
Björn B. Brandenburg
bbb@mpi-sws.org

RTSS’14
December 4, 2014

A Synchronous IPC Protocol for
Predictable Access to Shared Resources

in Mixed-Criticality Systems

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

mailto:bbb@mpi-sws.org
mailto:bbb@mpi-sws.org

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

How To Synchronize Access to Shared Resources?
(such as data structures, OS services, I/O ports, …)

2

Part 1

Locking is the wrong approach in mixed-criticality (MC) systems.

Part 2

MC-IPC: Predictable IPC for Cross-Criticality Resource Sharing

Part 3

A Case Study: Freedom-from-Interference Despite Failures, DoS,…

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Synchronization vs. Isolation
in

Mixed-Criticality Systems

3

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Isolation: The Core MC Requirement

4

Freedom from Interference

High-criticality tasks not negatively affected by other (low-criticality) tasks.

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Isolation: The Core MC Requirement

5

Freedom from Interference

High-criticality tasks not negatively affected by other (low-criticality) tasks.

“analyze & trust” “isolate & enforce”

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Isolation: The Core MC Requirement

6

Freedom from Interference

High-criticality tasks not negatively affected by other (low-criticality) tasks.

“analyze & trust” “isolate & enforce”
Design Time Proof Obligation
Show that a (lower-criticality)

task does not cause interference.

At runtime
Trust that other tasks do not

cause unpredictable interference.

Mandate Strict Isolation
Ensures that a (lower-criticality)
task cannot cause interference.

At runtime
Unpredictable interference

impossible due to isolation.

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Isolation: The Core MC Requirement

7

Freedom from Interference

High-criticality tasks not negatively affected by other (low-criticality) tasks.

“analyze & trust” “isolate & enforce”
Design Time Proof Obligation
Show that a (lower-criticality)

task does not cause interference.

At runtime
Trust that other tasks do not

cause unpredictable interference.

Mandate Strict Isolation
Ensures that a (lower-criticality)
task cannot cause interference.

At runtime
Unpredictable interference

impossible due to isolation.

The Problem with “Analyze & Trust”
Need to establish absence of interference at the level of assurance

of the highest-criticality task that could be interfered with.

➔ we’re back to applying the highest standards to all tasks…

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Isolation: The Core MC Requirement

8

Freedom from Interference

High-criticality tasks not negatively affected by other (low-criticality) tasks.

“analyze & trust” “isolate & enforce”
Design Time Proof Obligation
Show that a (lower-criticality)

task does not cause interference.

At runtime
Trust that other tasks do not

cause unpredictable interference.

Mandate Strict Isolation
Ensures that a (lower-criticality)
task cannot cause interference.

At runtime
Unpredictable interference

impossible due to isolation.

Benefit of Isolation
Need to apply highest standards

only when validating the isolation mechanism itself.

But NOT to each isolated (lower-criticality) task.

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Isolation: The Core MC Requirement

9

Freedom from Interference

High-criticality tasks not negatively affected by other (low-criticality) tasks.

➔ logical isolation + temporal isolation

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Locking Implies Trust
Real-time locking protocols: PIP, PCP, MPCP, FMLP, OMLP …
➡ Applicable across multiple criticalities?

10

shared
memory

(1) lock

(2) read & write

Low-
criticality

task

(3) unlock High-
criticality

task

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Locking Implies Trust
Real-time locking protocols: PIP, PCP, MPCP, FMLP, OMLP …
➡ Applicable across multiple criticalities?

11

shared
memory

(1) lock

(2) read & write

Low-
criticality

task

(3) unlock High-
criticality

task

Could access without locking first.

Could fail to unlock
(or hold lock for arbitrary duration).

Could leave resource in
inconsistent state.

(also with wait-free/lock-free)

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Resource
Server

Better: Message Passing / IPC
Isolate resource in resource server process to mediate access
➡ Use inter-process communication (IPC) to request service
➡ Canonical approach in µ-kernels…

12

private
memory

(1) IPC request

Low-
criticality

task
(3) IPC reply

High-
criticality

task

IPC queue

(2) check & process

request

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Resource
Server

Better: Message-Passing / IPC
Isolate resource in resource server process to mediate access
➡ Use inter-process communication (IPC) to request service
➡ Canonical approach in µ-kernels…

13

private
memory

(1) IPC request

Low-
criticality

task
(3) IPC reply

High-
criticality

task

IPC queue

(2) check & process

request

Untrusted client cannot
bypass synchronization.

Untrusted client cannot
occupy resource indefinitely.

Untrusted client cannot leave
resource in inconsistent state.

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Resource
Server

Better: Message-Passing / IPC
Isolate resource in resource server process to mediate access
➡ Use inter-process communication (IPC) to request service
➡ Canonical approach in µ-kernels…

14

private
memory

(1) IPC request

Low-
criticality

task
(3) IPC reply

High-
criticality

task

IPC queue

(2) check & process

request

…but not all clients!

Logical isolation: Must still validate and trust the server
at highest-criticality level of assurance…

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Resource
Server

Better: Message-Passing / IPC
Isolate resource in resource server process to mediate access
➡ Use inter-process communication (IPC) to request service
➡ Canonical approach in µ-kernels…

15

private
memory

(1) IPC request

Low-
criticality

task
(3) IPC reply

High-
criticality

task

IPC queue

(2) check & process

request

Temporal Isolation: What is the maximum IPC queueing delay?
…and what happens if clients misbehave!?

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

MC-IPC
An IPC Protocol for

Mixed-Criticality Systems

16

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

System Topology: Clustered Scheduling

17

Shared-Memory multiprocessor platform
➡ Organized into K clusters C1, C2, …, CK
➡ mi processors in cluster Ci
‣non-uniform clusters permitted

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

m = 4
K = 2
m1 = 2
m2 = 2

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

System Topology: Clustered Scheduling

18

Shared-Memory multiprocessor platform
➡ Organized into K clusters C1, C2, …, CK
➡ mi processors in cluster Ci
‣non-uniform clusters permitted

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

m = 4
K = 2
m1 = 2
m2 = 2

Partitioned Scheduling: mi = 1 in each cluster (= partition)
Special case most common in practice (and used in evaluation).

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Temporal Isolation: Reservation-Based Scheduling

Reservation-Based Scheduling
➡ R1, R2,…
➡ top-level scheduler chooses reservation
➡ reservation chooses task

Each reservation has a…
➡ current priority
➡ current budget
➡ one or more client tasks

Specific type of reservation intentionally
left undefined.
➡ Compatible examples:

‣ polling reservation
‣ table-driven reservation
‣ constant bandwidth server (CBS)
‣ …

19

per-cluster
top-level scheduler

R1 R2 …

T1 T2 T3 T? T?

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Reservation Assumptions

Assumptions
➡ A1: the priority of a reservation changes only when its

budget is exhausted or replenished.
➡ A2: a reservation selected for service by the top-level

scheduler consumes budget even if all clients are
blocked on IPC (idling rule).

20

per-cluster
top-level scheduler

R1 R2 …

T1 T2 T3 T? T?

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Resource Servers

Shared resource servers
➡ each shared resource q encapsulated in resource server Sq

Logical Isolation
➡ OS: isolate server in private protection domain (private address space)
➡ server implementation: reject requests that are illegal / illformed / non-sensical

Temporal Isolation
➡ server implementation: bounded maximum operation length
➡ IPC protocol must ensure bounded IPC delay (= bandwidth consumption)

21

cluster Cb
top-level scheduler

… Ry

Sq Tj

cluster Ca
top-level scheduler

Rx … …

T? Ti T? T? T?

synchronous IPC
synchronous IPC

low-criticality

high-criticality

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

What Could Violate Temporal Isolation?

22

P1: The resource server may be preempted indefinitely
➡ Need to ensure timely IPC request completion…

P2: Clients may attempt to monopolize server
➡ Need to prevent starvation… (➔ FIFO queue?)

P3: There may be an unpredictable number of contending clients
➡ Need to respect priority of requesting clients… (➔ priority queue?)

P4: A client may run out of budget while waiting for server
➡ Need to prevent backlog of “stale” clients…

P5: Best-effort background tasks may need to access server
➡ Some system services inherently shared (e.g., network stack)…

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

What Could Violate Temporal Isolation?

23

P1: The resource server may be preempted indefinitely
➡ Need to ensure timely IPC request completion…

P2: Clients may attempt to monopolize server
➡ Need to prevent starvation… (➔ FIFO queue?)

P3: There may be an unpredictable number of contending clients
➡ Need to respect priority of requesting clients… (➔ priority queue?)

P4: A client may run out of budget while waiting for server
➡ Need to prevent backlog of “stale” clients…

P5: Best-effort background tasks may need to access server
➡ Some system services inherently shared (e.g., network stack)…

No existing design is resilient to all of these issues.

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

What Could Violate Temporal Isolation?

24

P1: The resource server may be preempted indefinitely
➡ Need to ensure timely IPC request completion…

P2: Clients may attempt to monopolize server
➡ Need to prevent starvation… (➔ FIFO queue?)

P3: There may be an unpredictable number of contending clients
➡ Need to respect priority of requesting clients… (➔ priority queue?)

P4: A client may run out of budget while waiting to contact
server
➡ Need to prevent backlog of “stale” clients…

P5: Best-effort background tasks may need to access server
➡ Some system services inherently shared (e.g., network stack)…

No existing design is resilient to all of these issues.

MC-IPC: we can tolerate all causes by combining
prior techniques and simple commonsense solutions

in just the right way…

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

P1: Ensuring Server Progress

25

Server preempted while replying to IPC
= Lock-holder preempted while executing critical section.

➔ apply well-known techniques for ensuring lock-holder progress

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

P1: Ensuring Server Progress

Ensuring timely IPC completion: Bandwidth Inheritance
➡ let server execute on budget of any client (implicit in idling rule).
➡ When preempted, migrate server to processor of waiting client.

Well-known solution
➡ “Helping” / “timeslice donation” in L4/Fiasco
‣Hohmuth & Härtig, 2001.

➡ Multiprocessor Bandwidth Inheritance (MBWI)
‣Faggioli et al., 2010 & 2012.

26

D. Faggioli, G. Lipari, and T. Cucinotta, “Analysis and implementation of the multiprocessor bandwidth inheritance protocol,” Real-Time Systems, vol. 48, no. 6, pp. 789–825, 2012.

Server preempted while replying to IPC
= Lock-holder preempted while executing critical section.

M. Hohmuth and H. Hä ̈rtig,“Pragmatic nonblocking synchronization for real-time systems,” in Proc. USENIX ATC’01, 2001.

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

P2 & P3: Dealing With Unknown Contention

27

An unknown number of tasks may issue requests at arbitrary rates.

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

P2 & P3: Dealing With Unknown Contention

28

An unknown number of tasks may issue requests at arbitrary rates.

Need to respect priorities within each cluster,
but also need to ensure fairness among clusters.

OMIP: —, “A Fully Preemptive Multiprocessor Semaphore Protocol for Latency-Sensitive Real-Time Applications”, In Proc. ECRTS’13, July 2013.

➔ can apply OMIP three-level queue structure [ECRTS’13]

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

P2 & P3: Dealing With Unknown Contention

29

An unknown number of tasks may issue requests at arbitrary rates.

…

Cluster 1

Cluster 2

Cluster K

tail priority
queue

tail priority
queue

tail priority
queue

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

P2 & P3: Dealing With Unknown Contention

30

An unknown number of tasks may issue requests at arbitrary rates.

…

Cluster 1

Cluster 2

Cluster K

tail priority
queue

tail priority
queue

tail priority
queue

Clients ordered by current reservation priority.
Priority-ordered w.r.t. top-level scheduler,

not reservation-internal priorities (if any): important for proof.

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

P2 & P3: Dealing With Unknown Contention

31

An unknown number of tasks may issue requests at arbitrary rates.

…

Cluster 1

Cluster 2

Cluster K

tail priority
queue

tail priority
queue

tail priority
queue

head queue (FIFO)

head queue (FIFO)

head queue (FIFO)

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

P2 & P3: Dealing With Unknown Contention

32

An unknown number of tasks may issue requests at arbitrary rates.

…

Cluster 1

Cluster 2

Cluster K

tail priority
queue

tail priority
queue

tail priority
queue

head queue (FIFO)

head queue (FIFO)

head queue (FIFO)

Bounded length: at most mi - 1 jobs in each head queue.
(mi = number of cores in cluster)

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

P2 & P3: Dealing With Unknown Contention

33

An unknown number of tasks may issue requests at arbitrary rates.

…

Cluster 1

Cluster 2

Cluster K

tail priority
queue

tail priority
queue

tail priority
queue

head queue (FIFO)

head queue (FIFO)

head queue (FIFO)

local head
in each cluster

➔ next to be served

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

P2 & P3: Dealing With Unknown Contention

34

An unknown number of tasks may issue requests at arbitrary rates.

…

Cluster 1

Cluster 2

Cluster K

tail priority
queue

tail priority
queue

tail priority
queue

head queue (FIFO)

head queue (FIFO)

head queue (FIFO)

global queue (FIFO)

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

P2 & P3: Dealing With Unknown Contention

35

An unknown number of tasks may issue requests at arbitrary rates.

…

Cluster 1

Cluster 2

Cluster K

tail priority
queue

tail priority
queue

tail priority
queue

head queue (FIFO)

head queue (FIFO)

head queue (FIFO)

global queue (FIFO)

Bounded length: at most K - 1 jobs in global queue.
(K = number of clusters in the system)

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

P2 & P3: Dealing With Unknown Contention

36

An unknown number of tasks may issue requests at arbitrary rates.

…

Cluster 1

Cluster 2

Cluster K

tail priority
queue

tail priority
queue

tail priority
queue

head queue (FIFO)

head queue (FIFO)

head queue (FIFO)

global queue (FIFO)Sq

server

client currently being served
➔ waiting for IPC reply

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

P4: Dealing With Budget Exhaustion

37

Idling & bandwidth inheritance: a waiting client can run out of budget.

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

P4: Dealing With Budget Exhaustion

38

Idling & bandwidth inheritance: a waiting client can run out of budget.

With predictable IPC delay, a correct (high-criticality) task
will have been provisioned to never exceed its budget.

➔ can prune clients from queue when budget exhausted
& let them reissue requests after budget has been replenished

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

P4: Dealing With Budget Exhaustion

39

Idling & bandwidth inheritance: a waiting client can run out of budget.

…

Cluster 1

Cluster 2

Cluster K

tail priority
queue

tail priority
queue

tail priority
queue

head queue (FIFO)

head queue (FIFO)

head queue (FIFO)

global queue (FIFO)Sq

server

client currently being served
➔ waiting for IPC reply

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

P4: Dealing With Budget Exhaustion

40

Idling & bandwidth inheritance: a waiting client can run out of budget.

…

Cluster 1

Cluster 2

Cluster K

tail priority
queue

tail priority
queue

tail priority
queue

head queue (FIFO)

head queue (FIFO)

head queue (FIFO)

global queue (FIFO)Sq

server

client currently being served
➔ waiting for IPC reply

Easy case: client request not yet being served ➔ simply dequeue.

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

P4: Dealing With Budget Exhaustion

41

Idling & bandwidth inheritance: a waiting client can run out of budget.

…

Cluster 1

Cluster 2

Cluster K

tail priority
queue

tail priority
queue

tail priority
queue

head queue (FIFO)

head queue (FIFO)

head queue (FIFO)

global queue (FIFO)Sq

server

client currently being served
➔ waiting for IPC reply

Tricky case: client request is being served.
 ➔ propagate next task from head queue to local head,
but do not add to global queue yet! (important for proof)

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

P4: Dealing With Budget Exhaustion

42

Idling & bandwidth inheritance: a waiting client can run out of budget.

…

Cluster 1

Cluster 2

Cluster K

tail priority
queue

tail priority
queue

tail priority
queue

head queue (FIFO)

head queue (FIFO)

head queue (FIFO)

global queue (FIFO)Sq

server

client currently being served
➔ waiting for IPC reply

Remove ‘local stop’ flag only when IPC request is completed.
Intuition: create “back-pressure” without affecting other clusters.

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

P4: Dealing With Budget Exhaustion

43

Idling & bandwidth inheritance: a waiting client can run out of budget.

…

Cluster 1

Cluster 2

Cluster K

tail priority
queue

tail priority
queue

tail priority
queue

head queue (FIFO)

head queue (FIFO)

head queue (FIFO)

global queue (FIFO)Sq

server

client currently being served
➔ waiting for IPC reply

Remove ‘local stop’ flag only when IPC request is completed.
Intuition: create “back-pressure” without affecting other clusters.

Added benefit: this mechanism allows us
to deal with budget-less best-effort tasks.

(see paper for details)

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

MC-IPC: Bandwidth Isolation Guarantee

44

MC-IPC = MBWI + OMIP Queue + Pruning + Best-Effort Tasks

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

MC-IPC: Bandwidth Isolation Guarantee

45

MC-IPC = MBWI + OMIP Queue + Pruning + Best-Effort Tasks

If a client Ti does not exhaust its reservation’s budget
during a synchronous IPC invocation (= if not pruned),

then Ti’s IPC request to a server Sq is delayed by at most

2 × mk × K

other requests (“delayed” = forced to expend budget).

mk — number of cores in local cluster
K — number of clusters

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

MC-IPC: Bandwidth Isolation Guarantee

46

MC-IPC = MBWI + OMIP Queue + Pruning + Best-Effort Tasks

If a client Ti does not exhaust its reservation’s budget
during a synchronous IPC invocation (= if not pruned),

then Ti’s IPC request to a server Sq is delayed by at most

2 × mk × K

other requests (“delayed” = forced to expend budget).

mk — number of cores in local cluster
K — number of clusters

Strict Temporal Isolation
The per-request IPC delay bound is independent of any task parameters.

No trust implied w.r.t. the number of tasks, request frequencies,
budgets of other tasks, which resources any other task accesses, etc.

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Evaluation: A Case Study
PRIO-IPC vs. FIFO-IPC vs. MC-IPC

47

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Case Study: Access To Signing Service

48

measurements of a real implementation on a real multicore system
in a plausible scenario

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Case Study: Access To Signing Service

49

Data collection with high integrity requirements
➡ multiple data sources (sensors, …)
➡ forward collected samples for further processing

over untrusted, potentially compromised
network

sensor

network

rea
d sa

mple

send

sample

data
acquisition

task

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Case Study: Access To Signing Service

50

Data collection with high integrity requirements
➡ multiple data sources (sensors, …)
➡ forward collected samples for further processing

over untrusted, potentially compromised
network

To ensure integrity and to prevent playback
attacks…
➡ …timestamp each sample
➡ …assign a sequence number
➡ …add cryptographic signature

sensor

network

rea
d sa

mple

send

sample + signature

data
acquisition

task

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Case Study: Access To Signing Service

51

Data collection with high integrity requirements
➡ multiple data sources (sensors, …)
➡ forward collected samples for further processing

over untrusted, potentially compromised
network

To ensure integrity and to prevent playback
attacks…
➡ …timestamp each sample
➡ …assign a sequence number
➡ …add cryptographic signature

To prevent leakage of cryptographic key
material…
➡ key material accessible only to signature server

sensor

network

rea
d sa

mple

IPC request:
sample

IPC reply:
signature

signature
server

send

sample + signature

data
acquisition

task

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Case Study: Access To Signing Service

52

Data collection with high integrity requirements
➡ multiple data sources (sensors, …)
➡ forward collected samples for further processing

over untrusted, potentially compromised
network

To ensure integrity and to prevent playback
attacks…
➡ …timestamp each sample
➡ …assign a sequence number
➡ …add cryptographic signature

To prevent leakage of cryptographic key
material…
➡ key material accessible only to signature server

sensor

network

rea
d sa

mple

IPC request:
sample

IPC reply:
signature

signature
server

send

sample + signature

data
acquisition

task

The signature server is a shared resource.
If there are multiple data acquisition tasks,

what is the maximum IPC delay?

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Case Study: Implementation
Reservation-Based Scheduler
➡ implemented in LITMUSRT

➡ table-driven, sporadic, polling
reservations…

➡ with EDF and FP scheduling

IPC System Calls
➡ added to LITMUSRT

Signature Server
➡ RSA w/ 2048bit keys
➡ max. request length: ≈2ms

Platform
➡ 4 Xeon E5-2665 (2.4 Ghz) cores

53

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Case Study: Setup on a 4-Core System
4 high-criticality tasks
➡ provisioned with table-driven static reservations

10 low-criticality tasks
➡ provisioned with simple EDF-scheduled polling reservations

54

RH
1 idle

RH
2 RH

3

RH
4 idle

idle idle

50ms0ms 100ms

C1

C2

C3

C4

static schedule length
= 100 ms

core

core

core

core

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Case Study: Setup on a 4-Core System
4 high-criticality tasks
➡ provisioned with table-driven static reservations

10 low-criticality tasks
➡ provisioned with simple EDF-scheduled polling reservations

55

RH
1 idle

RH
2 RH

3

RH
4 idle

idle idle

50ms0ms 100ms

C1

C2

C3

C4

static schedule length
= 100 ms

Low-criticality polling reservations assigned to cores C3 and C4;
executed only when table-driven reservation is idle.

core

core

core

core

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Case Study: Setup on a 4-Core System
4 high-criticality tasks
➡ provisioned with table-driven static reservations

10 low-criticality tasks
➡ provisioned with simple EDF-scheduled polling reservations

56

RH
1 idle

RH
2 RH

3

RH
4 idle

idle idle

50ms0ms 100ms

C1

C2

C3

C4

static schedule length
= 100 ms

core

core

core

core

One high-criticality task each
with period = deadline =100ms

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Case Study: Setup on a 4-Core System
4 high-criticality tasks
➡ provisioned with table-driven static reservations

10 low-criticality tasks
➡ provisioned with simple EDF-scheduled polling reservations

57

RH
1 idle

RH
2 RH

3

RH
4

50ms0ms 100ms

C1

C2

C3

C4

static schedule length
= 100 ms

core

core

core

core

10 low-criticality tasks
one per EDF-based low-criticality reservation

five per core, with budget = 20ms and
periods = deadline ∈ {100, 120, 250, 500, 1000}ms

RL
5 , . . . , R

L
9

RL
10, . . . , R

L
14

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Case Study: Experiment
8 phases of execution, 60 seconds each = 480 seconds
➡ 1 phase = 60 seconds of normal execution
➡ 7 phases = 420 seconds of different failure modes
➡ measured: IPC delay experienced by each task

58

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Case Study: Experiment
8 phases of execution, 60 seconds each = 480 seconds
➡ 1 phase = 60 seconds of normal execution
➡ 7 phases = 420 seconds of different failure modes
➡ measured: IPC delay experienced by each task

Three IPC protocols
➡ MC-IPC (this paper)
➡ FIFO-IPC
‣serve requests strictly in FIFO order
‣ like Multiprocessor Bandwidth Inheritance Protocol (MBWI)

➡ PRIO-IPC
‣order requests by priority of reservation
‣ like most microkernels (e.g., L4/Fiasco)

➡ 10 runs each

59

MBWI: D. Faggioli, G. Lipari, and T. Cucinotta, “Analysis and implementation of the multiprocessor bandwidth inheritance protocol,” Real-Time Systems, vol. 48, no. 6, pp. 789–825, 2012.

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Case Study: Experiment
8 phases of execution, 60 seconds each = 480 seconds
➡ 1 phase = 60 seconds of normal execution
➡ 7 phases = 420 seconds of different failure modes
➡ measured: IPC delay experienced by each task

60

RH
1 idle

RH
2 RH

3

RH
4

50ms0ms 100ms

C1

C2

C3

C4

core

core

core

core

RL
5 , . . . , R

L
9

RL
10, . . . , R

L
14

Vantage Point

All data reported for
high-criticality task

on core 1.

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

MC-IPC (predicted bound: 18ms) FIFO-IPC (predicted bound: 28ms) PRIO-IPC (predicted bound: 8ms)

Case Study: Results Overview

8 phases of execution, 60 seconds each = 480 seconds
➡ measured & shown: IPC delay experienced by jobs of task on core 1

Comparison: measured IPC delay vs. predicted maximum
➡ All three IPC protocols permit a priori IPC delay bounds
➡ …but they react differently to task failures / unexpected behavior.

61

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

MC-IPC (predicted bound: 18ms) FIFO-IPC (predicted bound: 28ms) PRIO-IPC (predicted bound: 8ms)

Case Study: Results Overview

8 phases of execution, 60 seconds each = 480 seconds
➡ measured & shown: IPC delay experienced by jobs of task on core 1

Comparison: measured IPC delay vs. predicted maximum
➡ All three IPC protocols permit a priori IPC delay bounds
➡ …but they react differently to task failures / unexpected behavior.

62

thick black line = predicted maximum delay
Based on RT analysis & specified task set parameters.

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

MC-IPC (predicted bound: 18ms) FIFO-IPC (predicted bound: 28ms) PRIO-IPC (predicted bound: 8ms)

Case Study: Results Overview

8 phases of execution, 60 seconds each = 480 seconds
➡ measured & shown: IPC delay experienced by jobs of task on core 1

Comparison: measured IPC delay vs. predicted maximum
➡ All three IPC protocols permit a priori IPC delay bounds
➡ …but they react differently to task failures / unexpected behavior.

63

Red samples = measured IPC delay
One sample per job of task on core 1.

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

MC-IPC (predicted bound: 18ms) FIFO-IPC (predicted bound: 28ms) PRIO-IPC (predicted bound: 8ms)

Case Study: Results Overview

8 phases of execution, 60 seconds each = 480 seconds
➡ measured & shown: IPC delay experienced by jobs of task on core 1

Comparison: measured IPC delay vs. predicted maximum
➡ All three IPC protocols permit a priori IPC delay bounds
➡ …but they react differently to task failures / unexpected behavior.

64

 measured IPC delay > predicted maximum delay

➔ unpredictable IPC delays in case of failures!

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

MC-IPC (predicted bound: 18ms) FIFO-IPC (predicted bound: 28ms) PRIO-IPC (predicted bound: 8ms)

Case Study: Results Overview

8 phases of execution, 60 seconds each = 480 seconds
➡ measured & shown: IPC delay experienced by jobs of task on core 1

Comparison: measured IPC delay vs. predicted maximum
➡ All three IPC protocols permit a priori IPC delay bounds
➡ …but they react differently to task failures / unexpected behavior.

65

In this talk: 3 select phases.

(See paper for discussion of all 8 phases.)

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

MC-IPC (predicted bound: 18ms) FIFO-IPC (predicted bound: 28ms) PRIO-IPC (predicted bound: 8ms)

Phase 1: Normal Operation

Tasks Operate Normally
➡ One request to signature server per data acquisition job
➡ Expected number of tasks

All IPC delays (well) below upper bounds
➡ lowest bound under PRIO-IPC
➡ most pessimistic bound with FIFO-IPC

66

Reality check:
all tasks behave exactly as designed / as assumed.

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

MC-IPC (predicted bound: 18ms) FIFO-IPC (predicted bound: 28ms) PRIO-IPC (predicted bound: 8ms)

Phase 1: Normal Operation

Tasks Operate Normally
➡ One request to signature server per data-acquisition job
➡ No unexpected tasks

All IPC delays (well) below upper bounds
➡ lowest bound under PRIO-IPC (8ms)
➡ most pessimistic bound with FIFO-IPC (28ms)

67

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

MC-IPC (predicted bound: 18ms) FIFO-IPC (predicted bound: 28ms) PRIO-IPC (predicted bound: 8ms)

Phase 3: Surge in Low-Criticality Tasks

The system is flooded with additional low-criticality tasks
➡ Each task operates as expected…
➡ …but there are unexpectedly many low-criticality tasks.

Schedulability of high-criticality tasks should not be affected
➡ table-driven reservations have statically higher priority anyway.

FIFO-IPC problem: unexpected queue length
➡ With FIFO-IPC, need to place trust in the total number of tasks!

68

Deviation from original system model:
additional low-criticality reservations

with period = 3000ms are admitted on all cores.

RH
1 idle

RH
2 RH

3

RH
4

50ms0ms 100ms

C1

C2

C3

C4

core

core

core

core

RL
5 , . . . , R

L
9

RL
10, . . . , R

L
14

16 additional
low-

criticality
tasks

(on each
core.)

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

MC-IPC (predicted bound: 18ms) FIFO-IPC (predicted bound: 28ms) PRIO-IPC (predicted bound: 8ms)

Phase 3: Surge in Low-Criticality Tasks

The system is flooded with additional low-criticality tasks
➡ Each task operates as expected…
➡ …but there are unexpectedly many low-criticality tasks.

Schedulability of high-criticality tasks should not be affected
➡ table-driven reservations have statically higher priority anyway.

FIFO-IPC problem: unexpected queue length
➡ With FIFO-IPC, need to place trust in the total number of tasks!

69

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

MC-IPC (predicted bound: 18ms) FIFO-IPC (predicted bound: 28ms) PRIO-IPC (predicted bound: 8ms)

Phase 3: Surge in Low-Criticality Tasks

The system is flooded with additional low-criticality tasks
➡ Each task operates as expected…
➡ …but there are unexpectedly many low-criticality tasks.

Schedulability of high-criticality tasks should not be affected
➡ table-driven reservations have statically higher priority anyway.

FIFO-IPC problem: unexpected queue length
➡ With FIFO-IPC, need to place trust in the total number of tasks!

70

 measured IPC delay > predicted maximum delay

➔ unpredictable IPC delays incurred by high-criticality

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

MC-IPC (predicted bound: 18ms) FIFO-IPC (predicted bound: 28ms) PRIO-IPC (predicted bound: 8ms)

Phase 3: Surge in Low-Criticality Tasks

The system is flooded with additional low-criticality tasks
➡ Each task operates as expected…
➡ …but there are unexpectedly many low-criticality tasks.

Schedulability of high-criticality tasks should not be affected
➡ table-driven reservations have statically higher priority anyway.

FIFO-IPC problem: unexpected queue length
➡ With FIFO-IPC, need to place trust in the total number of tasks!

71

MC-IPC: somewhat elevated IPC delays,
but below predicted bound!

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

MC-IPC (predicted bound: 18ms) FIFO-IPC (predicted bound: 28ms) PRIO-IPC (predicted bound: 8ms)

Phase 5: High-Criticality DoS

Two higher-priority tasks of equal criticality monopolize server
➡ PRIO-IPC permits starvation
➡ With PRIO-IPC, need to place trust in maximum request frequencies.

FIFO-IPC
➡ predicted bound and actual IPC delays independent of request frequencies

MC-IPC
➡ predicted bound accounts for arbitrary request frequencies

72

Deviation from original system model:
two high-criticality tasks malfunction,

start invoking signature server as quickly as possible
➔ effectively a Denial-of-Service (DoS) attack.

RH
1 idle

RH
2 RH

3

RH
4

50ms0ms 100ms

C1

C2

C3

C4

core

core

core

core

RL
5 , . . . , R

L
9

RL
10, . . . , R

L
14

Attempt to
monopolize

signature
server.

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

MC-IPC (predicted bound: 18ms) FIFO-IPC (predicted bound: 28ms) PRIO-IPC (predicted bound: 8ms)

Phase 5: High-Criticality DoS

Two higher-priority tasks of equal criticality monopolize server
➡ PRIO-IPC permits starvation
➡ With PRIO-IPC, need to place trust in maximum request frequencies.

FIFO-IPC
➡ predicted bound and actual IPC delays independent of request frequencies

MC-IPC
➡ predicted bound accounts for arbitrary request frequencies

73

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

MC-IPC (predicted bound: 18ms) FIFO-IPC (predicted bound: 28ms) PRIO-IPC (predicted bound: 8ms)

Phase 5: High-Criticality DoS

Two higher-priority tasks of equal criticality monopolize server
➡ PRIO-IPC permits starvation
➡ With PRIO-IPC, need to place trust in maximum request frequencies.

FIFO-IPC
➡ predicted bound and actual IPC delays independent of request frequencies

MC-IPC
➡ predicted bound accounts for arbitrary request frequencies

74

 measured IPC delay approaching 100ms (= period)
➔ high-criticality task on core 1 starved completely.

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

MC-IPC (predicted bound: 18ms) FIFO-IPC (predicted bound: 28ms) PRIO-IPC (predicted bound: 8ms)

Phase 5: High-Criticality DoS

Two higher-priority tasks of equal criticality monopolize server
➡ PRIO-IPC permits starvation
➡ With PRIO-IPC, need to place trust in maximum request frequencies.

FIFO-IPC
➡ predicted bound and actual IPC delays independent of request frequencies

MC-IPC
➡ predicted bound accounts for arbitrary request frequencies

75

MC-IPC: provides freedom-from-interference even with respect to tasks
of equal or higher criticality (= fault containment).

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

MC-IPC (predicted bound: 18ms) FIFO-IPC (predicted bound: 28ms) PRIO-IPC (predicted bound: 8ms)

Only MC-IPC Ensures Predicted Worst Case

FIFO-IPC and PRIO-IPC
➡ Vulnerable to deviations from analyzed system model.

MC-IPC: does not require trusting…
➡ …the bound on the number of tasks (either high- or low-criticality).
➡ …any bounds on maximum request frequencies.
➡ …the behavior of best-effort or any real-time tasks.
➡ The trust rests solely with the server (must reject illegal requests).

76

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

MC-IPC (predicted bound: 18ms) FIFO-IPC (predicted bound: 28ms) PRIO-IPC (predicted bound: 8ms)

Only MC-IPC Ensures Predicted Worst Case

FIFO-IPC and PRIO-IPC
➡ Vulnerable to deviations from analyzed system model.

MC-IPC: does not require trusting…
➡ …the bound on the number of tasks (either high- or low-criticality).
➡ …any bounds on maximum request frequencies.
➡ …the behavior of best-effort or any real-time tasks.
➡ The trust rests solely with the server.

77

Analytical Benefits: Integration with Vestal’s Model

Because the MC-IPC ensures strict isolation,
it is simple to statically reclaim pessimism at lower criticalities

in the spirit of (and compatible with) Vestal’s model.

Criticality-dependent IPC costs, criticality-dependent interference,…

See paper for details.

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Conclusion

78

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Summary

79

Locking and lock-free/wait-free synchronization are ill-suited for
cross-criticality synchronization.
➡ Explicit synchronization implies trust and violates isolation.

MC-IPC: Resources may be shared between high- and low-
criticality tasks without violating freedom-from-interference
➡ Other tasks do not need to be trusted, only the accessed server.

Prototype and case study in LITMUSRT

➡ (Lack of) isolation easily observed in practical system

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Limitations & Future Work
Algorithmic challenge: nested IPC requests (server to server)
➡ Not supported by current analysis.
➡ Which queue to enqueue in?
‣Cluster of server? Cluster of client? Both? None?

IPC Overheads
➡ Prototype in LITMUSRT not optimized, not comparable to highly

tuned implementations like those found in the L4 family.
➡ Even if highly optimized, MC-IPC will likely still be more

heavyweight due to additional queue operations.

80

www.litmus-rt.org
Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

MC-IPC:
freedom-from-interference despite shared resources,

despite untrusted tasks, even on multiprocessors.

Björn B. Brandenburg
bbb@mpi-sws.org

http://www.litmus-rt.org
http://www.litmus-rt.org
mailto:bbb@mpi-sws.org
mailto:bbb@mpi-sws.org

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

Appendix

82

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

P5: Accommodating Best-Effort Tasks

83

Sharing with best-effort tasks may be unavoidable for system resources.

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

P5: Accommodating Best-Effort Tasks

84

Sharing with best-effort tasks may be unavoidable for system resources.

A best-effort task without any guaranteed budget
is no different than a real-time task that exhausted its

budget just after it started being served.

➔ bandwidth inheritance takes care of such tasks

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

P5: Accommodating Best-Effort Tasks

85

Sharing with best-effort tasks may be unavoidable for system resources.

…

Cluster 1

Cluster 2

Cluster K

tail priority
queue

tail priority
queue

tail priority
queue

head queue (FIFO)

head queue (FIFO)

head queue (FIFO)

global queue (FIFO)Sq

server

client currently being served
➔ waiting for IPC reply

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

P5: Accommodating Best-Effort Tasks

86

Sharing with best-effort tasks may be unavoidable for system resources.

…

Cluster 1

Cluster 2

Cluster K

tail priority
queue

tail priority
queue

tail priority
queue

head queue (FIFO)

head queue (FIFO)

head queue (FIFO)

global queue (FIFO)Sq

server

client currently being served
➔ waiting for IPC reply

best-effort queue

served only if global
RT queue is empty

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

P5: Accommodating Best-Effort Tasks

87

Sharing with best-effort tasks may be unavoidable for system resources.

…

Cluster 1

Cluster 2

Cluster K

tail priority
queue

tail priority
queue

tail priority
queue

head queue (FIFO)

head queue (FIFO)

head queue (FIFO)

global queue (FIFO)Sq

server

client currently being served
➔ waiting for IPC reply

best-effort queue

served only if global
RT queue is empty

A real-time task encounters at most one best-effort task.
Analytically, no different than finding Sq “stuck” on

a real-time task with an exhausted budget.
Best-effort queue is global, can be ordered arbitrarily.

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

MC-IPC (predicted bound: 18ms) FIFO-IPC (predicted bound: 28ms) PRIO-IPC (predicted bound: 8ms)

Phase 8: Flood of Best-Effort Tasks

Best-effort tasks create contention for resource used by real-time tasks
➡ With FIFO-IPC, need to place trust in maximum number of background

best-effort tasks.

PRIO-IPC
➡ Best-effort tasks have lower priority ➔ no additional delays.

MC-IPC
➡ Handles best-effort tasks explicitly ➔ analysis accounts for best-effort tasks.

88

Deviation from original system model:
additional low-criticality reservations

with period = 3000ms are admitted on all cores.

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

MC-IPC (predicted bound: 18ms) FIFO-IPC (predicted bound: 28ms) PRIO-IPC (predicted bound: 8ms)

Phase 8: Flood of Best-Effort Tasks

Best-effort tasks create contention for resource used by real-time tasks
➡ With FIFO-IPC, need to place trust in maximum number of background

best-effort tasks.

PRIO-IPC
➡ Best-effort tasks have lower priority ➔ no additional delays.

MC-IPC
➡ Handles best-effort tasks explicitly ➔ analysis accounts for best-effort tasks.

89

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

MC-IPC (predicted bound: 18ms) FIFO-IPC (predicted bound: 28ms) PRIO-IPC (predicted bound: 8ms)

Phase 8: Flood of Best-Effort Tasks

Best-effort tasks create contention for resource used by real-time tasks
➡ With FIFO-IPC, need to place trust in maximum number of background

best-effort tasks.

PRIO-IPC
➡ Best-effort tasks have lower priority ➔ no additional delays.

MC-IPC
➡ Handles best-effort tasks explicitly ➔ analysis accounts for best-effort tasks.

90

FIFO-IPC: cannot share resources with best-effort tasks
(or must derive high-criticality assurance on maximum number of tasks).

MPI-SWS Brandenburg

A Synchronous IPC Protocol for Predictable Access to Shared Resources in Mixed-Criticality Systems

MC-IPC (predicted bound: 18ms) FIFO-IPC (predicted bound: 28ms) PRIO-IPC (predicted bound: 8ms)

Phase 8: Flood of Best-Effort Tasks

Best-effort tasks create contention for resource used by real-time tasks
➡ With FIFO-IPC, need to place trust in maximum number of background

best-effort tasks.

PRIO-IPC
➡ Best-effort tasks have lower priority ➔ no additional delays.

MC-IPC
➡ Handles best-effort tasks explicitly ➔ analysis accounts for best-effort tasks.

91

MC-IPC: combines advantages of FIFO-IPC and PRIO-IPC.
Like PRIO-IPC w.r.t. to lower-priority/lower-criticality tasks,

like FIFO-IPC w.r.t. monopolization attempts and starvation effects.

