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THIS	TALK

1 Analysis	of	nested	locks:	a	practical
but	very	difficult	problem

3 Experimental	Evaluation

Show effects that do not happen with 
non-nested locks

2 This	work:	a	novel	analysis	method
The first fine-grained analysis for 

nested FIFO spin locks
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INTRODUCTION
• Bounding the worst-case blocking time due

to lock contention is a fundamental problem
in the analysis of multiprocessor real-time
systems

TASK(Task1)
{

lock(A)
<…>
unlock(A)

}

A

A

lock(A)

lock(A)

TASK(Task2)
{

lock(A)
<…>
unlock(A)

}

time

time

Blocking analysis problem
bound the delay incurred by 
tasks due to lock contention

CPU	#1

CPU	#2
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NESTED	LOCKS

Concerning nested locks, limited progress
has been made in 25+ years of research on
multiprocessor real-time synchronization

X

No fine-grained analysis was available,
even for simple (and widely adopted) lock
types such as FIFO spin locks

X

Notable exceptions: Ward and Anderson (RNLP), Takada and
Sakamura (scalability of nested spin locks), Faggioli et al. (MBWI)

TASK(Task2)
{

lock(A)
lock(B)
<…>
unlock(B)

unlock(A)
}

Nested critical section
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MOTIVATION
The analysis of nested locks is a practically
relevant problem as nesting is not a rarity in
many real-world systems

Nested locks are officially supported
by standards (e.g., AUTOSAR)

Operating	System

Library

User	Application
Nesting may happen unintentionally
due to the natural layering of well-
structured software



ANALYZING	NESTED	
LOCKS	IS	HARD!
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A	VERY	CHALLENGING	PROBLEM

Even simple blocking analysis problems with 
nested locks on multiprocessors are NP-HARD

A. Wieder and B. B. Brandenburg, “On the complexity of worst-
case blocking analysis of nested critical sections”, RTSS 2014

Computational	complexity

Reasoning about the blocking generated
by nested locks is very difficult due to a
number of complications that do not arise
in conventional (non-nested) analyses

Human	intuition
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COMPLICATIONS	DUE	TO	NESTING

Let’s see 3 examples of negative phenomena 
that can happen with nested spin locks, but not

with typical non-nested ones

Transitive blocking

Scheduling anomalies

Implicit serializations

X
X
X



9

Task1

Task2

Task3

TRANSITIVE	BLOCKING

TASK(Task1)
{

lock(A)
<…>
unlock(A)

}

TASK(Task2)
{

lock(A)
lock(B)
<…>
unlock(B)

unlock(A)
}

TASK(Task3)
{

lock(B)
<…>
unlock(B)

}

CPU #1 CPU #2 CPU #3

A

B

B A

A

lock(A)

lock(A) lock(B)

lock(B)
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TRANSITIVE	BLOCKING

TASK(Task1)
{

lock(A)
<…>
unlock(A)

}

TASK(Task2)
{

lock(A)
lock(B)
<…>
unlock(B)

unlock(A)
}

TASK(Task3)
{

lock(B)
<…>
unlock(B)

}

CPU #1 CPU #2 CPU #3

A

B

B A

A

lock(A)

lock(A) lock(B)

lock(B)

Task1

Task2

Task3

Task1 blocked by Task3
(due to resource B),
even if they do not 

share resources
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TRANSITIVE	BLOCKING

TASK(Task1)
{

lock(A)
<…>
unlock(A)

}

TASK(Task2)
{

lock(A)
lock(B)
<…>
unlock(B)

unlock(A)
}

TASK(Task3)
{

lock(B)
<…>
unlock(B)

}

CPU #1 CPU #2 CPU #3

A

B

B A

A

lock(A)

lock(A) lock(B)

lock(B)

Task1

Task2

Task3

Task1 blocked by Task3
(due to resource B),
even if they do not 

share resources

In the presence of nested critical 
sections, tasks may experience 

transitive blocking
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TRANSITIVE	BLOCKING
CPU #1 CPU #2 CPU #3

A

B

B A

A

lock(A)

lock(A) lock(B)

lock(B)

Task1

Task2

Task3

A B

B

ATASK(Task1)
{

lock(A)
<…>
unlock(A)

}

TASK(Task2)
{

lock(A)
lock(B)
<…>
unlock(B)

unlock(A)
}

TASK(Task3)
{

lock(B)
<…>
unlock(B)

}
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SCHEDULING	ANOMALIES

CPU #1 CPU #2 CPU #3

A

B

A

C

B

B

X
Impossible – Task2 is busy-waiting due 
to resource B while blocked by Task3

How much is the blocking incurred by Task1 due to 
resources A and B?

C
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CPU #1 CPU #2 CPU #3

A

B

A

C

B

C

Not blocked – all critical 
sections on B are completed

How much is the blocking incurred by Task1 due to 
resources A and B?

B

SCHEDULING	ANOMALIES
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CPU #1 CPU #2 CPU #3

A

B

A

C

B

C

How much is the blocking incurred by Task1 due to 
resources A and B?

skipped	by	an	if statement

B

SCHEDULING	ANOMALIES

B
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CPU #1 CPU #2 CPU #3

A

B

A

C

B

B

C

How much is the blocking incurred by Task1 due to 
resources A and B?

Nested blocking exhibits 
scheduling anomalies

Less contention and lower execution times
may lead to the maximum blocking

SCHEDULING	ANOMALIES
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CPU #1 CPU #2 CPU #3

B A

CB XC

Impossible – Both the critical 
sections are protected by an 

outer critical section on A

A

Can Task1 be transitively blocked by Task3?

IMPLICIT	SERIALIZATIONS
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CPU #1 CPU #2 CPU #3

B A

CB XC

Impossible – Both the critical 
sections are protected by an 

outer critical section on A

A

Can Task1 be transitively blocked by Task3?

Some blocking interactions are impossible
due to implicit serializations, which 

depend on the “path” reaching a critical 
section - thus making local reasoning ineffective

IMPLICIT	SERIALIZATIONS
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NEED	FOR	NOVEL	TECHNIQUES
Transitive blocking

Scheduling anomalies

Implicit serializations

Existing approaches fail in capturing 
fundamental aspects of the problem

X
X
X

…X



THIS	WORK
A novel analysis method to bound 

the worst-case blocking in the presence 
of nested locks
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CONSIDERED	SETTING
• Partitioned Fixed-Priority (P-FP) scheduling
• Shared resources protected by the Multiprocessor

Stack Resource Policy (MSRP), but allowing nested
locks (forbidden by the original protocol)

lock(A);
lock(B)
<…>
unlock(B)

unlock(A)

Fully contained critical sections

A CB D
>> >> >> Given lock order to avoid deadlock

• Typical good practice (e.g., any violations in 
the Linux kernel are flagged as serious bugs)

• Explicitly mandated by AUTOSAR (the order 
must be specified in the OIL configuration)

Focus on non-preemptive FIFO spin locks
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PROPOSED	APPROACH
To tackle the intrinsic complexity of the problem, we
proposed a novel analysis approach based on 4 steps

1 Definition of a novel graph abstraction that
encodes all possible blocking interactions

2 Mapping from schedules to instances of
the graph abstraction, which yield
schedule-specific blocking bounds

3 Identification of invariants that must hold
for any valid instance of the graph

4 Computation of a maximal subgraph that
dominates all possible valid graph
instances, thus obtaining a safe blocking
bound
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STEP	1 – STATIC	BLOCKING	GRAPH
Unambiguously model all possible blocking 

interactions for a given task, eliding irrelevant details
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Task1	is	under	
analysis

STEP	1 – STATIC	BLOCKING	GRAPH

CPU #1 CPU #2 CPU #3

B

CC

A

B

AA

B B

Unambiguously model all possible blocking 
interactions for a given task, eliding irrelevant details

A
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STEP	2 – DYNAMIC	BLOCKING	GRAPH
We established a mapping between an arbitrary

(but fixed) schedule and an instance of the 
graph-based abstraction

A

B

B A

A

lock(B)

Task1

Task2

Task3

CPU #1 CPU #2 CPU #3

A B

B

A

A

A
B B

C
C

B

schedule dynamic	blocking	graph

Yields a blocking bound
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STEP	3 – INVARIANTS
• We proved 13 invariants, i.e., structural

properties that hold in all possible valid
dynamic blocking graphs
• In other words, there cannot exists a valid

dynamic blocking graph which violates
such invariants

• Lots of limited-scope reasoning
• Provide precise foundations for

• rigorous proofs on the graph-based model
• analysis safe by construction ruling out impossible

scenarios

Why the invariants?
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EXAMPLE	OF	INVARIANT

CPU #1 CPU #2 CPU #3

A

B

A

C

B

X

C

In any valid dynamic blocking graph there cannot be 
paths that circle back to already visited processors
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EXAMPLE	OF	INVARIANT

CPU #1 CPU #2 CPU #3

In any valid dynamic blocking graph there cannot be 
paths connecting critical sections in different processors

that share the same nesting prerequisites

B A

CB XC

A

same	nesting	
prerequisites
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STEP	4 – MAXIMAL	SUBGRAPH
Goal: Compute a safe blocking bound, i.e., coping
with the maximum blocking in every possible
schedule

each schedule corresponds to a dynamic
blocking graph, which is a subgraph of the
static blocking graph

If we find a maximal subgraph, which dominates
all possible dynamic graphs, we have a safe

blocking bound
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STEP	4 – MAXIMAL	SUBGRAPH
To find the maximal subgraph we can maximize the
blocking out of all possible subgraphs not excluded
by a set of constraints derived from the invariants

B

CC

A

B

AA

B B

A

static	blocking	graph

Problem structure
• variables
• obj. function

Constraints
• …
• …

Optimization problem (ILP) to find the maximal subgraph

INVARIANT	#1
INVARIANT	#2
INVARIANT	#3
INVARIANT	#4

INVARIANT	#N

collection	of	invariants

…
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IMPLEMENTATION

Blocking Bound

Solve the Maximal 
Subgraph Problem

Interference
(high-priority tasks)+

tentative 
response time R

Response-time	
Converged?

If R > D à UNSCHEDULABLE

no

Fi
xe

d
-p

oi
nt

 it
er

at
io

n

R = C
For	each	task…

SCHEDULABLE
yes



EVALUATION
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EMPIRICAL	EVALUATION
• Tested synthetic workload under different

configurations of the workload generator
• Comparison with group locks – reduce

fine-grained nested critical sections into
coarse-grained non-nested ones

Used analysis for non-nested spin locks: A. Wieder and B. B.
Brandenburg, “On spin locks in AUTOSAR: blocking analysis of
FIFO, unordered, and priority-ordered spin locks”, RTSS 2013

B

B C

A
cpu #1 cpu #2

B C

A
ABC
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SCHEDULABILITY	PERFORMANCE	(1)

sc
he

du
la
bi
lit
y
ra
tio• 4 processors

• 4 resources
• at	most	4 requests/task
• utilization	∈ 0.7,0.9
• up	to	2 nesting	levels

The higher the 
better

+20%

number	of	tasks

Contextual increase of critical 
sections and hence contention



35

SCHEDULABILITY	PERFORMANCE	(2)

• 4 processors
• 16 resources
• at	most	1 request/task
• utilization	∈ [0.5,0.7]
• up	to	4 nesting	levels

number	of	tasks

+30%
sc
he

du
la
bi
lit
y
ra
tio
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RUNTIME

IBM	CPLEX,	32-core	Intel	Xeon	E5	@	3.3	GHz

Most instances of the maximal subgraph problem 
have been solved in less than 2 seconds. 

Only <2% exceeded 100 seconds.

(lo
g	
sc
al
e)
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CONCLUSIONS
• First fine-grained analysis for nested FIFO

non-preemptive spin locks under P-FP
• Proposed a novel graph-based abstraction

that encode all possible blocking
interactions in the presence of nesting
• Identified the structure of valid instances of

the graph-based abstraction
• Computation of a blocking bound by

identifying a maximal subgraph
If applied to non-nested spin locks, this analysis is as 
accurate as the one previously proposed in RTSS’13

A. Wieder and B. B. Brandenburg, “On spin locks in AUTOSAR: blocking 
analysis of FIFO, unordered, and priority-ordered spin locks”, RTSS 2013
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A	LOOK	FORWARD

The graph abstraction proposed in this
work can be used to solve other blocking
analysis problems in the presence of
nesting

• Examples: nested semaphores, real-time
nested locking protocol (RNLP),
preemptive nested spin locks, MrsP,…

• The application of this analysis method to
these mechanisms is our future work



Thank you!
Alessandro Biondi 
alessandro.biondi@sssup.it


