A Blocking Bound for
Nested FIFO Spin Locks

Alessandro Biondi, ' Bjérn B. Brandenburg”®
and Alexander Wieder™

* MPI-SWS, Kaiserslautern, Germany

t Scuola Superiore Sant’Anna, Pisa, Italy

: » Max
-1 Mt ? :
for etlS

Software Systems Real-Time Systems Laboratory

THIS TALK

Analysis of nested locks: a practical
but very difficult problem
Show effects that do not happen with
non-nested |ocks

a LThis work: a novel analysis method}

The first fine-grained analysis for
nested FIFO spin locks

e [Experimental Evaluation }

INTRODUCTION

« Bounding the worst-case blocking time due
to lock contention is a fundamental problem
IN the analysis of multiprocessor real-time

systems
Blocking analysis problem
bound the delay incurred by

TASK(TaskL) tasks due to lock confention
{

lock(A) 1

<. CPU #1 ﬁ A

unlock(A) . .
} ! time
TASK(Task2)
{ lock(A)

|OCk(A) 4 Py

<>

unlock(A) CPU #2 A >
} time

NESTED LOCKS

TASK(Task2)

lock(A)
lock(B) !
o> Nested critical section
_unlock(B)
unlock(A)

}

Concerning nested locks, limited progress
0 has been made in 25+ years of research on
multiprocessor real-time synchronization

Notable exceptions: Ward and Anderson (RNLP), Takada and
Sakamura (scalability of nested spin locks), Faggioli et al. (MBWI)

even for simple (and widely adopted) lock

0 No fine-grained analysis was available,
types such as FIFO spin locks

MOTIVATION

The analysis of nested locks is a practically
relevant problem as nesting is not a rarity in
many real-world systems

Nesting may happen unir)fenﬁonallr
due to the natural layering of well-
sfructured software

- _)
Specification of Operating System

AUTOSAR

R Nested locks are officially supported
- | bystandards (e.g., AUTOSAR)

ANALYZING NESTED
LOCKS IS HARD!

A VERY CHALLENGING PROBLEM

Computational complexity

Even simple blocking analysis problems with
nested locks on multiprocessors are NP-HARD

A. Wieder and B. B. Brandenburg, “On the complexity of worst-
case blocking analysis of nested critical sections”, RTSS 2014

Reasoning about the blocking generated
by nested locks is very difficult due to a
number of complications that do not arise
INn conventional (hon-nested) analyses

COMPLICATIONS DUE TO NESTING

Let’s see 3 examples of negative phenomena

that can happen with nested spin locks, but not
with typical non-nested ones

0 Transitive blocking

0 Scheduling anomalies

o Implicit serializations

TRANSITIVE BLOCKING

CPU #1 CPU #2 CPU #3
TASK(Task1) TASK(Task2) TASK(Task3)
{ { {

lock(A) lock(A) lock(B)
<.> lock(B) <.>
unlock(A) <.> unlock(B)
} unlock(B) }
unlock(A)
}
lock(A)

L o Ay

lock(A) lock(B)

lock(B)

Task3

i g

TRANSITIVE BLOCKING

CPU #1 CPU #2 CPU #3
TASK(Task1) TASK(Task2) TASK(Task3)
{ { {
lock(A) lock(A) lock(B)
<.> lock(B) <.>
unlock(A) <.> unlock(B)
} unlock(B) }
unlock(A)
}
lock(A)
!
Task1 ﬁ A
lock(A) '°°ki,"’ Task1 blocked by Task3
Task2 A e B | (due to resource B),
: even if they do not
ekl share resources
Task3 B

TRANSITIVE BLOCKING

In the presence of nested critical
sections, tasks may experience
transitive blocking

11

TRANSITIVE BLOCKING

CPU #1 CPU #2 CPU #3
TASK(Task1) TASK(Task2) | TASK(Task3)
{ { ~ {

lock(A) lock(A) lock(B)
<.> lock(B) <.>
unlock(A) <.> unlock(B)
} unlock(B) }
unlock(A)
}
lock(A)
lock(A) lock(B) |

LI s Ay

lock(B)

Task3

i g

SCHEDULING ANOMALIES

How much is the blocking incurred by Task1 due to
resources A and B¢

CPU #1 CPU #2 CPU #3

Impossible — Task?2 is busy-waiting due
to resource B while blocked by Task3

SCHEDULING ANOMALIES

How much is the blocking incurred by Task1 due to
resources A and B¢

CPU #1 CPU #2 CPU #3

:

Not blocked - all critical
sections on B are completed

SCHEDULING ANOMALIES

How much is the blocking incurred by Task1 due to
resources A and B¢

CPU #1 CPU #2 CPU #3

skipped by an if statement

e

SCHEDULING ANOMALIES

Nested blocking exhibits
scheduling anomalies

Less contention and lower execution times
may lead fo the maximum blocking

16

IMPLICIT SERIALIZATIONS

Can Task1 be transitively blocked by Task3?

CPU #1 CPU #2 CPU #3

Impossible — Both the critical
sections are protected by an
outer critical section on A

IMPLICIT SERIALIZATIONS

Some blocking interactions are impossible
due to implicit serializations, which
depend on the “parth” reaching a critical
section - thus making local reasoning ineffective

18

NEED FOR NOVEL TECHNIQUES

€) Transitive blocking

@ Schedvuling anomalies

0 Implicit serializations

O .
—

Existing approaches fail in capturing
fundamental aspects of the problem

THIS WORK

A novel analysis method to bound
the worst-case blocking in the presence
of nested locks

CONSIDERED SETTING

 Partitioned Fixed-Priority (P-FP) scheduling

» Shared resources protected by the Multiprocessor
Stack Resource Policy (MSRP), but allowing nested
locks (forbidden by the original protocol)

Focus on non-preemptive FIFO spin locks

o> 5> 55 Given lock order to avoid deadlock
0000

« Typical good practice (e.g., any violations in
the Linux kernel are flagged as serious bugs)

« Explicitly mandated by AUTOSAR (the order
must be specified in the OIL configuration)

lock(A);
lock(B)

Fully contained crifical sections
unlock(B)

unlock(A)

PROPOSED APPROACH

To tackle the intrinsic complexity of the problem, we
proposed a novel analysis approach based on 4 steps

Definition of a novel graph abstraction that
encodes all possible blocking interactions

Mapping from schedules to instances of
the graph abstraction, which vyield
schedule-specific blocking bounds

|dentification of invariants that must hold
for any valid instance of the graph

Computation of a maximal subgraph that

dominates all possible valid graph

g}s’rar\é:es thus obtaining a safe blocking
oun

STEP 1 — STATIC BLOCKING GRAPH

STEP 1 — STATIC BLOCKING GRAPH

Taskl is under
analysis

STEP 2 - DYNAMIC BLOCKING GRAPH

We established a mapping between an arbitrary

(but fixed) schedule and an instance of the
graph-based abstraction

schedule / \ dynamic blocking graph

| CPU #1 CPU #2 CPU #3
Taskl M A

Task2 A H B |A R G O
K Io:k(B)
Task3 B R

STEP 3 — INVARIANTS

- We proved 13 invariants, i.e., sftructural
properties that hold in all possible valid
dynamic blocking graphs

* In ofther words, there cannot exists a valid
dynamic blocking graph which violates
such invariants

Why the invariants?

« Lots of limited-scope reasoning
Provide precise foundations for
« rigorous proofs on the graph-based model

« analysis safe by construction ruling out impossible
scenarios

EXAMPLE OF INVARIANT
In any valid dynamic blocking graph there cannot be
paths that circle back to already visited processors

CPU #1 CPU #2 CPU #3

e/

EXAMPLE OF INVARIANT

In any valid dynamic blocking graph there cannot be

paths connecting critical sections in different processors
that share the same nesting prerequisites

CPU #1

same nesting

STEP 4 - MAXIMAL SUBGRAPH

Goal: Compute a safe blocking bound, i.e., coping
with the maximum blocking in every possible
schedule

N/ each schedule corresponds to a dynamic
< Dblocking graph, which is a subgraph of the
= static blocking graph

¥

If we find a maximal subgraph, which dominates
all possible dynamic graphs, we have a safe
blocking bound

STEP 4 - MAXIMAL SUBGRAPH

To find the maximal subgraph we can maximize the
blocking out of all possible subgraphs not excluded
by a set of constraints derived from the invariants

— static blocking graph collection of invariants —

INVARIANT #1
INVARIANT #2

INVARIANT #3

INVARIANT #4

INVARIANT #N

—

Optimization problem (ILP) to find the maximal subgraph

Problem structure Constraints

« variables .

« 0obj. function .

IMPLEMENTATION

Blocking Bound

Interference
(high-priority tasks)

Solve the Maximal
Subgraph Problem

Fixed-point iteration

tentative
response fime R

If R>D > UNSCHEDULABLE

Response-time SCHEDULABLE

Converged?

EVALUATION

EMPIRICAL EVALUATION

» Tested synthefic workload under different
configurations of the workload generator

« Comparison with group locks — reduce
fine-grained nested critical sections into
coarse-grained non-nested ones

cpu #1 cpu #2 n
» E ABC E

Used analysis for non-nested spin locks: A. Wieder and B. B.
Brandenburg, “On spin locks in AUTOSAR: blocking analysis of
FIFO, unordered, and priority-ordered spin locks”, RTSS 2013

SCHEDULABILITY PERFORMANCE (1)

No blocking —@— nFIFO —+— Group locks with MSRP

The higher the
better :

e upto2 nestmg levels

schedulability ratio

© o o0
N & O 0 =
|

1

o i

5 10 15 20 25 30 35 40

number of tasks

Contextual increase of critical
sections and hence contention

SCHEDULABILITY PERFORMANCE (2)

No blocking —@— nFIFO —+— Group locks with MSRP

[

o o
o o

* 4 processors

* 16 resources

* at most 1 request/task
 utilization € [0.5,0.7]
* up to 4 nesting levels

+30%

O
N

schedulability ratio

—
N
[
|

O | | | | | |
5 10 15 20 25 30 35 40

number of tasks

RUNTIME

Most instances of the maximal subgraph problem

have been solved in less than 2 seconds.
Only <2% exceeded 100 seconds.

(log scale)
Number of occurrences

0 50 100 150 200
Runtime (seconds)

IBM CPLEX, 32-core Intel Xeon E5 @ 3.3 GHz

CONCLUSIONS

 First fine-grained analysis for nested FIFO
non-preemptive spin locks under P-FP

* Proposed a novel graph-based abstraction
that encode all possible blocking
INnferactions in the presence of nesting

 |[dentifled the structure of valid instances of
the graph-based abstraction

« Computation of a blocking bound by
identifying a maximal subgraph

If applied to non-nested spin locks, this analysis is as
accurate as the one previously proposed in RTSS'13

A. Wieder and B. B. Brondenbugg, “On spin locks in AUTOSAR: blockin
P

analysis of FIFO, unordered, and priority-ordered spin locks”, RTSS 201

A LOOK FORWARD

The graph abstraction proposed in this
work can be used to solve other blocking
analysis problems in the presence of

nesting

 Examples: nested semaphores, real-time
nested locking protocol (RNLP),
preemptive nested spin locks, MrsP,...

* The application of this analysis method to
these mechanisms is our future work

Thank you!

Alessandro Biondi
alessandro.biondi@sssup.it

