Multiprocessor feasibility analysis of
recurrent task systems with
specified processor affinities

RTSS' 13
December 5, 2013

Sanjoy Baruah (UNC Chapel Hill) Bj6rn Brandenburg (MPI-SWS)

\Vax

THE UNIVERSITY | Planck
of NORTH CAROLINA ‘ qv nstitute

at CHAPEL HILL e
Software Systems

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Contribution

A polynomial-time algorithm to decide whether
a set of implicit-deadline sporadic tasks
with arbitrary processor affinities is feasible.

UNC & MPI-SWS

Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Contribution

A polynomial-time algorithm to decide whether
a set of implicit-deadline sporadic tasks
with arbitrary processor affinities is feasible.

This Talk
= What are processor affinities and why do they matter?

= QOverview of the feasibility test.
= What’s left to do?

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Part |
What are Processor Affinities®

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Processor Affinities in Practice

Multiprocessor environment: users seek to
restrict on which processors a given task may run...

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Processor Affinities in Practice

Multiprocessor environment: users seek to
restrict on which processors a given task may run...

Why?

= cache conflicts
fault tolerance
covert channels
resource sharing

I 3 1 3

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Processor Affinities in Practice

Multiprocessor environment: users seek to
restrict on which processors a given task may run...

Why? How?

= cache conflicts = LINUX: sched setaffinity()

= fault tolerance = FreeBSD: cpuset_setaffinity()

= covert channels = \WWINndOWwS: SsetThreadAffinityMask()
= resource sharing = (QNX: ThreadCtl(_NTO TCTL RUNMASK)
-

= \V/XWorks: taskCpuAffinitySet()

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Processor Affinities in Practice

subset of processors on which it may be scheduled.

A task’s processor affinity (PA) is the

Why? How?

= cache conflicts = LinuX: sched setaffinity()

= fault tolerance = FreeBSD: cpuset setaffinity()

= covert channels = \WWINndOWwS: SsetThreadAffinityMask()
= resource sharing = (QNX: ThreadCtl(_NTO TCTL RUNMASK)
-

= \V/XWorks: taskCpuAffinitySet()

UNC & MPI-SWS

Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Formalizing Arbitrary Processor Affinities (APAs)

System Model
= n sporadic tasks ti,...,tn A o T

. . : : C |
- m identical processors y - p — l

Ta5k parameters o 1 2 3 4 5 6 7 8 9 1|O 11 12 13 14
= Implicit deadlines

= execution cost C;

= period T;

= utilization u; = C;/T;

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Formalizing Arbitrary Processor Affinities (APAs)

System Model
= n sporadic tasks ti,...,tn A o T

. . : : C |
- m identical processors y - p — l

Ta5k parameters o 1 2 3 4 5 6 7 8 9 1|O 11 12 13 14
= Implicit deadlines

= execution cost C;
= period T;

= utilization u; = C;/T;

Processor affinity
- o C{1,2,...,m}

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Why is APA Schedulability Analysis Challenging?

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Why is APA Schedulability Analysis Challenging?

partitioned scheduling

'----

)
Core || .| Core |! || Core
: 2 : 3

O m mE m e

Core Core Core
5 4 6 |

-.

APA scheduling generalizes partitioned, global, clustered...

UNC & MPI-SWS

Baruah & Brandenburg

global scheduling

E IE IE BB B B B B =B = 9

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Why is APA Schedulability Analysis Challenging?

partitioned scheduling

)
Core |, || Core
2 : 3

O m mE m e

Core

--~

Core Core Core
5 4 6 |

-.

global scheduling

B B N N N N E B B B N
E IE IE BB B B B B =B = 9

UNC & MPI-SWS

Baruah & Brandenburg

Singleton PAs, no overlap, difficult Uniform PAs, all processors included,
’ ’ 11 symmetric overlap.
assignment problem. ||"')' An y p
partitioned sct gduling global sch Auling

¢ == = L®®%000c0000000e SNeoesce000000 .
Core || , Core/: Core === :
L2 |8 : E

Core Core Core
5 6 |

-.

E IE IE BB B B B B =B = 9

'------

Arbitrary PAs, irregular overlap,
transitive interference!

ardly any attention in prior
work on schedulability analysis!

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Prior Work: First Sufficient Analysis

Is a given APA instance schedulable
under Linux’s global-like “push and pull” scheduler?

A. Gujarati, F. Cerqueira, and B. Brandenburg, Schedulability Analysis of the
Linux Push and Pull Scheduler with Arbitrary Processor Affinities, ECRTS 2013.

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Prior Work: First Sufficient Analysis

Is a given APA instance schedulable
under Linux’s global-like “push and pull” scheduler?

- T1’lll’Tn

[-
X1y-05 K APA instance

Task set with designer-specified PAs.

. r

—

Linux APA scheduling

OS scheduler enforces PAs

O

A. Gujarati, F. Cerqueira, and B. Brandenburg, Schedulability Analysis of the
Linux Push and Pull Scheduler with Arbitrary Processor Affinities, ECRTS 2013.

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

P rior Figuring out appropriate PAs is tricky...

alysis

...System designer may include
“more processors than necessary.’

eduler?

APA instance

Task set witl |[designer-specified "As.

Scheduled as given by user

on Linux. ‘

Linux APA scheduling

OS scheduler enforces PAs

e

A. Gujarati, F. Cerqueira, and B. Brandenburg, Schedulability Analysis of the
Linux Push and Pull Scheduler with Arbitrary Processor Affinities, ECRTS 2013.

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Observation

“Maximal” PAs cause unnecessary migrations & interference.

=» Shrinking PAs can actually improve schedulability.

APA Instance

Task set with designer-specified PAs.

. B

Linux APA scheduling

OS scheduler enforces PAs

A. Gujarati, F. Cerqueira, and B. Brandenburg, Schedulability Analysis of the
Linux Push and Pull Scheduler with Arbitrary Processor Affinities, ECRTS 2013.

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

The APA Scheduling Problem

APA Instance

Task set with designer-specified PAs.

==

Offline PA optimization

Reduce PAs such that task set
remains (or becomes) schedulable

==

Linux APA scheduling

OS scheduler enforces PAs

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

The APA Scheduling Problem

-~

Designer gives set of
allowed processors:
maximum flexibility.

APA Instance

-
Task set with designer-specified PAs.

Shrink PAs to
simplify online
problem.

UNC & MPI-SWS

==

- Offline PA optimization

Reduce PAs such that task set
remains (or becomes) schedulable

==

Linux APA scheduling

OS scheduler enforces reduced PAs

Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

The APA Scheduling Problem

APA Instance

Task set with designer-specified PAs.

==

Offline PA optimization

Reduce PAs such that task set
remains (or becomes) schedulable

==

- Online APA scheduling

-

Linux’s notion of APA
scheduling is not the
most efficient.

OS scheduler enforces reduced PAs

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

This Paper: Feasibility Test and PA Reduction

APA Instance

Task set with designer-specified PAs.

==

Offline PA optimization

Reduce PAs such that task set <
remains (or becomes) schedulable

Constructively determine
if given APA instance is
feasible (= given PAs
permit schedule w/o
deadline misses.)

==

Online APA scheduling

OS scheduler enforces reduced PAs

PA reduction: if feasible,
at most m tasks migrate.

UNC & MPI-SWS

Baruah & Brandenburg

Construct scheduling
strategy for instance.

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Part 2
A Feasibility Test
for the APA Scheduling Problem

UNC & MPI-SWS

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

High-Level Overview: lterative Template Construction

given: APA
Instance

Offline
Construct a scheduling template
over the unit interval [0,1].

Online
scale & apply template

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

High-Level Overview: lterative Template Construction

given: APA construct & solve
NS linear program
sTn
5 Xn
Feasibility Test

If the linear program has no solution,
then the APA instance is infeasible.

The tricky part is to show existence of schedule if a solution exists...

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

High-Level Overview: lterative Template Construction

instance linear program

given: AP> construct & solve

obtain vertex solution

(Needed to bound #migrations...)

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

High-Level Overview: lterative Template Construction

given: APA construct & solve
nsto linear program
yTn
y Kn

obtain vertex solution

pick template
length |

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

High-Level Overview: lterative Template Construction

construct & solve
linear program

given: APA
Instance

obtain vertex solution

pick template
length |

identify urgent tasks
and full processors

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

High-Level Overview: lterative Template Construction

given: APA
Instance

obtain vertex solution

construct & solve
linear program

pick template
length |

identify urgent tasks
and full processors

construct bipartite graph
& determine matching

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

High-Level Overview: lterative Template Construction

given: APA
Instance

obtain vertex solution

construct & solve
linear program

pick template
length |

identify urgent tasks
and full processors

construct bipartite graph pick step
& determine matching size o

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

High-Level Overview: lterative Template Construction

given: APA construct & solve
NSt linear program

obtain vertex solution

pick template e
length | - q:t
fill in template
. . from rear
identify urgent tasks
&setl—1-0
and full processors
5
construct bipartite graph pick step
& determine matching size o

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

High-Level Overview: lterative Template Construction

apply heuristics 0—— ::t

given: APA construct & solve result: schedule
Instance Iinea r progra m template

obtain vertex solution
no /l=

pick template e
length | - q:t
fill in template
. . from rear
identify urgent tasks o 2 sot] 1.8
and full processors
S
construct bipartite graph pick step
& determine matching size o

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Example Task Set

n=23 m=2

oz=11,2}

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

High-Level Overview: lterative Template Construction

Next... _._q_ﬂzt
given: APA construct & solve
‘”Sta”ce/ linear program

result: schedule

template
™ T1y.:4,Tn | oS
T e O e obtain vertex solution 4
no /
[=
pick template e
length | - q:t
fill in template
. . from rear
identify urgent tasks
&setl+—1-0
and full processors
5
construct bipartite graph pick step
& determine matching size o

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Step 1: Linear Program

Construct linear program
= n X m variables and n + m constraints

. e s q
Fraction of utilization of task 7; g 6 10/
served by processor ;. 3 | 10 20N

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Step 1: Linear Program

Construct linear program
= n X m variables and n + m constraints

Variable X;; T

Fraction of utilization of task 7; g

served by processor ;. T3
: 1
Each task is fully served:) Zij =1 o = 1
= 5 constraints JEOy 5133? +x30 = 1

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Step 1: Linear Program

Construct linear program
= n x m variables and n + m constraints

Variable X;; - 1 C, T,

. e 1

Fraction of utilization of task 7; g g 18

served by processor ;. 5 | 10N
L11 — 1
Each task is fully served:) Ti; =1 = 1
= 5 constraints JEQ r31 +x39 = 1

(4’

No processor is over-utilized: Z(uzaﬁzg) <1 07zn+05zsn < I
= m constraints i=1 0.6z22 +0.5x32 < 1

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

High-Level Overview: lterative Template Construction

apply heuristics

given: APA construct & SO/VG result: schedule
instanc:e| Iinea r progra m template

Next...
pick template e
length | - q:t
fill in template
. . from rear
identify urgent tasks o 2 sot] 1.8
and full processors
S
construct bipartite graph pick step
& determine matching size o

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Step 2: Obtain Vertex Solution

Feasible region of linear program
= Solution exists within convex high-dimensional polytope

non-vertex

optimal solution

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Step 2: Obtain Vertex Solution

Feasible region of linear program
= Solution exists within convex high-dimensional polytope

Need vertex optimal solution to limit task migrations (discussed later)
= Optimal solution given by solver not necessarily at vertex of polytope
(but vertex optimal solution exists)

vertex optimal solution

non-vertex

optimal solution

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Step 2: Obtain Vertex Solution

Feasible region of linear program
= Solution exists within convex high-dimensional polytope

Need vertex optimal solution to limit task migrations (discussed later)
= Optimal solution given by solver not necessarily at vertex of polytope
(but vertex optimal solution exists)

vertex optimal solution

non-vertex

optimal solution

Obtain optimal vertex solution from optimal solution
= (Can be done in polynomial time (standard OR techniques)

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Step 2: Example Allocation

| C; T, o u;

L11 = 1
n |7 10 0721, +05zg < 1

»| 6 10 {2 To2 = 1
0.6 0.5
73 | 1OS _ a1+ T30 = 1 r22 32

VAR VAN
e

Utilization T2 H Total

0.7 — 0.2 0.9

Core2 | — 0.6 0.3 0.9
task allocation

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Step 2: Example Allocation

Ty

i Migratory task:

72 utilization split across cores.
T3

Utilization Total

0.2 0.9

Core 2 0 (N 0.9

task allocation

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Step 2: Example Allocation

T; Cz Tz 8% u; 1
L11 ==
1 | 10{}_) | 07211 + 0525 < 1
To 6 10 2 0.6 22 — <
. . 1
r| 10 0 VEIONNOEN ten = 1 OO S

‘ total utilization on each core: 0.9 '
i h o

Utilization

0.7 _ 0.2 0.9
Core 2 — 0.6 03 09
task allocation

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

High-Level Overview: lterative Template Construction

Instance

pick template

given: APA construct & solve
linear program

obtain vertex solution

|

length |

identify urgent tasks
and full processors

construct bipartite graph
& determine matching

pick step
size o

apply heuristics 0—— ::t

no/l_

result: schedule
template

—t

fill in template
from rear
&setl+—1-0

UNC & MPI-SWS

Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Steps 3 & 6: Template Length & Step Size

Iterative algorithm

= construct schedule template

= normalized for interval [0, 1] ...

= fill in template from rear e

Core
1
>
Core
2
>

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Steps 3 & 6: Template Length & Step Size

Iterative algorithm

= construct schedule template

= normalized for interval [0, 1] ...

= fill in template from rear e

Key parameters

bl]
.....
[
~
~

v v v
Core
1
>
Core
2
>

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Steps 3 & 6: Template Length & Step Size

Iterative algorithm

= construct schedule template

= normalized for interval [0, 1] ...

= fill in template from rear e

Key parameters

bl]
.....
[
~
~

v v v
Core subsequent iterations this iteration idle
I ——————————————————————
]
>
Core subsequent iterations this iteration idle
e e
2
>
0 l-0 [1.0

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Steps 3 & 6: Template Length & Step Size

step size template length

0=031=0.9

T1 7

T2 6 10
T3 10 20
— assign tasks for interval (0.6, 0.9]
Core subsequent iterations this iteration idle
r———
]
>
Core subsequent iterations this iteration idle
_— | —
2
>
0 [-0=0.6 [=09 1.0

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

High-Level Overview: lterative Template Construction

apply heuristics 0—— ::t

g_ivﬂ: APA construct & solve result: schedule
Instance Iinea r progra m template

sTn

o | _ yes

’ obtain vertex solution

no /l=
pick template . — q:t
length | Next... 0y
fill in template

. . NG from rear
identify urgent tasks
&setl+—1-0
and full processors
5
construct bipartite graph pick step
& determine matching size o

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Step 4: Urgent Tasks and Full Processors

Urgent task Full processor

no slack left no idle time left

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Step 4: Urgent Tasks and Full Processors

T
Urgent task T
no slack left T2
T3

task utilization must fit within [0, [}
_——— ——————

0 [=09 1.0

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Step 4: Urgent Tasks and Full Processors

Urgent task

no slack left

slack
—

%

/’ | slack |

Tasks not urgent!

—ach task can still be delayed.

0 [=09 1.0

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Step 4: Urgent Tasks and Full Processors
n | o1 Total

Utilization

Full processor
_ 02 0.9 , ,
no idle time left
Core 2 — 0.6 03 09
lack
Slack g i
lack
— T2 U = 0.6

slack

0 [=09 1.0

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Step 4.

Urgent Tasks and Full Processors

Full processor

no idle time left

72: ux = 0.6

Utilization T2 ii Total
— 0.2 0.9
Core 2 — 0.6 0.3 0.9
| slack | 7.
p—Slack__4
p—Sack__

core utilization must fit within [0, []

UNC & MPI-SWS

Baruah & Brandenburg

[=09 1.0

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Utilization

Both processors urgent!

Must schedule some task.

T2 ﬂ Total

1 Full Processors

Full processor

Core 2

/

0.7 — 0.2 09 , _
no idle time left
— 0.6 0.3 09
|ﬂ|
lack
— 72: ux = 0.6
| slack)

no slack!

~

Core 2: 09

UNC & MPI-SWS

Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

High-Level Overview: lterative Template Construction

apply heuristics 0—— ::t

construct & solve

g-iven: APA result: schedule
Instance Iinea r progra m template

A

| _ yes
obtain vertex solution /
no

[=0

pick template
length |

—t

fill in template
- . e from rear
iaentity urgent tas«s (4 &setl—1-0

and full

construct bipartite graph pick step
& determine matching size o

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Step 5: Matching Tasks to Processors

All full processors and all urgent tasks must be matched.

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Step 5: Matching Tasks to Processors

All full processors and all urgent tasks must be matched.

: - - - : i | G T, oy i
Define bipartite graph & find matching i - -
» vertices: tasks & cores T2 13 ;0
» edges according to affinity U :
£ | p— "I
11| Core Core | .
Al 2 |
—J — ,
Core |
1 T
full
Core

L 4
-

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Step 5: Matching Tasks to Processors

All full processors and all urgent tasks must be matched.

: - - - : i | G T, oy i
Define bipartite graph & find matching ; =T - -
» vertices: tasks & cores 2| 6 10
» edges according to affinity s | R
» construct matching (in three steps) g o
» existence follows from Hall’s theorem || Core || || Core | |
! [2 ||
) —= h
Core | ...
1 R

Core

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

High-Level Overview: lterative Template Construction

Next... - ﬂt
;] apply heuristics —

given: APA construct & solve result: schedule
Instance Iinea r progra m template

obtain vertex solution /
no

pick template e —t
length | il i
fill in template
| | from rear
identify urgent tasks o &setl+—1-0

and full processors

s —&

construct bipartite graph pick step
& determine matching size o

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Step 7: Schedule Construction

Core
1

Core

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Step 7: Schedule Construction

— template length step size
1
[=09 6=03
2
— assign tasks for interval (0.6, 0.9]
Core subsequent iterations this iteration

1 e EEEE—

Core subsequent iterations this iteration
2 ! I

0 [-0=0.6 [=09 1.0

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Step 7: Schedule Construction

template length step size

[=0.9 | 0=03

— assign tasks for interval (0.6, 0.9]

Core “..subsequent iterations
ﬁ
1
— >
Core subsequent iterations
2 I I
>

0 [-0=0.6 [=09 1.0

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Finally, Update & Repeat

[+~ 1-0

Core subsequent iterations

| | ————
Core subsequent iterations

2 — I

0

[-0=0.6

-
-

[=09 1.0

UNC & MPI-SWS

Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Finally, Update & Repeat

subsequent next
Core iterations iteratio
10| |p—tierations__y ieration
subsequent next
Core iterations iteration
5 —_— | ——
k 0 -6 1 1.0
Core subsequent iterations
| [——
Core subsequent iterations
2 — I
0 [-0=0.6 [=0.9 1.0

UNC & MPI-SWS

Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

lterate until [=0

Core T4 CZ TZ 0473 u’i
| 1 om | T IO
n| 6 10

2} 0.6
10 T3 10 20

Fill in template from back to front...

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

lterate until [=0

— i | G T, u;
1 | on |7 10

Core 2 To 6 10 {2} 0.6
0 0.6 0.9 1.0> 73 | 10 {_

after two more iterations
& heuristics to avoid preemptions...
Core
1 T3
>

Core

0 0.2 0.6

final template

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

High-Level Overview: lterative Template Construction

apply heuristics 0—— ::t

given: APA construct & solve result: schedule
Instance Iinea r progra m template

obtain vertex solution
no /l=

pick template e
length | - q:t
fill in template
. from rear
pick step & setl « 1-6
size o
S
identify urgent tasks construct bipartite graph
and full processors & determine matching

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

High-Level Overview: lterative Template Construction

apply heuristics — ::t
given: APA construct & solve result: schedule
Instance Iinea r progra m template
A

How to use the template?

How many tasks migrate?

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

How to use the template?
0 0.2 0.6 0.9 1.0

Core
1 13
>
Core
‘ >

final template

time > HE B B

0 1 2 3 4 5 6 / 38

UNC & MPI-SWS Baruah & Brandenburg

Multig

Naive approach: instantiate for each quantum (impractical, but shows existence).

See paper for sketch of more practical EDF-based scheduler...

0 0.2 0.6 0.9 1.0
Core
1
>
Core
2 T2
R |
‘ I
AN final template
\
\‘)
1 N 5
\‘ ':::'
\ o5’

tlme_l > HE B B

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Degree of Migration

Schedule template not very useful
In practice if “too many” tasks migrate...

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Degree of Migration

Migration Bound

At most m tasks migrate.

Other tasks are statically assigned to a single
processor compliant with their PA: =» semi-partitioning.

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Degree of Migration

Migration Bound

At most m tasks migrate.

Why?

Vertex solution & fewer constraints than variables in LP
(details in paper...)

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Open Questions

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Open Questions

Why study APA scheduling?

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Open Questions

Why study APA scheduling?

Relevance

Virtually every major (real-time) operating system supports PAs.
Practitioners have to (and want to) deal with it.

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Open Questions

Why study APA scheduling?

Relevance

Virtually every major (real-time) operating system supports PAs.
Practitioners have to (and want to) deal with it.

Generality

Every solution assuming the APA model immediately solves the same
problem for global / partitioned / clustered scheduling as well.

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Open Problem 1/3

Feasibility with Constrained Deadlines

Requires reasoning about demand

= More than polynomial number of
constraints (if done naively).

vt >0 » DBF(T;t)<t,
1=1

No longer “few” migrating tasks
= |_P structure essential.

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Open Problem 1/3

Feasibility with Constrained Deadlines

Requires reasoning about demand
= More than polynomial number of
constraints (if done naively). vt>0 S DBF(T;t) <t,

1=1

No longer “few” migrating tasks
= |_P structure essential.

A which job goes next?

Task |WCET|Deadline| Period | 16 l 0ptima| Online SChedUIing With

e Fay=msm constrained deadlines

S e B " | = = Qur test constructs online strategy.

i == = Such a strategy does not always
o e e exists if di < p:.

Fisher, Goossens, Baruah (2010), Optimal online multiprocessor scheduling of
sporadic real-time tasks is impossible. Real-Time Systems, volume 45, pp 26-71.

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Open Problem 2/3
Etficient Online APA Scheduling

Open systems
= Cannot solve LP on fork()...

Why not use Linux’s approach?
= well-known APA implementation

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Open Problem 2/3
Etficient Online APA Scheduling

5000
Open systems

” = Cannot solve LP on fork()...
= 4000
-
3 Why not use Linux’s approach?
g 3000 = well-known APA implementation
O . _
o0 = Inefficient
- B o
= 5000 » high maximum overheads
nw) mpg.
2 » also w.r.t. schedulability
X 1000
=

0

8 16 24 32 48 64

Hcores

O Linux Push & Pull Overhead

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

5000

N
-
-
o

3000

2000

max. scheduling overhead in ps

1000

Open Problem 2/3
Etficient Online APA Scheduling

Open systems
= Cannot solve LP on fork()...

Why not use Linux’s approach?
= well-known APA implementation
= |nefficient

» high maximum overheads

» also w.r.t. schedulability

Goal
= Fast scheduler

|6

24 32

Hcores

48

= Fast task admission
= Efficient APA semantics
= Semi-partitioned?

64

O Linux Push & Pull Overhead

UNC & MPI-SWS

Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Open Problem 3/3
JLFP/FP Feasibility and Priority Assignment

This paper: feasibility in general
= Solution: “non-standard” dynamic priority scheduler
= [ndustry prefers simpler fixed-priority scheduling

Y al .
WIND RIVER d FreeBSD, A N \icrosoft % GANDC

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Open Problem 3/3
JLFP/FP Feasibility and Priority Assignment

This paper: feasibility in general
= Solution: “non-standard” dynamic priority scheduler
= [ndustry prefers simpler fixed-priority scheduling

> 3
WIND RIVER d FreeBSD, A B \licrosoft E GANDC
D

Open problem: FP feasibility
= Exact schedulability test ...also for global scheduling.

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Open Problem 3/3
JLFP/FP Feasibility and Priority Assignment

This paper: feasibility in general
= Solution: “non-standard” dynamic priority scheduler
= [ndustry prefers simpler fixed-priority scheduling

$
WIND RIVER d FreeBSD, A o= Microsoft 22 QAN
D

Open problem: FP feasibility
= Exact schedulability test ...also for global scheduling.

Joint priority and affinity assignment
= “Good” priority assignment can mask “bad” processor affinities.
= “Good” processor affinities can mask “bad” priority assignment.

UNC & MPI-SWS Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

- Conclusion

arbitrary processor affinity

i ={2, 3, 5, 6}

=2 QAINDXX

o

WIND RIVER

@ FreeBSD.

B® Microsoft

Max

A THE UNIVERSITY Planck
II I of NORTH CAROLINA Institute
i for
at CHAPEL HILL
S Software Systems

UNC & MPI-SWS Baruah & Brandenburg 88

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

APA
arbitrary processor affinity

i ={2, 3, 5, 6}

e

WIND RIVER
,V r
d FreeBSD.

B® Microsoft

UNC & MPI-SWS

Conclusion

A polynomial-time feasibility test for
the APA scheduling problem.

The APA Scheduling Problem

Baruah & Brandenburg

APA instance

Task set with designer-specified APAs.

S~ _—

Offline APA optimization

Reduce APAs such that task set
remains (or becomes) schedulable

Online APA scheduling

OS scheduler enforces reduced APAs

—_—

Max

THE UNIVERSITY 1'% Planck
of NORTH CAROLINA | Institute
at CHAPEL HILL for

Software Systems

89

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

APA
arbitrary processor affinity

i ={2, 3, 5, 6}

ot

WIND RIVER
,V r
d FreeBSD.

B® Microsoft

UNC & MPI-SWS

Conclusion

The APA Scheduling Problem

A polynomial-time feasibility test for
the APA scheduling problem. |

APA instance

Task set with designer-specified APAs.

C truct : titi d Offline APA optimization
OnStriets 4 seml-par 'tione Reduce APAs such that task set

schedule template with remains (or becomes) schedulable

at most m migrating tasks.

Online APA scheduling

OS scheduler enforces reduced APAs

Max
N THE UNIVERSITY i Planck
II I of NORTH CAROLINA ' Institute
i for
at CHAPEL HILL
— Software Systems

Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

APA
arbitrary processor affinity

i ={2, 3, 5, 6}

o

WIND RIVER

Conclusion

The APA Scheduling Problem

A polynomial-time feasibility test for
the APA scheduling problem. |

APA instance

Task set with designer-specified APAs.

Constructs a semi-partitioned
schedule template with

Offline APA optimization

Reduce APAs such that task set
remains (or becomes) schedulable

at most m migrating tasks. \

Online APA scheduling

OS scheduler enforces reduced APAs

7 '
d FreeBSD.
A general model and conceptual

mE \jicrosoft practice with plenty of open problems!

framework that originates in |

UNC & MPI-SWS

=N

L]

—_—

THE UNIVERSITY Planck
of NORTH CAROLINA ' Institute
at CHAPEL HILL for
are Systems

Baruah & Brandenburg

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Appendix

UNC & MPI-SWS Baruah & Brandenburg

Degree of Migration — Explanation

} 1 .---vertex optimal Solution
- \ —————— l
______ non-vertex {
""""" optimal solution

|

WS Baruah & Brandenburg
UNC & MPI-S

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Degree of Migration — Explanation

¢ :

\ ’\ __________ vertex optimal solution

[ram L I I N S ¢ W W non-ver ex l
ConStrUCt “ne\ar p;gg n+m COﬂS’[famtS + ! optimal soltution]
jables e
- 1 % m vara _)

A basic fact about linear programs...

A linear program with...
= J{ non-negative variables (= n x m),
I = (C additional constraints (= n + m).

If C <, then...
= at most C non-zero values (= n + m)
= at each vertex of the feasible region.

UNC & MPI-SWS Baruah & Brandenburg

Degree of Migration — Explanation

_____ vertex optimal solution
&

non-vertex
optimal solution

;

A basic fact about linear programs...

' ith...
A linear program wi .
= J{ non-negative variables (= n x m),

| ' At most n + m utilization
= (C additional constraints (= n + m). Dl oSt + i uiizaton

If C <, then...
- lues (= n + m)
= at most C non-zero va | |
= at each vertex of the feasible region.

WS Baruah & Brandenburg
UNC & MPI-S

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Degree of Migration — Explanation

Construct linear program

traints X
- XM yariables and n + 1 cons

——

——

4

A basic fact about linear programs...

A linear program with...

If C <, then...

= J{ non-negative variables (= n x m),
I = (C additional constraints (= n + m).

= at most C non-zero values (= n + m)
= at each vertex of the feasible region.

]\ __________ vertex optimal solution

.................. non-vertex
optimal solution

g

' At most n + m utilization
fractions x;; are non-zero.

=» at most m of the n tasks
are associated with more
than one non-zero variable
(= at most m migrate).

UNC & MPI-SWS

Baruah & Brandenburg

