
1

Fast on Average, Predictable in the
Worst Case

Exploring Real-Time Futexes in LITMUSRT

Roy Spliet, Manohar Vanga, Björn Brandenburg, Sven Dziadek

IEEE Real-Time Systems Symposium 2014

December 2-5, 2014

Rome, Italy

2

Real-Time Locking API

Mutex API

kernel_do_lock();
// critical section
kernel_do_unlock();

3

Operations are typically uncontended at runtime

No other task is currently holding the lock

No other task is waiting for the lock

Mutex API

kernel_do_lock();
// critical section
kernel_do_unlock();

Real-Time Locking API

4

Futexes: Fast Userspace Mutexes

A mechanism (API) in the Linux kernel

!
• For optimizing the uncontended case of locking protocol

implementations

!
• Avoid kernel invocation during uncontended operations

5

Futexes: Fast Userspace Mutexes

A mechanism (API) in the Linux kernel

!
• For optimizing the uncontended case of locking protocol

implementations

!
• Avoid kernel invocation during uncontended operations

Why optimize the uncontended case?

!
• Improved throughput for soft real-time workloads

!
• Increasing available slack time in the system

6

Real-Time Locking Implementations

PRIO_INHERIT!
(Priority

Inheritance
Protocol)

PRIO_PROTECT
(Immediate

Priority Ceiling
Protocol)

Classic Priority
Ceiling Protocol!

(PCP)
Multiprocessor

PCP (MPCP) FMLP

Futex
Implementation

Linux

LITMUSRT

PRIO_INHERIT!
(Priority

Inheritance
Protocol)

PRIO_PROTECT
(Immediate

Priority Ceiling
Protocol)

Classic Priority
Ceiling Protocol!

(PCP)
Multiprocessor

PCP (MPCP) FMLP

Futex
Implementation

Linux LITMUSRT

Real-Time Locking Implementations

8

PRIO_INHERIT!
(Priority

Inheritance
Protocol)

PRIO_PROTECT
(Immediate

Priority Ceiling
Protocol)

Classic Priority
Ceiling Protocol!

(PCP)
Multiprocessor

PCP (MPCP) FMLP

Futex
Implementation

Linux LITMUSRT

Real-Time Locking Implementations

9

PRIO_INHERIT!
(Priority

Inheritance
Protocol)

PRIO_PROTECT
(Immediate

Priority Ceiling
Protocol)

Classic Priority
Ceiling Protocol!

(PCP)
Multiprocessor

PCP (MPCP) FMLP

Futex
Implementation

Linux LITMUSRT

Choice between futex implementation and better analytical properties

Real-Time Locking Implementations

10

PRIO_INHERIT!
(Priority

Inheritance
Protocol)

PRIO_PROTECT
(Immediate

Priority Ceiling
Protocol)

Classic Priority
Ceiling Protocol!

(PCP)
Multiprocessor

PCP (MPCP) FMLP

Futex
Implementation

Linux LITMUSRT

Choice between futex implementation and better analytical properties

Why is it challenging to have both?

Real-Time Locking Implementations

11

PRIO_INHERIT!
(Priority

Inheritance
Protocol)

PRIO_PROTECT
(Immediate

Priority Ceiling
Protocol)

Classic Priority
Ceiling Protocol!

(PCP)
Multiprocessor

PCP (MPCP) FMLP

Futex
Implementation

Reactive Anticipatory

Real-Time Locking Implementations

12

Reactive Locking Protocols Anticipatory Locking Protocols

React to contention on a lock
only when it occurs.

Anticipate problem scenarios
and take measure to minimize
priority-inversion (pi) blocking.

Real-Time Locking Protocol Dichotomy

13

Reactive Locking Protocols Anticipatory Locking Protocols

Tricky to implement futexes
without violating semanticsSimple futex implementation

Anticipate problem scenarios
and take measure to minimize
priority-inversion (pi) blocking.

Real-Time Locking Protocol Dichotomy

React to contention on a lock
only when it occurs.

14

Contributions

PRIO_INHERIT!
(Priority

Inheritance
Protocol)

PRIO_PROTECT
(Immediate

Priority Ceiling
Protocol)

Classic Priority
Ceiling Protocol!

(PCP)
Multiprocessor

PCP (MPCP) FMLP

Futex
Implementation

15

Contributions

PRIO_INHERIT!
(Priority

Inheritance
Protocol)

PRIO_PROTECT
(Immediate

Priority Ceiling
Protocol)

Classic Priority
Ceiling Protocol!

(PCP)
Multiprocessor

PCP (MPCP) FMLP

Futex
Implementation

Design and implementation of futexes for three
anticipatory real-time locking protocols

16

Contributions

PRIO_INHERIT!
(Priority

Inheritance
Protocol)

PRIO_PROTECT
(Immediate

Priority Ceiling
Protocol)

Classic Priority
Ceiling Protocol!

(PCP)
Multiprocessor

PCP (MPCP) FMLP

Futex
Implementation

Design and implementation of futexes for three
anticipatory real-time locking protocols

92% 85% 84%Observed overhead reduction:

17

Contributions

PRIO_INHERIT!
(Priority

Inheritance
Protocol)

PRIO_PROTECT
(Immediate

Priority Ceiling
Protocol)

Classic Priority
Ceiling Protocol!

(PCP)
Multiprocessor

PCP (MPCP) FMLP

Futex
Implementation

Design and implementation of futexes for three
anticipatory real-time locking protocols

92% 85% 84%Observed overhead reduction:

Method of using page faults to implement futexes

18

Overview of Talk

19

Overview of Talk

Challenge

Implementation

Evaluation

20

Overview of Talk

Challenge

Implementation

Evaluation

21

Futexes — Overview and Intuition

Mutex API

kernel_do_lock();
// critical section
kernel_do_unlock();

The problem with the vanilla approach

22

Futexes — Overview and Intuition
The problem with the vanilla approach

kernel_do_lock();
// critical section
kernel_do_unlock();

Kernel invoked on every lock

and unlock operation Mutex API

23

Futexes — Overview and Intuition

Kernel invoked on every lock

and unlock operation

kernel_do_lock();
// critical section
kernel_do_unlock();

Task Task Task

KernelLock State

The problem with the vanilla approach

Mutex API

24

Futexes — Overview and Intuition
Exporting Lock State to Userspace Processes

Shared lock state between
userspace and kernel

Kernel

Lock State

Task Task Task

25

Futexes — Overview and Intuition
Exporting Lock State to Userspace Processes

Futex Pseudocode

try_to_acquire_lock(lock);
if (lock is contended)
 kernel_do_lock(lock);
// critical section
release_lock(lock);
if (there are blocked tasks)
 kernel_do_unlock();

Kernel

Lock State

Task Task Task

26

Futexes — Overview and Intuition
Fast-Path for Uncontended Operations

Futex Pseudocode

try_to_acquire_lock(lock);
if (lock is contended)
 kernel_do_lock(lock);
// critical section
release_lock(lock);
if (there are blocked tasks)
 kernel_do_unlock();

Fast-path when operation is
uncontended (kernel not invoked)

Kernel

Lock State

Task Task Task

27

Futexes — Overview and Intuition
Slow-Path for Contended Operations

Futex Pseudocode

try_to_acquire_lock(lock);
if (lock is contended)
 kernel_do_lock(lock);
// critical section
release_lock(lock);
if (there are blocked tasks)
 kernel_do_unlock();

Kernel invoked only when lock or
unlock operation is contended

Kernel

Lock State

Task Task Task

28

Priority Inheritance Protocol
Futexes for reactive locking protocols

Fixed-Priority Scheduling

Time

HI

LO Lock 1 Lock 2

Lock 2

…

29

Priority Inheritance Protocol
Futexes for reactive locking protocols

Fixed-Priority Scheduling

Time

HI

LO

Uncontended
No kernel intervention

Lock 1 Lock 2

Lock 2

…

30

Priority Inheritance Protocol
Futexes for reactive locking protocols

Fixed-Priority Scheduling

Time

HI

LO

Contended
Kernel intervention needed

Lock 1 Lock 2

Lock 2

…

Uncontended
No kernel intervention

31

• Each lock has a priority ceiling — the highest priority of all
tasks that can acquire that lock.

• System ceiling — Currently held lock with highest ceiling

• A lock may be acquired by a task only if:

• Task priority > System Ceiling Priority!

• Or the task is holding the system ceiling!

• When under pi-blocking, priority inheritance raises priority of
lower priority task to that of higher priority task.

Priority Ceiling Protocol (PCP)

32

• Each lock has a priority ceiling — the highest priority of all
tasks that can acquire that lock.

• System ceiling — Currently held lock with highest ceiling

• A lock may be acquired by a task only if:

• Task priority > System Ceiling Priority!

• Or the task is holding the system ceiling!

• When under pi-blocking, priority inheritance raises priority of
lower priority task to that of higher priority task.

Priority Ceiling Protocol (PCP)

33

Priority Ceiling Protocol (PCP)

• Each lock has a priority ceiling — the highest priority of all
tasks that can acquire that lock.

• System ceiling — Currently held lock with highest ceiling

• A lock may be acquired by a task only if:

• Task priority > System Ceiling Priority!

• Or the task is holding the system ceiling!

• When under pi-blocking, priority inheritance raises priority of
lower priority task to that of higher priority task.

34

• Each lock has a priority ceiling — the highest priority of all
tasks that can acquire that lock.

• System ceiling — Currently held lock with highest ceiling

• A lock may be acquired by a task only if:

• Task priority > System Ceiling Priority!

• Or the task is holding the system ceiling!

• When under contention, priority inheritance (raises priority of
lower priority task to that of higher priority task).

Priority Ceiling Protocol (PCP)

35 Fixed-Priority Scheduling

Time

MED

LO L1

L2

HI L1

PCP Futexes — Challenge

36 Fixed-Priority Scheduling

Time

MED

LO

HI

Raises system

ceiling prio. to HI

Lowers system

ceiling prio. to None

L1

L2

L1

PCP Futexes — Challenge

37 Fixed-Priority Scheduling

Valid acquisition

MED > System Ceiling Prio.

Time

MED

LO

HI

Raises system

ceiling prio. to HI

Lowers system

ceiling prio. to None

L1

L2

L1

PCP Futexes — Challenge

38 Fixed-Priority Scheduling

Time

MED

LO L1

L2

HI L1

Time

MED

LO L1

L2

HI L1

PCP Futexes — Challenge

39 Fixed-Priority Scheduling

Raises system

ceiling prio. to HI Preemption

Sys. ceiling prio. = HI

Time

MED

LO L1

L2

HI L1

Time

MED

LO L1

L2

HI L1

PCP Futexes — Challenge

40 Fixed-Priority Scheduling

L2 free

But invalid acquisition

Sys. Ceiling Prio. > MED

Raises system

ceiling prio. to HI Preemption

Sys. ceiling prio. = HI

Time

MED

LO L1

L2

HI L1

Time

MED

LO L1

L2

HI L1

PCP Futexes — Challenge

41 Fixed-Priority Scheduling

L2 free

But invalid acquisition

Sys. Ceiling Prio. > MED

Raises system

ceiling prio. to HI Preemption

Sys. ceiling prio. = HI

Time

MED

LO L1

L2

HI L1

Time

MED

LO L1

L2

HI L1

Problem — Simply relying on lock state (as in reactive case) may
violate PCP semantics. Must consider system ceiling.

PCP Futexes — Challenge

42 Fixed-Priority Scheduling

L2 free

But invalid acquisition

Sys. Ceiling Prio. > MED

Raises system

ceiling prio. to HI Preemption

Sys. ceiling prio. = HI

Time

MED

LO L1

L2

HI L1

Time

MED

LO L1

L2

HI L1

Problem — system ceiling potentially updated at every lock
acquisition and release — must always invoke kernel to avoid

protocol violations

PCP Futexes — Challenge

Problem — Simply relying on lock state (as in reactive case) may
violate PCP semantics. Must consider system ceiling.

43

Overview of Talk

Challenge

Implementation

Evaluation

44

Overview of Talk

Challenge

Implementation

Evaluation

45

PCP Futexes — Our Approach

PCP Futex Pseudocode

if (lock is contended)
 kernel_do_lock(lock);
else
 acquire_lock_locally(lock)
// critical section
release_lock(lock);
if (there are blocked tasks)
 kernel_do_unlock();

46

PCP Futex Pseudocode

if (lock is contended)
 kernel_do_lock(lock);
else
 acquire_lock_locally(lock)
// critical section
release_lock(lock);
if (there are blocked tasks)
 kernel_do_unlock();

PCP Futexes — Our Approach

Whether lock acquisition is contended
is determined in PCP by the current
system ceiling

47

PCP Futex Pseudocode

if (lock is contended)
 kernel_do_lock(lock);
else
 acquire_lock_locally(lock)
// critical section
release_lock(lock);
if (there are blocked tasks)
 kernel_do_unlock();

Whether lock acquisition is contended
is determined in PCP by the current
system ceiling

The presence of blocked tasks is
determined by the size of the wait-
queue corresponding to the lock.

PCP Futexes — Our Approach

48

PCP Futex Pseudocode

if (lock is contended)
 kernel_do_lock(lock);
else
 acquire_lock_locally(lock)
// critical section
release_lock(lock);
if (there are blocked tasks)
 kernel_do_unlock();

Whether lock acquisition is contended
is determined in PCP by the current
system ceiling

The presence of blocked tasks is
determined by the size of the wait-
queue corresponding to the lock.

Cannot change while a task is
scheduled on a uniprocessor!

PCP Futexes — Our Approach

49

LO

Time

HI

Invoke kernel

Scheduling Interval

PCP Futexes — Deferred Updates

LO

Time

HI

50

Update kernel state based
on copy at context switch

Predetermine contention
conditions and
communicate them to task

Make changes to local
copy of lock states (if

uncontended)

Scheduling Interval

PCP Futexes — Deferred Updates

LO

Time

HI

51

Update kernel state based
on copy at context switch

Predetermine contention
conditions and
communicate them to task

Make changes to local
copy of lock states (if

uncontended)

Scheduling Interval

PCP Futexes — Deferred Updates

Requires a bidirectional communication
channel between tasks and the kernel

52

Bidirectional Communication — Lock Page

Lock Page
Per-process page of
memory writable by
both the process and
kernel.

bitmap: lock_states

bool: tasks_blocked

53

Lock Page
Per-process page of
memory writable by
both the process and
kernel.

bitmap: lock_states

bool: tasks_blocked

Lock-state bitmap used to communicate
acquisitions and releases of locks to kernel

Bidirectional Communication — Lock Page

54

Lock Page
Per-process page of
memory writable by
both the process and
kernel.

bitmap: lock_states

bool: tasks_blocked Boolean set by kernel to indicate the
presence of blocked tasks (indicates that

release operation is contended)

Lock-state bitmap used to communicate
acquisitions and releases of locks to kernel

Bidirectional Communication — Lock Page

55

Lock Page
Per-process page of
memory writable by
both the process and
kernel.

bitmap: lock_states

bool: tasks_blocked

Lock-state bitmap used to communicate
acquisitions and releases of locks to kernel

Boolean set by kernel to indicate the
presence of blocked tasks (indicates that

release operation is contended)

A “permission bit” set by the kernel to
indicate whether lock acquisition is

allowed (system ceiling check)

Bidirectional Communication — Lock Page

56

Communicating the Permission Bit

PCP Futex Pseudocode

if (permission bit is set)
 set_bit_in_bitmap(lock)
else
 kernel_do_lock(lock);
// critical section
release_lock(lock);
if (tasks_blocked is set)
 kernel_do_unlock();

57

if (permission bit is set)
 set_bit_in_bitmap(lock)
else
 kernel_do_lock(lock);
// critical section
release_lock(lock);
if (tasks_blocked is set)
 kernel_do_unlock();

Challenge:

Checking for permission and setting
lock bit must be atomic.

Why? Preemption between them
may change the permission.

PCP Futex Pseudocode

Communicating the Permission Bit

58

We proposed two approaches for the Classic PCP

Page Faults (PCP-DU-PF) CMPXCHG (PCP-DU-BOOL)

Uses page faults to invoke

kernel when locking is
prohibited

Boolean for permission bit.

Compare-and-exchange
operation to check and
acquire locks atomically

Communicating the Permission Bit

We proposed two approaches for the Classic PCP

Page Faults (PCP-DU-PF) CMPXCHG (PCP-DU-BOOL)

Uses page faults to invoke

kernel when locking is
prohibited

Boolean

Compare-and-exchange
operation to check and
acquire locks atomically

Communicating the Permission Bit

See paper for !
details!

LO

Time

HI

60

PCP Futexes — Page Fault Approach

If (locking is allowed)

 set lock page writable
else

 set lock page unwritable

Attempting to write lock bit will
invoke kernel automatically if

locking is not permitted

LO

Time

HI

61

Can be implemented using segmentation faults as well

Lock code-path is entirely branch-free

Attempting to write lock bit will
invoke kernel automatically if

locking is not permitted

If (locking is allowed)

 set lock page writable
else

 set lock page unwritable

PCP Futexes — Page Fault Approach

LO

Time

HI

62

Lock code-path is entirely branch-free

Attempting to write lock bit will
invoke kernel automatically if

locking is not permitted

Requires an optimized page-fault handler

If (locking is allowed)

 set lock page writable
else

 set lock page unwritable

Can be implemented using segmentation faults as well

PCP Futexes — Page Fault Approach

63

Lock code-path is entirely
branch-free

Avoid page faults at cost of
atomic op + branch

Communicating the Permission Bit

We proposed two approaches for the Classic PCP

Page Faults (PCP-DU-PF) CMPXCHG (PCP-DU-BOOL)

Uses page faults to invoke

kernel when locking is
prohibited

Boolean for permission bit.

Compare-and-exchange
operation to check and
acquire locks atomically

64

Overview of Talk

Challenge

Implementation

Evaluation

65

Overview of Talk

Challenge

Implementation

Evaluation

66

Evaluation — Platform

Boundary Devices Sabre Lite Board

Freescale I.MX6Q Quad Core SoC

ARM Cortex A9 (1 GHz)

Implemented in LITMUSRT 2013.1 (based on Linux 3.10.5)

67

Evaluation — Benchmarking Methodology

Test program locks and unlocks once every period

Uniprocessor tests: 5 threads

Randomly assigned parameters for threads

Critical section length — 25-45µs

Execution time — 25-65µs

Period — 600-800µs

Measured using processor timestamp counters

68

Evaluation — Benchmarking Methodology

Test program locks and unlocks once every period

Uniprocessor tests: 5 threads

Randomly assigned parameters for threads

Critical section length — 25-45µs

Execution time — 25-65µs

Period — 600-800µs

Measured using processor timestamp counters

Demanding workload —
thousands of operations

per second

69

PCP Futex Evaluation — Baseline

We compare all futex implementations
against the non-futex PCP

implementation in LITMUSRT

PRIO_INHERIT!
(Priority

Inheritance
Protocol)

PRIO_PROTECT
(Immediate

Priority Ceiling
Protocol)

Classic Priority
Ceiling Protocol!

(PCP)
Multiprocessor

PCP (MPCP) FMLP

Futex
Implementation

Linux LITMUSRT

70

O
ve

rh
ea

d
in

 C
yc

le
s

Lock (avg) Lock (max) Unlock (avg) Unlock (max)

6,655

1,211
3,850

645

9,027

1,221

33,271

1,604

PRIO_PROTECT (Linux PCP) PCP (LITMUS^RT)

PCP Futex Evaluation — Baseline

O
ve

rh
ea

d
in

 C
yc

le
s

Lock (avg) Lock (max) Unlock (avg) Unlock (max)

6,655

1,211
3,850

645

9,027

1,221

33,271

1,604

PRIO_PROTECT (Linux PCP) PCP (LITMUS^RT)

71

Our baseline PCP implementation already
incurs lower overheads than Linux’s.

PCP Futex Evaluation — Baseline

72

PCP Futex Evaluation — Uncontended Case

How much reduction do we see in average
uncontended-case overheads?

O
ve

rh
ea

d
(c

om
pa

re
d

to
 b

as
el

in
e)

PCP (LITMUS^RT) Futex (Page-Faults) Futex (CMPXCHG) PRIO_INHERIT (Linux)

25%

8%7%

100%

41%

27%25%

100%

Lock (average) Unlock (average)

73Based on 6.6 million samples per protocol

PCP (LITMUSRT)

Baseline

PCP Futex

(Page Faults)

PCP Futex

(CMPXCHG)

Linux Futex

(PRIO_INHERIT)

PCP Futex Evaluation — Uncontended Case

74Based on 6.6 million samples per protocol

PCP Futex Evaluation — Uncontended Case
O

ve
rh

ea
d

(c
om

pa
re

d
to

 b
as

el
in

e)

PCP (LITMUS^RT) Futex (Page-Faults) Futex (CMPXCHG) PRIO_INHERIT (Linux)

25%

8%7%

100%

41%

27%25%

100%

Lock (average) Unlock (average)

PCP (LITMUSRT)

Baseline

PCP Futex

(Page Faults)

PCP Futex

(CMPXCHG)

Linux Futex

(PRIO_INHERIT)

Our PCP futex implementation overheads are
significantly lower than Linux’s PIP futex

implementation.

75

How much additional overhead do we incur in the
maximum contended-case overheads?

PCP Futex Evaluation —Contended Case

76 Based on 900K samples per protocol

PCP (LITMUS^RT) PCP-DU-PF PCP-DU-BOOL PRIO_INHERIT (Linux)

106%106%107%100%

167%

137%

186%

100%

Lock (Max) Unlock (Max)

PCP (LITMUSRT)

Baseline

PCP Futex

(Page Faults)

PCP Futex

(CMPXCHG)

Linux Futex

(PRIO_INHERIT)

PCP Futex Evaluation —Contended Case

PCP (LITMUS^RT) PCP-DU-PF PCP-DU-BOOL PRIO_INHERIT (Linux)

106%106%107%100%

167%

137%

186%

100%

Lock (Max) Unlock (Max)

77 Based on 900K samples per protocol

Linux page-fault handler
not optimized for real-time

locking protocol
implementation.

PCP (LITMUSRT)

Baseline

PCP Futex

(Page Faults)

PCP Futex

(CMPXCHG)

Linux Futex

(PRIO_INHERIT)

PCP Futex Evaluation —Contended Case

PCP-DU-PF PCP (LITMUS^RT) PCP-DU-BOOL PRIO_INHERIT (Linux)

106%106%100%107%

167%

137%

100%

186%

Lock (Max) Unlock (Max)

78 Based on 900K samples per protocol

PCP (LITMUSRT)

Baseline

PCP Futex

(CMPXCHG)

Linux Futex

(PRIO_INHERIT)

PCP Futex Evaluation —Contended Case

PCP-DU-PF PCP (LITMUS^RT) PCP-DU-BOOL PRIO_INHERIT (Linux)

106%106%100%107%

167%

137%

100%

186%

Lock (Max) Unlock (Max)

79 Based on 900K samples per protocol

Up to 37% increase in worst-case
contended overheads as a result of

the futex approach.

PCP (LITMUSRT)

Baseline

PCP Futex

(CMPXCHG)

Linux Futex

(PRIO_INHERIT)

PCP Futex Evaluation —Contended Case

PCP-DU-PF PCP (LITMUS^RT) PCP-DU-BOOL PRIO_INHERIT (Linux)

106%106%100%107%

167%

137%

100%

186%

Lock (Max) Unlock (Max)

80 Based on 900K samples per protocol

Up to 37% increase in worst-case
contended overheads as a result of

the futex approach.

But no worse than Linux’s futex
implementation

PCP (LITMUSRT)

Baseline

PCP Futex

(CMPXCHG)

Linux Futex

(PRIO_INHERIT)

PCP Futex Evaluation —Contended Case

81

PCP Futex Evaluation — Summary

Page faults can be used to implement futexes for anticipatory real-time
locking protocols.

Up to 92% reduction in average uncontended overheads at a cost of
37% increase in maximum contended overheads (no worse than Linux).

82

Summary

PRIO_INHERIT!
(Priority

Inheritance
Protocol)

PRIO_PROTECT
(Immediate

Priority Ceiling
Protocol)

Classic Priority
Ceiling Protocol!

(PCP)
Multiprocessor

PCP (MPCP) FMLP

Futex
Implementation

Design and implementation of futexes for three
anticipatory real-time locking protocols

92% 85% 84%Observed overhead reduction:

Method of using page faults to implement futexes

83

Thanks!

All source code available at: http://www.litmus-rt.org/

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

http://www.litmus-rt.org/

