
LITMUS

4 % Institute
for
Software Systems

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

http://www.litmus-rt.org

http://www.litmus-rt.org

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Main Observation and Conclusions

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Main Observation and Conclusions

Empirically, near-optimal hard real-time schedulability
— usually 299% schedulable utilization —
can be achieved with simple, well-known and well-
understood, low-overhead techniques (+ a few tweaks).

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Main Observation and Conclusions

Empirically, near-optimal hard real-time schedulability
— usually 299% schedulable utilization —
can be achieved with simple, well-known and well-
understood, low-overhead techniques (+ a few tweaks).

-> Global, optimal scheduling not required
(for the considered type of workloads!)

Pragmatically speaking, little reason to favor complex algorithms
that are (more) difficult to understand, to implement, and to extend
it @ simple approach will do.

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Main Observation and Conclusions

Empirically, near-optimal hard real-time schedulability
— usually 299% schedulable utilization —
can be achieved with simple, well-known and well-
understood, low-overhead techniques (+ a few tweaks).

-> Global, optimal scheduling not required
(for the considered type of workloads!)

Pragmatically speaking, little reason to favor complex algorithms
that are (more) difficult to understand, to implement, and to extend
it @ simple approach will do.

-> Future work should focus on more demanding workloads
(on preemptive multiprocessor real-time scheduling)

Static, independent, implicit-deadline tasks are by now very well supported.

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Motivation

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Multiprocessor Real-Time Scheduling

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Multiprocessor Real-Time Scheduling

Partitioning

1. Assign tasks to
cores (offline).

2. Schedule each core

independently (like
a uniprocessor).

MPI-SWS

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Multiprocessor Real-Time Scheduling

Partitioning

1. Assign tasks to
cores (offline).

2. Schedule each core
independently (like
a uniprocessor).

Partitioned Scheduling
= simple to implement
= simple to understand
= simple to extend

= KISS-compatible

MPI-SWS

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Multiprocessor Real-Time Scheduling

. Assign tasks to

Partitioning

cores (offline). @

. Schedule each core 2\

O 6

independently (like s
a uniprocessor).

=N

Partitioned Scheduling
= simple to implement
= simple to understand
= simple to extend

= KISS-compatible

But: non-optimal
need to place tasks (bin packing)
mapping may be difficult to find

)

)
)
)

mapping may not exist

—— e —

worst-case utilization bound ~50%

MPI-SWS

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Multiprocessor Real-Tim

. Assign tasks to

. Schedule each core

Partitioning

cores (offline).

independently (like
a uniprocessor).

Partitioned Scheduling
= simple to implement
= simple to understand
= simple to extend

= KISS-compatible

But: non-optimal

)

)
)
)

need to place tasks (bin packing)
mapping may be difficult to find
mapping may not exist

worst-case utilization bound ~50%

Scheduling

Global/Optimal Scheduling

1. Keep all cores busy with
sequential tasks.

2. Globally coordinate to
reschedule and migrate
tasks as needed.

MPI-SWS B. Brandenburg and M. Giil 5

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Multiprocessor Real-Tim

. Assign tasks to

. Schedule each core

Partitioning

cores (offline).

independently (like
a uniprocessor).

Partitioned Scheduling
= simple to implement
= simple to understand
= simple to extend

= KISS-compatible

But: non-optimal
need to place tasks (bin packing)
mapping may be difficult to find

)

)
)
)

mapping may not exist

ElE
—

Global Scheduling

Scheduling

Global/Optimal Scheduling

. Keep all cores busy with

sequential tasks.

. Globally coordinate to

reschedule and migrate
tasks as needed.

= optimality possible: 100% utilization
» under restrictive assumptions

= many elegant algorithms: PD?, BF,
LLRef, EKG, U-EDF, RUN, QPS,

worst-case utilization bound ~50%

MPI-SWS

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Multiprocessor Real-Time Scheduling

Partitioning Global/Optimal Scheduling

1. Assign tasks to
cores (offline).

1. Keep all cores busy with
sequential tasks.

2. Schedule each core
independently (like
a uniprocessor).

2. Globally coordinate to
reschedule and migrate
tasks as needed.

Partitioned Scheduling . Global Scheduling

= simple to implement . = optimality possible: 100% utilization
= simple to understand » under restrictive assumptions

= simple to extend .= many elegant algorithms: PD?, BF,
= KISS-compatible LLRef, EKG, U-EDF, RUN, QPS, ...
But: non-optimal . But: high conceptual complexity

= need to place tasks (bin packing) : = difficult to understand

= mapping may be difficult to find . = difficult to implement (efficiently)

= mapping may not exist . = difficult to extend

= worst-case utilization bound ~50% : = difficult to test/validate/certify

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

The Question

(How) can we make
global scheduling
work In practice?

Much work In the last 10 years, both theory and systems...

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

The Question

Do we actually need
global, optimal scheduling!?

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

The Real Question

The “claim to fame” of global, optimal multiprocessor
scheduling is 100% schedulable utilization...

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

The Real Question

The “claim to fame” of global, optimal multiprocessor
scheduling is 100% schedulable utilization...

How to get close to
100% without giving
up on simplicity?

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

The Real Question

The “claim to fame” of global, optimal multiprocessor
scheduling is 100% schedulable utilization...

How to get close to
100% without giving
up on simplicity?

...and how close can we get?

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

The Real Question

The “claim to fame” of global, optimal multiprocessor
scheduling is 100% schedulable utilization...

How to get close to
100% without giving
up on simplicity?

...and how close can we get?

Assumptions in Optimality Proofs: = periodic or sporadic tasks
= static set of tasks w/ static parameters = Implicit deadlines
= independent tasks = no Jitter, no overheads, etc.

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Essential Background

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Hybrid: Semi-Partitioned Scheduling
(Anderson et al., 2005)

15

//

1

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Hybrid: Semi-Partitioned Scheduling
(Anderson et al., 2005)

15 1§
—|TY Ty

» Statically assign most tasks . T

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Hybrid: Semi-Partitioned Scheduling
(Anderson et al., 2005)

Sy Y 4 Té Ik /7

//

1

» Statically assign most tasks ..

» Tasks are split-"':
into subtasks with
precedence constraints

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Hybrid: Semi-Partitioned Scheduling
(Anderson et al., 2005)

| PRI 7 T5 — y T6 o
] 15 Lgl<—{16
 Statically assign most tasks . | |6 |3
» Tasks are split- : o o 9

into subtasks with
precedence constraints
» Assign subtasks to cores.—

— some original tasks migrate

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Hybrid: Semi-Partitioned Scheduling
(Anderson et al., 2005)

| PRI 7 T5 — y T6 o
] 15 Lgl<—{16
 Statically assign most tasks . | |6 |3
» Tasks are split- : o o 9

Into subtasks with

precedence constraints
» Assign subtasks to cores.—
— some original tasks migrate

»this Is a process migration E %

— no code changes in the task

MPI-SWS B. Brandenburg and M. Giil

ni-Partitioned Reservations

Task 75 split into two logical subtasks (= two budgets)

At runtime, Ts migrates between cores 1 and 2. ng
e S T5
K T5/ < T5,/
» Statically assign most tasks . T
» Tasks are split'"" o o

Into subtasks with

precedence constraints
» Assign subtasks to cores-
— some original tasks migrate

»this Is a process migration m m

— no code changes in the task

MPI-SWS B. Brandenburg and M. Giil

ni-Partitioned Reservations

Task 75 split into two logical subtasks (= two budgets)

At runtime, Ts migrates between cores 1 and 2. ng
e S T5
K T5/ < T5,/
» Statically assign most tasks . T
» Tasks are split-" o o

Into subtasks with

precedence constraints
» Assign subtasks to cores-
— some original tasks migrate

»this Is a process migration m m

— no code changes in the task

Many heuristics for how to split, when to migrate, and where to assign subtasks...

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Hybrid: Semi-Partitioned Scheduling

é’A Q@o@ G:(-\C:e-: T scheduled on processor 1
Té } T‘"'i v [] scheduled on processor 2
T { T v } release | deadline
T) .Y. | completion
O||||5||||]I0||||]5||||2I0||||>ﬁme
Simple Example One approach: split Ts
= Three identical tasks = into two subtasks T’3, T"3
» period P =15 = C=C"=5
» WCET C = 10 - P’=P” =15
= D'=8,D"=7

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Nn"' Ranmiirad: Simnla NanrrOntimal Multinraracear Ranl.Tima Srhadilina with Sami-PAartitinnad Pncnrvaﬁons

Semi-Partitioning
Still core-local decisions, one cross-core activation.

scheduled on processor 1

- scheduled on processor 2

T release l deadline

Tcompletion
L L1 I T I I O O L Lt ime
0 5 10 15 20
Simple Example One approach: split Ts
= Three identical tasks = into two subtasks T’3, T3
» period P =15 = C=C"=5
» WCET C =10 = P'=P”"=15
= D'=8,D"=7

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

The C=D Splitting Strategy

(Burns et al., 2012)

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

The C=D Splitting Strategy

(Burns et al., 2012)

Assumption
= Earliest-Deadline First (EDF) policy is in use on each core

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

The C=D Splitting Strategy

(Burns et al., 2012)

Assumption
= Earliest-Deadline First (EDF) policy is in use on each core

Suppose Ts does not fit (in its entirety) onto Core 1
= How to allocate some part of Ts on Core 17 -
/

5@T'

4l |n
N4

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

The C=D Splitting Strategy

(Burns et al., 2012)

Assumption
= Earliest-Deadline First (EDF) policy is in use on each core

Suppose Ts does not fit (in its entirety) onto Core 1
= How to allocate some part of Ts on Core 1? -
/

T/
C=D Approach 5 H
»C'+ C’=C /] split execution cost
D’'=C // zero-laxity subtask

= Given parameters (C, D, P)... - H
»D"=D-0D // remaining laxity subtask

...Identify largest C’ and matching C” such that
»P'=P’=P // period remains unchanged
» and first subtask is schedulable on Core 1

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

zero laxity « forced to be scheduled immediately

laxity = relative deadline - execution cost

Suppose Ts does not fit (in its entir &ty) onto Core 1
= How to allocate some part of Ts -h Core 1? -
/

T/
C=D Approach 5 S -
D =C ") I/ zero-laxity subtask
) - [

» (7 + ("= (C /[split ex Zution cost

= Given parameters (C, D, P) 4 - H
// remaining laxity subtask

...Identify largest C’ and ratching C” such that
»P' =P’ =P /[period remains unchanged
» and first subtask is schedulable on Core 1

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Reservation-Based Scheduling
(Mercer et al., 1993)

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Reservation-Based Scheduling
(Mercer et al., 1993)

Two-Level Scheduling

= threads / tasks encapsulated
IN reservations

= to schedule:
» first pick reservation
» then pick thread

top- Ievel scheduler (EDF)

W
@

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Reservation-Based Scheduling
(Mercer et al., 1993)

Two-Level Scheduling

= threads / tasks encapsulated
IN reservations

= to schedule:
» first pick reservation
» then pick thread

top-level scheduler (EDF)

() a)

reservation reservation

T &

Reservations (or Servers)
= many algorithms available in
the literature
= Most simple one:
» sporadic polling server
= sporadic task
+ budget enforcement

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Reservation-Based Scheduling
(Mercer et al., 1993)

Two-Level Scheduling

= threads / tasks encapsulated
IN reservations

= t0 schedule:

» first pick reservation " "
» then pick thread Jtesevation, - [Teseivallol

Hard vs. Soft Reservations
(Rajkumar et al., 1998)

top-level scheduler (EDF)

Reservations (or Servers)
= many algorithms available in

the literature When running out of budget:
= Most simple one: |
= sporadic task soft = may consume idle time
+ budget enforcement _; with background priority

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

A Simple Semi-Partitioned
Reservations Approach

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Approach in a Nutshell

(1) (T) (To) ~(To;

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Approach in a Nutshell

1) Partitioned Reservation Scheduler @ @ @ @

= EDF-based, completely local
= simple to implement efficiently

<> DEEE——

s (D B
V ¥V ¥ Y
=) @

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Approach in a Nutshell

1) Partitioned Reservation Scheduler @ @ @ @

= EDF-based, completely local
= simple to implement efficiently

2) One Task <~ One Reservation ‘ @ @ .

= Initially, reservation parameters = task parameters
= soft sporadic polling reservations
(or CBS or...)

> <

s (D B
V ¥V ¥ Y
=) @

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Approach in a Nutshell

1) Partitioned Reservation Scheduler @ @ @ @

= EDF-based, completely local
= simple to implement efficiently

2) One Task <~ One Reservation . @ @ .

= Initially, reservation parameters = task parameters
= soft sporadic polling reservations FE
(or CBS or...) \ .

3) Use C=D + Some Tweaks...
= place all reservations, splitting some if necessary

|| O

/N N

= potentially tweak reservation parameters @ Q @ @
= {ry to avoid migrations whenever possible

€5 €5

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Approach in a Nutshell

1) Partitioned Reservation Scheduler @ @ @ @

= EDF-based, completely local
= simple to implement efficiently

2) One Task <~ One Reservation . @ @ .

= Initially, reservation parameters = task parameters
= soft sporadic polling reservations FE
(or CBS or...) \ .

3) Use C=D + Some Tweaks...
= place all reservations, splitting some if necessary

|| O

/N N

= potentially tweak reservation parameters @ Q @ @
= {ry to avoid migrations whenever possible

€5 €5

...and that’s it!

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Tweak 1: Try Many Heuristics

—

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Tweak 1: Try Many Heuristics

—

Most heuristics are cheap...
= _..SO0 don’t choose, run them “all.”

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Tweak 1: Try Many Heuristics

—

Most heuristics are cheap...
= _..SO0 don’t choose, run them “all.”

Observation: It pays to play with details
=- to split, how much to split off, where to place subtasks...
= Minor differences add up.

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Tweak 1: Try Many Heuristics

—

Most heuristics are cheap...
= _..SO0 don’t choose, run them “all.”

Observation: It pays to play with details
=- to split, how much to split off, where to place subtasks...
= Minor differences add up.

Observation: C=D works also well with worst-fit decreasing (WFD)

= Trivial...

= _..but prior evaluations of C=D have focused primarily on first-fit
decreasing (FFD) and thus not exploited its full potential.

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Tweak 2: Pre-Assign Failures (PAF) Meta-Heuristic

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Tweak 2: Pre-Assign Failures (PAF) Meta-Heuristic

Idea: Use Heuristic Failure as a Signal in a Feedback Loop
= The tasks that couldn’t be placed must be difficult somehow...
...S0 try to place them first!

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Tweak 2: Pre-Assign Failures (PAF) Meta-Heuristic

Idea: Use Heuristic Failure as a Signal in a Feedback Loop
= The tasks that couldn’t be placed must be difficult somehow...

...S0 try to place them first!

Procedure PAF(hl, h2, taskset)

ITnitialize:

e rest = taskset
e faillures = O

While no solution is found:

1. Assign all tasks 1n failures with hl
— give up 1f this fails

2. Assign all tasks 1in rxest with h2 while respecting
pre—-assignment by hl

— success 1f complete solution 1s found
— otherwise move any unplaced tasks to failures

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Tweak 2: Pre-Assign Failures (PAF) Meta-Heuristic

Idea: Use Heuristic Failure as a Signal in a Feedback Loop
= The tasks that couldn’t be placed must be difficult somehow...

...S0 try to place them first!

Procedure PAF(hl, h2, taskset)

ITnitialize:

regular task-placement
) heuristics (e.q.,
e failures = @ ~ WFD, FFD + C=D)

e rest = taskset

* *

0

While no solution is found:

1. Assign all tasks 1n failures with hl
— give up 1f this fails

2. Assign all tasks 1in rxest with h2 while respecting
pre—-assignment by hl

— success 1f complete solution 1s found
— otherwise move any unplaced tasks to failures

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Tweak 3: Reduce Periods (RP) Meta-Heuristic

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Tweak 3: Reduce Periods (RP) Meta-Heuristic

Observation: the C=D splitting heuristic is not “scale invariant”
= splitting off a subtask with C’=D’=1 from a (C=2, P=10) task
VS.
splitting off a subtask with C’=D’=100 from a (C=200, P=1000) task

= Both subtasks have 10% utilization and 100% density...
...but C’=D’=1 s much easier to accommodate.

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Tweak 3: Reduce Periods (RP) Meta-Heuristic

Observation: the C=D splitting heuristic is not “scale invariant”
= splitting off a subtask with C’=D’=1 from a (C=2, P=10) task
VS.
splitting off a subtask with C’=D’=100 from a (C=200, P=1000) task

= Both subtasks have 10% utilization and 100% density...
...but C’=D’=1 s much easier to accommodate.

Idea: transform period prior to semi-partitioning
= apply period transformation to spread out the load of “difficult” tasks
= very effective at reducing the “chunk size” that C=D must deal with

MPI-SWS B. Brandenburg and M. Giil

Example

If a task requires 2 ms every 10 ms,
we can instead also schedule it for 1 ms every 5 ms:

1 1 1 1 1 1
0 5 10 15 20 o5

= apply period tran= Srmation to spread out the load of “difficult” tasks
= very effective at reducing the “chunk size” that C=D must deal with

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Tweak 3: Reduce Periods (RP) Meta-Heuristic

Observation: the C=D splitting heuristic is not “scale invariant”
= splitting off a subtask with C’=D’=1 from a (C=2, P=10) task
VS.
splitting off a subtask with C’=D’=100 from a (C=200, P=1000) task

= Both subtasks have 10% utilization and 100% density...
...but C’=D’=1is much easier to accommodate.

Idea: transform period prior to semi-partitioning
= apply period transformation to spread out the load of “difficult” tasks
= very effective at reducing the “chunk size” that C=D must deal with

Practical Considerations
= trivial to support: no code changes, just tweak reservation parameters
= tradeoff: increased

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Tweak 4: Flip the C=D Subtask Order

normal
order

T

Ijob arrival job deadline

l > time

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Tweak 4: Flip the C=D Subtask Order

zZero laXIty

C=D subtask normal
order

T

Ijob arrival job deadline

l > time

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Tweak 4: Flip the C=D Subtask Order

zZero laXIty

non-zero laxity,

! .
|.

job arrival job deadllne

time

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Tweak 4: Flip the C=D Subtask Order

zZero IaXIty

non-zero laxity,
.- Subject to interference

normal

T- - > time
job arrival job deadllne
flipped
Yrder
Idea: execute zero-laxity subtask(s) last

= |rrelevant from theory point of view: order is arbitrary.
= Quite useful from systems point of view...

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Tweak 4: Flip the C=D Subtask Order

zZero IaXIty

non-zero laxity,

T- - > fime
job arrival job deadllne
SR KT C < D subtask
non-zero laxity, flippea
“.....subject to interference Yrder
Idea: execute zero-laxity subtask(s) last

= |rrelevant from theory point of view: order is arbitrary.
= Quite useful from systems point of view...

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Tweak 4: Flip the C=D Subtask Order

zZero IaXIty

non-zero laxity,

T

I . > lime
job arrival job deadllne
SRR KT C < D subtask
. zZero IaXIty
.. non-zero laxity, C=D subtask flipped
“.....subject to interference Yrder
Idea: execute zero-laxity subtask(s) last

= |rrelevant from theory point of view: order is arbitrary.
= Quite useful from systems point of view...

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Tweak 5: Use Slack to Avoid Migrations

T

Ijob arrival job deadline

l > time

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Tweak 5: Use Slack to Avoid Migrations

S KT C < D subtask
: Zero IaXIty worst
, case
.. non-zero laxity, C=D subtask
~.....subject to interference
T. . _ _ l > time
job arrival job deadline

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Tweak 5: Use Slack to Avoid Migrations

S KT C < D subtask
: Zero IaXIty worst
, case
~.....Subject to interference
T. . _ _ l > time
job arrival job deadline
lucky

\\\\iése
Idea: use a simple slack reclamation scheme
= finish job before it must migrate (= thanks to flipped subtask order)
= our implementation uses CASH (Caccamo et al., 2000)

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Tweak 5: Use Slack to Avoid Migrations

S KT C < D subtask
: Zero IaXIty worst
_ case
~.....subject to interference
T. . _ _ l > time
job arrival job deadline
& C < D subtask ucky

Yase
Idea: use a simple slack reclamation scheme
= finish job before it must migrate (= thanks to flipped subtask order)
= our implementation uses CASH (Caccamo et al., 2000)

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Tweak 5: Use Slack to Avoid Migrations

S— e C < D subtask
-. zero laxity .. worst
. case
,. non-zero laxity, C=D subtask \
~.....Subject to interference
T. . _ _ l > time
job arrival job deadline
& C < D subtask consume slack lucky

non-zero laxity, recipient of .
dynamically reclaimed slack -

Idea: use a simple slack reclamation scheme
= finish job before it must migrate (= thanks to flipped subtask order)
= our implementation uses CASH (Caccamo et al., 2000)

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Tweak 5: Use Slack to Avoid Migrations

S KT C < D subtask
: Zero IaXIty worst
, case
~.....subject to interference
T. . _ _ l > time
job arrival job deadline

migration avoided

. lucky
' i : " case
non-zero laxity, recipient of
dynamically reclaimed slack -

Idea: use a simple slack reclamation scheme
= finish job before it must migrate (= thanks to flipped subtask order)
= our implementation uses CASH (Caccamo et al., 2000)

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Does it work in theory?

— schedulability experiments —

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Schedulability Experiments — Setup

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Schedulability Experiments — Setup

Metric

. number of schedulable task sets
= schedulability =

total number of tested task sets

= optimal < schedulability = 1

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Schedulability Experiments — Setup

Metric

. number of schedulable task sets
= schedulability =

total number of tested task sets

= optimal < schedulability = 1

Number of Processors m
= considered range: 2, 4, 8, 16, 24, 32, 64 processors

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Schedulability Experiments — Setup

Metric

. number of schedulable task sets
= schedulability =

total number of tested task sets

= optimal < schedulability = 1

Number of Processors m
= considered range: 2, 4, 8, 16, 24, 32, 64 processors

Number of Tasks n
= considered range: m+ 1, ..., 3m

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Schedulability Experiments — Setup

Metric

. number of schedulable task sets
= schedulability =

total number of tested task sets

= optimal < schedulability = 1

Number of Processors m
= considered range: 2, 4, 8, 16, 24, 32, 64 processors

Number of Tasks n
= considered range: m+ 1, ..., 3m

Task Periods

= chosen from {1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, 1000}
uniformly at random (in milliseonds)

= range commonly found in automotive systems

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Schedulability Experiments — Setup

Metric

. number of schedulable task sets
= schedulability =

total number of tested task sets

= optimal < schedulability = 1

Number of Processors m
= considered range: 2, 4, 8, 16, 24, 32, 64 processors

Number of Tasks n
= considered range: m+ 1, ..., 3m

Task Periods

= chosen from {1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, 1000}
uniformly at random (in milliseonds)

= range commonly found in automotive systems

Task Utilization
= Emberson et al. (2010) task-set generator (designed to be unbiased)
= “UNC style” task-set generator (used in prior LITMUS"' studies)

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Expected Outcome

0.8

0.6

“higher is better”

0.4

Kk'sets that could be scheduled

0.2

S

ratio of schedulable task sets
#ia

20

Smaller n = more difficult bin-packing instance

higher utilization

40 60 80

system utilization (in percent)

= fewer, larger items = harder problem

Higher utilization = more difficult bin-backing instance

= |ess spare capacity = harder problem

MPI-SWS

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Expected Outcome

gap: measure
of sub-optimality

1 - _
s “— 1 up to 100% utilization
%’ 0.6 | -
3 g -heuristic (illustration)
g _ —~partitioning utilization bound
0 20 20 50 20 100 1 up to 50% utilization,
system utilization (in percent) no guarantee thereafter

Smaller n = more difficult bin-packing instance
= fewer, larger items = harder problem

Higher utilization = more difficult bin-backing instance
= |ess spare capacity = harder problem

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Performance of Partitioned Scheduling (8 Cores)

n=9 N=12 = a= = N=10 ccem «- e N=24 = = N=32
N=10 cccccceo N=14 c= cce N=20 ccce= = N=28 a= == ==

—l
I

O
o

O
»

O
N

O
N

fraction of schedulable task sets

-

I
80 85 90 95 100
system utilization (in percent)

~
o)

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Performance of Partitioned Scheduling (8 Cores)

n=9 N=12 = a= = N=10 ccem «- e N=24 = = N=32
N=10 cccccceo N=14 c= cce N=20 ccce= = N=28 a= == ==

—l
I

O
o

O
»

O
N

No problems up to
75% utilization.

O
N
|

fraction of schedulable task sets

o
|

I
75 80 85 90 95 100
system utilization (in percent)

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Performance of Partitioned Scheduling (8 Cores)

n=9
n=10

N=12 e == = N=10 coem == e N=24 = =

N=14 = .= N=20

N=28 a= == ==

N=32 e

/

fraction of schedulable task sets

80

85

I
90

95

system utilization (in percent)

Large n.
(32 = 3m)

MPI-SWS

B. Brandenburg and M. Gl

n=9
n=10

Close to optimal (>95% schedulable utilization) for n = 3m = 24
— scheduling with implicit deadlines is difficult
only for small n, high-utilization task sets

N=12 = = = N=

N=14 c= ce= N=20 <--

© o o o
N ~ @) (00 -

fraction of schedulable task sets

-

~
o)

MPI-SWS

80

vith Semi-Partitioned Reservations

3 (8 Cores)

e cee N=24 = = N=32 e

"\:28 -s a» e

T~
1 up to 100%

utilization

system utilization (in percent)

B. Brandenburg and M. Gl

ISemi-Partitioned Reservations

Global Scheduling Not Required: 4

Not a big gap for optimal algorithms to
Pe I'fO FMANC| exploit: much complexity for little gain! 8 Ccres)

Lets try semi-partitioning...

\
1 up to 100%

utilization

O
00
|

O
o)
|

O
N
|

O
N
|

fraction of schedulable task sets

o
|

I
80 85 90 95 100
system utilization (in percent)

~
o)

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Before: Partitioning Only

N=12 = a= = N=10 ccem «- e N=24 = = N=32
N=10 cccccceo N=14 c= cce N=20 ccce= = N=28 a= == ==

0.8

O O
IN »

O
N

fraction of schedulable task sets

-

I
75 80 85 90 95 100
system utilization (in percent)

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

MPI-SWS

o

fraction of schedulable task sets

O

O

With Basic Semi-Partitioning

n=9 N=12 e a= = N=10 coam - e N=24 = = N=32 e
N=10 eccccccee N=14 cem cce N=20 cocem == N=28 a= «= =
1 I I I I _
3 _
6 _
4 _
2 _
Lelt’s zoom In...
0L _
I I I I I
75 80 85 90 95 100

system utilization (in percent)

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

With Basic Semi-Partitioning [Zoomed In]

n=9 N=12 = a= = N=10 ccem «- e N=24 = = N=32
N=10 cccccceo N=14 c= cce N=20 ccce= = N=28 a= == ==

0.8

0.6

O
N

O
N

fraction of schedulable task sets

-

I
92 94 96 08 100
system utilization (in percent)

©
o

MPI-SWS B. Brandenburg and M. Giil

n=9
n=10

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

With Basic Semi-Partitioning [Zoomed In]

N=12 e == = N=10 coem == e N=24 = =
n=14 o oa» n=20

—h

O
o

O
»

O
N

O
N

fraction of schedulable task sets

-

No problems up to
90% utilization!

(X scale changed)

MPI-SWS

94
system utilization (in percent)

B. Brandenburg and M. Gl

N=32 e
N=28 a= == ==

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

fraction of schedulable task sets

n=9
n=10

—h

0.8

0.6

O
N

O
N

-

N=12 e == = N=10 coem == e N=24 = =
........ N=14 cc c= N=20 cccem cc N=28 = = «o

N=32 e

Even smaller gap

at 95% utilization, lowest curve
at ~75% schedulablity

Still, can’t we get there
somehow...?

92

I
94 96
system utilization (in percent)

98

With Basic Semi-Partitioning [Zoomed In]

T~

1 up to 100%
utilization

MPI-SWS

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

MPI-SWS

fraction of schedulable task sets

With Pre-Assign Failures Heuristic (PAF)

n=9 N=12 = = = N=16 comm . e N=24 = = N=32
N=10 ceccccc-- N=14 e cce N=20 ceccem - N=28 = == -=
1 I I I I _
0.8 _
0.6 _
0.4 -
0.2 _
Let’s zoom in again...
O B I I I I I ~
90 92 94 96 08 100

system utilization (in percent)

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

With Pre-Assign Failures Heuristic (PAF) [2X Zoomed In]

MPI-SWS

fraction of schedulable task sets

n=9
n=10

—h

O
o

O
»

O
N

O
N

-

N=12 e == = N=10 coem == e N=24 = =
N=14 c= cce N=20 ccce= = N=28 a= == ==

N=32 e

O
Ol

96

I
97 08
system utilization (in percent)

B. Brandenburg and M. Gl

99

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

With Pre-Assign Failures Heuristic (PAF) [2X Zoomed In]

n=9 N=12 @ = = N=10 coem == e N=24 = = N=32

N=10 cccccceo N=14 cc ce= N=20 cccem == N=28 a= == ==

1 I I | | | B
(dp)
©
(dp)
X 0.8 _
©
Q@
§ 0.6 _
S -
2 04 | Scale starts at No problems up to)
§ 95% utilization! 98% utilization!
o
_5 0.2 L -
©
©

O | | | | L

95 96 97 08 99 100

MPI-SWS

system utilization (in percent)

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

With Pre-Assign Failures Heuristic (PAF) [2X Zoomed In]

n=9 N=12 e = = N=16 coem -- e N=24 = = N=32 e

N=10 cccccc-- N=14 e cce N=20 ccocem .- N=28 = = --
2 T~
3 1 up to 100%
5 0.8 utilization
@
[Even smaller gap |
'C_E 0.6 |- at 99% utilization, lowest curve at
3 90+% schedulablity |
504 |
/p) :
[s Still, can’t we get there somehow...? |
_g 0.2 | :
©
T

O B I I I I I |

95 96 97 98 99 100

system utilization (in percent)

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Semi-Partitioning with PAF + Period Transformation

MPI-SWS

fraction of schedulable task sets

n=9
n=10

—h

0.8

O
»

O
N

O
N

-

N=12 e == = N=10 coem == e N=24 = =
N=14 c= cce N=20 ccce= = N=28 a= == ==

N=32 e

O
Ol

96

I
97 08
system utilization (in percent)

B. Brandenburg and M. Gl

99

100

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Semi-Partitioning with PAF + Period Transformation

MPI-SWS

fraction of schedulable task sets

n=9 N=12 e a= = N=10 coem - e N=24 2 = N=32
N=10 cccccce. N=14 cam ccm N=20 ccoem -- N=28 = = e
1 I I I _
0.8 |- _
0.6 - _
Near-optimal
04 L 99+% schedulability B
for any task count.
0.2 _
O+ _
I I I I I
95 96 97 o8 99 100

system utilization (in percent)

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

MPI-SWS

fraction of schedulable task sets

Summary for 8 Cores, 16 Tasks (n=2m)

For overview, let's consider just one task count (n=16).

1

0.8

0.6

0.4

O
N

with both meta-heuristics

with PAF meta-heuristiC «ecececee-

basic semi-partitioning = = =

partitioning only ce= =
I

75

I
80 85 90
system utilization (in percent)

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Summary for 8 Cores, 16 Tasks (n=2m)

For overview, lett pasic semi-partitioning ount (n=16)

0.8

0.6

0.4

O
N

fraction of schedulable task sets

partitioning only

with both meta-heuristics

with PAF meta-heuristic

basic semi-partitioning = = =

partitioning only ce= =
I

MPI-SWS

80

system utilization (in percent)

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Summary for 8 Cores, 16 Tasks (n=2m)

0.8

0.6

O
N

O
N

fraction of schedulable task sets

" PAF surprisingly effective & period transformation closes the
last gap — empirically, virtually optimal schedulability

with both meta-heuristics

with PAF meta-heuristic

basic semi-partitioning = = =

partitioning only ce= =
I

MPI-SWS

80

85

system utilization (in percent)

B. Brandenburg and M. Gl

g

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

What about other core counts?¢ (n=2m)
— trends largely independent of m

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

What about other core counts?¢ (n=2m)
— trends largely independent of m

—

]
[}
-

o
o

O
o))

fraction of schedulable task sets

— \ .
04 | m " P

o\ |

o\ |

° |
0.2 - with both meta-heuristics \\ .

with PAF meta-heuristic ccccec-- .
basic semi-partitioning = = = ‘-,
0 partitioning only ce c= Seme o
| | |

|
86 88 90 92 94 96 o8 100
system utilization (in percent)

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

MPI-SWS

fraction of schedulable task sets

o
o

o o
BAN (0)}

O
N

What about other core counts?¢ (n=2m)
— trends largely independent of m

I Y N 1 P oam
ﬂ Can *an ‘- .~ \\
()] °
. g 0.8 - \'\ . \‘\
7)) ~
g \
L -,
— % 0.6 |- -
m 2 \
. . m= \
- o ‘s r N .GC) O 4 B _8 s‘ ‘
N\ o V.
“ ! 5 A"
\ ' 2 \
° l a
- with both meta-heuristics \\ Vo % 0.2 |- with both meta-heuristics ~
with PAF meta-heuristic -------. \ © with PAF meta-heuristic -------. \
basic semi-partitioning = = = . = basic semi-partitioning = = = \.
- partitioning only c—= -— Somo 0 partitioning only c—= -— Ve e .l
l l l l l l l l l l l l l l l l
86 88 90 92 94 96 98 100 86 88 90 92 94 96 98 100

system utilization (in percent) system utilization (in percent)

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

MPI-SWS

fraction of schedulable task sets

fraction of schedulable task sets

o
o

O

®»

o

O
N

o
»

o

AN

AN

What about other core counts?¢ (n=2m)
— trends largely independent of m

— - 1 -
.,‘L) i o~ ‘= \'\
q) .\
_ 208 |- o \
%) ~
MY \
L) -,
— E 0.6 |- -
= N
. : - \
=M= ! P g, M=8 . \
N\ o V.
“ ! 5 A"
\ ' 2 \
° l a
- with both meta-heuristics \\ Vo % 0.2 |- with both meta-heuristics ~
with PAF meta-heuristic -------. \ © with PAF meta-heuristic -------. \
basic semi-partitioning = = = . = basic semi-partitioning = = = \.
- partitioning only c—= -— Somo 0 partitioning only c—= -— Ve e .l
l l l l l l l l l l l l l l l l
86 88 90 92 94 96 98 100 86 88 90 92 94 96 98 100

system utilization (in percent)

system utilization (in percent)

m=16 ")

- with both meta-heuristics
with PAF meta-heuristic <ccez--- \
basic semi-partitioning = = = \
. partitioning only ce= c= T _
| | | | | | | |
86 88 90 92 94 96 98 100
system utilization (in percent)

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

What about other core counts?¢ (n=2m)
— trends largely independent of m

MPI-SWS

1 ey - 1 i _
..‘i.) .fi.) . o ‘~ \'\
) ()] °
0.8 _ 208 | e ‘. _
3 3 ~ \
@ @ *~ \
S50.6 _ 206 - =, Vi
E 3 8 \ \
) — “\ (] o) — \. \
S04 L m \ r _ S04 | m \ _
3 \ | e B¢
o) \ | o) \
S 0.2 : . N\ ! S 0.2 : . S
haal with both meta-heuristics \ " haal with both meta-heuristics ‘ 7
© with PAF meta-heuristic «ccce--- \ © with PAF meta-heuristic «ccce-.- \
b basic semi-partitioning = = = -, b basic semi-partitioning = = = ‘.\
0| partitioning only ce= = oo 0 | partitioning only ce= = "~ e oe]
| | | | | | | | | | | | | | | |
86 88 90 92 94 96 o8 100 86 88 90 92 94 96 o8 100

o
o)

fraction of schedulable task sets

o o
(@))

o

AN

N

system utilization (in percent)

m=16

with both meta-heuristics
with PAF meta-heuristic

basic semi-partitioning = = =
partitioning only c— =
l l l

N cam o

86

88

90

system utilization (in percent)

92

94

|
96

98

100

o
o

o
o))

o
~

o
N

fraction of schedulable task sets

system utilization (in percent)

with both meta-heuristics
with PAF meta-heuristic

m=24

basic semi-partitioning = = =
partitioning only c—= =
l l l

86

B. Brandenburg and M. Gl

88

90

system utilization (in percent)

92

94

|
96

98

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

What about the task-set generator? (n=2m)
— very similar for completely different task-set generator

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

MPI-SWS

What about the task-set generator? (n=2m)
— very similar for completely different task-set generator

fraction of schedulable task sets

o
o

o
o))

o
~

o
N

o
|

-—--’

m=4, UNC gen.,
i " 1\
exponential-heavy
0\ '
with both meta-heuristics ——— ' :
with PAF meta-heuristiC ceccee- \
basic semi-partitioning e == = \
. . partitiloning on!y == . . .
86 88 90 92 94 96 o8 100

system utilization (in percent)

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

MPI-SWS

What about the task-set generator? (n=2m)

o o o o
N BN (@)) (0]

fraction of schedulable task sets

o
|

— very similar for completely different task-set generator

system utilization (in percent)

|
1
s et e—_,ee ... T T -, A
= e oy -, A X
o - \v“\)
N \ 208 |-
L 0 '
s\ .'8
i by 20.6
m=4, UNC gen., :
\ D
[]) e
- exponential-heavy 304
\ ©
.\ : §
" 0 ©0.2
with both meta-heuristiCS - =
with PAF meta-heuristiC ececcees \
basic semi-partitioning e == = "\
partitioning only ce= ce= 0
]]]]]]]
86 88 90 92 94 96 o8 100

--.
S]
\
“
-“\

\
m=8, UNC gen.,
exponential-heavy

with both meta-heuristiCS)
with PAF meta-heuristiC cecccee- .
basic semi-partitioning = e = v
. . partitiloning on!y - = . . ‘—I -
86 88 90 92 94 96 98 100

system utilization (in percent)

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

MPI-SWS

What about the task-set generator? (n=2m)

o o o o
N BN (@)) (0]

fraction of schedulable task sets

o
|

fraction of schedulable task sets
o o
AN »

o
N

o
|

ot
o
|

— very similar for completely different task-set generator

-—--’

- m=4, UNC gen.,
- exponential-heavy

with both meta-heuristiCS e .
with PAF meta-heuristiC ccecce- \
basic semi-partitioning e = =
partitioning only ce= o=

]]

]]]]
86 88 90 92 94 96 o8 100
system utilization (in percent)

"m=16, UNC gen.,
" exponential-heavy

with both meta-heuristiCS e
with PAF meta-heuristiC ceccese \
basic semi-partitioning = = = \
partitioning only ce= o=
]]]

]]]]]
86 88 90 92 94 96 o8 100
system utilization (in percent)

o o o o
N BN (@) (0]

fraction of schedulable task sets

o
|

~ < .
N\
“
-“\

b\
m=8, UNC gen.,
exponential-heavy

with both meta-heuristiCS e
with PAF meta-heuristiC ccecceee .
basic semi-partitioning = e = v
partitiloning on!y cem oem . '_I _

]]]
86 88 90 92 94 96 o8 100
system utilization (in percent)

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

MPI-SWS

What about the task-set generator? (n=2m)
ry similar for completely different task-set generator

o o
(@)) (0]

o
~

fraction of schedulable task sets

o
N

fraction of schedulable task sets

— ve

m=4, UNC gen.,
exponential-heavy

with both meta-heuristiCS e
with PAF meta-heuristic
basic semi-partitioning e = =

partitioning only ce= o=
]]

88

90

92

94

]
96

system utilization (in percent)

0.6 |

m=16, UNC gen.,

exponential-heavy

with both meta-heuristiCS
with PAF meta-heuristic
basic semi-partitioning e == =

partitioning only ce= o=
]]

86

88

90

92

94

96

system utilization (in percent)

o o
(@) (0]

o
~

fraction of schedulable task sets

o
N

o
[e¥

0.4

0.2

fraction of schedulable task sets

m=8, UNC gen.,

exponential-heavy

with both meta-heuristiCS e
with PAF meta-heuristic

basic semi-partitioning e = =

partitioning only ce= o=
]]

88

90

92

94

]
96

system utilization (in percent)

O
(@)
|

m=24, UNC gen.,
exponential-heavy

with both meta-heuristiCS
with PAF meta-heuristic
basic semi-partitioning e == =

partitioning only ce= ce=
]]

86

B. Brandenburg and M. Gl

88

90

92

94

96

system utilization (in percent)

o
o

0.6

0.4

0.2

fraction of schedulable task sets

0.8

0.4

fraction of schedulable task sets

MPI-SWS

0.6 |

m=4, UNC gen,
exponential-heavy

with both meta-heuristiCS e
with PAF meta-heuristiC cecccces
basic semi-partitioning = = =

partitioning only ce= o=
]]]

]]
86 88 90 92 94 96
system utilization (in percent)

m=16, UNC gen,
exponential-heavy

with both meta-heuristiCS
with PAF meta-heuristiC ccccces
basic semi-partitioning = = =

partitioning only ce= o=
]]]]]]

]
86 88 90 92 94 96 98
system utilization (in percent)

o o o
BN (@) (0]

o
N

fraction of schedulable task sets

e

m=8, UNC gen,
exponential-heavy

with both meta-heuristiCS e
with PAF meta-heuristiC cecccces
basic semi-partitioning = = =

partitioning only ce= o=
]]]

this task-set generator (= more cores = more tasks/core = easier problem).

Schedulability increases for larger m since task count is not controlled with

o o o
EEN ()] oo

fraction of schedulable task sets

o
\V)

]]
86 88 90 92 94 96
system utilization (in percent)

m=24, UNC gen,
exponential-heavy

with both meta-heuristiCS
with PAF meta-heuristiC cecccces
basic semi-partitioning e = =

partitioning only ce= ce=
]]]]]

]
86 88 90 92 94 96
system utilization (in percent)

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

What about context-switch ratese (m=8, n=2m)

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

What about context-switch ratese (m=8, n=2m)
— while there is an uptick in context switches, it is usually lower than
under the most competitive optimal schedulers

MPI-SWS

800 |
with both meta-heuristics
©700 L basic semi-partitioning = = =)
O partitioning only ce— =
= 600 RUN «ce --]
\8/_ B QPS ccomm - —
2500 L s
®
5
© 400 L —
7p
D
G 300 [. _
3
~ 200 _
X
9
S 100 L _
@)
0) | | | | |
75 80 85 90 95 100

B. Brandenburg and M. Gl

system utilization (in percent)

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

What about context-switch ratese (m=8, n=2m)
— while there is an uptick in context switches, it is usually lower than

MPI-SWS

3800

~
-
-

o
-
o

Ol
-
o

e
-
-

N
-
o

context switches/second (per core)
N

—h
-
o

-
o

-

under the most competitive optimal schedulers

W|th both meta- heurlstlcs

basic semi-partitioning = = =

partitioning only ce— =
RUN cee - -
QPS

/

Y-axis: average bound on maximum

number of context switches

~
o)

80

I
85

B. Brandenburg and M. Gl

I
90

system utilization (in percent)

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

What about context-switch rate:
— while there is an uptick in context switches,
under the most competitive optimal

3800

~
-
-

o
-
o

Ol
-
o

N
o
-

e
-
-

N
-
o

context switches/second (per core)

—h
-
o

-

RUN & QPS
optimal schedulers with

fewest preemptions

with both meta-heuristics — (Regnier et al., 2013;
basic semi-partitioning = = =
- partitioning only -— -— Massa et al., 2016)
RUN e - -
- QPS ccee -
- o/]
0/‘
- ‘,0 |
B pa)
I I I I I
75 80 85 90 95 100

system utilization (in percent)

MPI-SWS

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

What about context-switch ratese (m=8, n=2m)
— while there is an uptick in context switches, it is usually lower than

MPI-SWS

3800

~
-
-

o
-
o

Ol
-
o

N
o
-

e
-
-

N
-
o

context switches/second (per core)

—h
-
o

-

under the most competitive optimal schedulers

with both meta-heuristics
basic semi-partitioning

partitioning only ce— =

RUN ceee .. -

QPS

-

reasonable context-switch
rate even with period

transformation enabled

~
o)

I
85

80

system utilization (in percent)

B. Brandenburg and M. Gl

I
90

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

MPI-SWS

fraction of schedulable task sets

Schedulability Experiments — Summary

0.8

0.6

0.4

O
N

with both meta-heuristics

with PAF meta-heuristiC «ecececee-

basic semi-partitioning = = =

partitioning only ce= =
I

75

I
80 85 90
system utilization (in percent)

B. Brandenburg and M. Gl

Empirically, near-optimal hard real-time schedulability
— usually =99% schedulable utilization —
can be achieved with simple, well-known and well-understood,
low-overhead techniques (+ a few tweaks).

0.8

0.6

0.4

fraction of schedulable task sets

0.2 - with both meta-heuristics \ -
with PAF meta-heuristic «eccc.-- .
basic semi-partitioning = = = v\
0 |- partitioning only -—= -— L
I I I I I
75 80 85 90 95 100

system utilization (in percent)

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Does it work in practice?
— Implementation in LITMUSR! —

LiITMusr!

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

www.litmus-rt.org

B. Brandenburg and M. Gl

http://www.litmus-rt.org

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

LITMuUusSsr~!

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

Linux-based Multiprocessor Research RTOS.

: : : _ oy
=\ THE UNIVERSITY Actively maintained since 2006 o
II]II of NORTH CAROLINA 17 pUbIlC releaSGS, % Institute
— . : | f
@ CHAPBLHILL spanning 40 Linux kernel versions S°;ﬂware Syaiome
[2006—2011] Latest release: 2016.1 2011—]

www.litmus-rt.org

MPI-SWS B. Brandenburg and M. Giil

http://www.litmus-rt.org

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Experiments with the Real System

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Experiments with the Real System

Experiment 1: Comparison with stock LITMUSRT schedulers
= Partitioned Fixed-Priority (P-FP)

= Partitioned Earliest-Deadline First (P-EDF)

= Global Earliest-Deadline First (G-EDF)

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Experiments with the Real System

Experiment 1: Comparison with stock LITMUSRT schedulers
= Partitioned Fixed-Priority (P-FP)

= Partitioned Earliest-Deadline First (P-EDF)

= Global Earliest-Deadline First (G-EDF)

Experiment 2: Comparison with RUN and QPS
= |atest and greatest optimal multiprocessor schedulers
= Implementations kindly provided by Compagnin et al. (2014, 2015)

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Experiments with the Real System

Experiment 1: Comparison with stock LITMUSRT schedulers
= Partitioned Fixed-Priority (P-FP)

= Partitioned Earliest-Deadline First (P-EDF)

= Global Earliest-Deadline First (G-EDF)

Experiment 2: Comparison with RUN and QPS
= |atest and greatest optimal multiprocessor schedulers
= Implementations kindly provided by Compagnin et al. (2014, 2015)

Experiment 3: Effect of Slack on Frequency of Migrations
= How effective is “flipped C=D + slack reclamation™?

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Experiments with the Real System

Experiment 1: Comparison with stock LITMUSRT schedulers
= Partitioned Fixed-Priority (P-FP)

= Partitioned Earliest-Deadline First (P-EDF)

= Global Earliest-Deadline First (G-EDF)

Experiment 2: Comparison with RUN and QPS
= |atest and greatest optimal multiprocessor schedulers
= Implementations kindly provided by Compagnin et al. (2014, 2015)

Experiment 3: Effect of Slack on Frequency of Migrations
= How effective is “flipped C=D + slack reclamation™?

Platform: Stress Scalability

= 44 cores: 2 x 22-core Xeon E5-2699 v4 @ 2.2 GHz L ITM L' SRT

d 256 KIB prlvate L2, 55 MIB Shared L3 Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Experiments with the Real System

Experiment 1: Comparison with stock LITMUS"®" schedulers
= Partitioned Fixed-Priority (P-FP)

= Partitioned Earliest-Deadline First (P-EDF)

= Global Earliest-Deadline First (G-EDF)

Experiment 2: Comparison with RUN and QPS
= |atest and greatest optimal multiprocessor schedulers
= Implementations kindly provided by Compagnin et al. (2014, 2015)

Experiment 3: Effect of Slack on Frequency of Migrations
= How effective is “flipped C=D + slack reclamation”?

Platform: Stress Scalability

= 44 cores: 2 x 22-core Xeon E5-2699 v4 @ 2.2 GHz L ITM L' SRT

- 256 KIB prlvate L2, 55 MIB Shared L3 Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

Data

= traced overhead with Feather-Trace, schedule with sched-trace
= over six billion samples collected over 12+ hours of execution
= here: scheduling overhead — picking the next process to run

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Experiment 1: Comparison with Stock Schedulers
scheduling overhead measured on a 44-core Intel Xeon platform

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Experiment 1: Comparison with Stock Schedulers
scheduling overhead measured on a 44-core Intel Xeon platform

100 [-]
90 |- f,,-""" i
< P
Vi 80 - ~ -
E 70 L —
Q.
= 60 _
® 50 L -
O 40 |- -
C o
g 30 - 7 -
© 20 L /y SP-RES am— _
O 10 'o' G'EDF ---------
o P-FP —— = -
] D A ST S el P-EDF e oo _
I R l l l l I R l l l l I R
1000 10000 100000

processor cycles [logscale]

-> semi-partitioned (SP-RES) largely similar to partitioned schedulers (P-
FP, P-EDF), not similar to (non-optimal) global EDF (G-EDF)

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Experiment 1: Comparison with Stock Schedulers
scheduling overhead measured on a 44-core Intel Xeon platform

100 | — ' — —
o~
90 L
< 80 Observed CDF ..,.o""'
| . P _
. 20 “higher & to the left is better” ’
) : . _
o |
= 60
& 50 _
5 40 processor cycles)
% 30 (~2200 per ps) 3
o 20 SP-RES am— _
Q 0 G-EDF ---c--...
P-FP - == -
0 P EDF com com o _
10000 100000

processor cycles [logscale]

-> semi-partitioned (SP-RES) largely similar to partitioned schedulers (P-
FP, P-EDF), not similar to (non-optimal) global EDF (G-EDF)

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Experiment 1: Comparison with Stock Schedulers
scheduling overhead measured on a 44-core Intel Xeon platform

100 [© 7 o
90 |- f,,-"“" i
> P
VI 80 - e -
E 70 L _
(@X
= 60 L _
® 50 L _
“g 40 | _
C
D 30 L _
© 20 L SP-RES a——
ol 10 /° : G-EDF -........
Stock LITMUSRT Schedulers ' P-FP === -
0 _ P EDF e o o
. G-EDF: single, global lock -
1 100000

P-FP: per-core locks

. P-EDF: per-core locks
-> semi-part

FP, P-

rtitioned schedulers (P-
bal EDF (G-EDF)

SP-RES: per-core locks

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Experiment 1: Comparison with Stock Schedulers
scheduling overhead measured on a 44-core Intel Xeon platform

100 - o
90 L L
< 80 ¢ . > -"".f
vi_~ | / Long Tail ~ -
é ;g / hardware unpredictability: x86, -
= Broadwell Xeon, multicore... e)
7)) 50 ' ‘.‘,.0‘ —
5 40 i
- Lo
D 30 - _
o 20 Ry SP-RES e— _
8 G-EDF wcece---
ey ‘ P-FP — == -
O D SRR LTSttt e P EDF com oem s
T B R R ! ! ! ! T R R ! ! ! !
1000 10000 1 OOOOO

processor cycles [logscale]

-> semi-partitioned (SP-RES) largely similar to partitioned schedulers (P-
FP, P-EDF), not similar to (non-optimal) global EDF (G-EDF)

MPI-SWS B. Brandenburg and M. Giil

99t percentile overhead
SP-RES: 2,092 cycles (~1us)
P-EDF: 2,150 cycles (~1us)

99t percentile overhead

PC""3°” G-EDF: 181,934 cycles (~82us) IS

P-FP: 2,059 cycles (~1ps) easured o m
100 ...,.\.k
90 L / "",."' _
< ¢ -~
Vl 80 — / .o‘.]
w /70 L _
D /
(@X
E 60 i ' .0".‘)
g 50 L .‘.“,..o _
O 40 |- / -
§ 30 B ,70 '.'..' _
° ol /i SP-RES —— _
S r ! G-EDF --cecee-s
10 - ¢! P-FP - == -
0 2Ll meeeeemnmecmananenee P-EDF - -
! I ! I
1000 10000 1 OOOOO

processor cycles [logscale]

-> semi-partitioned (SP-RES) largely similar to partitioned schedulers (P-
FP, P-EDF), not similar to (non-optimal) global EDF (G-EDF)

MPI-SWS

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Experiment 2: Comparison with RUN and QPS

scheduling overhead measured on a 44-core Intel Xeon platform

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Experiment 2: Comparison with RUN and QPS

scheduling overhead measured on a 44-core Intel Xeon platform

100 L
90 Lo _
b
< 80 _
E /70 —
O
S 60 _
& 50 _
O 40 _
=
o QPS-C eeeeee--. il
10 QPS-G === -
0 RUN «— —. _
T . . . T R R . . . R T . .
1000 10000 100000

processor cycles [logscale]

-> semi-partitioned (SP-RES) shows much lower overhead than

implementations of RUN and QPS (latest optimal schedulers)
(RUN and QPS implementations kindly provided by Compagnin et al.)

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Experiment 2: Comparison with RUN and QPS

scheduling overhead measured on a 44-core Intel Xeon platform

100 [T e ———-
90 | Rl §

e
> 80 .
E 70 L —

O
= 60 A / .
® 50 | ,l ; _
S 40 - Foofre -
S 30 |- N :
2 o | f SP-RES —— _

Q. 10 . J - £ QPS'C ---------
] RUN & Two QPS Variants ‘ / QF’RSL]ﬁ -——— "
O —— QPS-C: per-processor locks R LT
100000

QPS-G: single, global lock
RUN: single global lock

-> 1
seml [Compagnin et al, 2014, 2015] wer overhead than

imple ptimal schedulers)
(RUN and QPS implementations kindly provided by Compagnin et al.)

MPI-SWS B. Brandenburg and M. Giil

Pptimal Multiproce

99t percentile overhead
RUN: 101,294 cycles (~46ps)
QPS-G: 135,994 cycles (~61us)

—

puih ©EED D GIID CIID CIIID © D ©

L

99t percentile overhead

SP-RES: 2,255 cycles (~1us) m p(] I'iSC
easured C

100 L

O
-
I

, —_—

o N O
o O O
I

N
o
|

99t percentile overhead

Qo
o
I

percent of samples = X
o)
o
I

20 -C: ~D SP-RES e _
QPS-C: 4,993 cycles (~2us) OPSC
10 QPS-G = == -
0 RUN e ccm o
T . . . T R B R . . . T R R R I . .
1000 10000 100000

processor cycles [logscale]

-> semi-partitioned (SP-RES) shows much lower overhead than

implementations of RUN and QPS (latest optimal schedulers)
(RUN and QPS implementations kindly provided by Compagnin et al.)

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Experiment 3: Impact of Slack Reclamation

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Experiment 3: Impact of Slack Reclamation

10

number of migrations per core per second
N W EAN O) ~ oo (@

0% 10% 25% 33% 50%

average amount of available slack (as percentage of WCET)

-> slack reclamation is effective: more slack = fewer migrations

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

MPI-SWS

number of migrations per core per second

Experiment 3: Impact of Slack Reclamation

10
9
g s
' migrations / core / second
T — “lower is better”
6
2 average amount of slack
4 difference between worst-case and
3 average-case execution times
2
| /
0
0% 10% 25% 33%

-> slack reclamation is effective: more slack = fewer migrations

average amount of available slack (as percentage of WCET)

B. Brandenburg and M. Gl

50%

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

number of migrations per core per second
N W EAN O) ~ oo (@

Experiment 3: Impact of Slack Reclamation

ox reduction in migration rate

—i
o

If the worst case is twice as high as the average case

0% 10% 25% 33% 50%

average amount of available slack (as percentage of WCET)

-> slack reclamation is effective: more slack = fewer migrations

MPI-SWS

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Discussion & Conclusion

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Study Limitations

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Study Limitations

Software Malleability

= This schedulabllity study is biased against partitioned / semi-
partitioned scheduling (as are many before it).

= [f no mapping is found, engineers may be able to refactor
“large” tasks and redistribute or pipeline some functionality.

= Example: remapping runnables in AUTOSAR.

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Study Limitations

Software Malleability

= This schedulabllity study is biased against partitioned / semi-
partitioned scheduling (as are many before it).

= [f no mapping is found, engineers may be able to refactor
“large” tasks and redistribute or pipeline some functionality.

= Example: remapping runnables in AUTOSAR.

Task Set Generation
= Randomly generated task sets, based on standard methods.
= |s there a practically relevant class of independent, implicit-
deadline workloads for which all semi-partitioning heuristics
consistently fail?
(/ don’t think so.)

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Practical Extensions

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Practical Extensions

What about constrained/arbitrary deadlines?

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Practical Extensions

What about constrained/arbitrary deadlines?
...everything but the RP meta-heuristic still works.
...no optimal online schedulers exist (Fisher et al., 2010).

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Practical Extensions

What about constrained/arbitrary deadlines?
...everything but the RP meta-heuristic still works.
...no optimal online schedulers exist (Fisher et al., 2010).

What about precedence constraints?

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Practical Extensions

What about constrained/arbitrary deadlines?
...everything but the RP meta-heuristic still works.

...no optimal online schedulers exist (Fisher et al., 2010).

What about precedence constraints?
...can reuse uniprocessor techniques (jitter).

...can introduce additional heuristics.

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Practical Extensions

What about constrained/arbitrary deadlines?
...everything but the RP meta-heuristic still works.

...no optimal online schedulers exist (Fisher et al., 2010).

What about precedence constraints?
...can reuse uniprocessor techniques (jitter).

...can introduce additional heuristics.

What about self-suspensions?

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Practical Extensions

What about constrained/arbitrary deadlines?
...everything but the RP meta-heuristic still works.

...no optimal online schedulers exist (Fisher et al., 2010).

What about precedence constraints?
...can reuse uniprocessor techniques (jitter).
...can introduce additional heuristics.

What about self-suspensions?
...already supported (slack).
...Implementation already supports deferrable servers.
...semi-partitioned deferrable servers?

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Practical Extensions

What about constrained/arbitrary deadlines?
...everything but the RP meta-heuristic still works.
...no optimal online schedulers exist (Fisher et al., 2010).

What about precedence constraints?
...can reuse uniprocessor techniques (jitter).
...can introduce additional heuristics.

What about self-suspensions?
...already supported (slack).

...Implementation already supports deferrable servers.
...semi-partitioned deferrable servers?

What about locking?

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Practical Extensions

What about constrained/arbitrary deadlines?
...everything but the RP meta-heuristic still works.
...no optimal online schedulers exist (Fisher et al., 2010).

What about precedence constraints?
...can reuse uniprocessor techniques (jitter).
...can introduce additional heuristics.

What about self-suspensions?
...already supported (slack).
...Implementation already supports deferrable servers.
...semi-partitioned deferrable servers?

What about locking?
...multiprocessor bandwidth inheritance (MBWI).
...Spin locks (Biondi et al., 2015).
...future work (MC-IPC, MrsP, ??77?).

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Further Overheads and Challenges

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Further Overheads and Challenges

What about migration overheads?

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Further Overheads and Challenges

What about migration overheads?
...lower than under global scheduling.
...can control precisely which tasks migrate (= PAF).

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Further Overheads and Challenges

What about migration overheads?
...lower than under global scheduling.
...can control precisely which tasks migrate (= PAF).

What about cache/bus/memory interference?

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Further Overheads and Challenges

What about migration overheads?
...lower than under global scheduling.

...can control precisely which tasks migrate (= PAF).

What about cache/bus/memory interference?
...orthogonal concern (known techniques apply).
...no worse than under global scheduling.

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Further Overheads and Challenges

What about migration overheads?
...lower than under global scheduling.

...can control precisely which tasks migrate (= PAF).

What about cache/bus/memory interference?
...orthogonal concern (known techniques apply).
...no worse than under global scheduling.

What about energy/power/thermal constraints?

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Further Overheads and Challenges

What about migration overheads?
...lower than under global scheduling.

...can control precisely which tasks migrate (= PAF).

What about cache/bus/memory interference?
...orthogonal concern (known techniques apply).
...no worse than under global scheduling.

What about energy/power/thermal constraints?
...much prior work available (uni + partitioned).
...but race-to-idle might favor global scheduling.

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Further Overheads and Challenges

What about migration overheads?
...lower than under global scheduling.

...can control precisely which tasks migrate (= PAF).

What about cache/bus/memory interference?
...orthogonal concern (known techniques apply).
...no worse than under global scheduling.

What about energy/power/thermal constraints?
...much prior work available (uni + partitioned).
...but race-to-idle might favor global scheduling.

What about adaptive, dynamic, or open systems?

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Further Overheads and Challenges

What about migration overheads?
...lower than under global scheduling.
...can control precisely which tasks migrate (= PAF).

What about cache/bus/memory interference?
...orthogonal concern (known techniques apply).
...no worse than under global scheduling.

What about energy/power/thermal constraints?
...much prior work available (uni + partitioned).
...but race-to-idle might favor global scheduling.

What about adaptive, dynamic, or open systems?
...this is were global scheduling really shines.
...future work on on-the-fly repartitioning and load-balancing.

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Summary

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Summary

Simple Approach
= semi-partitioned scheduling + reservations + try many heuristics
= effective: pre-assign failures (PAF), period transformation (RP)

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Summary

Simple Approach
= semi-partitioned scheduling + reservations + try many heuristics
= effective: pre-assign failures (PAF), period transformation (RP)

Theoretical performance: Schedulability
= near optimal: empirically, ~99% schedulable utilization
= under same conditions as assumed in proofs of optimality

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Summary

Simple Approach
= semi-partitioned scheduling + reservations + try many heuristics
= effective: pre-assign failures (PAF), period transformation (RP)

Theoretical performance: Schedulability
= near optimal: empirically, ~99% schedulable utilization
= under same conditions as assumed in proofs of optimality

Practical performance: Overheads
= similar to a plain partitioned scheduler (— quite low)
= migration frequency can be reduced with slack reclamation

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Summary

Simple Approach
= semi-partitioned scheduling + reservations + try many heuristics
= effective: pre-assign failures (PAF), period transformation (RP)

Theoretical performance: Schedulability
= near optimal: empirically, ~99% schedulable utilization
= under same conditions as assumed in proofs of optimality

Practical performance: Overheads
= similar to a plain partitioned scheduler (— quite low)
= migration frequency can be reduced with slack reclamation

Subjective Complexity

= Much simpler to understand and explain than optimal schedulers
= Much simpler to build and maintain than optimal schedulers

= Future work: hopefully much simpler to extend, too.

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Companion Web Page

https://mpi-sws.org/~bbb/papers/details/rtss16

Code

= |llustrative pseudo code (not in paper)
= LITMUSRT scheduler plugin + libraries
= schedulability experiments (SchedCAT)

Artifact Evaluation Instructions
= how to run our experiments (quite detailed)
= also a good LITMUSRT tutorial / recipe

All Data & Graphs

= including comparisons of all individual heuristics
(not in paper)

= Including all “UNC style experiments “ (not in paper)

= including all overhead CDFs and plots

MPI-SWS B. Brandenburg and M. Giil

https://mpi-sws.org/~bbb/papers/details/rtss16

Max
Planck
Institute

for

Thanks! Questions?

Companion page
https://mpi-sws.org/~bbb/papers/details/rtss16

LITMUsR!

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

http://www.litmus-rt.org

Bjorn B. Brandenburg
bbb@mpi-sws.org
http://www.mpi-sws.org/~bbb

Software Systems

mailto:bbb@mpi-sws.org
http://www.mpi-sws.org/~bbb

EMSOFT

WEEK _
~ ()

2017

Call for Papers

“Seoul at night” by travel oriented (Flickr) [CC BY-SA 2.0
(http://creativecommons.org/licenses/by-sa/2.0)], via Wikimedia Commons

International Conference on Embedded Software
October 15-20, 2017 Seoul, South Korea

The ACM SIGBED International Conference on Embedded Software (EM-
SOFT) brings together researchers and developers from academia, indus-
try, and government to advance the science, engineering, and technology
of embedded software development. Since 2001, EMSOFT has been the
premier venue for cutting-edge research in the design and analysis of soft-
ware that interacts with physical processes, with a long-standing tradition
for results on cyber-physical systems, which compose computation, net-
working, and physical dynamics.

Abstract Submission:
March 31, 2017

Full Paper Submission:
April 7, 2017 (firm deadline)

Conference:
October 15-20, 2017

Venue:
Lotte Hotel, Seoul, South Korea

real-time systems — embedded software — CPS — loT
control — testing and validation — verification

operating and runtime systems — compilers & analysis tools
security — reliability — dependability — energy — ...

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Appendix

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

MPI-SWS

fraction of schedulable task sets

Individual Heuristics — Partitioning Only

—
N

O
N

m=8, =24
I I I I I
- s\ —
)
\
\
- S\ _
any part. heuristic \\
FFD eccccc-.. -~
u WFD = = = =
I I I I I
95 96 97 08 99 100

system utilization (in percent)

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Individual Heuristics — Basic Semi-Partitioning

m=8, =16
1 I I I I I I I I -
12 =N NS N S NT= U,
(), ~ ~\ s\ .s‘\\ ':' \ e
7)) O 8 B ~ % oL \ Y B
- N “ "m o “.
% N\ ‘\“ w\\ 0“
"5 \ '—-.’\ \\o“
= \ a S _
E O 6 i \ Yes t‘o,.'
> \ o\“‘
3 \ Ve
Q \.«\
c 04 [.) , S _
2 any semi-part. NeUriStiC L '\\X
‘S 2WFD-C=D ..\..(...
= FWFD = = \ \
= 0.2 - FFFD -m -— § -
© WWFD .cem - - M o
= WFFD cceem - -
0L FFD-C=D = - T~ b
I I I I I I

I I
86 88 90 92 94 96 08 100
system utilization (in percent)

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Individual Heuristics — Semi-Partitioning + PAF

L e e
9p) T - -
; - -
« 0.8 -
7p)
o
[
506 -
>
3
£ 0.4 B w‘
[any PAF-based heuristic 1
I PAF: hy = FWFD «ce.....
= PAF: hy = FFFD = = =
= 0.2 - PAF: hy = WWFD e .— -
© PAF: hy = 2WFD-C=D «ee .. - \
"= PAF: hy = WFFD ceee ..
0 L PAF: hy = FFD-C=D = - i
I I I I I
95 96 97 98 99 100

system utilization (in percent)

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Individual Heuristics — Semi-Partitioning + RP

MPI-SWS

fraction of schedulable task sets

0.8

0.6

—
N

O
N

Mm=8, n=16
I I I I I
R e e o o ._._ | ' A e R e e tcecacce., B
.-~,.§. ~’\~.~
- “am
- .\ ® —_
Nen
AN
_ ‘\‘ —
\
- ‘ —_
\
~ any RP-based heuristic -
RP: h = WWFD ..cec--.
u RP: h=WFD-C=D e o= _
I I I I I
95 96 97 08 99 100

system utilization (in percent)

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

UNC Style Experiments, Varying Task Count

1 L with both meta-heuristics _
. with PAF meta-heuristiC ceeccecee
\ basic semi-partitioning == = =
\ partitioning only ce= o=

0.8 |- \ QPS (optimal) eceam e -

fraction of schedulable task sets

m=8, exp. heavy

5 10 15 20 25 30 35 40
number of tasks

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

MPI-SWS

fraction of schedulable task sets

0.8

0.6

—
N

O
N

Minimum-Split Size Experiments

Mm=8, n=16
I I I I I
o any N\ . @ oo, “‘.‘
\\ \\. \\':
\ ". 100
i oo
Y
'0 ‘0:‘
i \ ik
LI L
o vy
 MIN-Slice=100 cm— Vo
MIN-Slice=200 ecccccce) '
min-slice=300 = = = vy
Min-slice=400 = ce= '\
- min-slice=500 «em -- - v W
min-slice=750 ccee -- 'y
min-slice=1000 = = \‘
_ min-slice=2000 = = -- .
I I I I
90 02 04 06 o8 100

system utilization (in percent)

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Release Overhead (1/2)

100

O
o

o N 0
o O O

percent of samples < X
— N W B O
O O O O O

o

MPI-SWS

I I
P /f_
0’ .Oooo"....‘.‘ ~
! .
Iy .
I
| B
i -
It -
, SP-RES —— _
...... G-EDF -ceeeee
------- P-FP = =
------------------------ P-EDF cm ccm = _
I | | | | R | | | | R
1000 10000 100000

processor cycles [logscale]

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Release Overhead (2/2)

50
40

percent of sam
— N
o O O

o

MPI-SWS

/’

SP-RES —m—
QPS-C -........
QPS-G === -

RUN = e o _
I ! !

L o0
10000
processor cycles [logscale]

B. Brandenburg and M. Gl

100000

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Extra Overheads (1/2)

100 - '

O
o
I

o N 0
o O O
I

W b
o O
| |

percent of samples < X
N O
- -
I I

schedule locally
migration timer ---...... -
subtask activation = = = _

I I I I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
processor cycles

—
o
I

o

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

50
40

N W
o O

percent of sam

—k
o

MPI-SWS

Extra Overheads (2/2)

- S o@D oam ©
[

- ._!._ e cow cmn cuw cam s O o~
/ o ’.
!.
!
{ SP-RES (schedule)
/ SP-RES (subtask activation) ----.---.
d SP-RES (migration timer) = = -
J RUN (schedule) -= .- -

RUN (reduction tree update) --= -- -

T
10000
processor cycles [logscale]

B. Brandenburg and M. Gl

1|
100000

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Percentile Plots — Schedule Overhead (1/2)

1x10°

SP-RES —
~ G-EDF
L P-FP .= :
100000 |- P-EDF wm e e]

10000 |

1000 |

observed overhead [cycles]

100 _| | | | | | | | | | |
0 10 20 30 40 50 60 70 80 90 100
percentile

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Percentile Plots — Schedule Overhead (2/2)

1x10°

SP-RES —nw E
- QPS-C -
L QPS-G = == I

100000 . RUN -— .—. -
10000 |

1000 |

observed overhead [cycles]

100 U | | | | | |
0 10 20 30 40 50 60 70 80 90 100
percentile

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Percentile Plots — Release Overhead (1/2)

6
X10° 5P RES

~ G-EDF -........)
| P'FP -aamaas L e@® : -
100000

10000 |

1000 |

observed overhead [cycles]

100

percentile

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Percentile Plots — Release Overhead (2/2)

1x10°

SP-RES ———
: QPS'C °°°°°°°°° o:
. QPS-G = - — =TTy

100000 - RUN = .—. -

10000 |

1000 |

observed overhead [cycles]

100 U | | | | | |
0 10 20 30 40 50 60 70 80 90 100
percentile

MPI-SWS B. Brandenburg and M. Giil

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Percentile Plots — Release Overhead (1/2)

100000

1000 |

observed overhead [cycles]

100 U

10000 |

SP-RES migrafion timer
SP-RES subtask activation -eeece---.

I
10 20 30 40 50
percentile

MPI-SWS

B. Brandenburg and M. Gl

Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Percentile Plots — Release Overhead (2/2)

100000 | . i
: SP-RES migration timer I
— SP-RES subtask activation -........ :
@ RUN reduction tree update = = - [}
— 10000 |
O - -
S L T -
D L e e e _———————-——
= i o
2 s
O M
g 1000 L [T e i
- : :
Q W gy
(7p ¥ °
@) R
© k
100 L | | | | | | | |

I
0 10 20 30 40 50 60 /70 80 90
percentile

MPI-SWS

B. Brandenburg and M. Gl

