
A	Blocking	Bound	for	
Nested FIFO	Spin	Locks

Alessandro	Biondi,				Björn B.	Brandenburg		
and	Alexander	Wieder

MPI-SWS,	Kaiserslautern,	Germany
Scuola Superiore Sant’Anna,	Pisa,	Italy

*† *

*

†

*



2

THIS	TALK

1 Analysis	of	nested	locks:	a	practical
but	very	difficult	problem

3 Experimental	Evaluation

Show effects that do not happen with 
non-nested locks

2 This	work:	a	novel	analysis	method
The first fine-grained analysis for 

nested FIFO spin locks



3

INTRODUCTION
• Bounding the worst-case blocking time due

to lock contention is a fundamental problem
in the analysis of multiprocessor real-time
systems

TASK(Task1)
{

lock(A)
<…>
unlock(A)

}

A

A

lock(A)

lock(A)

TASK(Task2)
{

lock(A)
<…>
unlock(A)

}

time

time

Blocking analysis problem
bound the delay incurred by 
tasks due to lock contention

CPU	#1

CPU	#2



4

NESTED	LOCKS

Concerning nested locks, limited progress
has been made in 25+ years of research on
multiprocessor real-time synchronization

X

No fine-grained analysis was available,
even for simple (and widely adopted) lock
types such as FIFO spin locks

X

Notable exceptions: Ward and Anderson (RNLP), Takada and
Sakamura (scalability of nested spin locks), Faggioli et al. (MBWI)

TASK(Task2)
{

lock(A)
lock(B)
<…>
unlock(B)

unlock(A)
}

Nested critical section



5

MOTIVATION
The analysis of nested locks is a practically
relevant problem as nesting is not a rarity in
many real-world systems

Nested locks are officially supported
by standards (e.g., AUTOSAR)

Operating	System

Library

User	Application
Nesting may happen unintentionally
due to the natural layering of well-
structured software



ANALYZING	NESTED	
LOCKS	IS	HARD!



7

A	VERY	CHALLENGING	PROBLEM

Even simple blocking analysis problems with 
nested locks on multiprocessors are NP-HARD

A. Wieder and B. B. Brandenburg, “On the complexity of worst-
case blocking analysis of nested critical sections”, RTSS 2014

Computational	complexity

Reasoning about the blocking generated
by nested locks is very difficult due to a
number of complications that do not arise
in conventional (non-nested) analyses

Human	intuition



8

COMPLICATIONS	DUE	TO	NESTING

Let’s see 3 examples of negative phenomena 
that can happen with nested spin locks, but not

with typical non-nested ones

Transitive blocking

Scheduling anomalies

Implicit serializations

X
X
X



9

Task1

Task2

Task3

TRANSITIVE	BLOCKING

TASK(Task1)
{

lock(A)
<…>
unlock(A)

}

TASK(Task2)
{

lock(A)
lock(B)
<…>
unlock(B)

unlock(A)
}

TASK(Task3)
{

lock(B)
<…>
unlock(B)

}

CPU #1 CPU #2 CPU #3

A

B

B A

A

lock(A)

lock(A) lock(B)

lock(B)



10

TRANSITIVE	BLOCKING

TASK(Task1)
{

lock(A)
<…>
unlock(A)

}

TASK(Task2)
{

lock(A)
lock(B)
<…>
unlock(B)

unlock(A)
}

TASK(Task3)
{

lock(B)
<…>
unlock(B)

}

CPU #1 CPU #2 CPU #3

A

B

B A

A

lock(A)

lock(A) lock(B)

lock(B)

Task1

Task2

Task3

Task1 blocked by Task3
(due to resource B),
even if they do not 

share resources



11

TRANSITIVE	BLOCKING

TASK(Task1)
{

lock(A)
<…>
unlock(A)

}

TASK(Task2)
{

lock(A)
lock(B)
<…>
unlock(B)

unlock(A)
}

TASK(Task3)
{

lock(B)
<…>
unlock(B)

}

CPU #1 CPU #2 CPU #3

A

B

B A

A

lock(A)

lock(A) lock(B)

lock(B)

Task1

Task2

Task3

Task1 blocked by Task3
(due to resource B),
even if they do not 

share resources

In the presence of nested critical 
sections, tasks may experience 

transitive blocking



12

TRANSITIVE	BLOCKING
CPU #1 CPU #2 CPU #3

A

B

B A

A

lock(A)

lock(A) lock(B)

lock(B)

Task1

Task2

Task3

A B

B

ATASK(Task1)
{

lock(A)
<…>
unlock(A)

}

TASK(Task2)
{

lock(A)
lock(B)
<…>
unlock(B)

unlock(A)
}

TASK(Task3)
{

lock(B)
<…>
unlock(B)

}



13

SCHEDULING	ANOMALIES

CPU #1 CPU #2 CPU #3

A

B

A

C

B

B

X
Impossible – Task2 is busy-waiting due 
to resource B while blocked by Task3

How much is the blocking incurred by Task1 due to 
resources A and B?

C



14

CPU #1 CPU #2 CPU #3

A

B

A

C

B

C

Not blocked – all critical 
sections on B are completed

How much is the blocking incurred by Task1 due to 
resources A and B?

B

SCHEDULING	ANOMALIES



15

CPU #1 CPU #2 CPU #3

A

B

A

C

B

C

How much is the blocking incurred by Task1 due to 
resources A and B?

skipped	by	an	if statement

B

SCHEDULING	ANOMALIES

B



16

CPU #1 CPU #2 CPU #3

A

B

A

C

B

B

C

How much is the blocking incurred by Task1 due to 
resources A and B?

Nested blocking exhibits 
scheduling anomalies

Less contention and lower execution times
may lead to the maximum blocking

SCHEDULING	ANOMALIES



17

CPU #1 CPU #2 CPU #3

B A

CB XC

Impossible – Both the critical 
sections are protected by an 

outer critical section on A

A

Can Task1 be transitively blocked by Task3?

IMPLICIT	SERIALIZATIONS



18

CPU #1 CPU #2 CPU #3

B A

CB XC

Impossible – Both the critical 
sections are protected by an 

outer critical section on A

A

Can Task1 be transitively blocked by Task3?

Some blocking interactions are impossible
due to implicit serializations, which 

depend on the “path” reaching a critical 
section - thus making local reasoning ineffective

IMPLICIT	SERIALIZATIONS



19

NEED	FOR	NOVEL	TECHNIQUES
Transitive blocking

Scheduling anomalies

Implicit serializations

Existing approaches fail in capturing 
fundamental aspects of the problem

X
X
X

…X



THIS	WORK
A novel analysis method to bound 

the worst-case blocking in the presence 
of nested locks



21

CONSIDERED	SETTING
• Partitioned Fixed-Priority (P-FP) scheduling
• Shared resources protected by the Multiprocessor

Stack Resource Policy (MSRP), but allowing nested
locks (forbidden by the original protocol)

lock(A);
lock(B)
<…>
unlock(B)

unlock(A)

Fully contained critical sections

A CB D
>> >> >> Given lock order to avoid deadlock

• Typical good practice (e.g., any violations in 
the Linux kernel are flagged as serious bugs)

• Explicitly mandated by AUTOSAR (the order 
must be specified in the OIL configuration)

Focus on non-preemptive FIFO spin locks



22

PROPOSED	APPROACH
To tackle the intrinsic complexity of the problem, we
proposed a novel analysis approach based on 4 steps

1 Definition of a novel graph abstraction that
encodes all possible blocking interactions

2 Mapping from schedules to instances of
the graph abstraction, which yield
schedule-specific blocking bounds

3 Identification of invariants that must hold
for any valid instance of the graph

4 Computation of a maximal subgraph that
dominates all possible valid graph
instances, thus obtaining a safe blocking
bound



23

STEP	1 – STATIC	BLOCKING	GRAPH
Unambiguously model all possible blocking 

interactions for a given task, eliding irrelevant details



24

Task1	is	under	
analysis

STEP	1 – STATIC	BLOCKING	GRAPH

CPU #1 CPU #2 CPU #3

B

CC

A

B

AA

B B

Unambiguously model all possible blocking 
interactions for a given task, eliding irrelevant details

A



25

STEP	2 – DYNAMIC	BLOCKING	GRAPH
We established a mapping between an arbitrary

(but fixed) schedule and an instance of the 
graph-based abstraction

A

B

B A

A

lock(B)

Task1

Task2

Task3

CPU #1 CPU #2 CPU #3

A B

B

A

A

A
B B

C
C

B

schedule dynamic	blocking	graph

Yields a blocking bound



26

STEP	3 – INVARIANTS
• We proved 13 invariants, i.e., structural

properties that hold in all possible valid
dynamic blocking graphs
• In other words, there cannot exists a valid

dynamic blocking graph which violates
such invariants

• Lots of limited-scope reasoning
• Provide precise foundations for

• rigorous proofs on the graph-based model
• analysis safe by construction ruling out impossible

scenarios

Why the invariants?



27

EXAMPLE	OF	INVARIANT

CPU #1 CPU #2 CPU #3

A

B

A

C

B

X

C

In any valid dynamic blocking graph there cannot be 
paths that circle back to already visited processors



28

EXAMPLE	OF	INVARIANT

CPU #1 CPU #2 CPU #3

In any valid dynamic blocking graph there cannot be 
paths connecting critical sections in different processors

that share the same nesting prerequisites

B A

CB XC

A

same	nesting	
prerequisites



29

STEP	4 – MAXIMAL	SUBGRAPH
Goal: Compute a safe blocking bound, i.e., coping
with the maximum blocking in every possible
schedule

each schedule corresponds to a dynamic
blocking graph, which is a subgraph of the
static blocking graph

If we find a maximal subgraph, which dominates
all possible dynamic graphs, we have a safe

blocking bound



30

STEP	4 – MAXIMAL	SUBGRAPH
To find the maximal subgraph we can maximize the
blocking out of all possible subgraphs not excluded
by a set of constraints derived from the invariants

B

CC

A

B

AA

B B

A

static	blocking	graph

Problem structure
• variables
• obj. function

Constraints
• …
• …

Optimization problem (ILP) to find the maximal subgraph

INVARIANT	#1
INVARIANT	#2
INVARIANT	#3
INVARIANT	#4

INVARIANT	#N

collection	of	invariants

…



31

IMPLEMENTATION

Blocking Bound

Solve the Maximal 
Subgraph Problem

Interference
(high-priority tasks)+

tentative 
response time R

Response-time	
Converged?

If R > D à UNSCHEDULABLE

no

Fi
xe

d
-p

oi
nt

 it
er

at
io

n

R = C
For	each	task…

SCHEDULABLE
yes



EVALUATION



33

EMPIRICAL	EVALUATION
• Tested synthetic workload under different

configurations of the workload generator
• Comparison with group locks – reduce

fine-grained nested critical sections into
coarse-grained non-nested ones

Used analysis for non-nested spin locks: A. Wieder and B. B.
Brandenburg, “On spin locks in AUTOSAR: blocking analysis of
FIFO, unordered, and priority-ordered spin locks”, RTSS 2013

B

B C

A
cpu #1 cpu #2

B C

A
ABC



34

SCHEDULABILITY	PERFORMANCE	(1)

sc
he

du
la
bi
lit
y
ra
tio• 4 processors

• 4 resources
• at	most	4 requests/task
• utilization	∈ 0.7,0.9
• up	to	2 nesting	levels

The higher the 
better

+20%

number	of	tasks

Contextual increase of critical 
sections and hence contention



35

SCHEDULABILITY	PERFORMANCE	(2)

• 4 processors
• 16 resources
• at	most	1 request/task
• utilization	∈ [0.5,0.7]
• up	to	4 nesting	levels

number	of	tasks

+30%
sc
he

du
la
bi
lit
y
ra
tio



36

RUNTIME

IBM	CPLEX,	32-core	Intel	Xeon	E5	@	3.3	GHz

Most instances of the maximal subgraph problem 
have been solved in less than 2 seconds. 

Only <2% exceeded 100 seconds.

(lo
g	
sc
al
e)



37

CONCLUSIONS
• First fine-grained analysis for nested FIFO

non-preemptive spin locks under P-FP
• Proposed a novel graph-based abstraction

that encode all possible blocking
interactions in the presence of nesting
• Identified the structure of valid instances of

the graph-based abstraction
• Computation of a blocking bound by

identifying a maximal subgraph
If applied to non-nested spin locks, this analysis is as 
accurate as the one previously proposed in RTSS’13

A. Wieder and B. B. Brandenburg, “On spin locks in AUTOSAR: blocking 
analysis of FIFO, unordered, and priority-ordered spin locks”, RTSS 2013



38

A	LOOK	FORWARD

The graph abstraction proposed in this
work can be used to solve other blocking
analysis problems in the presence of
nesting

• Examples: nested semaphores, real-time
nested locking protocol (RNLP),
preemptive nested spin locks, MrsP,…

• The application of this analysis method to
these mechanisms is our future work



Thank you!
Alessandro Biondi 
alessandro.biondi@sssup.it


