
Global Real-Time Semaphore Protocols:
A Survey,

Unified Analysis,
and Comparison

 M. Yang§, A. Wieder*, B. Brandenburg*
*MPI-SWS, §UESTC

RTSS 2015

San Antonio
20151202

Thursday, December 3, 15

Multicore is now a standard
platform for deployment.

Thursday, December 3, 15

Multicore is now a standard
platform for deployment.

Global fixed-priority scheduling
is well understood.

default on VxWorks, QNX, Linux, ...

Thursday, December 3, 15

Multicore is now a standard
platform for deployment.

Global fixed-priority scheduling
is well understood.

default on VxWorks, QNX, Linux, ...

Which semaphore locking protocol
should be used

for protecting shared resources?
Thursday, December 3, 15

Locking Protocols for Global Scheduling

time

Thursday, December 3, 15

time

plain
mutex
locks

Locking Protocols for Global Scheduling

Thursday, December 3, 15

time

plain
mutex
locks

PIP Sha, Rajkumar,
Lehoczky, 1990

Goal:
Reduce priority inversions
Progress mechanism:

Priority Inheritance

Locking Protocols for Global Scheduling

Thursday, December 3, 15

Progress Mechanism:
Priority Inheritance

(PI)

A resource-holding job
inherits the priority of a higher-priority

job blocked on the same resource.

Priority Inheritance:

Thursday, December 3, 15

time

Goal:
Reduce priority inversions
Progress mechanism:

Priority Inheritance

Locking Protocols for Global Scheduling

plain
mutex
locks

PIP Sha, Rajkumar,
Lehoczky, 1990

Thursday, December 3, 15

time

FMLP

Block, Leontyev,
Brandenburg, Anderson

2007

Goal:
Multiprocessors, Simplicity

Progress mechanism:
Priority Inheritance

Queueing Mechanism:
FIFO

Locking Protocols for Global Scheduling

plain
mutex
locks

PIP

Thursday, December 3, 15

time
Analysis: Easwaran and

Andersson
2009

Goal:
analysis for global PIP
Progress mechanism:

Priority Inheritance
Queueing Mechanism:

Priority

PIP
(global)

Locking Protocols for Global Scheduling

FMLP
plain

mutex
locks

PIP

Thursday, December 3, 15

PIP
(global)

FMLP
plain

mutex
locks

PIP

timeAnalysis: Easwaran and
Andersson

2009

Goal:
reduced blocking

Progress mechanism:
Priority Inheritance

Queueing Mechanism:
Priority

Locking Protocols for Global Scheduling

PPCP

Thursday, December 3, 15

time

Locking Protocols for Global Scheduling

PIP
(global)

PIP

PPCPFMLP
plain

mutex
locks

Thursday, December 3, 15

time

Locking Protocols for Global Scheduling

PIP
(global)

PIP

PPCPFMLP
plain

mutex
locks

Priority inversions and blocking
are inevitable.

What’s the minimum/optimal
blocking possible

under any protocol?

Brandenburg, Anderson
2010

Thursday, December 3, 15

time

Locking Protocols for Global Scheduling

PIP
(global)

PIP

PPCPFMLP
plain

mutex
locks

OMLP

Goal:
asymptotically optimal blocking

(suspension-oblivious)
Progress mechanism:

Priority Inheritance
Queueing Mechanism:

Hybrid FIFO-Priority

Brandenburg, Anderson
2010, 2013

Thursday, December 3, 15

time

Locking Protocols for Global Scheduling

PIP
(global)

PIP

PPCPFMLP
plain

mutex
locks

OMLP

Goal:
asymptotically optimal blocking

(suspension-oblivious)
Progress mechanism:

Priority Inheritance
Queueing Mechanism:

Hybrid FIFO-Priority

Brandenburg, Anderson
2010, 2013

Thursday, December 3, 15

time

Locking Protocols for Global Scheduling

PIP
(global)

PIP

PPCPFMLP
plain

mutex
locks

OMLP

Goal:
asymptotically optimal blocking

(suspension-oblivious)
Progress mechanism:

Priority Inheritance
Queueing Mechanism:

Hybrid FIFO-Priority

Brandenburg, Anderson
2010, 2013

Thursday, December 3, 15

time

Locking Protocols for Global Scheduling

PIP
(global)

PIP

PPCPFMLP
plain

mutex
locks

OMLP

Thursday, December 3, 15

time

Locking Protocols for Global Scheduling

PIP
(global)

PIP

PPCPFMLP
plain

mutex
locks

OMLP

Suspension-aware analysis:
Asymptotically optimal blocking

impossible with priority inheritance
on multiprocessors under global

scheduling.

Thursday, December 3, 15

time

Locking Protocols for Global Scheduling

PIP
(global)

PIP

PPCPFMLP
plain

mutex
locks

OMLP

FMLP+

Brandenburg
2011, 2013, 2014

Goal:
optimal blocking

(suspension-aware)
Progress mechanism:

Restricted Segment Boosting
Queueing Mechanism:

FIFO

Thursday, December 3, 15

Progress Mechanism:
Restricted Segment Boosting

(RSB)

Job execution split into
independent segments and request segments.

Job in request segment with earliest request segment
start time is priority boosted.

Up to jobs in independent segment with
higher priority are co-boosted.

m� 1

Restricted Segment Boosting

Thursday, December 3, 15

Job execution split into
independent segments and request segments.

Job in request segment with earliest request segment
start time is priority boosted.

Up to jobs in independent segment with
higher priority are co-boosted.

m� 1

Progress Mechanism:
Restricted Segment Boosting

(RSB)

Restricted Segment Boosting
required to obtain

asymptotic optimal blocking
in face of pathological cases

Thursday, December 3, 15

time

Locking Protocols for Global Scheduling

PIP
(global)

PIP

PPCPFMLP
plain

mutex
locks

OMLP

FMLP+

Brandenburg
2011, 2013, 2014

Goal:
optimal blocking

(suspension-aware)
Progress mechanism:

Restricted Segment Boosting
Queueing Mechanism:

FIFO

Thursday, December 3, 15

PIP
(global)

PIP

PPCPFMLP
plain

mutex
locks

OMLP

FMLP+

time

Works well under
partitioned scheduling.

(Brandenburg, 2013)

What about global
scheduling?

Locking Protocols for Global Scheduling

Thursday, December 3, 15

time

PIP
(global)

PIP

PPCPFMLP
plain

mutex
locks

OMLP

FMLP+

Locking Protocols for Global Scheduling

Thursday, December 3, 15

Protocol Progress Mechanism Queue Type

NP-FIFO - FIFO

NP-Priority - Priority

FMLP PI FIFO

PIP PI Priority

PPCP PI Priority

FMLP+ RSB FIFO

PRSB RSB Priority

Locking Protocols for Global Scheduling

Thursday, December 3, 15

Protocol Progress Mechanism Queue Type

NP-FIFO - FIFO

NP-Priority - Priority

FMLP PI FIFO

PIP PI Priority

PPCP PI Priority

FMLP+ RSB FIFO

PRSB RSB Priority

Locking Protocols for Global Scheduling

no progress mechanism
FIFO or priority ordering

Thursday, December 3, 15

Protocol Progress Mechanism Queue Type

NP-FIFO - FIFO

NP-Priority - Priority

FMLP PI FIFO

PIP PI Priority

PPCP PI Priority

FMLP+ RSB FIFO

PRSB RSB Priority

Locking Protocols for Global Scheduling

Thursday, December 3, 15

Protocol Progress Mechanism Queue Type

NP-FIFO - FIFO

NP-Priority - Priority

FMLP PI FIFO

PIP PI Priority

PPCP PI Priority

FMLP+ RSB FIFO

PRSB RSB Priority

Locking Protocols for Global Scheduling

Thursday, December 3, 15

Protocol Progress Mechanism Queue Type

NP-FIFO - FIFO

NP-Priority - Priority

FMLP PI FIFO

PIP PI Priority

PPCP PI Priority

FMLP+ RSB FIFO

PRSB RSB Priority

Locking Protocols for Global Scheduling

Priority-RSB:
variant of FMLP+ with

RSB and priority ordering

Thursday, December 3, 15

Protocol Progress Mechanism Queue Type

NP-FIFO - FIFO

NP-Priority - Priority

FMLP PI FIFO

PIP PI Priority

PPCP PI Priority

FMLP+ RSB FIFO

PRSB RSB Priority

Locking Protocols for Global Scheduling

Thursday, December 3, 15

Protocol Progress Mechanism Queue Type

NP-FIFO - FIFO

NP-Priority - Priority

FMLP PI FIFO

PIP PI Priority

PPCP PI Priority

FMLP+ RSB FIFO

PRSB RSB Priority

Which locking protocols would
be reasonable default choices?

Locking Protocols for Global Scheduling

Thursday, December 3, 15

Protocol Progress Mechanism Queue Type

NP-FIFO - FIFO

NP-Priority - Priority

FMLP PI FIFO

PIP PI Priority

PPCP PI Priority

FMLP+ RSB FIFO

PRSB RSB Priority

No comprehensive comparison in prior work!

Locking Protocols for Global Scheduling

Which locking protocols would
be reasonable default choices?

Thursday, December 3, 15

Protocol Progress Mechanism Queue Type

NP-FIFO - FIFO

NP-Priority - Priority

FMLP PI FIFO

PIP PI Priority

PPCP PI Priority

FMLP+ RSB FIFO

PRSB RSB Priority

Locking Protocols for Global Scheduling

Which locking protocols would
be reasonable default choices?

No comprehensive comparison in prior work!

Analysis techniques improved!

Thursday, December 3, 15

Our solution:

Unified
Suspension-Aware
Blocking Analysis

Framework
for Global Scheduling

providing higher accuracy with
state-of-the-art analysis methods

Thursday, December 3, 15

Protocol Progress
Mechanism Queue Type

Is LP-based
analysis the

best available?

NP-FIFO - FIFO

NP-Priority - Priority

FMLP PI FIFO

PIP PI Priority

PPCP PI Priority

FMLP+ RSB FIFO

PRSB RSB Priority

Locking Protocols for Global Scheduling

Thursday, December 3, 15

Protocol Progress
Mechanism Queue Type

Is LP-based
analysis the

best available?

NP-FIFO - FIFO ✔

NP-Priority - Priority ✔

FMLP PI FIFO

PIP PI Priority

PPCP PI Priority

FMLP+ RSB FIFO ✔

PRSB RSB Priority ✔

Locking Protocols for Global Scheduling

Thursday, December 3, 15

Protocol Progress
Mechanism Queue Type

Is LP-based
analysis the

best
available?

Empirical
Results

NP-FIFO - FIFO ✔

NP-Priority - Priority ✔

FMLP PI FIFO

PIP PI Priority

PPCP PI Priority

FMLP+ RSB FIFO ✔

PRSB RSB Priority ✔

Locking Protocols for Global Scheduling

Thursday, December 3, 15

Protocol Progress
Mechanism Queue Type

Is LP-based
analysis the

best
available?

Empirical
Results

NP-FIFO - FIFO ✔

NP-Priority - Priority ✔

FMLP PI FIFO

PIP PI Priority

PPCP PI Priority

FMLP+ RSB FIFO ✔

PRSB RSB Priority ✔

Locking Protocols for Global Scheduling

Which locking protocols would
be reasonable default choices?

Thursday, December 3, 15

Intro
Unified Analysis Framework
Evaluation Results
Summary and Conclusion

Outline

Thursday, December 3, 15

Successfully applied to suspension-
based and spin-based locks under
partitioned scheduling.

LP-Based Blocking Analysis

Prior work:

Thursday, December 3, 15

Key idea:

• objective: maximize blocking to obtain safe bound
• constraints: encode locking protocol invariants
• variables: enumerate all critical sections that might

contribute to blocking

Blocking analysis modeled as a
linear optimization problem (LP).

LP-Based Blocking Analysis

Thursday, December 3, 15

LP-Based Blocking Analysis

Benefits:
• no need to identify or characterize worst case
• no double counting: each critical section is

accounted for at most once
• simple composable constraints: constraints

specified and proven independently for each
protocol invariant or property

• constraints rule out impossible scenarios rather
than capturing worst-case behavior

• generic LP solver used to obtain safe bound

Thursday, December 3, 15

Example constraint:

FIFO queuing:

Each job can have at most one pending request.

Each request can be directly blocked by at most one
request for the same resource from each other task.

LP-Based Blocking Analysis

Thursday, December 3, 15

effective priorities of ready jobs are unique, there are m higher-
effective-priority jobs scheduled at time t.

From Lemmas 6 and 7, we can infer that the m tasks
with highest base priorities do not incur indirect pi-blocking,
preemption pi-blocking, or any type of interference under PI.

Constraint 7: In any G-FP schedule of ⌧ under PI:

i  m =) 8Tx 2 ⌧ i : IRx + ICx + ISx +BI
x +BP

x = 0.

Proof: Suppose not. Then there exists a time t at which Ji is
pending, not scheduled, and not subject to direct blocking.

Case 1: If Ji is ready at time t, then under G-FP scheduling
there must exist m ready jobs with effective priorities exceeding
Ji’s base priority; however, this is impossible because effective
priorities are unique (Lemma 6) and since i  m.

Case 2: If Ji is suspended and waiting for a resource held
by a job Ja, then Ja is ready, but not scheduled (otherwise Ji
would incur direct pi-blocking), and hence Ji incurs indirect
pi-blocking at time t. By Lemma 7, this requires the presence
of m ready jobs with effective priorities exceeding Ji’s base
priority; as in Case 1, this is impossible.

Case 3: Finally, if Ji is suspended and waiting for a resource
not held by any job, which among the considered protocols
is possible only under the (m,n)-configured P-PCP, then
|HPR(i , t)| + |LPR(i , t)| � n (recall that ↵i = n if i  m).
Then all tasks, including Ti, are holding resources and Ji is thus
ready at time t. Contradiction.

A constraint for FIFO queues. We first consider FIFO queues,
which are simpler to analyze as they provide starvation freedom.

Constraint 8: When using FIFO queues:

8`q, 8Tx 2 ⌧ i :

Ni
x,qX

v=1

XD
x,q,v  Ni,q.

Proof: In a FIFO queue, a request is directly delayed only by
earlier-issued requests. Consequently, since jobs issue at most
one request at a time, each time that Ji requests a resource, each
other task can directly block Ji at most once.

Next, we consider direct blocking in priority queues.
Constraints for priority queues. To begin with, we constrain
direct blocking due to lower-priority tasks, which is trivially
bounded by the number of requests issued by Ji.

Constraint 9: When using priority queues:

8`q :

X

Tx2⌧L

Ni
x,qX

v=1

XD
x,q,v  Ni,q.

Proof: When conflicting requests are satisfied in priority order,
each time Ji requests a resource `q, at most one request from
lower-base-priority tasks directly delays Ji. Hence, for each
resource `q , at most Ni,q requests for `q of tasks with lower base
priority cause Ji to incur direct pi-blocking.

Constraining direct pi-blocking by higher-priority tasks is
considerably more involved since priority queues permit star-
vation of lower-priority requests. As a result, the analysis of
higher-priority blocking resembles uniprocessor response-time
analysis: a starving low-priority lock request will be satisfied

only when there is no more higher-priority contention. To this
end, we require a bound on the maximum resource-holding time.

Def. 4: We let Hx,q denote a bound on the maximum con-
tested resource-holding time of Tx, which is the maximum
duration that any job Jx holds a resource `q while Ji is waiting
to acquire `q. If Nx,q = 0, then trivially Hx,q = 0; otherwise,
Hx,q depends on the employed progress mechanism.

We begin by bounding Hx,q under PI. Let sr i
x

denote the set of
resources used by task Tx that have priority ceilings higher than
the base priority of Ti, i.e., sr i

x

= {`q|Nx,q 6= 0 ^⇧(`q) < i}.
Lemma 8: Under PI, the maximum contested resource-

holding time is bounded by Hx,q = Lx,q if x  m, and by
the least positive solution (if any) of the equation

Hx,q = Lx,q +
1

m

0

@
X

h<y

Wh(Hx,q) +

X

l>y^l 6=z

X

`u2sr

y

l

Lx,q
l,u

1

A

if x > m, where y = min(x, i), z = max(x, i), and Lx,q
l,u =

⌘l(Hx,q) ·Nl,u · Ll,u.
Proof: While holding `q, Jx is ready. If x  m, Jx is

scheduled as it has one of the m highest effective priorities and
since effective priorities of ready jobs are unique (Lemma 6). Jx
thus holds `q for at most Lx,q time units.

If x > m, then Jx can be preempted while holding `q , either
due to regular interference or due to preemption pi-blocking.
Since Ji is waiting for `q , ⇡x(t)  min(x, i) = y due to PI.

Thus, while Ji is waiting for Jx to release `q, (i) only tasks
with base priority higher than y cause regular interference for Jx,
and (ii) only tasks with base priority lower than y and effective
priority higher than y cause preemption pi-blocking.

Regarding (i), by Def. 3, jobs with base priorities higher than
y execute for at most

P
h<y Wh(Hx,q) time units during an

interval of length Hx,q .
Regarding (ii), jobs other than Ji and Jx with base priorities

lower than y execute — while holding resources with priority
ceilings higher than y — for at most

P
l>y^l 6=z

P
`u2sr

y

l

Lx,q
l,u

time units during an interval of length Hx,q .
By Lemma 3, there are m jobs scheduled whenever Jx

incurs regular interference or preemption pi-blocking. Thus,
1
m

⇣P
h<y E

x,q
h +

P
l>y^l 6=z

P
`u2sr

y

l

Lx,q
l,u

⌘
bounds the time

in which Jx is not scheduled while Ji is waiting for Jx to release
`q . In addition, Jx uses `q for at most Lx,q time units.

Next, we establish a bound Hx,q under RSB, where resource-
holding jobs are priority-boosted in FIFO order.

Lemma 9: Under RSB, Hx,q is bounded by

Hx,q = Lx,q +

X

Ta2⌧\{Tx,Ti}

max

`u 6=`q
{La,u}.

Proof: Under RSB, resource-holding jobs are priority-boosted
in order of request-segment start time. A job Jx holding a
resource `q that Ji is waiting for is thus priority-boosted after
each task in ⌧ \ {Tx, Ti} has completed a critical section (not
pertaining to `q, which is held by Jx). Since under RSB the
priority-boosted resource holder is always scheduled, Jx is
delayed for at most

P
Ta2⌧\{Tx,Ti} max`u 6=`q{La,u} time units

before using `q for at most Lx,q time units itself.

7

Example constraint: Titask under analysis

LP-Based Blocking Analysis

Thursday, December 3, 15

effective priorities of ready jobs are unique, there are m higher-
effective-priority jobs scheduled at time t.

From Lemmas 6 and 7, we can infer that the m tasks
with highest base priorities do not incur indirect pi-blocking,
preemption pi-blocking, or any type of interference under PI.

Constraint 7: In any G-FP schedule of ⌧ under PI:

i  m =) 8Tx 2 ⌧ i : IRx + ICx + ISx +BI
x +BP

x = 0.

Proof: Suppose not. Then there exists a time t at which Ji is
pending, not scheduled, and not subject to direct blocking.

Case 1: If Ji is ready at time t, then under G-FP scheduling
there must exist m ready jobs with effective priorities exceeding
Ji’s base priority; however, this is impossible because effective
priorities are unique (Lemma 6) and since i  m.

Case 2: If Ji is suspended and waiting for a resource held
by a job Ja, then Ja is ready, but not scheduled (otherwise Ji
would incur direct pi-blocking), and hence Ji incurs indirect
pi-blocking at time t. By Lemma 7, this requires the presence
of m ready jobs with effective priorities exceeding Ji’s base
priority; as in Case 1, this is impossible.

Case 3: Finally, if Ji is suspended and waiting for a resource
not held by any job, which among the considered protocols
is possible only under the (m,n)-configured P-PCP, then
|HPR(i , t)| + |LPR(i , t)| � n (recall that ↵i = n if i  m).
Then all tasks, including Ti, are holding resources and Ji is thus
ready at time t. Contradiction.

A constraint for FIFO queues. We first consider FIFO queues,
which are simpler to analyze as they provide starvation freedom.

Constraint 8: When using FIFO queues:

8`q, 8Tx 2 ⌧ i :

Ni
x,qX

v=1

XD
x,q,v  Ni,q.

Proof: In a FIFO queue, a request is directly delayed only by
earlier-issued requests. Consequently, since jobs issue at most
one request at a time, each time that Ji requests a resource, each
other task can directly block Ji at most once.

Next, we consider direct blocking in priority queues.
Constraints for priority queues. To begin with, we constrain
direct blocking due to lower-priority tasks, which is trivially
bounded by the number of requests issued by Ji.

Constraint 9: When using priority queues:

8`q :

X

Tx2⌧L

Ni
x,qX

v=1

XD
x,q,v  Ni,q.

Proof: When conflicting requests are satisfied in priority order,
each time Ji requests a resource `q, at most one request from
lower-base-priority tasks directly delays Ji. Hence, for each
resource `q , at most Ni,q requests for `q of tasks with lower base
priority cause Ji to incur direct pi-blocking.

Constraining direct pi-blocking by higher-priority tasks is
considerably more involved since priority queues permit star-
vation of lower-priority requests. As a result, the analysis of
higher-priority blocking resembles uniprocessor response-time
analysis: a starving low-priority lock request will be satisfied

only when there is no more higher-priority contention. To this
end, we require a bound on the maximum resource-holding time.

Def. 4: We let Hx,q denote a bound on the maximum con-
tested resource-holding time of Tx, which is the maximum
duration that any job Jx holds a resource `q while Ji is waiting
to acquire `q. If Nx,q = 0, then trivially Hx,q = 0; otherwise,
Hx,q depends on the employed progress mechanism.

We begin by bounding Hx,q under PI. Let sr i
x

denote the set of
resources used by task Tx that have priority ceilings higher than
the base priority of Ti, i.e., sr i

x

= {`q|Nx,q 6= 0 ^⇧(`q) < i}.
Lemma 8: Under PI, the maximum contested resource-

holding time is bounded by Hx,q = Lx,q if x  m, and by
the least positive solution (if any) of the equation

Hx,q = Lx,q +
1

m

0

@
X

h<y

Wh(Hx,q) +

X

l>y^l 6=z

X

`u2sr

y

l

Lx,q
l,u

1

A

if x > m, where y = min(x, i), z = max(x, i), and Lx,q
l,u =

⌘l(Hx,q) ·Nl,u · Ll,u.
Proof: While holding `q, Jx is ready. If x  m, Jx is

scheduled as it has one of the m highest effective priorities and
since effective priorities of ready jobs are unique (Lemma 6). Jx
thus holds `q for at most Lx,q time units.

If x > m, then Jx can be preempted while holding `q , either
due to regular interference or due to preemption pi-blocking.
Since Ji is waiting for `q , ⇡x(t)  min(x, i) = y due to PI.

Thus, while Ji is waiting for Jx to release `q, (i) only tasks
with base priority higher than y cause regular interference for Jx,
and (ii) only tasks with base priority lower than y and effective
priority higher than y cause preemption pi-blocking.

Regarding (i), by Def. 3, jobs with base priorities higher than
y execute for at most

P
h<y Wh(Hx,q) time units during an

interval of length Hx,q .
Regarding (ii), jobs other than Ji and Jx with base priorities

lower than y execute — while holding resources with priority
ceilings higher than y — for at most

P
l>y^l 6=z

P
`u2sr

y

l

Lx,q
l,u

time units during an interval of length Hx,q .
By Lemma 3, there are m jobs scheduled whenever Jx

incurs regular interference or preemption pi-blocking. Thus,
1
m

⇣P
h<y E

x,q
h +

P
l>y^l 6=z

P
`u2sr

y

l

Lx,q
l,u

⌘
bounds the time

in which Jx is not scheduled while Ji is waiting for Jx to release
`q . In addition, Jx uses `q for at most Lx,q time units.

Next, we establish a bound Hx,q under RSB, where resource-
holding jobs are priority-boosted in FIFO order.

Lemma 9: Under RSB, Hx,q is bounded by

Hx,q = Lx,q +

X

Ta2⌧\{Tx,Ti}

max

`u 6=`q
{La,u}.

Proof: Under RSB, resource-holding jobs are priority-boosted
in order of request-segment start time. A job Jx holding a
resource `q that Ji is waiting for is thus priority-boosted after
each task in ⌧ \ {Tx, Ti} has completed a critical section (not
pertaining to `q, which is held by Jx). Since under RSB the
priority-boosted resource holder is always scheduled, Jx is
delayed for at most

P
Ta2⌧\{Tx,Ti} max`u 6=`q{La,u} time units

before using `q for at most Lx,q time units itself.

7

Example constraint:

for each
resource

for each
other task

Titask under analysis

all requests
issued by while

one job of is
pending

T
x

Ti
blocking variable
for direct blocking

max. #requests
for issued by a

single job of
lq

Ti

LP-Based Blocking Analysis

Thursday, December 3, 15

effective priorities of ready jobs are unique, there are m higher-
effective-priority jobs scheduled at time t.

From Lemmas 6 and 7, we can infer that the m tasks
with highest base priorities do not incur indirect pi-blocking,
preemption pi-blocking, or any type of interference under PI.

Constraint 7: In any G-FP schedule of ⌧ under PI:

i  m =) 8Tx 2 ⌧ i : IRx + ICx + ISx +BI
x +BP

x = 0.

Proof: Suppose not. Then there exists a time t at which Ji is
pending, not scheduled, and not subject to direct blocking.

Case 1: If Ji is ready at time t, then under G-FP scheduling
there must exist m ready jobs with effective priorities exceeding
Ji’s base priority; however, this is impossible because effective
priorities are unique (Lemma 6) and since i  m.

Case 2: If Ji is suspended and waiting for a resource held
by a job Ja, then Ja is ready, but not scheduled (otherwise Ji
would incur direct pi-blocking), and hence Ji incurs indirect
pi-blocking at time t. By Lemma 7, this requires the presence
of m ready jobs with effective priorities exceeding Ji’s base
priority; as in Case 1, this is impossible.

Case 3: Finally, if Ji is suspended and waiting for a resource
not held by any job, which among the considered protocols
is possible only under the (m,n)-configured P-PCP, then
|HPR(i , t)| + |LPR(i , t)| � n (recall that ↵i = n if i  m).
Then all tasks, including Ti, are holding resources and Ji is thus
ready at time t. Contradiction.

A constraint for FIFO queues. We first consider FIFO queues,
which are simpler to analyze as they provide starvation freedom.

Constraint 8: When using FIFO queues:

8`q, 8Tx 2 ⌧ i :

Ni
x,qX

v=1

XD
x,q,v  Ni,q.

Proof: In a FIFO queue, a request is directly delayed only by
earlier-issued requests. Consequently, since jobs issue at most
one request at a time, each time that Ji requests a resource, each
other task can directly block Ji at most once.

Next, we consider direct blocking in priority queues.
Constraints for priority queues. To begin with, we constrain
direct blocking due to lower-priority tasks, which is trivially
bounded by the number of requests issued by Ji.

Constraint 9: When using priority queues:

8`q :

X

Tx2⌧L

Ni
x,qX

v=1

XD
x,q,v  Ni,q.

Proof: When conflicting requests are satisfied in priority order,
each time Ji requests a resource `q, at most one request from
lower-base-priority tasks directly delays Ji. Hence, for each
resource `q , at most Ni,q requests for `q of tasks with lower base
priority cause Ji to incur direct pi-blocking.

Constraining direct pi-blocking by higher-priority tasks is
considerably more involved since priority queues permit star-
vation of lower-priority requests. As a result, the analysis of
higher-priority blocking resembles uniprocessor response-time
analysis: a starving low-priority lock request will be satisfied

only when there is no more higher-priority contention. To this
end, we require a bound on the maximum resource-holding time.

Def. 4: We let Hx,q denote a bound on the maximum con-
tested resource-holding time of Tx, which is the maximum
duration that any job Jx holds a resource `q while Ji is waiting
to acquire `q. If Nx,q = 0, then trivially Hx,q = 0; otherwise,
Hx,q depends on the employed progress mechanism.

We begin by bounding Hx,q under PI. Let sr i
x

denote the set of
resources used by task Tx that have priority ceilings higher than
the base priority of Ti, i.e., sr i

x

= {`q|Nx,q 6= 0 ^⇧(`q) < i}.
Lemma 8: Under PI, the maximum contested resource-

holding time is bounded by Hx,q = Lx,q if x  m, and by
the least positive solution (if any) of the equation

Hx,q = Lx,q +
1

m

0

@
X

h<y

Wh(Hx,q) +

X

l>y^l 6=z

X

`u2sr

y

l

Lx,q
l,u

1

A

if x > m, where y = min(x, i), z = max(x, i), and Lx,q
l,u =

⌘l(Hx,q) ·Nl,u · Ll,u.
Proof: While holding `q, Jx is ready. If x  m, Jx is

scheduled as it has one of the m highest effective priorities and
since effective priorities of ready jobs are unique (Lemma 6). Jx
thus holds `q for at most Lx,q time units.

If x > m, then Jx can be preempted while holding `q , either
due to regular interference or due to preemption pi-blocking.
Since Ji is waiting for `q , ⇡x(t)  min(x, i) = y due to PI.

Thus, while Ji is waiting for Jx to release `q, (i) only tasks
with base priority higher than y cause regular interference for Jx,
and (ii) only tasks with base priority lower than y and effective
priority higher than y cause preemption pi-blocking.

Regarding (i), by Def. 3, jobs with base priorities higher than
y execute for at most

P
h<y Wh(Hx,q) time units during an

interval of length Hx,q .
Regarding (ii), jobs other than Ji and Jx with base priorities

lower than y execute — while holding resources with priority
ceilings higher than y — for at most

P
l>y^l 6=z

P
`u2sr

y

l

Lx,q
l,u

time units during an interval of length Hx,q .
By Lemma 3, there are m jobs scheduled whenever Jx

incurs regular interference or preemption pi-blocking. Thus,
1
m

⇣P
h<y E

x,q
h +

P
l>y^l 6=z

P
`u2sr

y

l

Lx,q
l,u

⌘
bounds the time

in which Jx is not scheduled while Ji is waiting for Jx to release
`q . In addition, Jx uses `q for at most Lx,q time units.

Next, we establish a bound Hx,q under RSB, where resource-
holding jobs are priority-boosted in FIFO order.

Lemma 9: Under RSB, Hx,q is bounded by

Hx,q = Lx,q +

X

Ta2⌧\{Tx,Ti}

max

`u 6=`q
{La,u}.

Proof: Under RSB, resource-holding jobs are priority-boosted
in order of request-segment start time. A job Jx holding a
resource `q that Ji is waiting for is thus priority-boosted after
each task in ⌧ \ {Tx, Ti} has completed a critical section (not
pertaining to `q, which is held by Jx). Since under RSB the
priority-boosted resource holder is always scheduled, Jx is
delayed for at most

P
Ta2⌧\{Tx,Ti} max`u 6=`q{La,u} time units

before using `q for at most Lx,q time units itself.

7

Example constraint: Titask under analysis

generic and reusable:
constraint used for all

protocols with FIFO-queueing

LP-Based Blocking Analysis

Thursday, December 3, 15

LP-Based Blocking Analysis
for Global Scheduling

Challenge #1: Account for new sources of blocking
arising under global scheduling and
RSB.

Requires additional blocking types that have to be
• abstract and generic,
• expressive, and
• disjoint.

Thursday, December 3, 15

LP-Based Blocking Analysis
for Global Scheduling

Challenge #2: LP-based analysis for partitioned
scheduling did not need to account for
regular interference.

Global scheduling:
Interference and blocking need to be analyzed
together to avoid excessive inaccuracy!

Thursday, December 3, 15

Details in paper

LP-Based Blocking Analysis
for Global Scheduling

Thursday, December 3, 15

Intro
Unified Analysis Framework
Evaluation Results
Summary and Conclusion

Outline

Thursday, December 3, 15

Evaluation

Thursday, December 3, 15

Protocol Progress
Mechanism Queue Type

Is LP-based
analysis the

best
available?

Empirical
Results

NP-FIFO - FIFO ✔

NP-Priority - Priority ✔

FMLP PI FIFO

PIP PI Priority

PPCP PI Priority

FMLP+ RSB FIFO ✔

PRSB RSB Priority ✔

Locking Protocols for Global Scheduling

Thursday, December 3, 15

Protocol Progress
Mechanism Queue Type

Is LP-based
analysis the

best
available?

Empirical
Results

NP-FIFO - FIFO ✔ ?
NP-Priority - Priority ✔ ?

FMLP PI FIFO ? ?
PIP PI Priority ? ?

PPCP PI Priority ? ?
FMLP+ RSB FIFO ✔ ?
PRSB RSB Priority ✔ ?

Locking Protocols for Global Scheduling

Thursday, December 3, 15

Evaluation

for each configuration

for each task set size

schedulability test and
blocking analysis

generate task set

vary
task set size

generate
configurations

for each task set, protocol,
priority assignment

Thursday, December 3, 15

for each configuration

for each task set size

schedulability test and
blocking analysis

generate task set

vary
task set size

generate
configurations

Evaluation

for each task set, protocol,
priority assignment

Thursday, December 3, 15

for each task set, protocol,
priority assignment

for each configuration

for each task set size

schedulability test and
blocking analysis

generate task set

vary
task set size

we vary:
• number of processors
• task period distributions
• average task utilization
• number of resources
• resource access

probability
• number of critical

sections

1440 different
configurations

generate
configurations

Evaluation

Thursday, December 3, 15

for each task set, protocol,
priority assignment

for each configuration

for each task set size

generate
configurations

schedulability test and
blocking analysis

generate task set

vary
task set size

for m processors,
task set size:

1m-12m

Evaluation

Thursday, December 3, 15

for each task set, protocol,
priority assignment

for each configuration

for each task set size

generate
configurations

vary
task set size

schedulability test and
blocking analysis

generate task set

≥1000 samples
priority assignment

heuristics:

• DkC
(Davis and Burns, 2009)

• RM-US
(Andersson et al. 2001)

• DM-US
(Lundberg and Lennerstad, 2007)

• deadline monotonic
(Leung and Whitehead, 1982)

Evaluation

Thursday, December 3, 15

for each task set, protocol,
priority assignment

for each configuration

for each task set size

generate
configurations

vary
task set size

generate task set

schedulability test and
blocking analysis

Response-time
analysis:

suspension-oblivious:
Guan et al.’s (2009) analysis

suspension-aware:
Bertogna and Cirinei’s (2007)
analysis

Evaluation

Thursday, December 3, 15

Schedulability Plot:

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

number of tasks

Evaluation

Thursday, December 3, 15

Schedulability Plot:

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

number of tasks

schedulable
fraction

of ≥1000 samples
with given size

Evaluation

Thursday, December 3, 15

Schedulability Plot:

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

number of tasks

40% of task sets with 30
tasks in this configuration

are schedulable

Evaluation

Thursday, December 3, 15

Our findings:

•The choice of protocol does matter!
•LP-based analysis increases schedulability.
•PIP and FMLP perform best.
•PPCP results don’t justify complexity.
•PI performs better than RSB under global
scheduling.

Evaluation

Thursday, December 3, 15

Evaluation

Representative
configuration: processors 4

periods 10...100ms

#resources 4

utilization 0.1

access probability 0.5

critical section length 25...100μs

#requests 5

Thursday, December 3, 15

Evaluation

Thursday, December 3, 15

Evaluation

The choice of protocol does matter!

Thursday, December 3, 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

number of tasks

FMLP
no blocking

NP-FIFO
NP-priority

Evaluation

The choice of protocol does matter!
lower bound:
locks without

progress mechanism

upper bound:
schedulability

without any blocking

Thursday, December 3, 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

number of tasks

FMLP
no blocking

NP-FIFO
NP-priority

Evaluation

The choice of protocol does matter!

average #tasks
supported at

schedulability ratio
0.5:

worst: 12
vs.

best: 24

Thursday, December 3, 15

Evaluation

The unified LP-based analysis
results in higher schedulability.

Thursday, December 3, 15

Protocol Progress
Mechanism Queue Type

Is LP-based
analysis the

best
available?

Empirical
Results

NP-FIFO - FIFO ✔

NP-Priority - Priority ✔

FMLP PI FIFO

PIP PI Priority

PPCP PI Priority

FMLP+ RSB FIFO ✔

PRSB RSB Priority ✔

Locking Protocols for Global Scheduling

Thursday, December 3, 15

Protocol Progress
Mechanism Queue Type

Is LP-based
analysis the

best
available?

Empirical
Results

NP-FIFO - FIFO ✔

NP-Priority - Priority ✔

FMLP PI FIFO ?
PIP PI Priority ?

PPCP PI Priority ?
FMLP+ RSB FIFO ✔

PRSB RSB Priority ✔

Locking Protocols for Global Scheduling

Thursday, December 3, 15

Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

number of tasks

FMLP
s-ob FMLP

no blocking

The unified LP-based analysis
results in higher schedulability.

Thursday, December 3, 15

Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

number of tasks

FMLP
s-ob FMLP

no blocking

The unified LP-based analysis
results in higher schedulability.

Thursday, December 3, 15

Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

number of tasks

FMLP
s-ob FMLP

no blocking

Higher schedulability under new analysis.

The unified LP-based analysis
results in higher schedulability.

Thursday, December 3, 15

Protocol Progress
Mechanism Queue Type

Is LP-based
analysis the

best
available?

Empirical
Results

NP-FIFO - FIFO ✔

NP-Priority - Priority ✔

FMLP PI FIFO ✔

PIP PI Priority ?
PPCP PI Priority ?
FMLP+ RSB FIFO ✔

PRSB RSB Priority ✔

Locking Protocols for Global Scheduling

Thursday, December 3, 15

Evaluation

The unified LP-based analysis
results in higher schedulability.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

number of tasks

PIP
FMLP

PIP-prior
s-ob FMLP

no blocking

Thursday, December 3, 15

Evaluation

The unified LP-based analysis
results in higher schedulability.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

number of tasks

PIP
FMLP

PIP-prior
s-ob FMLP

no blocking

Thursday, December 3, 15

Evaluation

The unified LP-based analysis
results in higher schedulability.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

number of tasks

PIP
FMLP

PIP-prior
s-ob FMLP

no blocking

Higher schedulability under new analysis.

Thursday, December 3, 15

Protocol Progress
Mechanism Queue Type

Is LP-based
analysis the

best
available?

Empirical
Results

NP-FIFO - FIFO ✔

NP-Priority - Priority ✔

FMLP PI FIFO ✔

PIP PI Priority ✔

PPCP PI Priority ?
FMLP+ RSB FIFO ✔

PRSB RSB Priority ✔

Locking Protocols for Global Scheduling

Thursday, December 3, 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

number of tasks

PIP
PPCP
FMLP

PIP-prior
PPCP-prior
s-ob FMLP

no blocking

Evaluation

The unified LP-based analysis
results in higher schedulability.

Thursday, December 3, 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

number of tasks

PIP
PPCP
FMLP

PIP-prior
PPCP-prior
s-ob FMLP

no blocking

Evaluation

The unified LP-based analysis
results in higher schedulability.

Thursday, December 3, 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

number of tasks

PIP
PPCP
FMLP

PIP-prior
PPCP-prior
s-ob FMLP

no blocking

Evaluation

The unified LP-based analysis
results in higher schedulability.

Higher schedulability under new analysis.

Thursday, December 3, 15

Protocol Progress
Mechanism Queue Type

Is LP-based
analysis the

best
available?

Empirical
Results

NP-FIFO - FIFO ✔

NP-Priority - Priority ✔

FMLP PI FIFO ✔

PIP PI Priority ✔

PPCP PI Priority ✔

FMLP+ RSB FIFO ✔

PRSB RSB Priority ✔

Locking Protocols for Global Scheduling

Thursday, December 3, 15

Protocol Progress
Mechanism Queue Type

Is LP-based
analysis the

best
available?

Empirical
Results

NP-FIFO - FIFO ✔ ?
NP-Priority - Priority ✔ ?

FMLP PI FIFO ✔ ?
PIP PI Priority ✔ ?

PPCP PI Priority ✔ ?
FMLP+ RSB FIFO ✔ ?
PRSB RSB Priority ✔ ?

Locking Protocols for Global Scheduling

Thursday, December 3, 15

Evaluation

PIP and FMLP dominate.

Thursday, December 3, 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

number of tasks

PIP
PPCP
FMLP

PIP-prior
PPCP-prior
s-ob FMLP

no blocking

Evaluation

PIP and FMLP dominate.

Thursday, December 3, 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

number of tasks

PIP
PPCP
FMLP

PIP-prior
PPCP-prior
s-ob FMLP

no blocking

Evaluation

Highest
schedulability
achieved with

PIP and FMLP.

PIP and FMLP dominate.

Thursday, December 3, 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

number of tasks

PIP
PPCP
FMLP

PIP-prior
PPCP-prior
s-ob FMLP

no blocking

Evaluation

PIP and FMLP dominate.

Thursday, December 3, 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

number of tasks

PIP
PPCP
FMLP

PIP-prior
PPCP-prior
s-ob FMLP

no blocking

Evaluation

PIP and FMLP dominate.

Highest schedulability
achieved with
PIP and FMLP

in
1427 out of 1440

configurations.

Thursday, December 3, 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

number of tasks

PIP
PPCP
FMLP

PIP-prior
PPCP-prior
s-ob FMLP

no blocking

Evaluation

PIP and FMLP dominate.

Thursday, December 3, 15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

number of tasks

PIP
PPCP
FMLP

PIP-prior
PPCP-prior
s-ob FMLP

no blocking

Evaluation

PIP and FMLP dominate.Highest schedulability
achieved with
PIP and FMLP

in
1427 out of 1440

configurations.

PIP > FMLP: 539 configurations
FMLP > PIP: 887 configurations

Thursday, December 3, 15

Protocol Progress
Mechanism Queue Type

LP-based
analysis

best
available?

Empirical
Results

NP-FIFO - FIFO ✔ ?
NP-Priority - Priority ✔ ?

FMLP PI FIFO ✔ best in
1427 out of 1440
configurationsPIP PI Priority ✔

best in
1427 out of 1440
configurations

PPCP PI Priority ✔ ?
FMLP+ RSB FIFO ✔ ?
PRSB RSB Priority ✔ ?

Locking Protocols for Global Scheduling

The FMLP and the PIP
are the oldest and
simplest protocols.

Thursday, December 3, 15

Evaluation

PPCP results don’t justify complexity.

Thursday, December 3, 15

PPCP results don’t justify complexity.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

ra
tio

 o
f s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

number of tasks

PIP
PPCP
FMLP

PIP-prior
PPCP-prior
s-ob FMLP

no blocking

Evaluation

New analysis:
PPCP never better than PIP/FMLP,

but additional complexity.

Thursday, December 3, 15

Protocol Progress
Mechanism Queue Type

LP-based
analysis

best
available?

Empirical
Results

NP-FIFO - FIFO ✔ ?
NP-Priority - Priority ✔ ?

FMLP PI FIFO ✔ best in
1427 out of 1440
configurationsPIP PI Priority ✔

best in
1427 out of 1440
configurations

PPCP PI Priority ✔ never better than
PIP/FMLP

FMLP+ RSB FIFO ✔ ?
PRSB RSB Priority ✔ ?

Locking Protocols for Global Scheduling

New analysis:
PPCP never better than PIP/FMLP,

but additional complexity.

Thursday, December 3, 15

Protocol Progress
Mechanism Queue Type

LP-based
analysis

best
available?

Empirical
Results

NP-FIFO - FIFO ✔ ?
NP-Priority - Priority ✔ ?

FMLP PI FIFO ✔ best in
1427 out of 1440
configurationsPIP PI Priority ✔

best in
1427 out of 1440
configurations

PPCP PI Priority ✔ never better than
PIP/FMLP

FMLP+ RSB FIFO ✔ ?
PRSB RSB Priority ✔ ?

Locking Protocols for Global Scheduling

Thursday, December 3, 15

Evaluation

RSB/FMLP+ designed to
obtain asymptotically optimal blocking.

Works well under partitioned scheduling
(Brandenburg, 2013).

Thursday, December 3, 15

Evaluation

PI performs better than RSB
under global scheduling.

Thursday, December 3, 15

Evaluation

PI performs better than RSB.

Highest schedulability
achieved with

PI-based protocols
in

1434 out of 1440
configurations.

Thursday, December 3, 15

Protocol Progress
Mechanism Queue Type

LP-based
analysis

best
available?

Empirical
Results

NP-FIFO - FIFO ✔ ?
NP-Priority - Priority ✔ ?

FMLP PI FIFO ✔ best in
1427 out of 1440
configurationsPIP PI Priority ✔

best in
1427 out of 1440
configurations

PPCP PI Priority ✔ never better than
PIP/FMLP

FMLP+ RSB FIFO ✔ not better than PI-based
protocols in

1434 out of 1440
configurationsPRSB RSB Priority ✔

not better than PI-based
protocols in

1434 out of 1440
configurations

Locking Protocols for Global Scheduling

FMLP+ yields asymptotically optimal
blocking (Brandenburg and Anderson, 2010), but
• large constant factors,
• increased parallelism and
• additional sources of blocking.

RSB under global scheduling:

Thursday, December 3, 15

Protocol Progress
Mechanism Queue Type

LP-based
analysis

best
available?

Empirical
Results

NP-FIFO - FIFO ✔ ?
NP-Priority - Priority ✔ ?

FMLP PI FIFO ✔ best in
1427 out of 1440
configurationsPIP PI Priority ✔

best in
1427 out of 1440
configurations

PPCP PI Priority ✔ never better than
PIP/FMLP

FMLP+ RSB FIFO ✔ not better than PI-based
protocols in

1434 out of 1440
configurationsPRSB RSB Priority ✔

not better than PI-based
protocols in

1434 out of 1440
configurations

Locking Protocols for Global Scheduling

Thursday, December 3, 15

Protocol Progress
Mechanism Queue Type

LP-based
analysis

best
available?

Empirical
Results

NP-FIFO - FIFO ✔ baseline for
comparison, not

competitiveNP-Priority - Priority ✔

baseline for
comparison, not

competitive

FMLP PI FIFO ✔ best in
1427 out of 1440
configurationsPIP PI Priority ✔

best in
1427 out of 1440
configurations

PPCP PI Priority ✔ never better than
PIP/FMLP

FMLP+ RSB FIFO ✔ not better than PI-based
protocols in

1434 out of 1440
configurationsPRSB RSB Priority ✔

not better than PI-based
protocols in

1434 out of 1440
configurations

Locking Protocols for Global Scheduling

Thursday, December 3, 15

Protocol Progress
Mechanism Queue Type

LP-based
analysis

best
available?

Empirical
Results

NP-FIFO - FIFO ✔ baseline for
comparison, not

competitiveNP-Priority - Priority ✔

baseline for
comparison, not

competitive

FMLP PI FIFO ✔ best in
1427 out of 1440
configurationsPIP PI Priority ✔

best in
1427 out of 1440
configurations

PPCP PI Priority ✔ never better than
PIP/FMLP

FMLP+ RSB FIFO ✔ not better than PI-based
protocols in

1434 out of 1440
configurationsPRSB RSB Priority ✔

not better than PI-based
protocols in

1434 out of 1440
configurations

Locking Protocols for Global Scheduling

In extreme scenarios,
NP-FIFO/Prioriy and NP-Priority

under LP-based analysis
 resulted in higher schedulability than

any suspension-oblivious analysis!

Thursday, December 3, 15

Protocol Progress
Mechanism Queue Type

LP-based
analysis

best
available?

Empirical
Results

NP-FIFO - FIFO ✔ baseline for
comparison, not

competitiveNP-Priority - Priority ✔

baseline for
comparison, not

competitive

FMLP PI FIFO ✔ best in
1427 out of 1440
configurationsPIP PI Priority ✔

best in
1427 out of 1440
configurations

PPCP PI Priority ✔ never better than
PIP/FMLP

FMLP+ RSB FIFO ✔ not better than PI-based
protocols in

1434 out of 1440
configurationsPRSB RSB Priority ✔

not better than PI-based
protocols in

1434 out of 1440
configurations

Locking Protocols for Global Scheduling

Thursday, December 3, 15

Protocol Progress
Mechanism Queue Type

LP-based
analysis

best
available?

Empirical
Results

NP-FIFO - FIFO ✔ baseline for
comparison, not

competitiveNP-Priority - Priority ✔

baseline for
comparison, not

competitive

FMLP PI FIFO ✔ best in
1433 out of 1440
configurationsPIP PI Priority ✔

best in
1433 out of 1440
configurations

PPCP PI Priority ✔ never better than
PIP/FMLP

FMLP+ RSB FIFO ✔ not better than PI-based
protocols in

1434 out of 1440
configurationsPRSB RSB Priority ✔

not better than PI-based
protocols in

1434 out of 1440
configurations

Locking Protocols for Global Scheduling

https://www.mpi-­‐sws.org/~bbb/papers/data/rtss15/index.html

Full evaluation results (raw data, plots, stats)
available online:

Thursday, December 3, 15

https://github.com/brandenburg/schedcat
https://github.com/brandenburg/schedcat

Outline

Intro
Unified Analysis Framework
Evaluation Results
Summary and Conclusion

Thursday, December 3, 15

Summary and Conclusion

Unified blocking analysis framework:
• support for a variety of different locks
• enables comparison based on state-of-the-art

analysis
• extensible: easy to incorporate application-specific

constraints
• easily composable constraints
• implemented in SchedCAT open source library:

http://www.mpi-­‐sws.org/~bbb/projects/schedcat

Thursday, December 3, 15

https://github.com/brandenburg/schedcat
https://github.com/brandenburg/schedcat

Protocol Progress
Mechanism Queue Type

LP-based
analysis

best
available?

Empirical
Results

NP-FIFO - FIFO ✔ baseline for
comparison, not

competitiveNP-Priority - Priority ✔

baseline for
comparison, not

competitive

FMLP PI FIFO ✔ best in
1433 out of 1440
configurationsPIP PI Priority ✔

best in
1433 out of 1440
configurations

PPCP PI Priority ✔ never better than
PIP/FMLP

FMLP+ RSB FIFO ✔ not better than PI-based
protocols in

1434 out of 1440
configurationsPRSB RSB Priority ✔

not better than PI-based
protocols in

1434 out of 1440
configurations

Locking Protocols for Global Scheduling

Which locking protocols would
be reasonable default choices?

Thursday, December 3, 15

Protocol Progress
Mechanism Queue Type

LP-based
analysis

best
available?

Empirical
Results

NP-FIFO - FIFO ✔ baseline for
comparison, not

competitiveNP-Priority - Priority ✔

baseline for
comparison, not

competitive

FMLP PI FIFO ✔ best in
1427 out of 1440
configurationsPIP PI Priority ✔

best in
1427 out of 1440
configurations

PPCP PI Priority ✔ never better than
PIP/FMLP

FMLP+ RSB FIFO ✔ not better than PI-based
protocols in

1434 out of 1440
configurationsPRSB RSB Priority ✔

not better than PI-based
protocols in

1434 out of 1440
configurations

Locking Protocols for Global Scheduling

Thursday, December 3, 15

Future Work

Exploit richer task models:
• control flow
• order and separation of critical sections

Exploit restrictions in task models:
• periodic tasks: arrival times known

Exploit application-specific properties

Thursday, December 3, 15

http://www.mpi-­‐sws.org/~bbb/projects/schedcat

Implementation available as part of
SchedCAT open source library:

https://www.mpi-­‐sws.org/~bbb/papers/data/rtss15/index.html

Full evaluation results (raw data, plots, stats)
available online:

Thursday, December 3, 15

https://github.com/brandenburg/schedcat
https://github.com/brandenburg/schedcat
https://github.com/brandenburg/schedcat
https://github.com/brandenburg/schedcat

