
RTSS’13
December 5, 2013

Multiprocessor feasibility analysis of
recurrent task systems with

specified processor affinities

Sanjoy Baruah (UNC Chapel Hill) Björn Brandenburg (MPI-SWS)

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Contribution

2

A polynomial-time algorithm to decide whether
a set of implicit-deadline sporadic tasks

with arbitrary processor affinities is feasible.

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Contribution

3

A polynomial-time algorithm to decide whether
a set of implicit-deadline sporadic tasks

with arbitrary processor affinities is feasible.

This Talk
➡ What are processor affinities and why do they matter?
➡ Overview of the feasibility test.
➡ What’s left to do?

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Part 1
What are Processor Affinities?

4

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Processor Affinities in Practice

5

Multiprocessor environment: users seek to
restrict on which processors a given task may run…

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Processor Affinities in Practice

Why?
➡ cache conflicts
➡ fault tolerance
➡ covert channels
➡ resource sharing
➡ …

6

Multiprocessor environment: users seek to
restrict on which processors a given task may run…

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Processor Affinities in Practice

Why?
➡ cache conflicts
➡ fault tolerance
➡ covert channels
➡ resource sharing
➡ …

7

How?
➡ Linux: sched_setaffinity()
➡ FreeBSD: cpuset_setaffinity()
➡ Windows: SetThreadAffinityMask()
➡ QNX: ThreadCtl(_NTO_TCTL_RUNMASK)
➡ VxWorks: taskCpuAffinitySet()

Multiprocessor environment: users seek to
restrict on which processors a given task may run…

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Processor Affinities in Practice

Why?
➡ cache conflicts
➡ fault tolerance
➡ covert channels
➡ resource sharing
➡ …

8

How?
➡ Linux: sched_setaffinity()
➡ FreeBSD: cpuset_setaffinity()
➡ Windows: SetThreadAffinityMask()
➡ QNX: ThreadCtl(_NTO_TCTL_RUNMASK)
➡ VxWorks: taskCpuAffinitySet()

A task’s processor affinity (PA) is the
subset of processors on which it may be scheduled.

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Formalizing Arbitrary Processor Affinities (APAs)

System Model
➡ n sporadic tasks τ1,…,τn
➡ m identical processors

Task parameters
➡ Implicit deadlines
➡ execution cost Ci
➡ period Ti
➡ utilization ui = Ci /Ti

9

1 2 3 54 6 7 8 109 11 12 13 140

T1 J1,1 J1,2τ1

T1 T1

C1C1

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Formalizing Arbitrary Processor Affinities (APAs)

System Model
➡ n sporadic tasks τ1,…,τn
➡ m identical processors

Task parameters
➡ Implicit deadlines
➡ execution cost Ci
➡ period Ti
➡ utilization ui = Ci /Ti

Processor affinity
➡ αi ⊆ {1, 2, …, m}

10

Core
1

Core
2

Core
3

Core
4

Core
5

Core
6

αi = {2, 3, 5, 6}

1 2 3 54 6 7 8 109 11 12 13 140

T1 J1,1 J1,2τ1

T1 T1

C1C1

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Why is APA Schedulability Analysis Challenging?

11

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Why is APA Schedulability Analysis Challenging?

12

Core
1

Core
2

Core
3

Core
4

Core
5

Core
6

partitioned scheduling

Core
1

Core
2

Core
3

Core
4

Core
5

Core
6

global scheduling

APA scheduling generalizes partitioned, global, clustered…

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Why is APA Schedulability Analysis Challenging?

13

Core
1

Core
2

Core
3

Core
4

Core
5

Core
6

partitioned scheduling

Core
1

Core
2

Core
3

Core
4

Core
5

Core
6

global scheduling

Core
1

Core
2

Core
3

Core
4

Core
5

Core
6

arbitrary processor affinities

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Why is APA Schedulability Analysis Challenging?

14

Core
1

Core
2

Core
3

Core
4

Core
5

Core
6

partitioned scheduling

Core
1

Core
2

Core
3

Core
4

Core
5

Core
6

global scheduling

Core
1

Core
2

Core
3

Core
4

Core
5

Core
6

arbitrary processor affinities

Singleton PAs, no overlap, difficult
assignment problem.

Uniform PAs, all processors included,
symmetric overlap.

Arbitrary PAs, irregular overlap,
transitive interference!

Hardly any attention in prior
work on schedulability analysis!

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Prior Work: First Sufficient Analysis

15

A. Gujarati, F. Cerqueira, and B. Brandenburg, Schedulability Analysis of the
Linux Push and Pull Scheduler with Arbitrary Processor Affinities, ECRTS 2013.

Is a given APA instance schedulable
under Linux’s global-like “push and pull” scheduler?

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Prior Work: First Sufficient Analysis

16

APA instance
Task set with designer-specified PAs.

➡ τ1,…,τn
➡ α1,…, αn

A. Gujarati, F. Cerqueira, and B. Brandenburg, Schedulability Analysis of the
Linux Push and Pull Scheduler with Arbitrary Processor Affinities, ECRTS 2013.

Is a given APA instance schedulable
under Linux’s global-like “push and pull” scheduler?

C C C

C C C

Linux APA scheduling
OS scheduler enforces PAs

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Linux APA scheduling
OS scheduler enforces PAs

Prior Work: First Sufficient Analysis

17

APA instance
Task set with designer-specified PAs.

A. Gujarati, F. Cerqueira, and B. Brandenburg, Schedulability Analysis of the
Linux Push and Pull Scheduler with Arbitrary Processor Affinities, ECRTS 2013.

Is a given APA instance schedulable
under Linux’s global-like “push and pull” scheduler?

C C C

C C C

Figuring out appropriate PAs is tricky…

…system designer may include
“more processors than necessary.”

➡ τ1,…,τn
➡ α1,…, αn

Scheduled as given by user
on Linux.

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS 18

APA instance
Task set with designer-specified PAs.

A. Gujarati, F. Cerqueira, and B. Brandenburg, Schedulability Analysis of the
Linux Push and Pull Scheduler with Arbitrary Processor Affinities, ECRTS 2013.

Observation
“Maximal” PAs cause unnecessary migrations & interference.

➜ Shrinking PAs can actually improve schedulability.

Linux APA scheduling
OS scheduler enforces PAs

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

The APA Scheduling Problem

19

Offline PA optimization
Reduce PAs such that task set

remains (or becomes) schedulable

APA instance
Task set with designer-specified PAs.

Linux APA scheduling
OS scheduler enforces PAs

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

The APA Scheduling Problem

20

Offline PA optimization
Reduce PAs such that task set

remains (or becomes) schedulable

APA instance
Task set with designer-specified PAs.

Designer gives set of
allowed processors:
maximum flexibility.

Shrink PAs to
simplify online

problem.

Linux APA scheduling
OS scheduler enforces reduced PAs

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

The APA Scheduling Problem

21

Offline PA optimization
Reduce PAs such that task set

remains (or becomes) schedulable

APA instance
Task set with designer-specified PAs.

Online APA scheduling
OS scheduler enforces reduced PAs

Linux’s notion of APA
scheduling is not the

most efficient.

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

This Paper: Feasibility Test and PA Reduction

22

Offline PA optimization
Reduce PAs such that task set

remains (or becomes) schedulable

APA instance
Task set with designer-specified PAs.

Online APA scheduling
OS scheduler enforces reduced PAs

Constructively determine
if given APA instance is
feasible (= given PAs
permit schedule w/o
deadline misses.)

PA reduction: if feasible,
at most m tasks migrate.

Construct scheduling
strategy for instance.

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Part 2
A Feasibility Test

for the APA Scheduling Problem

23

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

High-Level Overview: Iterative Template Construction

24

given: APA
instance

➡ τ1,…,τn
➡ α1,…, αn

C C C

C C C

Offline
Construct a scheduling template

over the unit interval [0,1].

Online
scale & apply template

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

High-Level Overview: Iterative Template Construction

25

given: APA
instance

C C C

C C C
construct & solve

linear program1

Feasibility Test
If the linear program has no solution,
then the APA instance is infeasible.

The tricky part is to show existence of schedule if a solution exists…

➡ τ1,…,τn
➡ α1,…, αn

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

High-Level Overview: Iterative Template Construction

26

given: APA
instance

C C C

C C C
construct & solve

linear program

obtain vertex solution

1

2

(Needed to bound #migrations…)

➡ τ1,…,τn
➡ α1,…, αn

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

High-Level Overview: Iterative Template Construction

27

given: APA
instance

C C C

C C C
construct & solve

linear program

obtain vertex solution

pick template
length l

1

2

3

➡ τ1,…,τn
➡ α1,…, αn

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

High-Level Overview: Iterative Template Construction

28

given: APA
instance

C C C

C C C
construct & solve

linear program

obtain vertex solution

pick template
length l

1

2

3

4identify urgent tasks
and full processors

➡ τ1,…,τn
➡ α1,…, αn

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

High-Level Overview: Iterative Template Construction

29

given: APA
instance

C C C

C C C
construct & solve

linear program

obtain vertex solution

pick template
length l

1

2

3

4
5

identify urgent tasks
and full processors

construct bipartite graph
& determine matching

➡ τ1,…,τn
➡ α1,…, αn

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

High-Level Overview: Iterative Template Construction

30

given: APA
instance

C C C

C C C
construct & solve

linear program

obtain vertex solution

pick template
length l

1

2

3

4
5 6

pick step
size δ

identify urgent tasks
and full processors

construct bipartite graph
& determine matching

➡ τ1,…,τn
➡ α1,…, αn

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

High-Level Overview: Iterative Template Construction

31

given: APA
instance

C C C

C C C
construct & solve

linear program

obtain vertex solution

pick template
length l fill in template

from rear
& set l ← l - δ

1

2

3

4
5 6

l = 0

7

no

yes

100
τ1τ30

pick step
size δ

identify urgent tasks
and full processors

construct bipartite graph
& determine matching

➡ τ1,…,τn
➡ α1,…, αn

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

result: schedule
template

High-Level Overview: Iterative Template Construction

32

given: APA
instance

C C C

C C C
construct & solve

linear program

obtain vertex solution

pick template
length l

pick step
size δ

identify urgent tasks
and full processors

construct bipartite graph
& determine matching

fill in template
from rear

& set l ← l - δ

1

2

3

4
5 6

l = 0

7

no

8
apply heuristics

100τ30
τ1τ

0τ2

yes

100
τ1τ30

➡ τ1,…,τn
➡ α1,…, αn

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Example Task Set

33

n = 3 m = 2

Core
1

Core
2α1 = {1} α2 = {2}

α3 = {1, 2}

Given this APA instance (⌧,⇡), our scheduling strategy
proceeds in three steps:

1) First, we construct a linear program that has a solution
(is feasible, in the language of linear programming) if
and only if (⌧,⇡) is APA-feasible – how we do this is
described in Section IV-A.

2) We then solve this linear program, and use the solution to
construct a schedule “template” — this step is described
in Section IV-B.

3) In Section IV-C, we describe how we then use this
schedule template to actually construct a schedule during
run-time.

We will use the following example throughout this section, to
illustrate our algorithm.

Example 1: Our APA instance (⌧,⇡) has ⌧ = {⌧1, ⌧2, ⌧3}
with parameters as given below, while ⇡ = {⇡1,⇡2}.

⌧

i

C
i

T
i

↵

i

u
i

⌧1 7 10 {1} 0.7

⌧2 6 10 {2} 0.6

⌧3 10 20 {1, 2} 0.5

A. Constructing a linear program

As a first step in obtaining a run-time scheduling algorithm,
we will represent APA feasibility as a linear programming
problem. We define n ⇥m real-valued variables x

i,j

for i =

1, . . . , n and j = 1, . . . ,m, with variable x

i,j

denoting the
fraction of ⌧

i

that executes on processor ⇡
j

. We constrain each
x

i,j

variable to be non-negative: x
i,j

� 0 for all i, j. (While
we could also constrain each x

i,j

to be no larger than one,
specifying such a constraint turns out to be unnecessary in the
sense that it is implied by other constraints that we will add
to the linear program.)

We now seek to enforce the requirement that each task
receives its appropriate amount of execution time. Since the
affinity mask of task ⌧

i

restricts the processors upon which
⌧

i

may execute, this requirement can be represented by n

equations of the following form, one for each i = 1, 2, . . . , n:
X

j2↵

i

x

i,j

= 1 (1.1)

Next, we seek to enforce the requirement that the capacity
constraint of each processor is met. This is represented by
m inequalities of the following form, one for each j =

1, 2, . . . ,m:
n

X

i=1

�

u

i

x

i,j

�

 1 (1.2)

The resulting LP problem incorporating these two sets of
constraints for any APA instance (⌧,⇡), over the (n ⇥ m)

variables {x
i,j

}
i=1,...,n;j=1,...,m which are all constrained to

being � 0 and 1, is depicted in Figure 1.

Example 2: The linear program for the instance of Exam-
ple 1 is

x11 = 1

x22 = 1

x31 + x32 = 1

0.7x11 + 0.5x31 1

0.6x22 + 0.5x32 1

where the first three constraints correspond to instantiations
of Constraint (1.1) for tasks ⌧1, ⌧2, and ⌧3 respectively, while
the last two correspond to instantiations of Constraint (1.2) for
processors ⇡1 and ⇡2.

(Note that this linear program has no objective function
specified: we are simply seeking to determine any assignment
of values to the x

ij

variables that would cause all the con-
straints to evaluate to true.)

It may be verified that the following assignment of values
to the x

ij

variables

x11 = 1;x22 = 1;x31 = 0.4; and x32 = 0.6 (2)

constitutes a possible solution to this linear program.

It is immediately evident that the linear program APA-
Feas(⌧,⇡) has a solution if the instance (⌧,⇡) is APA-feasible;
this is formally demonstrated in Lemma 1 below.

Lemma 1: If instance (⌧,⇡) is APA-feasible, then APA-
Feas(⌧,⇡) has a solution.

Proof: Since (⌧,⇡) is APA-feasible, it is possible to
generate a schedule for any sequence of jobs that could legally
be generated by this instance. Let us therefore consider the
sequence of job arrivals in which jobs of each task ⌧

i

arrive
at all instants k · T

i

, for all k = 0, 1, 2, . . ., and executes for
exactly C

i

time units. Let P denote the least common multiple
(lcm) of the periods of the n tasks.

Consider a schedule for this sequence of job arrivals, in
which all job deadlines are met. Let f

i,j

denote the fraction
of the total amount of time over [0, P) during which task ⌧

i

executed on processor ⇡
j

, for each i and each j. We will show
that all the constraints in APA-Feas(⌧,⇡) are satisfied when
x

i,j

 (f

i,j

/u

i

) for each i, j.

Constraints (1.1): The total amount of execution received by
task i over [0, P) is given by

X

j2↵

i

(f

i,j

· P) = P

X

j2↵

i

(f

i,j

) .

There are P

T

i

jobs of task ⌧

i

with arrival times and deadlines
in [0, P); in a schedule in which all job deadlines are met,
⌧

i

will therefore have received C

i

· P

T

i

units of execution over

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

result: schedule
template

High-Level Overview: Iterative Template Construction

34

given: APA
instance

C C C

C C C
construct & solve

linear program

obtain vertex solution

pick template
length l fill in template

from rear
& set l ← l - δ

1

2

3

4
5 6

l = 0

7

no

8
apply heuristics

100τ30
τ1τ

0τ2

yes

100
τ1τ30

Next…

pick step
size δ

identify urgent tasks
and full processors

construct bipartite graph
& determine matching

➡ τ1,…,τn
➡ α1,…, αn

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Construct linear program
➡ n × m variables and n + m constraints

Step 1: Linear Program

35

Given this APA instance (⌧,⇡), our scheduling strategy
proceeds in three steps:

1) First, we construct a linear program that has a solution
(is feasible, in the language of linear programming) if
and only if (⌧,⇡) is APA-feasible – how we do this is
described in Section IV-A.

2) We then solve this linear program, and use the solution to
construct a schedule “template” — this step is described
in Section IV-B.

3) In Section IV-C, we describe how we then use this
schedule template to actually construct a schedule during
run-time.

We will use the following example throughout this section, to
illustrate our algorithm.

Example 1: Our APA instance (⌧,⇡) has ⌧ = {⌧1, ⌧2, ⌧3}
with parameters as given below, while ⇡ = {⇡1,⇡2}.

⌧

i

C
i

T
i

↵

i

u
i

⌧1 7 10 {1} 0.7

⌧2 6 10 {2} 0.6

⌧3 10 20 {1, 2} 0.5

A. Constructing a linear program

As a first step in obtaining a run-time scheduling algorithm,
we will represent APA feasibility as a linear programming
problem. We define n ⇥m real-valued variables x

i,j

for i =

1, . . . , n and j = 1, . . . ,m, with variable x

i,j

denoting the
fraction of ⌧

i

that executes on processor ⇡
j

. We constrain each
x

i,j

variable to be non-negative: x
i,j

� 0 for all i, j. (While
we could also constrain each x

i,j

to be no larger than one,
specifying such a constraint turns out to be unnecessary in the
sense that it is implied by other constraints that we will add
to the linear program.)

We now seek to enforce the requirement that each task
receives its appropriate amount of execution time. Since the
affinity mask of task ⌧

i

restricts the processors upon which
⌧

i

may execute, this requirement can be represented by n

equations of the following form, one for each i = 1, 2, . . . , n:
X

j2↵

i

x

i,j

= 1 (1.1)

Next, we seek to enforce the requirement that the capacity
constraint of each processor is met. This is represented by
m inequalities of the following form, one for each j =

1, 2, . . . ,m:
n

X

i=1

�

u

i

x

i,j

�

 1 (1.2)

The resulting LP problem incorporating these two sets of
constraints for any APA instance (⌧,⇡), over the (n ⇥ m)

variables {x
i,j

}
i=1,...,n;j=1,...,m which are all constrained to

being � 0 and 1, is depicted in Figure 1.

Example 2: The linear program for the instance of Exam-
ple 1 is

x11 = 1

x22 = 1

x31 + x32 = 1

0.7x11 + 0.5x31 1

0.6x22 + 0.5x32 1

where the first three constraints correspond to instantiations
of Constraint (1.1) for tasks ⌧1, ⌧2, and ⌧3 respectively, while
the last two correspond to instantiations of Constraint (1.2) for
processors ⇡1 and ⇡2.

(Note that this linear program has no objective function
specified: we are simply seeking to determine any assignment
of values to the x

ij

variables that would cause all the con-
straints to evaluate to true.)

It may be verified that the following assignment of values
to the x

ij

variables

x11 = 1;x22 = 1;x31 = 0.4; and x32 = 0.6 (2)

constitutes a possible solution to this linear program.

It is immediately evident that the linear program APA-
Feas(⌧,⇡) has a solution if the instance (⌧,⇡) is APA-feasible;
this is formally demonstrated in Lemma 1 below.

Lemma 1: If instance (⌧,⇡) is APA-feasible, then APA-
Feas(⌧,⇡) has a solution.

Proof: Since (⌧,⇡) is APA-feasible, it is possible to
generate a schedule for any sequence of jobs that could legally
be generated by this instance. Let us therefore consider the
sequence of job arrivals in which jobs of each task ⌧

i

arrive
at all instants k · T

i

, for all k = 0, 1, 2, . . ., and executes for
exactly C

i

time units. Let P denote the least common multiple
(lcm) of the periods of the n tasks.

Consider a schedule for this sequence of job arrivals, in
which all job deadlines are met. Let f

i,j

denote the fraction
of the total amount of time over [0, P) during which task ⌧

i

executed on processor ⇡
j

, for each i and each j. We will show
that all the constraints in APA-Feas(⌧,⇡) are satisfied when
x

i,j

 (f

i,j

/u

i

) for each i, j.

Constraints (1.1): The total amount of execution received by
task i over [0, P) is given by

X

j2↵

i

(f

i,j

· P) = P

X

j2↵

i

(f

i,j

) .

There are P

T

i

jobs of task ⌧

i

with arrival times and deadlines
in [0, P); in a schedule in which all job deadlines are met,
⌧

i

will therefore have received C

i

· P

T

i

units of execution over

Variable xij

Fraction of utilization of task τi
served by processor j.

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Construct linear program
➡ n × m variables and n + m constraints

Each task is fully served:
➡ n constraints

Step 1: Linear Program

36

Given this APA instance (⌧,⇡), our scheduling strategy
proceeds in three steps:

1) First, we construct a linear program that has a solution
(is feasible, in the language of linear programming) if
and only if (⌧,⇡) is APA-feasible – how we do this is
described in Section IV-A.

2) We then solve this linear program, and use the solution to
construct a schedule “template” — this step is described
in Section IV-B.

3) In Section IV-C, we describe how we then use this
schedule template to actually construct a schedule during
run-time.

We will use the following example throughout this section, to
illustrate our algorithm.

Example 1: Our APA instance (⌧,⇡) has ⌧ = {⌧1, ⌧2, ⌧3}
with parameters as given below, while ⇡ = {⇡1,⇡2}.

⌧

i

C
i

T
i

↵

i

u
i

⌧1 7 10 {1} 0.7

⌧2 6 10 {2} 0.6

⌧3 10 20 {1, 2} 0.5

A. Constructing a linear program

As a first step in obtaining a run-time scheduling algorithm,
we will represent APA feasibility as a linear programming
problem. We define n ⇥m real-valued variables x

i,j

for i =

1, . . . , n and j = 1, . . . ,m, with variable x

i,j

denoting the
fraction of ⌧

i

that executes on processor ⇡
j

. We constrain each
x

i,j

variable to be non-negative: x
i,j

� 0 for all i, j. (While
we could also constrain each x

i,j

to be no larger than one,
specifying such a constraint turns out to be unnecessary in the
sense that it is implied by other constraints that we will add
to the linear program.)

We now seek to enforce the requirement that each task
receives its appropriate amount of execution time. Since the
affinity mask of task ⌧

i

restricts the processors upon which
⌧

i

may execute, this requirement can be represented by n

equations of the following form, one for each i = 1, 2, . . . , n:
X

j2↵

i

x

i,j

= 1 (1.1)

Next, we seek to enforce the requirement that the capacity
constraint of each processor is met. This is represented by
m inequalities of the following form, one for each j =

1, 2, . . . ,m:
n

X

i=1

�

u

i

x

i,j

�

 1 (1.2)

The resulting LP problem incorporating these two sets of
constraints for any APA instance (⌧,⇡), over the (n ⇥ m)

variables {x
i,j

}
i=1,...,n;j=1,...,m which are all constrained to

being � 0 and 1, is depicted in Figure 1.

Example 2: The linear program for the instance of Exam-
ple 1 is

x11 = 1

x22 = 1

x31 + x32 = 1

0.7x11 + 0.5x31 1

0.6x22 + 0.5x32 1

where the first three constraints correspond to instantiations
of Constraint (1.1) for tasks ⌧1, ⌧2, and ⌧3 respectively, while
the last two correspond to instantiations of Constraint (1.2) for
processors ⇡1 and ⇡2.

(Note that this linear program has no objective function
specified: we are simply seeking to determine any assignment
of values to the x

ij

variables that would cause all the con-
straints to evaluate to true.)

It may be verified that the following assignment of values
to the x

ij

variables

x11 = 1;x22 = 1;x31 = 0.4; and x32 = 0.6 (2)

constitutes a possible solution to this linear program.

It is immediately evident that the linear program APA-
Feas(⌧,⇡) has a solution if the instance (⌧,⇡) is APA-feasible;
this is formally demonstrated in Lemma 1 below.

Lemma 1: If instance (⌧,⇡) is APA-feasible, then APA-
Feas(⌧,⇡) has a solution.

Proof: Since (⌧,⇡) is APA-feasible, it is possible to
generate a schedule for any sequence of jobs that could legally
be generated by this instance. Let us therefore consider the
sequence of job arrivals in which jobs of each task ⌧

i

arrive
at all instants k · T

i

, for all k = 0, 1, 2, . . ., and executes for
exactly C

i

time units. Let P denote the least common multiple
(lcm) of the periods of the n tasks.

Consider a schedule for this sequence of job arrivals, in
which all job deadlines are met. Let f

i,j

denote the fraction
of the total amount of time over [0, P) during which task ⌧

i

executed on processor ⇡
j

, for each i and each j. We will show
that all the constraints in APA-Feas(⌧,⇡) are satisfied when
x

i,j

 (f

i,j

/u

i

) for each i, j.

Constraints (1.1): The total amount of execution received by
task i over [0, P) is given by

X

j2↵

i

(f

i,j

· P) = P

X

j2↵

i

(f

i,j

) .

There are P

T

i

jobs of task ⌧

i

with arrival times and deadlines
in [0, P); in a schedule in which all job deadlines are met,
⌧

i

will therefore have received C

i

· P

T

i

units of execution over

Given this APA instance (⌧,⇡), our scheduling strategy
proceeds in three steps:

1) First, we construct a linear program that has a solution
(is feasible, in the language of linear programming) if
and only if (⌧,⇡) is APA-feasible – how we do this is
described in Section IV-A.

2) We then solve this linear program, and use the solution to
construct a schedule “template” — this step is described
in Section IV-B.

3) In Section IV-C, we describe how we then use this
schedule template to actually construct a schedule during
run-time.

We will use the following example throughout this section, to
illustrate our algorithm.

Example 1: Our APA instance (⌧,⇡) has ⌧ = {⌧1, ⌧2, ⌧3}
with parameters as given below, while ⇡ = {⇡1,⇡2}.

⌧

i

C
i

T
i

↵

i

u
i

⌧1 7 10 {1} 0.7

⌧2 6 10 {2} 0.6

⌧3 10 20 {1, 2} 0.5

A. Constructing a linear program

As a first step in obtaining a run-time scheduling algorithm,
we will represent APA feasibility as a linear programming
problem. We define n ⇥m real-valued variables x

i,j

for i =

1, . . . , n and j = 1, . . . ,m, with variable x

i,j

denoting the
fraction of ⌧

i

that executes on processor ⇡
j

. We constrain each
x

i,j

variable to be non-negative: x
i,j

� 0 for all i, j. (While
we could also constrain each x

i,j

to be no larger than one,
specifying such a constraint turns out to be unnecessary in the
sense that it is implied by other constraints that we will add
to the linear program.)

We now seek to enforce the requirement that each task
receives its appropriate amount of execution time. Since the
affinity mask of task ⌧

i

restricts the processors upon which
⌧

i

may execute, this requirement can be represented by n

equations of the following form, one for each i = 1, 2, . . . , n:
X

j2↵

i

x

i,j

= 1 (1.1)

Next, we seek to enforce the requirement that the capacity
constraint of each processor is met. This is represented by
m inequalities of the following form, one for each j =

1, 2, . . . ,m:
n

X

i=1

�

u

i

x

i,j

�

 1 (1.2)

The resulting LP problem incorporating these two sets of
constraints for any APA instance (⌧,⇡), over the (n ⇥ m)

variables {x
i,j

}
i=1,...,n;j=1,...,m which are all constrained to

being � 0 and 1, is depicted in Figure 1.

Example 2: The linear program for the instance of Exam-
ple 1 is

x11 = 1

x22 = 1

x31 + x32 = 1

0.7x11 + 0.5x31 1

0.6x22 + 0.5x32 1

where the first three constraints correspond to instantiations
of Constraint (1.1) for tasks ⌧1, ⌧2, and ⌧3 respectively, while
the last two correspond to instantiations of Constraint (1.2) for
processors ⇡1 and ⇡2.

(Note that this linear program has no objective function
specified: we are simply seeking to determine any assignment
of values to the x

ij

variables that would cause all the con-
straints to evaluate to true.)

It may be verified that the following assignment of values
to the x

ij

variables

x11 = 1;x22 = 1;x31 = 0.4; and x32 = 0.6 (2)

constitutes a possible solution to this linear program.

It is immediately evident that the linear program APA-
Feas(⌧,⇡) has a solution if the instance (⌧,⇡) is APA-feasible;
this is formally demonstrated in Lemma 1 below.

Lemma 1: If instance (⌧,⇡) is APA-feasible, then APA-
Feas(⌧,⇡) has a solution.

Proof: Since (⌧,⇡) is APA-feasible, it is possible to
generate a schedule for any sequence of jobs that could legally
be generated by this instance. Let us therefore consider the
sequence of job arrivals in which jobs of each task ⌧

i

arrive
at all instants k · T

i

, for all k = 0, 1, 2, . . ., and executes for
exactly C

i

time units. Let P denote the least common multiple
(lcm) of the periods of the n tasks.

Consider a schedule for this sequence of job arrivals, in
which all job deadlines are met. Let f

i,j

denote the fraction
of the total amount of time over [0, P) during which task ⌧

i

executed on processor ⇡
j

, for each i and each j. We will show
that all the constraints in APA-Feas(⌧,⇡) are satisfied when
x

i,j

 (f

i,j

/u

i

) for each i, j.

Constraints (1.1): The total amount of execution received by
task i over [0, P) is given by

X

j2↵

i

(f

i,j

· P) = P

X

j2↵

i

(f

i,j

) .

There are P

T

i

jobs of task ⌧

i

with arrival times and deadlines
in [0, P); in a schedule in which all job deadlines are met,
⌧

i

will therefore have received C

i

· P

T

i

units of execution over

Given this APA instance (⌧,⇡), our scheduling strategy
proceeds in three steps:

1) First, we construct a linear program that has a solution
(is feasible, in the language of linear programming) if
and only if (⌧,⇡) is APA-feasible – how we do this is
described in Section IV-A.

2) We then solve this linear program, and use the solution to
construct a schedule “template” — this step is described
in Section IV-B.

3) In Section IV-C, we describe how we then use this
schedule template to actually construct a schedule during
run-time.

We will use the following example throughout this section, to
illustrate our algorithm.

Example 1: Our APA instance (⌧,⇡) has ⌧ = {⌧1, ⌧2, ⌧3}
with parameters as given below, while ⇡ = {⇡1,⇡2}.

⌧

i

C
i

T
i

↵

i

u
i

⌧1 7 10 {1} 0.7

⌧2 6 10 {2} 0.6

⌧3 10 20 {1, 2} 0.5

A. Constructing a linear program

As a first step in obtaining a run-time scheduling algorithm,
we will represent APA feasibility as a linear programming
problem. We define n ⇥m real-valued variables x

i,j

for i =

1, . . . , n and j = 1, . . . ,m, with variable x

i,j

denoting the
fraction of ⌧

i

that executes on processor ⇡
j

. We constrain each
x

i,j

variable to be non-negative: x
i,j

� 0 for all i, j. (While
we could also constrain each x

i,j

to be no larger than one,
specifying such a constraint turns out to be unnecessary in the
sense that it is implied by other constraints that we will add
to the linear program.)

We now seek to enforce the requirement that each task
receives its appropriate amount of execution time. Since the
affinity mask of task ⌧

i

restricts the processors upon which
⌧

i

may execute, this requirement can be represented by n

equations of the following form, one for each i = 1, 2, . . . , n:
X

j2↵

i

x

i,j

= 1 (1.1)

Next, we seek to enforce the requirement that the capacity
constraint of each processor is met. This is represented by
m inequalities of the following form, one for each j =

1, 2, . . . ,m:
n

X

i=1

�

u

i

x

i,j

�

 1 (1.2)

The resulting LP problem incorporating these two sets of
constraints for any APA instance (⌧,⇡), over the (n ⇥ m)

variables {x
i,j

}
i=1,...,n;j=1,...,m which are all constrained to

being � 0 and 1, is depicted in Figure 1.

Example 2: The linear program for the instance of Exam-
ple 1 is

x11 = 1

x22 = 1

x31 + x32 = 1

0.7x11 + 0.5x31 1

0.6x22 + 0.5x32 1

where the first three constraints correspond to instantiations
of Constraint (1.1) for tasks ⌧1, ⌧2, and ⌧3 respectively, while
the last two correspond to instantiations of Constraint (1.2) for
processors ⇡1 and ⇡2.

(Note that this linear program has no objective function
specified: we are simply seeking to determine any assignment
of values to the x

ij

variables that would cause all the con-
straints to evaluate to true.)

It may be verified that the following assignment of values
to the x

ij

variables

x11 = 1;x22 = 1;x31 = 0.4; and x32 = 0.6 (2)

constitutes a possible solution to this linear program.

It is immediately evident that the linear program APA-
Feas(⌧,⇡) has a solution if the instance (⌧,⇡) is APA-feasible;
this is formally demonstrated in Lemma 1 below.

Lemma 1: If instance (⌧,⇡) is APA-feasible, then APA-
Feas(⌧,⇡) has a solution.

Proof: Since (⌧,⇡) is APA-feasible, it is possible to
generate a schedule for any sequence of jobs that could legally
be generated by this instance. Let us therefore consider the
sequence of job arrivals in which jobs of each task ⌧

i

arrive
at all instants k · T

i

, for all k = 0, 1, 2, . . ., and executes for
exactly C

i

time units. Let P denote the least common multiple
(lcm) of the periods of the n tasks.

Consider a schedule for this sequence of job arrivals, in
which all job deadlines are met. Let f

i,j

denote the fraction
of the total amount of time over [0, P) during which task ⌧

i

executed on processor ⇡
j

, for each i and each j. We will show
that all the constraints in APA-Feas(⌧,⇡) are satisfied when
x

i,j

 (f

i,j

/u

i

) for each i, j.

Constraints (1.1): The total amount of execution received by
task i over [0, P) is given by

X

j2↵

i

(f

i,j

· P) = P

X

j2↵

i

(f

i,j

) .

There are P

T

i

jobs of task ⌧

i

with arrival times and deadlines
in [0, P); in a schedule in which all job deadlines are met,
⌧

i

will therefore have received C

i

· P

T

i

units of execution over

Variable xij

Fraction of utilization of task τi
served by processor j.

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Construct linear program
➡ n × m variables and n + m constraints

Each task is fully served:
➡ n constraints

No processor is over-utilized:
➡ m constraints

Step 1: Linear Program

37

Given this APA instance (⌧,⇡), our scheduling strategy
proceeds in three steps:

1) First, we construct a linear program that has a solution
(is feasible, in the language of linear programming) if
and only if (⌧,⇡) is APA-feasible – how we do this is
described in Section IV-A.

2) We then solve this linear program, and use the solution to
construct a schedule “template” — this step is described
in Section IV-B.

3) In Section IV-C, we describe how we then use this
schedule template to actually construct a schedule during
run-time.

We will use the following example throughout this section, to
illustrate our algorithm.

Example 1: Our APA instance (⌧,⇡) has ⌧ = {⌧1, ⌧2, ⌧3}
with parameters as given below, while ⇡ = {⇡1,⇡2}.

⌧

i

C
i

T
i

↵

i

u
i

⌧1 7 10 {1} 0.7

⌧2 6 10 {2} 0.6

⌧3 10 20 {1, 2} 0.5

A. Constructing a linear program

As a first step in obtaining a run-time scheduling algorithm,
we will represent APA feasibility as a linear programming
problem. We define n ⇥m real-valued variables x

i,j

for i =

1, . . . , n and j = 1, . . . ,m, with variable x

i,j

denoting the
fraction of ⌧

i

that executes on processor ⇡
j

. We constrain each
x

i,j

variable to be non-negative: x
i,j

� 0 for all i, j. (While
we could also constrain each x

i,j

to be no larger than one,
specifying such a constraint turns out to be unnecessary in the
sense that it is implied by other constraints that we will add
to the linear program.)

We now seek to enforce the requirement that each task
receives its appropriate amount of execution time. Since the
affinity mask of task ⌧

i

restricts the processors upon which
⌧

i

may execute, this requirement can be represented by n

equations of the following form, one for each i = 1, 2, . . . , n:
X

j2↵

i

x

i,j

= 1 (1.1)

Next, we seek to enforce the requirement that the capacity
constraint of each processor is met. This is represented by
m inequalities of the following form, one for each j =

1, 2, . . . ,m:
n

X

i=1

�

u

i

x

i,j

�

 1 (1.2)

The resulting LP problem incorporating these two sets of
constraints for any APA instance (⌧,⇡), over the (n ⇥ m)

variables {x
i,j

}
i=1,...,n;j=1,...,m which are all constrained to

being � 0 and 1, is depicted in Figure 1.

Example 2: The linear program for the instance of Exam-
ple 1 is

x11 = 1

x22 = 1

x31 + x32 = 1

0.7x11 + 0.5x31 1

0.6x22 + 0.5x32 1

where the first three constraints correspond to instantiations
of Constraint (1.1) for tasks ⌧1, ⌧2, and ⌧3 respectively, while
the last two correspond to instantiations of Constraint (1.2) for
processors ⇡1 and ⇡2.

(Note that this linear program has no objective function
specified: we are simply seeking to determine any assignment
of values to the x

ij

variables that would cause all the con-
straints to evaluate to true.)

It may be verified that the following assignment of values
to the x

ij

variables

x11 = 1;x22 = 1;x31 = 0.4; and x32 = 0.6 (2)

constitutes a possible solution to this linear program.

It is immediately evident that the linear program APA-
Feas(⌧,⇡) has a solution if the instance (⌧,⇡) is APA-feasible;
this is formally demonstrated in Lemma 1 below.

Lemma 1: If instance (⌧,⇡) is APA-feasible, then APA-
Feas(⌧,⇡) has a solution.

Proof: Since (⌧,⇡) is APA-feasible, it is possible to
generate a schedule for any sequence of jobs that could legally
be generated by this instance. Let us therefore consider the
sequence of job arrivals in which jobs of each task ⌧

i

arrive
at all instants k · T

i

, for all k = 0, 1, 2, . . ., and executes for
exactly C

i

time units. Let P denote the least common multiple
(lcm) of the periods of the n tasks.

Consider a schedule for this sequence of job arrivals, in
which all job deadlines are met. Let f

i,j

denote the fraction
of the total amount of time over [0, P) during which task ⌧

i

executed on processor ⇡
j

, for each i and each j. We will show
that all the constraints in APA-Feas(⌧,⇡) are satisfied when
x

i,j

 (f

i,j

/u

i

) for each i, j.

Constraints (1.1): The total amount of execution received by
task i over [0, P) is given by

X

j2↵

i

(f

i,j

· P) = P

X

j2↵

i

(f

i,j

) .

There are P

T

i

jobs of task ⌧

i

with arrival times and deadlines
in [0, P); in a schedule in which all job deadlines are met,
⌧

i

will therefore have received C

i

· P

T

i

units of execution over

Given this APA instance (⌧,⇡), our scheduling strategy
proceeds in three steps:

1) First, we construct a linear program that has a solution
(is feasible, in the language of linear programming) if
and only if (⌧,⇡) is APA-feasible – how we do this is
described in Section IV-A.

2) We then solve this linear program, and use the solution to
construct a schedule “template” — this step is described
in Section IV-B.

3) In Section IV-C, we describe how we then use this
schedule template to actually construct a schedule during
run-time.

We will use the following example throughout this section, to
illustrate our algorithm.

Example 1: Our APA instance (⌧,⇡) has ⌧ = {⌧1, ⌧2, ⌧3}
with parameters as given below, while ⇡ = {⇡1,⇡2}.

⌧

i

C
i

T
i

↵

i

u
i

⌧1 7 10 {1} 0.7

⌧2 6 10 {2} 0.6

⌧3 10 20 {1, 2} 0.5

A. Constructing a linear program

As a first step in obtaining a run-time scheduling algorithm,
we will represent APA feasibility as a linear programming
problem. We define n ⇥m real-valued variables x

i,j

for i =

1, . . . , n and j = 1, . . . ,m, with variable x

i,j

denoting the
fraction of ⌧

i

that executes on processor ⇡
j

. We constrain each
x

i,j

variable to be non-negative: x
i,j

� 0 for all i, j. (While
we could also constrain each x

i,j

to be no larger than one,
specifying such a constraint turns out to be unnecessary in the
sense that it is implied by other constraints that we will add
to the linear program.)

We now seek to enforce the requirement that each task
receives its appropriate amount of execution time. Since the
affinity mask of task ⌧

i

restricts the processors upon which
⌧

i

may execute, this requirement can be represented by n

equations of the following form, one for each i = 1, 2, . . . , n:
X

j2↵

i

x

i,j

= 1 (1.1)

Next, we seek to enforce the requirement that the capacity
constraint of each processor is met. This is represented by
m inequalities of the following form, one for each j =

1, 2, . . . ,m:
n

X

i=1

�

u

i

x

i,j

�

 1 (1.2)

The resulting LP problem incorporating these two sets of
constraints for any APA instance (⌧,⇡), over the (n ⇥ m)

variables {x
i,j

}
i=1,...,n;j=1,...,m which are all constrained to

being � 0 and 1, is depicted in Figure 1.

Example 2: The linear program for the instance of Exam-
ple 1 is

x11 = 1

x22 = 1

x31 + x32 = 1

0.7x11 + 0.5x31 1

0.6x22 + 0.5x32 1

where the first three constraints correspond to instantiations
of Constraint (1.1) for tasks ⌧1, ⌧2, and ⌧3 respectively, while
the last two correspond to instantiations of Constraint (1.2) for
processors ⇡1 and ⇡2.

(Note that this linear program has no objective function
specified: we are simply seeking to determine any assignment
of values to the x

ij

variables that would cause all the con-
straints to evaluate to true.)

It may be verified that the following assignment of values
to the x

ij

variables

x11 = 1;x22 = 1;x31 = 0.4; and x32 = 0.6 (2)

constitutes a possible solution to this linear program.

It is immediately evident that the linear program APA-
Feas(⌧,⇡) has a solution if the instance (⌧,⇡) is APA-feasible;
this is formally demonstrated in Lemma 1 below.

Lemma 1: If instance (⌧,⇡) is APA-feasible, then APA-
Feas(⌧,⇡) has a solution.

Proof: Since (⌧,⇡) is APA-feasible, it is possible to
generate a schedule for any sequence of jobs that could legally
be generated by this instance. Let us therefore consider the
sequence of job arrivals in which jobs of each task ⌧

i

arrive
at all instants k · T

i

, for all k = 0, 1, 2, . . ., and executes for
exactly C

i

time units. Let P denote the least common multiple
(lcm) of the periods of the n tasks.

Consider a schedule for this sequence of job arrivals, in
which all job deadlines are met. Let f

i,j

denote the fraction
of the total amount of time over [0, P) during which task ⌧

i

executed on processor ⇡
j

, for each i and each j. We will show
that all the constraints in APA-Feas(⌧,⇡) are satisfied when
x

i,j

 (f

i,j

/u

i

) for each i, j.

Constraints (1.1): The total amount of execution received by
task i over [0, P) is given by

X

j2↵

i

(f

i,j

· P) = P

X

j2↵

i

(f

i,j

) .

There are P

T

i

jobs of task ⌧

i

with arrival times and deadlines
in [0, P); in a schedule in which all job deadlines are met,
⌧

i

will therefore have received C

i

· P

T

i

units of execution over

Given this APA instance (⌧,⇡), our scheduling strategy
proceeds in three steps:

1) First, we construct a linear program that has a solution
(is feasible, in the language of linear programming) if
and only if (⌧,⇡) is APA-feasible – how we do this is
described in Section IV-A.

2) We then solve this linear program, and use the solution to
construct a schedule “template” — this step is described
in Section IV-B.

3) In Section IV-C, we describe how we then use this
schedule template to actually construct a schedule during
run-time.

We will use the following example throughout this section, to
illustrate our algorithm.

Example 1: Our APA instance (⌧,⇡) has ⌧ = {⌧1, ⌧2, ⌧3}
with parameters as given below, while ⇡ = {⇡1,⇡2}.

⌧

i

C
i

T
i

↵

i

u
i

⌧1 7 10 {1} 0.7

⌧2 6 10 {2} 0.6

⌧3 10 20 {1, 2} 0.5

A. Constructing a linear program

As a first step in obtaining a run-time scheduling algorithm,
we will represent APA feasibility as a linear programming
problem. We define n ⇥m real-valued variables x

i,j

for i =

1, . . . , n and j = 1, . . . ,m, with variable x

i,j

denoting the
fraction of ⌧

i

that executes on processor ⇡
j

. We constrain each
x

i,j

variable to be non-negative: x
i,j

� 0 for all i, j. (While
we could also constrain each x

i,j

to be no larger than one,
specifying such a constraint turns out to be unnecessary in the
sense that it is implied by other constraints that we will add
to the linear program.)

We now seek to enforce the requirement that each task
receives its appropriate amount of execution time. Since the
affinity mask of task ⌧

i

restricts the processors upon which
⌧

i

may execute, this requirement can be represented by n

equations of the following form, one for each i = 1, 2, . . . , n:
X

j2↵

i

x

i,j

= 1 (1.1)

Next, we seek to enforce the requirement that the capacity
constraint of each processor is met. This is represented by
m inequalities of the following form, one for each j =

1, 2, . . . ,m:
n

X

i=1

�

u

i

x

i,j

�

 1 (1.2)

The resulting LP problem incorporating these two sets of
constraints for any APA instance (⌧,⇡), over the (n ⇥ m)

variables {x
i,j

}
i=1,...,n;j=1,...,m which are all constrained to

being � 0 and 1, is depicted in Figure 1.

Example 2: The linear program for the instance of Exam-
ple 1 is

x11 = 1

x22 = 1

x31 + x32 = 1

0.7x11 + 0.5x31 1

0.6x22 + 0.5x32 1

where the first three constraints correspond to instantiations
of Constraint (1.1) for tasks ⌧1, ⌧2, and ⌧3 respectively, while
the last two correspond to instantiations of Constraint (1.2) for
processors ⇡1 and ⇡2.

(Note that this linear program has no objective function
specified: we are simply seeking to determine any assignment
of values to the x

ij

variables that would cause all the con-
straints to evaluate to true.)

It may be verified that the following assignment of values
to the x

ij

variables

x11 = 1;x22 = 1;x31 = 0.4; and x32 = 0.6 (2)

constitutes a possible solution to this linear program.

It is immediately evident that the linear program APA-
Feas(⌧,⇡) has a solution if the instance (⌧,⇡) is APA-feasible;
this is formally demonstrated in Lemma 1 below.

Lemma 1: If instance (⌧,⇡) is APA-feasible, then APA-
Feas(⌧,⇡) has a solution.

Proof: Since (⌧,⇡) is APA-feasible, it is possible to
generate a schedule for any sequence of jobs that could legally
be generated by this instance. Let us therefore consider the
sequence of job arrivals in which jobs of each task ⌧

i

arrive
at all instants k · T

i

, for all k = 0, 1, 2, . . ., and executes for
exactly C

i

time units. Let P denote the least common multiple
(lcm) of the periods of the n tasks.

Consider a schedule for this sequence of job arrivals, in
which all job deadlines are met. Let f

i,j

denote the fraction
of the total amount of time over [0, P) during which task ⌧

i

executed on processor ⇡
j

, for each i and each j. We will show
that all the constraints in APA-Feas(⌧,⇡) are satisfied when
x

i,j

 (f

i,j

/u

i

) for each i, j.

Constraints (1.1): The total amount of execution received by
task i over [0, P) is given by

X

j2↵

i

(f

i,j

· P) = P

X

j2↵

i

(f

i,j

) .

There are P

T

i

jobs of task ⌧

i

with arrival times and deadlines
in [0, P); in a schedule in which all job deadlines are met,
⌧

i

will therefore have received C

i

· P

T

i

units of execution over

Given this APA instance (⌧,⇡), our scheduling strategy
proceeds in three steps:

1) First, we construct a linear program that has a solution
(is feasible, in the language of linear programming) if
and only if (⌧,⇡) is APA-feasible – how we do this is
described in Section IV-A.

2) We then solve this linear program, and use the solution to
construct a schedule “template” — this step is described
in Section IV-B.

3) In Section IV-C, we describe how we then use this
schedule template to actually construct a schedule during
run-time.

We will use the following example throughout this section, to
illustrate our algorithm.

Example 1: Our APA instance (⌧,⇡) has ⌧ = {⌧1, ⌧2, ⌧3}
with parameters as given below, while ⇡ = {⇡1,⇡2}.

⌧

i

C
i

T
i

↵

i

u
i

⌧1 7 10 {1} 0.7

⌧2 6 10 {2} 0.6

⌧3 10 20 {1, 2} 0.5

A. Constructing a linear program

As a first step in obtaining a run-time scheduling algorithm,
we will represent APA feasibility as a linear programming
problem. We define n ⇥m real-valued variables x

i,j

for i =

1, . . . , n and j = 1, . . . ,m, with variable x

i,j

denoting the
fraction of ⌧

i

that executes on processor ⇡
j

. We constrain each
x

i,j

variable to be non-negative: x
i,j

� 0 for all i, j. (While
we could also constrain each x

i,j

to be no larger than one,
specifying such a constraint turns out to be unnecessary in the
sense that it is implied by other constraints that we will add
to the linear program.)

We now seek to enforce the requirement that each task
receives its appropriate amount of execution time. Since the
affinity mask of task ⌧

i

restricts the processors upon which
⌧

i

may execute, this requirement can be represented by n

equations of the following form, one for each i = 1, 2, . . . , n:
X

j2↵

i

x

i,j

= 1 (1.1)

Next, we seek to enforce the requirement that the capacity
constraint of each processor is met. This is represented by
m inequalities of the following form, one for each j =

1, 2, . . . ,m:
n

X

i=1

�

u

i

x

i,j

�

 1 (1.2)

The resulting LP problem incorporating these two sets of
constraints for any APA instance (⌧,⇡), over the (n ⇥ m)

variables {x
i,j

}
i=1,...,n;j=1,...,m which are all constrained to

being � 0 and 1, is depicted in Figure 1.

Example 2: The linear program for the instance of Exam-
ple 1 is

x11 = 1

x22 = 1

x31 + x32 = 1

0.7x11 + 0.5x31 1

0.6x22 + 0.5x32 1

where the first three constraints correspond to instantiations
of Constraint (1.1) for tasks ⌧1, ⌧2, and ⌧3 respectively, while
the last two correspond to instantiations of Constraint (1.2) for
processors ⇡1 and ⇡2.

(Note that this linear program has no objective function
specified: we are simply seeking to determine any assignment
of values to the x

ij

variables that would cause all the con-
straints to evaluate to true.)

It may be verified that the following assignment of values
to the x

ij

variables

x11 = 1;x22 = 1;x31 = 0.4; and x32 = 0.6 (2)

constitutes a possible solution to this linear program.

It is immediately evident that the linear program APA-
Feas(⌧,⇡) has a solution if the instance (⌧,⇡) is APA-feasible;
this is formally demonstrated in Lemma 1 below.

Lemma 1: If instance (⌧,⇡) is APA-feasible, then APA-
Feas(⌧,⇡) has a solution.

Proof: Since (⌧,⇡) is APA-feasible, it is possible to
generate a schedule for any sequence of jobs that could legally
be generated by this instance. Let us therefore consider the
sequence of job arrivals in which jobs of each task ⌧

i

arrive
at all instants k · T

i

, for all k = 0, 1, 2, . . ., and executes for
exactly C

i

time units. Let P denote the least common multiple
(lcm) of the periods of the n tasks.

Consider a schedule for this sequence of job arrivals, in
which all job deadlines are met. Let f

i,j

denote the fraction
of the total amount of time over [0, P) during which task ⌧

i

executed on processor ⇡
j

, for each i and each j. We will show
that all the constraints in APA-Feas(⌧,⇡) are satisfied when
x

i,j

 (f

i,j

/u

i

) for each i, j.

Constraints (1.1): The total amount of execution received by
task i over [0, P) is given by

X

j2↵

i

(f

i,j

· P) = P

X

j2↵

i

(f

i,j

) .

There are P

T

i

jobs of task ⌧

i

with arrival times and deadlines
in [0, P); in a schedule in which all job deadlines are met,
⌧

i

will therefore have received C

i

· P

T

i

units of execution over

Given this APA instance (⌧,⇡), our scheduling strategy
proceeds in three steps:

1) First, we construct a linear program that has a solution
(is feasible, in the language of linear programming) if
and only if (⌧,⇡) is APA-feasible – how we do this is
described in Section IV-A.

2) We then solve this linear program, and use the solution to
construct a schedule “template” — this step is described
in Section IV-B.

3) In Section IV-C, we describe how we then use this
schedule template to actually construct a schedule during
run-time.

We will use the following example throughout this section, to
illustrate our algorithm.

Example 1: Our APA instance (⌧,⇡) has ⌧ = {⌧1, ⌧2, ⌧3}
with parameters as given below, while ⇡ = {⇡1,⇡2}.

⌧

i

C
i

T
i

↵

i

u
i

⌧1 7 10 {1} 0.7

⌧2 6 10 {2} 0.6

⌧3 10 20 {1, 2} 0.5

A. Constructing a linear program

As a first step in obtaining a run-time scheduling algorithm,
we will represent APA feasibility as a linear programming
problem. We define n ⇥m real-valued variables x

i,j

for i =

1, . . . , n and j = 1, . . . ,m, with variable x

i,j

denoting the
fraction of ⌧

i

that executes on processor ⇡
j

. We constrain each
x

i,j

variable to be non-negative: x
i,j

� 0 for all i, j. (While
we could also constrain each x

i,j

to be no larger than one,
specifying such a constraint turns out to be unnecessary in the
sense that it is implied by other constraints that we will add
to the linear program.)

We now seek to enforce the requirement that each task
receives its appropriate amount of execution time. Since the
affinity mask of task ⌧

i

restricts the processors upon which
⌧

i

may execute, this requirement can be represented by n

equations of the following form, one for each i = 1, 2, . . . , n:
X

j2↵

i

x

i,j

= 1 (1.1)

Next, we seek to enforce the requirement that the capacity
constraint of each processor is met. This is represented by
m inequalities of the following form, one for each j =

1, 2, . . . ,m:
n

X

i=1

�

u

i

x

i,j

�

 1 (1.2)

The resulting LP problem incorporating these two sets of
constraints for any APA instance (⌧,⇡), over the (n ⇥ m)

variables {x
i,j

}
i=1,...,n;j=1,...,m which are all constrained to

being � 0 and 1, is depicted in Figure 1.

Example 2: The linear program for the instance of Exam-
ple 1 is

x11 = 1

x22 = 1

x31 + x32 = 1

0.7x11 + 0.5x31 1

0.6x22 + 0.5x32 1

where the first three constraints correspond to instantiations
of Constraint (1.1) for tasks ⌧1, ⌧2, and ⌧3 respectively, while
the last two correspond to instantiations of Constraint (1.2) for
processors ⇡1 and ⇡2.

(Note that this linear program has no objective function
specified: we are simply seeking to determine any assignment
of values to the x

ij

variables that would cause all the con-
straints to evaluate to true.)

It may be verified that the following assignment of values
to the x

ij

variables

x11 = 1;x22 = 1;x31 = 0.4; and x32 = 0.6 (2)

constitutes a possible solution to this linear program.

It is immediately evident that the linear program APA-
Feas(⌧,⇡) has a solution if the instance (⌧,⇡) is APA-feasible;
this is formally demonstrated in Lemma 1 below.

Lemma 1: If instance (⌧,⇡) is APA-feasible, then APA-
Feas(⌧,⇡) has a solution.

Proof: Since (⌧,⇡) is APA-feasible, it is possible to
generate a schedule for any sequence of jobs that could legally
be generated by this instance. Let us therefore consider the
sequence of job arrivals in which jobs of each task ⌧

i

arrive
at all instants k · T

i

, for all k = 0, 1, 2, . . ., and executes for
exactly C

i

time units. Let P denote the least common multiple
(lcm) of the periods of the n tasks.

Consider a schedule for this sequence of job arrivals, in
which all job deadlines are met. Let f

i,j

denote the fraction
of the total amount of time over [0, P) during which task ⌧

i

executed on processor ⇡
j

, for each i and each j. We will show
that all the constraints in APA-Feas(⌧,⇡) are satisfied when
x

i,j

 (f

i,j

/u

i

) for each i, j.

Constraints (1.1): The total amount of execution received by
task i over [0, P) is given by

X

j2↵

i

(f

i,j

· P) = P

X

j2↵

i

(f

i,j

) .

There are P

T

i

jobs of task ⌧

i

with arrival times and deadlines
in [0, P); in a schedule in which all job deadlines are met,
⌧

i

will therefore have received C

i

· P

T

i

units of execution over

Variable xij

Fraction of utilization of task τi
served by processor j.

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

result: schedule
template

High-Level Overview: Iterative Template Construction

38

given: APA
instance

C C C

C C C
construct & solve

linear program

obtain vertex solution

pick template
length l fill in template

from rear
& set l ← l - δ

1

2

3

4
5 6

l = 0

7

no

8
apply heuristics

100τ30
τ1τ

0τ2

yes

100
τ1τ30

Next…

pick step
size δ

identify urgent tasks
and full processors

construct bipartite graph
& determine matching

➡ τ1,…,τn
➡ α1,…, αn

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Step 2: Obtain Vertex Solution

39

Feasible region of linear program
➡ Solution exists within convex high-dimensional polytope

feasible region

non-vertex
optimal solution

x1

x2

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Step 2: Obtain Vertex Solution

40

Feasible region of linear program
➡ Solution exists within convex high-dimensional polytope

Need vertex optimal solution to limit task migrations (discussed later)
➡ Optimal solution given by solver not necessarily at vertex of polytope

(but vertex optimal solution exists)

feasible region

non-vertex
optimal solution

vertex optimal solutionx1

x2

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Step 2: Obtain Vertex Solution

41

Feasible region of linear program
➡ Solution exists within convex high-dimensional polytope

Need vertex optimal solution to limit task migrations (discussed later)
➡ Optimal solution given by solver not necessarily at vertex of polytope

(but vertex optimal solution exists)

Obtain optimal vertex solution from optimal solution
➡ Can be done in polynomial time (standard OR techniques)

feasible region

non-vertex
optimal solution

vertex optimal solutionx1

x2

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Step 2: Example Allocation

42

Given this APA instance (⌧,⇡), our scheduling strategy
proceeds in three steps:

1) First, we construct a linear program that has a solution
(is feasible, in the language of linear programming) if
and only if (⌧,⇡) is APA-feasible – how we do this is
described in Section IV-A.

2) We then solve this linear program, and use the solution to
construct a schedule “template” — this step is described
in Section IV-B.

3) In Section IV-C, we describe how we then use this
schedule template to actually construct a schedule during
run-time.

We will use the following example throughout this section, to
illustrate our algorithm.

Example 1: Our APA instance (⌧,⇡) has ⌧ = {⌧1, ⌧2, ⌧3}
with parameters as given below, while ⇡ = {⇡1,⇡2}.

⌧

i

C
i

T
i

↵

i

u
i

⌧1 7 10 {1} 0.7

⌧2 6 10 {2} 0.6

⌧3 10 20 {1, 2} 0.5

A. Constructing a linear program

As a first step in obtaining a run-time scheduling algorithm,
we will represent APA feasibility as a linear programming
problem. We define n ⇥m real-valued variables x

i,j

for i =

1, . . . , n and j = 1, . . . ,m, with variable x

i,j

denoting the
fraction of ⌧

i

that executes on processor ⇡
j

. We constrain each
x

i,j

variable to be non-negative: x
i,j

� 0 for all i, j. (While
we could also constrain each x

i,j

to be no larger than one,
specifying such a constraint turns out to be unnecessary in the
sense that it is implied by other constraints that we will add
to the linear program.)

We now seek to enforce the requirement that each task
receives its appropriate amount of execution time. Since the
affinity mask of task ⌧

i

restricts the processors upon which
⌧

i

may execute, this requirement can be represented by n

equations of the following form, one for each i = 1, 2, . . . , n:
X

j2↵

i

x

i,j

= 1 (1.1)

Next, we seek to enforce the requirement that the capacity
constraint of each processor is met. This is represented by
m inequalities of the following form, one for each j =

1, 2, . . . ,m:
n

X

i=1

�

u

i

x

i,j

�

 1 (1.2)

The resulting LP problem incorporating these two sets of
constraints for any APA instance (⌧,⇡), over the (n ⇥ m)

variables {x
i,j

}
i=1,...,n;j=1,...,m which are all constrained to

being � 0 and 1, is depicted in Figure 1.

Example 2: The linear program for the instance of Exam-
ple 1 is

x11 = 1

x22 = 1

x31 + x32 = 1

0.7x11 + 0.5x31 1

0.6x22 + 0.5x32 1

where the first three constraints correspond to instantiations
of Constraint (1.1) for tasks ⌧1, ⌧2, and ⌧3 respectively, while
the last two correspond to instantiations of Constraint (1.2) for
processors ⇡1 and ⇡2.

(Note that this linear program has no objective function
specified: we are simply seeking to determine any assignment
of values to the x

ij

variables that would cause all the con-
straints to evaluate to true.)

It may be verified that the following assignment of values
to the x

ij

variables

x11 = 1;x22 = 1;x31 = 0.4; and x32 = 0.6 (2)

constitutes a possible solution to this linear program.

It is immediately evident that the linear program APA-
Feas(⌧,⇡) has a solution if the instance (⌧,⇡) is APA-feasible;
this is formally demonstrated in Lemma 1 below.

Lemma 1: If instance (⌧,⇡) is APA-feasible, then APA-
Feas(⌧,⇡) has a solution.

Proof: Since (⌧,⇡) is APA-feasible, it is possible to
generate a schedule for any sequence of jobs that could legally
be generated by this instance. Let us therefore consider the
sequence of job arrivals in which jobs of each task ⌧

i

arrive
at all instants k · T

i

, for all k = 0, 1, 2, . . ., and executes for
exactly C

i

time units. Let P denote the least common multiple
(lcm) of the periods of the n tasks.

Consider a schedule for this sequence of job arrivals, in
which all job deadlines are met. Let f

i,j

denote the fraction
of the total amount of time over [0, P) during which task ⌧

i

executed on processor ⇡
j

, for each i and each j. We will show
that all the constraints in APA-Feas(⌧,⇡) are satisfied when
x

i,j

 (f

i,j

/u

i

) for each i, j.

Constraints (1.1): The total amount of execution received by
task i over [0, P) is given by

X

j2↵

i

(f

i,j

· P) = P

X

j2↵

i

(f

i,j

) .

There are P

T

i

jobs of task ⌧

i

with arrival times and deadlines
in [0, P); in a schedule in which all job deadlines are met,
⌧

i

will therefore have received C

i

· P

T

i

units of execution over

Given this APA instance (⌧,⇡), our scheduling strategy
proceeds in three steps:

1) First, we construct a linear program that has a solution
(is feasible, in the language of linear programming) if
and only if (⌧,⇡) is APA-feasible – how we do this is
described in Section IV-A.

2) We then solve this linear program, and use the solution to
construct a schedule “template” — this step is described
in Section IV-B.

3) In Section IV-C, we describe how we then use this
schedule template to actually construct a schedule during
run-time.

We will use the following example throughout this section, to
illustrate our algorithm.

Example 1: Our APA instance (⌧,⇡) has ⌧ = {⌧1, ⌧2, ⌧3}
with parameters as given below, while ⇡ = {⇡1,⇡2}.

⌧

i

C
i

T
i

↵

i

u
i

⌧1 7 10 {1} 0.7

⌧2 6 10 {2} 0.6

⌧3 10 20 {1, 2} 0.5

A. Constructing a linear program

As a first step in obtaining a run-time scheduling algorithm,
we will represent APA feasibility as a linear programming
problem. We define n ⇥m real-valued variables x

i,j

for i =

1, . . . , n and j = 1, . . . ,m, with variable x

i,j

denoting the
fraction of ⌧

i

that executes on processor ⇡
j

. We constrain each
x

i,j

variable to be non-negative: x
i,j

� 0 for all i, j. (While
we could also constrain each x

i,j

to be no larger than one,
specifying such a constraint turns out to be unnecessary in the
sense that it is implied by other constraints that we will add
to the linear program.)

We now seek to enforce the requirement that each task
receives its appropriate amount of execution time. Since the
affinity mask of task ⌧

i

restricts the processors upon which
⌧

i

may execute, this requirement can be represented by n

equations of the following form, one for each i = 1, 2, . . . , n:
X

j2↵

i

x

i,j

= 1 (1.1)

Next, we seek to enforce the requirement that the capacity
constraint of each processor is met. This is represented by
m inequalities of the following form, one for each j =

1, 2, . . . ,m:
n

X

i=1

�

u

i

x

i,j

�

 1 (1.2)

The resulting LP problem incorporating these two sets of
constraints for any APA instance (⌧,⇡), over the (n ⇥ m)

variables {x
i,j

}
i=1,...,n;j=1,...,m which are all constrained to

being � 0 and 1, is depicted in Figure 1.

Example 2: The linear program for the instance of Exam-
ple 1 is

x11 = 1

x22 = 1

x31 + x32 = 1

0.7x11 + 0.5x31 1

0.6x22 + 0.5x32 1

where the first three constraints correspond to instantiations
of Constraint (1.1) for tasks ⌧1, ⌧2, and ⌧3 respectively, while
the last two correspond to instantiations of Constraint (1.2) for
processors ⇡1 and ⇡2.

(Note that this linear program has no objective function
specified: we are simply seeking to determine any assignment
of values to the x

ij

variables that would cause all the con-
straints to evaluate to true.)

It may be verified that the following assignment of values
to the x

ij

variables

x11 = 1;x22 = 1;x31 = 0.4; and x32 = 0.6 (2)

constitutes a possible solution to this linear program.

It is immediately evident that the linear program APA-
Feas(⌧,⇡) has a solution if the instance (⌧,⇡) is APA-feasible;
this is formally demonstrated in Lemma 1 below.

Lemma 1: If instance (⌧,⇡) is APA-feasible, then APA-
Feas(⌧,⇡) has a solution.

Proof: Since (⌧,⇡) is APA-feasible, it is possible to
generate a schedule for any sequence of jobs that could legally
be generated by this instance. Let us therefore consider the
sequence of job arrivals in which jobs of each task ⌧

i

arrive
at all instants k · T

i

, for all k = 0, 1, 2, . . ., and executes for
exactly C

i

time units. Let P denote the least common multiple
(lcm) of the periods of the n tasks.

Consider a schedule for this sequence of job arrivals, in
which all job deadlines are met. Let f

i,j

denote the fraction
of the total amount of time over [0, P) during which task ⌧

i

executed on processor ⇡
j

, for each i and each j. We will show
that all the constraints in APA-Feas(⌧,⇡) are satisfied when
x

i,j

 (f

i,j

/u

i

) for each i, j.

Constraints (1.1): The total amount of execution received by
task i over [0, P) is given by

X

j2↵

i

(f

i,j

· P) = P

X

j2↵

i

(f

i,j

) .

There are P

T

i

jobs of task ⌧

i

with arrival times and deadlines
in [0, P); in a schedule in which all job deadlines are met,
⌧

i

will therefore have received C

i

· P

T

i

units of execution over

Given this APA instance (⌧,⇡), our scheduling strategy
proceeds in three steps:

1) First, we construct a linear program that has a solution
(is feasible, in the language of linear programming) if
and only if (⌧,⇡) is APA-feasible – how we do this is
described in Section IV-A.

2) We then solve this linear program, and use the solution to
construct a schedule “template” — this step is described
in Section IV-B.

3) In Section IV-C, we describe how we then use this
schedule template to actually construct a schedule during
run-time.

We will use the following example throughout this section, to
illustrate our algorithm.

Example 1: Our APA instance (⌧,⇡) has ⌧ = {⌧1, ⌧2, ⌧3}
with parameters as given below, while ⇡ = {⇡1,⇡2}.

⌧

i

C
i

T
i

↵

i

u
i

⌧1 7 10 {1} 0.7

⌧2 6 10 {2} 0.6

⌧3 10 20 {1, 2} 0.5

A. Constructing a linear program

As a first step in obtaining a run-time scheduling algorithm,
we will represent APA feasibility as a linear programming
problem. We define n ⇥m real-valued variables x

i,j

for i =

1, . . . , n and j = 1, . . . ,m, with variable x

i,j

denoting the
fraction of ⌧

i

that executes on processor ⇡
j

. We constrain each
x

i,j

variable to be non-negative: x
i,j

� 0 for all i, j. (While
we could also constrain each x

i,j

to be no larger than one,
specifying such a constraint turns out to be unnecessary in the
sense that it is implied by other constraints that we will add
to the linear program.)

We now seek to enforce the requirement that each task
receives its appropriate amount of execution time. Since the
affinity mask of task ⌧

i

restricts the processors upon which
⌧

i

may execute, this requirement can be represented by n

equations of the following form, one for each i = 1, 2, . . . , n:
X

j2↵

i

x

i,j

= 1 (1.1)

Next, we seek to enforce the requirement that the capacity
constraint of each processor is met. This is represented by
m inequalities of the following form, one for each j =

1, 2, . . . ,m:
n

X

i=1

�

u

i

x

i,j

�

 1 (1.2)

The resulting LP problem incorporating these two sets of
constraints for any APA instance (⌧,⇡), over the (n ⇥ m)

variables {x
i,j

}
i=1,...,n;j=1,...,m which are all constrained to

being � 0 and 1, is depicted in Figure 1.

Example 2: The linear program for the instance of Exam-
ple 1 is

x11 = 1

x22 = 1

x31 + x32 = 1

0.7x11 + 0.5x31 1

0.6x22 + 0.5x32 1

where the first three constraints correspond to instantiations
of Constraint (1.1) for tasks ⌧1, ⌧2, and ⌧3 respectively, while
the last two correspond to instantiations of Constraint (1.2) for
processors ⇡1 and ⇡2.

(Note that this linear program has no objective function
specified: we are simply seeking to determine any assignment
of values to the x

ij

variables that would cause all the con-
straints to evaluate to true.)

It may be verified that the following assignment of values
to the x

ij

variables

x11 = 1;x22 = 1;x31 = 0.4; and x32 = 0.6 (2)

constitutes a possible solution to this linear program.

It is immediately evident that the linear program APA-
Feas(⌧,⇡) has a solution if the instance (⌧,⇡) is APA-feasible;
this is formally demonstrated in Lemma 1 below.

Lemma 1: If instance (⌧,⇡) is APA-feasible, then APA-
Feas(⌧,⇡) has a solution.

Proof: Since (⌧,⇡) is APA-feasible, it is possible to
generate a schedule for any sequence of jobs that could legally
be generated by this instance. Let us therefore consider the
sequence of job arrivals in which jobs of each task ⌧

i

arrive
at all instants k · T

i

, for all k = 0, 1, 2, . . ., and executes for
exactly C

i

time units. Let P denote the least common multiple
(lcm) of the periods of the n tasks.

Consider a schedule for this sequence of job arrivals, in
which all job deadlines are met. Let f

i,j

denote the fraction
of the total amount of time over [0, P) during which task ⌧

i

executed on processor ⇡
j

, for each i and each j. We will show
that all the constraints in APA-Feas(⌧,⇡) are satisfied when
x

i,j

 (f

i,j

/u

i

) for each i, j.

Constraints (1.1): The total amount of execution received by
task i over [0, P) is given by

X

j2↵

i

(f

i,j

· P) = P

X

j2↵

i

(f

i,j

) .

There are P

T

i

jobs of task ⌧

i

with arrival times and deadlines
in [0, P); in a schedule in which all job deadlines are met,
⌧

i

will therefore have received C

i

· P

T

i

units of execution over

Utilization τ1 τ2 τ3 Total

Core 1

Core 2

0.7 — 0.2 0.9

— 0.6 0.3 0.9

task allocation

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

task allocation

Step 2: Example Allocation

43

Given this APA instance (⌧,⇡), our scheduling strategy
proceeds in three steps:

1) First, we construct a linear program that has a solution
(is feasible, in the language of linear programming) if
and only if (⌧,⇡) is APA-feasible – how we do this is
described in Section IV-A.

2) We then solve this linear program, and use the solution to
construct a schedule “template” — this step is described
in Section IV-B.

3) In Section IV-C, we describe how we then use this
schedule template to actually construct a schedule during
run-time.

We will use the following example throughout this section, to
illustrate our algorithm.

Example 1: Our APA instance (⌧,⇡) has ⌧ = {⌧1, ⌧2, ⌧3}
with parameters as given below, while ⇡ = {⇡1,⇡2}.

⌧

i

C
i

T
i

↵

i

u
i

⌧1 7 10 {1} 0.7

⌧2 6 10 {2} 0.6

⌧3 10 20 {1, 2} 0.5

A. Constructing a linear program

As a first step in obtaining a run-time scheduling algorithm,
we will represent APA feasibility as a linear programming
problem. We define n ⇥m real-valued variables x

i,j

for i =

1, . . . , n and j = 1, . . . ,m, with variable x

i,j

denoting the
fraction of ⌧

i

that executes on processor ⇡
j

. We constrain each
x

i,j

variable to be non-negative: x
i,j

� 0 for all i, j. (While
we could also constrain each x

i,j

to be no larger than one,
specifying such a constraint turns out to be unnecessary in the
sense that it is implied by other constraints that we will add
to the linear program.)

We now seek to enforce the requirement that each task
receives its appropriate amount of execution time. Since the
affinity mask of task ⌧

i

restricts the processors upon which
⌧

i

may execute, this requirement can be represented by n

equations of the following form, one for each i = 1, 2, . . . , n:
X

j2↵

i

x

i,j

= 1 (1.1)

Next, we seek to enforce the requirement that the capacity
constraint of each processor is met. This is represented by
m inequalities of the following form, one for each j =

1, 2, . . . ,m:
n

X

i=1

�

u

i

x

i,j

�

 1 (1.2)

The resulting LP problem incorporating these two sets of
constraints for any APA instance (⌧,⇡), over the (n ⇥ m)

variables {x
i,j

}
i=1,...,n;j=1,...,m which are all constrained to

being � 0 and 1, is depicted in Figure 1.

Example 2: The linear program for the instance of Exam-
ple 1 is

x11 = 1

x22 = 1

x31 + x32 = 1

0.7x11 + 0.5x31 1

0.6x22 + 0.5x32 1

where the first three constraints correspond to instantiations
of Constraint (1.1) for tasks ⌧1, ⌧2, and ⌧3 respectively, while
the last two correspond to instantiations of Constraint (1.2) for
processors ⇡1 and ⇡2.

(Note that this linear program has no objective function
specified: we are simply seeking to determine any assignment
of values to the x

ij

variables that would cause all the con-
straints to evaluate to true.)

It may be verified that the following assignment of values
to the x

ij

variables

x11 = 1;x22 = 1;x31 = 0.4; and x32 = 0.6 (2)

constitutes a possible solution to this linear program.

It is immediately evident that the linear program APA-
Feas(⌧,⇡) has a solution if the instance (⌧,⇡) is APA-feasible;
this is formally demonstrated in Lemma 1 below.

Lemma 1: If instance (⌧,⇡) is APA-feasible, then APA-
Feas(⌧,⇡) has a solution.

Proof: Since (⌧,⇡) is APA-feasible, it is possible to
generate a schedule for any sequence of jobs that could legally
be generated by this instance. Let us therefore consider the
sequence of job arrivals in which jobs of each task ⌧

i

arrive
at all instants k · T

i

, for all k = 0, 1, 2, . . ., and executes for
exactly C

i

time units. Let P denote the least common multiple
(lcm) of the periods of the n tasks.

Consider a schedule for this sequence of job arrivals, in
which all job deadlines are met. Let f

i,j

denote the fraction
of the total amount of time over [0, P) during which task ⌧

i

executed on processor ⇡
j

, for each i and each j. We will show
that all the constraints in APA-Feas(⌧,⇡) are satisfied when
x

i,j

 (f

i,j

/u

i

) for each i, j.

Constraints (1.1): The total amount of execution received by
task i over [0, P) is given by

X

j2↵

i

(f

i,j

· P) = P

X

j2↵

i

(f

i,j

) .

There are P

T

i

jobs of task ⌧

i

with arrival times and deadlines
in [0, P); in a schedule in which all job deadlines are met,
⌧

i

will therefore have received C

i

· P

T

i

units of execution over

Given this APA instance (⌧,⇡), our scheduling strategy
proceeds in three steps:

1) First, we construct a linear program that has a solution
(is feasible, in the language of linear programming) if
and only if (⌧,⇡) is APA-feasible – how we do this is
described in Section IV-A.

2) We then solve this linear program, and use the solution to
construct a schedule “template” — this step is described
in Section IV-B.

3) In Section IV-C, we describe how we then use this
schedule template to actually construct a schedule during
run-time.

We will use the following example throughout this section, to
illustrate our algorithm.

Example 1: Our APA instance (⌧,⇡) has ⌧ = {⌧1, ⌧2, ⌧3}
with parameters as given below, while ⇡ = {⇡1,⇡2}.

⌧

i

C
i

T
i

↵

i

u
i

⌧1 7 10 {1} 0.7

⌧2 6 10 {2} 0.6

⌧3 10 20 {1, 2} 0.5

A. Constructing a linear program

As a first step in obtaining a run-time scheduling algorithm,
we will represent APA feasibility as a linear programming
problem. We define n ⇥m real-valued variables x

i,j

for i =

1, . . . , n and j = 1, . . . ,m, with variable x

i,j

denoting the
fraction of ⌧

i

that executes on processor ⇡
j

. We constrain each
x

i,j

variable to be non-negative: x
i,j

� 0 for all i, j. (While
we could also constrain each x

i,j

to be no larger than one,
specifying such a constraint turns out to be unnecessary in the
sense that it is implied by other constraints that we will add
to the linear program.)

We now seek to enforce the requirement that each task
receives its appropriate amount of execution time. Since the
affinity mask of task ⌧

i

restricts the processors upon which
⌧

i

may execute, this requirement can be represented by n

equations of the following form, one for each i = 1, 2, . . . , n:
X

j2↵

i

x

i,j

= 1 (1.1)

Next, we seek to enforce the requirement that the capacity
constraint of each processor is met. This is represented by
m inequalities of the following form, one for each j =

1, 2, . . . ,m:
n

X

i=1

�

u

i

x

i,j

�

 1 (1.2)

The resulting LP problem incorporating these two sets of
constraints for any APA instance (⌧,⇡), over the (n ⇥ m)

variables {x
i,j

}
i=1,...,n;j=1,...,m which are all constrained to

being � 0 and 1, is depicted in Figure 1.

Example 2: The linear program for the instance of Exam-
ple 1 is

x11 = 1

x22 = 1

x31 + x32 = 1

0.7x11 + 0.5x31 1

0.6x22 + 0.5x32 1

where the first three constraints correspond to instantiations
of Constraint (1.1) for tasks ⌧1, ⌧2, and ⌧3 respectively, while
the last two correspond to instantiations of Constraint (1.2) for
processors ⇡1 and ⇡2.

(Note that this linear program has no objective function
specified: we are simply seeking to determine any assignment
of values to the x

ij

variables that would cause all the con-
straints to evaluate to true.)

It may be verified that the following assignment of values
to the x

ij

variables

x11 = 1;x22 = 1;x31 = 0.4; and x32 = 0.6 (2)

constitutes a possible solution to this linear program.

It is immediately evident that the linear program APA-
Feas(⌧,⇡) has a solution if the instance (⌧,⇡) is APA-feasible;
this is formally demonstrated in Lemma 1 below.

Lemma 1: If instance (⌧,⇡) is APA-feasible, then APA-
Feas(⌧,⇡) has a solution.

Proof: Since (⌧,⇡) is APA-feasible, it is possible to
generate a schedule for any sequence of jobs that could legally
be generated by this instance. Let us therefore consider the
sequence of job arrivals in which jobs of each task ⌧

i

arrive
at all instants k · T

i

, for all k = 0, 1, 2, . . ., and executes for
exactly C

i

time units. Let P denote the least common multiple
(lcm) of the periods of the n tasks.

Consider a schedule for this sequence of job arrivals, in
which all job deadlines are met. Let f

i,j

denote the fraction
of the total amount of time over [0, P) during which task ⌧

i

executed on processor ⇡
j

, for each i and each j. We will show
that all the constraints in APA-Feas(⌧,⇡) are satisfied when
x

i,j

 (f

i,j

/u

i

) for each i, j.

Constraints (1.1): The total amount of execution received by
task i over [0, P) is given by

X

j2↵

i

(f

i,j

· P) = P

X

j2↵

i

(f

i,j

) .

There are P

T

i

jobs of task ⌧

i

with arrival times and deadlines
in [0, P); in a schedule in which all job deadlines are met,
⌧

i

will therefore have received C

i

· P

T

i

units of execution over

Given this APA instance (⌧,⇡), our scheduling strategy
proceeds in three steps:

1) First, we construct a linear program that has a solution
(is feasible, in the language of linear programming) if
and only if (⌧,⇡) is APA-feasible – how we do this is
described in Section IV-A.

2) We then solve this linear program, and use the solution to
construct a schedule “template” — this step is described
in Section IV-B.

3) In Section IV-C, we describe how we then use this
schedule template to actually construct a schedule during
run-time.

We will use the following example throughout this section, to
illustrate our algorithm.

Example 1: Our APA instance (⌧,⇡) has ⌧ = {⌧1, ⌧2, ⌧3}
with parameters as given below, while ⇡ = {⇡1,⇡2}.

⌧

i

C
i

T
i

↵

i

u
i

⌧1 7 10 {1} 0.7

⌧2 6 10 {2} 0.6

⌧3 10 20 {1, 2} 0.5

A. Constructing a linear program

As a first step in obtaining a run-time scheduling algorithm,
we will represent APA feasibility as a linear programming
problem. We define n ⇥m real-valued variables x

i,j

for i =

1, . . . , n and j = 1, . . . ,m, with variable x

i,j

denoting the
fraction of ⌧

i

that executes on processor ⇡
j

. We constrain each
x

i,j

variable to be non-negative: x
i,j

� 0 for all i, j. (While
we could also constrain each x

i,j

to be no larger than one,
specifying such a constraint turns out to be unnecessary in the
sense that it is implied by other constraints that we will add
to the linear program.)

We now seek to enforce the requirement that each task
receives its appropriate amount of execution time. Since the
affinity mask of task ⌧

i

restricts the processors upon which
⌧

i

may execute, this requirement can be represented by n

equations of the following form, one for each i = 1, 2, . . . , n:
X

j2↵

i

x

i,j

= 1 (1.1)

Next, we seek to enforce the requirement that the capacity
constraint of each processor is met. This is represented by
m inequalities of the following form, one for each j =

1, 2, . . . ,m:
n

X

i=1

�

u

i

x

i,j

�

 1 (1.2)

The resulting LP problem incorporating these two sets of
constraints for any APA instance (⌧,⇡), over the (n ⇥ m)

variables {x
i,j

}
i=1,...,n;j=1,...,m which are all constrained to

being � 0 and 1, is depicted in Figure 1.

Example 2: The linear program for the instance of Exam-
ple 1 is

x11 = 1

x22 = 1

x31 + x32 = 1

0.7x11 + 0.5x31 1

0.6x22 + 0.5x32 1

where the first three constraints correspond to instantiations
of Constraint (1.1) for tasks ⌧1, ⌧2, and ⌧3 respectively, while
the last two correspond to instantiations of Constraint (1.2) for
processors ⇡1 and ⇡2.

(Note that this linear program has no objective function
specified: we are simply seeking to determine any assignment
of values to the x

ij

variables that would cause all the con-
straints to evaluate to true.)

It may be verified that the following assignment of values
to the x

ij

variables

x11 = 1;x22 = 1;x31 = 0.4; and x32 = 0.6 (2)

constitutes a possible solution to this linear program.

It is immediately evident that the linear program APA-
Feas(⌧,⇡) has a solution if the instance (⌧,⇡) is APA-feasible;
this is formally demonstrated in Lemma 1 below.

Lemma 1: If instance (⌧,⇡) is APA-feasible, then APA-
Feas(⌧,⇡) has a solution.

Proof: Since (⌧,⇡) is APA-feasible, it is possible to
generate a schedule for any sequence of jobs that could legally
be generated by this instance. Let us therefore consider the
sequence of job arrivals in which jobs of each task ⌧

i

arrive
at all instants k · T

i

, for all k = 0, 1, 2, . . ., and executes for
exactly C

i

time units. Let P denote the least common multiple
(lcm) of the periods of the n tasks.

Consider a schedule for this sequence of job arrivals, in
which all job deadlines are met. Let f

i,j

denote the fraction
of the total amount of time over [0, P) during which task ⌧

i

executed on processor ⇡
j

, for each i and each j. We will show
that all the constraints in APA-Feas(⌧,⇡) are satisfied when
x

i,j

 (f

i,j

/u

i

) for each i, j.

Constraints (1.1): The total amount of execution received by
task i over [0, P) is given by

X

j2↵

i

(f

i,j

· P) = P

X

j2↵

i

(f

i,j

) .

There are P

T

i

jobs of task ⌧

i

with arrival times and deadlines
in [0, P); in a schedule in which all job deadlines are met,
⌧

i

will therefore have received C

i

· P

T

i

units of execution over

Utilization τ1 τ2 τ3 Total

Core 1

Core 2

0.7 — 0.2 0.9

— 0.6 0.3 0.9

Migratory task:
utilization split across cores.

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

task allocation

Step 2: Example Allocation

44

Given this APA instance (⌧,⇡), our scheduling strategy
proceeds in three steps:

1) First, we construct a linear program that has a solution
(is feasible, in the language of linear programming) if
and only if (⌧,⇡) is APA-feasible – how we do this is
described in Section IV-A.

2) We then solve this linear program, and use the solution to
construct a schedule “template” — this step is described
in Section IV-B.

3) In Section IV-C, we describe how we then use this
schedule template to actually construct a schedule during
run-time.

We will use the following example throughout this section, to
illustrate our algorithm.

Example 1: Our APA instance (⌧,⇡) has ⌧ = {⌧1, ⌧2, ⌧3}
with parameters as given below, while ⇡ = {⇡1,⇡2}.

⌧

i

C
i

T
i

↵

i

u
i

⌧1 7 10 {1} 0.7

⌧2 6 10 {2} 0.6

⌧3 10 20 {1, 2} 0.5

A. Constructing a linear program

As a first step in obtaining a run-time scheduling algorithm,
we will represent APA feasibility as a linear programming
problem. We define n ⇥m real-valued variables x

i,j

for i =

1, . . . , n and j = 1, . . . ,m, with variable x

i,j

denoting the
fraction of ⌧

i

that executes on processor ⇡
j

. We constrain each
x

i,j

variable to be non-negative: x
i,j

� 0 for all i, j. (While
we could also constrain each x

i,j

to be no larger than one,
specifying such a constraint turns out to be unnecessary in the
sense that it is implied by other constraints that we will add
to the linear program.)

We now seek to enforce the requirement that each task
receives its appropriate amount of execution time. Since the
affinity mask of task ⌧

i

restricts the processors upon which
⌧

i

may execute, this requirement can be represented by n

equations of the following form, one for each i = 1, 2, . . . , n:
X

j2↵

i

x

i,j

= 1 (1.1)

Next, we seek to enforce the requirement that the capacity
constraint of each processor is met. This is represented by
m inequalities of the following form, one for each j =

1, 2, . . . ,m:
n

X

i=1

�

u

i

x

i,j

�

 1 (1.2)

The resulting LP problem incorporating these two sets of
constraints for any APA instance (⌧,⇡), over the (n ⇥ m)

variables {x
i,j

}
i=1,...,n;j=1,...,m which are all constrained to

being � 0 and 1, is depicted in Figure 1.

Example 2: The linear program for the instance of Exam-
ple 1 is

x11 = 1

x22 = 1

x31 + x32 = 1

0.7x11 + 0.5x31 1

0.6x22 + 0.5x32 1

where the first three constraints correspond to instantiations
of Constraint (1.1) for tasks ⌧1, ⌧2, and ⌧3 respectively, while
the last two correspond to instantiations of Constraint (1.2) for
processors ⇡1 and ⇡2.

(Note that this linear program has no objective function
specified: we are simply seeking to determine any assignment
of values to the x

ij

variables that would cause all the con-
straints to evaluate to true.)

It may be verified that the following assignment of values
to the x

ij

variables

x11 = 1;x22 = 1;x31 = 0.4; and x32 = 0.6 (2)

constitutes a possible solution to this linear program.

It is immediately evident that the linear program APA-
Feas(⌧,⇡) has a solution if the instance (⌧,⇡) is APA-feasible;
this is formally demonstrated in Lemma 1 below.

Lemma 1: If instance (⌧,⇡) is APA-feasible, then APA-
Feas(⌧,⇡) has a solution.

Proof: Since (⌧,⇡) is APA-feasible, it is possible to
generate a schedule for any sequence of jobs that could legally
be generated by this instance. Let us therefore consider the
sequence of job arrivals in which jobs of each task ⌧

i

arrive
at all instants k · T

i

, for all k = 0, 1, 2, . . ., and executes for
exactly C

i

time units. Let P denote the least common multiple
(lcm) of the periods of the n tasks.

Consider a schedule for this sequence of job arrivals, in
which all job deadlines are met. Let f

i,j

denote the fraction
of the total amount of time over [0, P) during which task ⌧

i

executed on processor ⇡
j

, for each i and each j. We will show
that all the constraints in APA-Feas(⌧,⇡) are satisfied when
x

i,j

 (f

i,j

/u

i

) for each i, j.

Constraints (1.1): The total amount of execution received by
task i over [0, P) is given by

X

j2↵

i

(f

i,j

· P) = P

X

j2↵

i

(f

i,j

) .

There are P

T

i

jobs of task ⌧

i

with arrival times and deadlines
in [0, P); in a schedule in which all job deadlines are met,
⌧

i

will therefore have received C

i

· P

T

i

units of execution over

Given this APA instance (⌧,⇡), our scheduling strategy
proceeds in three steps:

1) First, we construct a linear program that has a solution
(is feasible, in the language of linear programming) if
and only if (⌧,⇡) is APA-feasible – how we do this is
described in Section IV-A.

2) We then solve this linear program, and use the solution to
construct a schedule “template” — this step is described
in Section IV-B.

3) In Section IV-C, we describe how we then use this
schedule template to actually construct a schedule during
run-time.

We will use the following example throughout this section, to
illustrate our algorithm.

Example 1: Our APA instance (⌧,⇡) has ⌧ = {⌧1, ⌧2, ⌧3}
with parameters as given below, while ⇡ = {⇡1,⇡2}.

⌧

i

C
i

T
i

↵

i

u
i

⌧1 7 10 {1} 0.7

⌧2 6 10 {2} 0.6

⌧3 10 20 {1, 2} 0.5

A. Constructing a linear program

As a first step in obtaining a run-time scheduling algorithm,
we will represent APA feasibility as a linear programming
problem. We define n ⇥m real-valued variables x

i,j

for i =

1, . . . , n and j = 1, . . . ,m, with variable x

i,j

denoting the
fraction of ⌧

i

that executes on processor ⇡
j

. We constrain each
x

i,j

variable to be non-negative: x
i,j

� 0 for all i, j. (While
we could also constrain each x

i,j

to be no larger than one,
specifying such a constraint turns out to be unnecessary in the
sense that it is implied by other constraints that we will add
to the linear program.)

We now seek to enforce the requirement that each task
receives its appropriate amount of execution time. Since the
affinity mask of task ⌧

i

restricts the processors upon which
⌧

i

may execute, this requirement can be represented by n

equations of the following form, one for each i = 1, 2, . . . , n:
X

j2↵

i

x

i,j

= 1 (1.1)

Next, we seek to enforce the requirement that the capacity
constraint of each processor is met. This is represented by
m inequalities of the following form, one for each j =

1, 2, . . . ,m:
n

X

i=1

�

u

i

x

i,j

�

 1 (1.2)

The resulting LP problem incorporating these two sets of
constraints for any APA instance (⌧,⇡), over the (n ⇥ m)

variables {x
i,j

}
i=1,...,n;j=1,...,m which are all constrained to

being � 0 and 1, is depicted in Figure 1.

Example 2: The linear program for the instance of Exam-
ple 1 is

x11 = 1

x22 = 1

x31 + x32 = 1

0.7x11 + 0.5x31 1

0.6x22 + 0.5x32 1

where the first three constraints correspond to instantiations
of Constraint (1.1) for tasks ⌧1, ⌧2, and ⌧3 respectively, while
the last two correspond to instantiations of Constraint (1.2) for
processors ⇡1 and ⇡2.

(Note that this linear program has no objective function
specified: we are simply seeking to determine any assignment
of values to the x

ij

variables that would cause all the con-
straints to evaluate to true.)

It may be verified that the following assignment of values
to the x

ij

variables

x11 = 1;x22 = 1;x31 = 0.4; and x32 = 0.6 (2)

constitutes a possible solution to this linear program.

It is immediately evident that the linear program APA-
Feas(⌧,⇡) has a solution if the instance (⌧,⇡) is APA-feasible;
this is formally demonstrated in Lemma 1 below.

Lemma 1: If instance (⌧,⇡) is APA-feasible, then APA-
Feas(⌧,⇡) has a solution.

Proof: Since (⌧,⇡) is APA-feasible, it is possible to
generate a schedule for any sequence of jobs that could legally
be generated by this instance. Let us therefore consider the
sequence of job arrivals in which jobs of each task ⌧

i

arrive
at all instants k · T

i

, for all k = 0, 1, 2, . . ., and executes for
exactly C

i

time units. Let P denote the least common multiple
(lcm) of the periods of the n tasks.

Consider a schedule for this sequence of job arrivals, in
which all job deadlines are met. Let f

i,j

denote the fraction
of the total amount of time over [0, P) during which task ⌧

i

executed on processor ⇡
j

, for each i and each j. We will show
that all the constraints in APA-Feas(⌧,⇡) are satisfied when
x

i,j

 (f

i,j

/u

i

) for each i, j.

Constraints (1.1): The total amount of execution received by
task i over [0, P) is given by

X

j2↵

i

(f

i,j

· P) = P

X

j2↵

i

(f

i,j

) .

There are P

T

i

jobs of task ⌧

i

with arrival times and deadlines
in [0, P); in a schedule in which all job deadlines are met,
⌧

i

will therefore have received C

i

· P

T

i

units of execution over

Given this APA instance (⌧,⇡), our scheduling strategy
proceeds in three steps:

1) First, we construct a linear program that has a solution
(is feasible, in the language of linear programming) if
and only if (⌧,⇡) is APA-feasible – how we do this is
described in Section IV-A.

2) We then solve this linear program, and use the solution to
construct a schedule “template” — this step is described
in Section IV-B.

3) In Section IV-C, we describe how we then use this
schedule template to actually construct a schedule during
run-time.

We will use the following example throughout this section, to
illustrate our algorithm.

Example 1: Our APA instance (⌧,⇡) has ⌧ = {⌧1, ⌧2, ⌧3}
with parameters as given below, while ⇡ = {⇡1,⇡2}.

⌧

i

C
i

T
i

↵

i

u
i

⌧1 7 10 {1} 0.7

⌧2 6 10 {2} 0.6

⌧3 10 20 {1, 2} 0.5

A. Constructing a linear program

As a first step in obtaining a run-time scheduling algorithm,
we will represent APA feasibility as a linear programming
problem. We define n ⇥m real-valued variables x

i,j

for i =

1, . . . , n and j = 1, . . . ,m, with variable x

i,j

denoting the
fraction of ⌧

i

that executes on processor ⇡
j

. We constrain each
x

i,j

variable to be non-negative: x
i,j

� 0 for all i, j. (While
we could also constrain each x

i,j

to be no larger than one,
specifying such a constraint turns out to be unnecessary in the
sense that it is implied by other constraints that we will add
to the linear program.)

We now seek to enforce the requirement that each task
receives its appropriate amount of execution time. Since the
affinity mask of task ⌧

i

restricts the processors upon which
⌧

i

may execute, this requirement can be represented by n

equations of the following form, one for each i = 1, 2, . . . , n:
X

j2↵

i

x

i,j

= 1 (1.1)

Next, we seek to enforce the requirement that the capacity
constraint of each processor is met. This is represented by
m inequalities of the following form, one for each j =

1, 2, . . . ,m:
n

X

i=1

�

u

i

x

i,j

�

 1 (1.2)

The resulting LP problem incorporating these two sets of
constraints for any APA instance (⌧,⇡), over the (n ⇥ m)

variables {x
i,j

}
i=1,...,n;j=1,...,m which are all constrained to

being � 0 and 1, is depicted in Figure 1.

Example 2: The linear program for the instance of Exam-
ple 1 is

x11 = 1

x22 = 1

x31 + x32 = 1

0.7x11 + 0.5x31 1

0.6x22 + 0.5x32 1

where the first three constraints correspond to instantiations
of Constraint (1.1) for tasks ⌧1, ⌧2, and ⌧3 respectively, while
the last two correspond to instantiations of Constraint (1.2) for
processors ⇡1 and ⇡2.

(Note that this linear program has no objective function
specified: we are simply seeking to determine any assignment
of values to the x

ij

variables that would cause all the con-
straints to evaluate to true.)

It may be verified that the following assignment of values
to the x

ij

variables

x11 = 1;x22 = 1;x31 = 0.4; and x32 = 0.6 (2)

constitutes a possible solution to this linear program.

It is immediately evident that the linear program APA-
Feas(⌧,⇡) has a solution if the instance (⌧,⇡) is APA-feasible;
this is formally demonstrated in Lemma 1 below.

Lemma 1: If instance (⌧,⇡) is APA-feasible, then APA-
Feas(⌧,⇡) has a solution.

Proof: Since (⌧,⇡) is APA-feasible, it is possible to
generate a schedule for any sequence of jobs that could legally
be generated by this instance. Let us therefore consider the
sequence of job arrivals in which jobs of each task ⌧

i

arrive
at all instants k · T

i

, for all k = 0, 1, 2, . . ., and executes for
exactly C

i

time units. Let P denote the least common multiple
(lcm) of the periods of the n tasks.

Consider a schedule for this sequence of job arrivals, in
which all job deadlines are met. Let f

i,j

denote the fraction
of the total amount of time over [0, P) during which task ⌧

i

executed on processor ⇡
j

, for each i and each j. We will show
that all the constraints in APA-Feas(⌧,⇡) are satisfied when
x

i,j

 (f

i,j

/u

i

) for each i, j.

Constraints (1.1): The total amount of execution received by
task i over [0, P) is given by

X

j2↵

i

(f

i,j

· P) = P

X

j2↵

i

(f

i,j

) .

There are P

T

i

jobs of task ⌧

i

with arrival times and deadlines
in [0, P); in a schedule in which all job deadlines are met,
⌧

i

will therefore have received C

i

· P

T

i

units of execution over

Utilization τ1 τ2 τ3 Total

Core 1

Core 2

0.7 — 0.2 0.9

— 0.6 0.3 0.9

total utilization on each core: 0.9

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

result: schedule
template

High-Level Overview: Iterative Template Construction

45

given: APA
instance

C C C

C C C
construct & solve

linear program

obtain vertex solution

pick template
length l fill in template

from rear
& set l ← l - δ

1

2

3

4
5 6

l = 0

7

no

8
apply heuristics

100τ30
τ1τ

0τ2

yes

100
τ1τ30

pick step
size δ

identify urgent tasks
and full processors

construct bipartite graph
& determine matching

Next…

➡ τ1,…,τn
➡ α1,…, αn

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Steps 3 & 6: Template Length & Step Size

46

Iterative algorithm
➡ construct schedule template
➡ normalized for interval [0, 1]
➡ fill in template from rear

Core
1

Core
2

1.00

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Steps 3 & 6: Template Length & Step Size

47

Iterative algorithm
➡ construct schedule template
➡ normalized for interval [0, 1]
➡ fill in template from rear

Key parameters
➡ template length: 0 < l ≤ 1
➡ iteration step size: 0 < δ ≤ l

Core
1

Core
2

1.0l 0 l - δ

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Steps 3 & 6: Template Length & Step Size

48

Iterative algorithm
➡ construct schedule template
➡ normalized for interval [0, 1]
➡ fill in template from rear

Key parameters
➡ template length: 0 < l ≤ 1
➡ iteration step size: 0 < δ ≤ l

Core
1

Core
2

1.0l 0 l - δ

subsequent iterations

subsequent iterations

idle

idle

this iteration

this iteration

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Steps 3 & 6: Template Length & Step Size

49

Core
1

Core
2

1.0l = 0.90 l - δ = 0.6

subsequent iterations

subsequent iterations

idle

idle

this iteration

this iteration

Given this APA instance (⌧,⇡), our scheduling strategy
proceeds in three steps:

1) First, we construct a linear program that has a solution
(is feasible, in the language of linear programming) if
and only if (⌧,⇡) is APA-feasible – how we do this is
described in Section IV-A.

2) We then solve this linear program, and use the solution to
construct a schedule “template” — this step is described
in Section IV-B.

3) In Section IV-C, we describe how we then use this
schedule template to actually construct a schedule during
run-time.

We will use the following example throughout this section, to
illustrate our algorithm.

Example 1: Our APA instance (⌧,⇡) has ⌧ = {⌧1, ⌧2, ⌧3}
with parameters as given below, while ⇡ = {⇡1,⇡2}.

⌧

i

C
i

T
i

↵

i

u
i

⌧1 7 10 {1} 0.7

⌧2 6 10 {2} 0.6

⌧3 10 20 {1, 2} 0.5

A. Constructing a linear program

As a first step in obtaining a run-time scheduling algorithm,
we will represent APA feasibility as a linear programming
problem. We define n ⇥m real-valued variables x

i,j

for i =

1, . . . , n and j = 1, . . . ,m, with variable x

i,j

denoting the
fraction of ⌧

i

that executes on processor ⇡
j

. We constrain each
x

i,j

variable to be non-negative: x
i,j

� 0 for all i, j. (While
we could also constrain each x

i,j

to be no larger than one,
specifying such a constraint turns out to be unnecessary in the
sense that it is implied by other constraints that we will add
to the linear program.)

We now seek to enforce the requirement that each task
receives its appropriate amount of execution time. Since the
affinity mask of task ⌧

i

restricts the processors upon which
⌧

i

may execute, this requirement can be represented by n

equations of the following form, one for each i = 1, 2, . . . , n:
X

j2↵

i

x

i,j

= 1 (1.1)

Next, we seek to enforce the requirement that the capacity
constraint of each processor is met. This is represented by
m inequalities of the following form, one for each j =

1, 2, . . . ,m:
n

X

i=1

�

u

i

x

i,j

�

 1 (1.2)

The resulting LP problem incorporating these two sets of
constraints for any APA instance (⌧,⇡), over the (n ⇥ m)

variables {x
i,j

}
i=1,...,n;j=1,...,m which are all constrained to

being � 0 and 1, is depicted in Figure 1.

Example 2: The linear program for the instance of Exam-
ple 1 is

x11 = 1

x22 = 1

x31 + x32 = 1

0.7x11 + 0.5x31 1

0.6x22 + 0.5x32 1

where the first three constraints correspond to instantiations
of Constraint (1.1) for tasks ⌧1, ⌧2, and ⌧3 respectively, while
the last two correspond to instantiations of Constraint (1.2) for
processors ⇡1 and ⇡2.

(Note that this linear program has no objective function
specified: we are simply seeking to determine any assignment
of values to the x

ij

variables that would cause all the con-
straints to evaluate to true.)

It may be verified that the following assignment of values
to the x

ij

variables

x11 = 1;x22 = 1;x31 = 0.4; and x32 = 0.6 (2)

constitutes a possible solution to this linear program.

It is immediately evident that the linear program APA-
Feas(⌧,⇡) has a solution if the instance (⌧,⇡) is APA-feasible;
this is formally demonstrated in Lemma 1 below.

Lemma 1: If instance (⌧,⇡) is APA-feasible, then APA-
Feas(⌧,⇡) has a solution.

Proof: Since (⌧,⇡) is APA-feasible, it is possible to
generate a schedule for any sequence of jobs that could legally
be generated by this instance. Let us therefore consider the
sequence of job arrivals in which jobs of each task ⌧

i

arrive
at all instants k · T

i

, for all k = 0, 1, 2, . . ., and executes for
exactly C

i

time units. Let P denote the least common multiple
(lcm) of the periods of the n tasks.

Consider a schedule for this sequence of job arrivals, in
which all job deadlines are met. Let f

i,j

denote the fraction
of the total amount of time over [0, P) during which task ⌧

i

executed on processor ⇡
j

, for each i and each j. We will show
that all the constraints in APA-Feas(⌧,⇡) are satisfied when
x

i,j

 (f

i,j

/u

i

) for each i, j.

Constraints (1.1): The total amount of execution received by
task i over [0, P) is given by

X

j2↵

i

(f

i,j

· P) = P

X

j2↵

i

(f

i,j

) .

There are P

T

i

jobs of task ⌧

i

with arrival times and deadlines
in [0, P); in a schedule in which all job deadlines are met,
⌧

i

will therefore have received C

i

· P

T

i

units of execution over

l = 0.9
template length

➞ assign tasks for interval (0.6, 0.9]

δ = 0.3
step size

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

result: schedule
template

High-Level Overview: Iterative Template Construction

50

given: APA
instance

C C C

C C C
construct & solve

linear program

obtain vertex solution

pick template
length l fill in template

from rear
& set l ← l - δ

1

2

3

4
5 6

l = 0

7

no

8
apply heuristics

100τ30
τ1τ

0τ2

yes

100
τ1τ30Next…

pick step
size δ

identify urgent tasks
and full processors

construct bipartite graph
& determine matching

➡ τ1,…,τn
➡ α1,…, αn

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Step 4: Urgent Tasks and Full Processors

51

Urgent task
no slack left

Full processor
no idle time left

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Step 4: Urgent Tasks and Full Processors

52

1.0l = 0.90

Given this APA instance (⌧,⇡), our scheduling strategy
proceeds in three steps:

1) First, we construct a linear program that has a solution
(is feasible, in the language of linear programming) if
and only if (⌧,⇡) is APA-feasible – how we do this is
described in Section IV-A.

2) We then solve this linear program, and use the solution to
construct a schedule “template” — this step is described
in Section IV-B.

3) In Section IV-C, we describe how we then use this
schedule template to actually construct a schedule during
run-time.

We will use the following example throughout this section, to
illustrate our algorithm.

Example 1: Our APA instance (⌧,⇡) has ⌧ = {⌧1, ⌧2, ⌧3}
with parameters as given below, while ⇡ = {⇡1,⇡2}.

⌧

i

C
i

T
i

↵

i

u
i

⌧1 7 10 {1} 0.7

⌧2 6 10 {2} 0.6

⌧3 10 20 {1, 2} 0.5

A. Constructing a linear program

As a first step in obtaining a run-time scheduling algorithm,
we will represent APA feasibility as a linear programming
problem. We define n ⇥m real-valued variables x

i,j

for i =

1, . . . , n and j = 1, . . . ,m, with variable x

i,j

denoting the
fraction of ⌧

i

that executes on processor ⇡
j

. We constrain each
x

i,j

variable to be non-negative: x
i,j

� 0 for all i, j. (While
we could also constrain each x

i,j

to be no larger than one,
specifying such a constraint turns out to be unnecessary in the
sense that it is implied by other constraints that we will add
to the linear program.)

We now seek to enforce the requirement that each task
receives its appropriate amount of execution time. Since the
affinity mask of task ⌧

i

restricts the processors upon which
⌧

i

may execute, this requirement can be represented by n

equations of the following form, one for each i = 1, 2, . . . , n:
X

j2↵

i

x

i,j

= 1 (1.1)

Next, we seek to enforce the requirement that the capacity
constraint of each processor is met. This is represented by
m inequalities of the following form, one for each j =

1, 2, . . . ,m:
n

X

i=1

�

u

i

x

i,j

�

 1 (1.2)

The resulting LP problem incorporating these two sets of
constraints for any APA instance (⌧,⇡), over the (n ⇥ m)

variables {x
i,j

}
i=1,...,n;j=1,...,m which are all constrained to

being � 0 and 1, is depicted in Figure 1.

Example 2: The linear program for the instance of Exam-
ple 1 is

x11 = 1

x22 = 1

x31 + x32 = 1

0.7x11 + 0.5x31 1

0.6x22 + 0.5x32 1

where the first three constraints correspond to instantiations
of Constraint (1.1) for tasks ⌧1, ⌧2, and ⌧3 respectively, while
the last two correspond to instantiations of Constraint (1.2) for
processors ⇡1 and ⇡2.

(Note that this linear program has no objective function
specified: we are simply seeking to determine any assignment
of values to the x

ij

variables that would cause all the con-
straints to evaluate to true.)

It may be verified that the following assignment of values
to the x

ij

variables

x11 = 1;x22 = 1;x31 = 0.4; and x32 = 0.6 (2)

constitutes a possible solution to this linear program.

It is immediately evident that the linear program APA-
Feas(⌧,⇡) has a solution if the instance (⌧,⇡) is APA-feasible;
this is formally demonstrated in Lemma 1 below.

Lemma 1: If instance (⌧,⇡) is APA-feasible, then APA-
Feas(⌧,⇡) has a solution.

Proof: Since (⌧,⇡) is APA-feasible, it is possible to
generate a schedule for any sequence of jobs that could legally
be generated by this instance. Let us therefore consider the
sequence of job arrivals in which jobs of each task ⌧

i

arrive
at all instants k · T

i

, for all k = 0, 1, 2, . . ., and executes for
exactly C

i

time units. Let P denote the least common multiple
(lcm) of the periods of the n tasks.

Consider a schedule for this sequence of job arrivals, in
which all job deadlines are met. Let f

i,j

denote the fraction
of the total amount of time over [0, P) during which task ⌧

i

executed on processor ⇡
j

, for each i and each j. We will show
that all the constraints in APA-Feas(⌧,⇡) are satisfied when
x

i,j

 (f

i,j

/u

i

) for each i, j.

Constraints (1.1): The total amount of execution received by
task i over [0, P) is given by

X

j2↵

i

(f

i,j

· P) = P

X

j2↵

i

(f

i,j

) .

There are P

T

i

jobs of task ⌧

i

with arrival times and deadlines
in [0, P); in a schedule in which all job deadlines are met,
⌧

i

will therefore have received C

i

· P

T

i

units of execution over

task utilization must fit within [0, l]

Urgent task
no slack left

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Step 4: Urgent Tasks and Full Processors

53

1.0l = 0.90

Given this APA instance (⌧,⇡), our scheduling strategy
proceeds in three steps:

1) First, we construct a linear program that has a solution
(is feasible, in the language of linear programming) if
and only if (⌧,⇡) is APA-feasible – how we do this is
described in Section IV-A.

2) We then solve this linear program, and use the solution to
construct a schedule “template” — this step is described
in Section IV-B.

3) In Section IV-C, we describe how we then use this
schedule template to actually construct a schedule during
run-time.

We will use the following example throughout this section, to
illustrate our algorithm.

Example 1: Our APA instance (⌧,⇡) has ⌧ = {⌧1, ⌧2, ⌧3}
with parameters as given below, while ⇡ = {⇡1,⇡2}.

⌧

i

C
i

T
i

↵

i

u
i

⌧1 7 10 {1} 0.7

⌧2 6 10 {2} 0.6

⌧3 10 20 {1, 2} 0.5

A. Constructing a linear program

As a first step in obtaining a run-time scheduling algorithm,
we will represent APA feasibility as a linear programming
problem. We define n ⇥m real-valued variables x

i,j

for i =

1, . . . , n and j = 1, . . . ,m, with variable x

i,j

denoting the
fraction of ⌧

i

that executes on processor ⇡
j

. We constrain each
x

i,j

variable to be non-negative: x
i,j

� 0 for all i, j. (While
we could also constrain each x

i,j

to be no larger than one,
specifying such a constraint turns out to be unnecessary in the
sense that it is implied by other constraints that we will add
to the linear program.)

We now seek to enforce the requirement that each task
receives its appropriate amount of execution time. Since the
affinity mask of task ⌧

i

restricts the processors upon which
⌧

i

may execute, this requirement can be represented by n

equations of the following form, one for each i = 1, 2, . . . , n:
X

j2↵

i

x

i,j

= 1 (1.1)

Next, we seek to enforce the requirement that the capacity
constraint of each processor is met. This is represented by
m inequalities of the following form, one for each j =

1, 2, . . . ,m:
n

X

i=1

�

u

i

x

i,j

�

 1 (1.2)

The resulting LP problem incorporating these two sets of
constraints for any APA instance (⌧,⇡), over the (n ⇥ m)

variables {x
i,j

}
i=1,...,n;j=1,...,m which are all constrained to

being � 0 and 1, is depicted in Figure 1.

Example 2: The linear program for the instance of Exam-
ple 1 is

x11 = 1

x22 = 1

x31 + x32 = 1

0.7x11 + 0.5x31 1

0.6x22 + 0.5x32 1

where the first three constraints correspond to instantiations
of Constraint (1.1) for tasks ⌧1, ⌧2, and ⌧3 respectively, while
the last two correspond to instantiations of Constraint (1.2) for
processors ⇡1 and ⇡2.

(Note that this linear program has no objective function
specified: we are simply seeking to determine any assignment
of values to the x

ij

variables that would cause all the con-
straints to evaluate to true.)

It may be verified that the following assignment of values
to the x

ij

variables

x11 = 1;x22 = 1;x31 = 0.4; and x32 = 0.6 (2)

constitutes a possible solution to this linear program.

It is immediately evident that the linear program APA-
Feas(⌧,⇡) has a solution if the instance (⌧,⇡) is APA-feasible;
this is formally demonstrated in Lemma 1 below.

Lemma 1: If instance (⌧,⇡) is APA-feasible, then APA-
Feas(⌧,⇡) has a solution.

Proof: Since (⌧,⇡) is APA-feasible, it is possible to
generate a schedule for any sequence of jobs that could legally
be generated by this instance. Let us therefore consider the
sequence of job arrivals in which jobs of each task ⌧

i

arrive
at all instants k · T

i

, for all k = 0, 1, 2, . . ., and executes for
exactly C

i

time units. Let P denote the least common multiple
(lcm) of the periods of the n tasks.

Consider a schedule for this sequence of job arrivals, in
which all job deadlines are met. Let f

i,j

denote the fraction
of the total amount of time over [0, P) during which task ⌧

i

executed on processor ⇡
j

, for each i and each j. We will show
that all the constraints in APA-Feas(⌧,⇡) are satisfied when
x

i,j

 (f

i,j

/u

i

) for each i, j.

Constraints (1.1): The total amount of execution received by
task i over [0, P) is given by

X

j2↵

i

(f

i,j

· P) = P

X

j2↵

i

(f

i,j

) .

There are P

T

i

jobs of task ⌧

i

with arrival times and deadlines
in [0, P); in a schedule in which all job deadlines are met,
⌧

i

will therefore have received C

i

· P

T

i

units of execution over

τ1: u1 = 0.7

τ3: u2 = 0.5

τ2: u2 = 0.6

slack

slack

slack

Urgent task
no slack left

Tasks not urgent!

Each task can still be delayed.

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Step 4: Urgent Tasks and Full Processors

54

1.0l = 0.90

τ1: u1 = 0.7

τ3: u2 = 0.5

τ2: u2 = 0.6

slack

slack

slack

Utilization τ1 τ2 τ3 Total

Core 1

Core 2

0.7 — 0.2 0.9

— 0.6 0.3 0.9

Full processor
no idle time left

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Step 4: Urgent Tasks and Full Processors

55

1.0l = 0.90

τ1: u1 = 0.7

τ3: u2 = 0.5

τ2: u2 = 0.6

slack

slack

slack

Utilization τ1 τ2 τ3 Total

Core 1

Core 2

0.7 — 0.2 0.9

— 0.6 0.3 0.9

core utilization must fit within [0, l]

Full processor
no idle time left

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Step 4: Urgent Tasks and Full Processors

56

1.0l = 0.90

τ1: u1 = 0.7

τ3: u2 = 0.5

τ2: u2 = 0.6

slack

slack

slack

Utilization τ1 τ2 τ3 Total

Core 1

Core 2

0.7 — 0.2 0.9

— 0.6 0.3 0.9

Core 1: 0.9

Core 2: 0.9

no slack!

Full processor
no idle time left

Both processors urgent!

Must schedule some task.

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

result: schedule
template

High-Level Overview: Iterative Template Construction

57

given: APA
instance

C C C

C C C
construct & solve

linear program

obtain vertex solution

pick template
length l fill in template

from rear
& set l ← l - δ

1

2

3

4
5 6

l = 0

7

no

8
apply heuristics

100τ30
τ1τ

0τ2

yes

100
τ1τ30

pick step
size δ

identify urgent tasks
and full processors

construct bipartite graph
& determine matching

Next…

➡ τ1,…,τn
➡ α1,…, αn

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Step 5: Matching Tasks to Processors

58

All full processors and all urgent tasks must be matched.

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Step 5: Matching Tasks to Processors

59

Core
1

Core
2

Given this APA instance (⌧,⇡), our scheduling strategy
proceeds in three steps:

1) First, we construct a linear program that has a solution
(is feasible, in the language of linear programming) if
and only if (⌧,⇡) is APA-feasible – how we do this is
described in Section IV-A.

2) We then solve this linear program, and use the solution to
construct a schedule “template” — this step is described
in Section IV-B.

3) In Section IV-C, we describe how we then use this
schedule template to actually construct a schedule during
run-time.

We will use the following example throughout this section, to
illustrate our algorithm.

Example 1: Our APA instance (⌧,⇡) has ⌧ = {⌧1, ⌧2, ⌧3}
with parameters as given below, while ⇡ = {⇡1,⇡2}.

⌧

i

C
i

T
i

↵

i

u
i

⌧1 7 10 {1} 0.7

⌧2 6 10 {2} 0.6

⌧3 10 20 {1, 2} 0.5

A. Constructing a linear program

As a first step in obtaining a run-time scheduling algorithm,
we will represent APA feasibility as a linear programming
problem. We define n ⇥m real-valued variables x

i,j

for i =

1, . . . , n and j = 1, . . . ,m, with variable x

i,j

denoting the
fraction of ⌧

i

that executes on processor ⇡
j

. We constrain each
x

i,j

variable to be non-negative: x
i,j

� 0 for all i, j. (While
we could also constrain each x

i,j

to be no larger than one,
specifying such a constraint turns out to be unnecessary in the
sense that it is implied by other constraints that we will add
to the linear program.)

We now seek to enforce the requirement that each task
receives its appropriate amount of execution time. Since the
affinity mask of task ⌧

i

restricts the processors upon which
⌧

i

may execute, this requirement can be represented by n

equations of the following form, one for each i = 1, 2, . . . , n:
X

j2↵

i

x

i,j

= 1 (1.1)

Next, we seek to enforce the requirement that the capacity
constraint of each processor is met. This is represented by
m inequalities of the following form, one for each j =

1, 2, . . . ,m:
n

X

i=1

�

u

i

x

i,j

�

 1 (1.2)

The resulting LP problem incorporating these two sets of
constraints for any APA instance (⌧,⇡), over the (n ⇥ m)

variables {x
i,j

}
i=1,...,n;j=1,...,m which are all constrained to

being � 0 and 1, is depicted in Figure 1.

Example 2: The linear program for the instance of Exam-
ple 1 is

x11 = 1

x22 = 1

x31 + x32 = 1

0.7x11 + 0.5x31 1

0.6x22 + 0.5x32 1

where the first three constraints correspond to instantiations
of Constraint (1.1) for tasks ⌧1, ⌧2, and ⌧3 respectively, while
the last two correspond to instantiations of Constraint (1.2) for
processors ⇡1 and ⇡2.

(Note that this linear program has no objective function
specified: we are simply seeking to determine any assignment
of values to the x

ij

variables that would cause all the con-
straints to evaluate to true.)

It may be verified that the following assignment of values
to the x

ij

variables

x11 = 1;x22 = 1;x31 = 0.4; and x32 = 0.6 (2)

constitutes a possible solution to this linear program.

It is immediately evident that the linear program APA-
Feas(⌧,⇡) has a solution if the instance (⌧,⇡) is APA-feasible;
this is formally demonstrated in Lemma 1 below.

Lemma 1: If instance (⌧,⇡) is APA-feasible, then APA-
Feas(⌧,⇡) has a solution.

Proof: Since (⌧,⇡) is APA-feasible, it is possible to
generate a schedule for any sequence of jobs that could legally
be generated by this instance. Let us therefore consider the
sequence of job arrivals in which jobs of each task ⌧

i

arrive
at all instants k · T

i

, for all k = 0, 1, 2, . . ., and executes for
exactly C

i

time units. Let P denote the least common multiple
(lcm) of the periods of the n tasks.

Consider a schedule for this sequence of job arrivals, in
which all job deadlines are met. Let f

i,j

denote the fraction
of the total amount of time over [0, P) during which task ⌧

i

executed on processor ⇡
j

, for each i and each j. We will show
that all the constraints in APA-Feas(⌧,⇡) are satisfied when
x

i,j

 (f

i,j

/u

i

) for each i, j.

Constraints (1.1): The total amount of execution received by
task i over [0, P) is given by

X

j2↵

i

(f

i,j

· P) = P

X

j2↵

i

(f

i,j

) .

There are P

T

i

jobs of task ⌧

i

with arrival times and deadlines
in [0, P); in a schedule in which all job deadlines are met,
⌧

i

will therefore have received C

i

· P

T

i

units of execution over

Core
1

Core
2

τ1

τ2

τ3

not urgent full

All full processors and all urgent tasks must be matched.

Define bipartite graph & find matching
‣ vertices: tasks & cores
‣ edges according to affinity

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Step 5: Matching Tasks to Processors

60

Core
1

Core
2

Given this APA instance (⌧,⇡), our scheduling strategy
proceeds in three steps:

1) First, we construct a linear program that has a solution
(is feasible, in the language of linear programming) if
and only if (⌧,⇡) is APA-feasible – how we do this is
described in Section IV-A.

2) We then solve this linear program, and use the solution to
construct a schedule “template” — this step is described
in Section IV-B.

3) In Section IV-C, we describe how we then use this
schedule template to actually construct a schedule during
run-time.

We will use the following example throughout this section, to
illustrate our algorithm.

Example 1: Our APA instance (⌧,⇡) has ⌧ = {⌧1, ⌧2, ⌧3}
with parameters as given below, while ⇡ = {⇡1,⇡2}.

⌧

i

C
i

T
i

↵

i

u
i

⌧1 7 10 {1} 0.7

⌧2 6 10 {2} 0.6

⌧3 10 20 {1, 2} 0.5

A. Constructing a linear program

As a first step in obtaining a run-time scheduling algorithm,
we will represent APA feasibility as a linear programming
problem. We define n ⇥m real-valued variables x

i,j

for i =

1, . . . , n and j = 1, . . . ,m, with variable x

i,j

denoting the
fraction of ⌧

i

that executes on processor ⇡
j

. We constrain each
x

i,j

variable to be non-negative: x
i,j

� 0 for all i, j. (While
we could also constrain each x

i,j

to be no larger than one,
specifying such a constraint turns out to be unnecessary in the
sense that it is implied by other constraints that we will add
to the linear program.)

We now seek to enforce the requirement that each task
receives its appropriate amount of execution time. Since the
affinity mask of task ⌧

i

restricts the processors upon which
⌧

i

may execute, this requirement can be represented by n

equations of the following form, one for each i = 1, 2, . . . , n:
X

j2↵

i

x

i,j

= 1 (1.1)

Next, we seek to enforce the requirement that the capacity
constraint of each processor is met. This is represented by
m inequalities of the following form, one for each j =

1, 2, . . . ,m:
n

X

i=1

�

u

i

x

i,j

�

 1 (1.2)

The resulting LP problem incorporating these two sets of
constraints for any APA instance (⌧,⇡), over the (n ⇥ m)

variables {x
i,j

}
i=1,...,n;j=1,...,m which are all constrained to

being � 0 and 1, is depicted in Figure 1.

Example 2: The linear program for the instance of Exam-
ple 1 is

x11 = 1

x22 = 1

x31 + x32 = 1

0.7x11 + 0.5x31 1

0.6x22 + 0.5x32 1

where the first three constraints correspond to instantiations
of Constraint (1.1) for tasks ⌧1, ⌧2, and ⌧3 respectively, while
the last two correspond to instantiations of Constraint (1.2) for
processors ⇡1 and ⇡2.

(Note that this linear program has no objective function
specified: we are simply seeking to determine any assignment
of values to the x

ij

variables that would cause all the con-
straints to evaluate to true.)

It may be verified that the following assignment of values
to the x

ij

variables

x11 = 1;x22 = 1;x31 = 0.4; and x32 = 0.6 (2)

constitutes a possible solution to this linear program.

It is immediately evident that the linear program APA-
Feas(⌧,⇡) has a solution if the instance (⌧,⇡) is APA-feasible;
this is formally demonstrated in Lemma 1 below.

Lemma 1: If instance (⌧,⇡) is APA-feasible, then APA-
Feas(⌧,⇡) has a solution.

Proof: Since (⌧,⇡) is APA-feasible, it is possible to
generate a schedule for any sequence of jobs that could legally
be generated by this instance. Let us therefore consider the
sequence of job arrivals in which jobs of each task ⌧

i

arrive
at all instants k · T

i

, for all k = 0, 1, 2, . . ., and executes for
exactly C

i

time units. Let P denote the least common multiple
(lcm) of the periods of the n tasks.

Consider a schedule for this sequence of job arrivals, in
which all job deadlines are met. Let f

i,j

denote the fraction
of the total amount of time over [0, P) during which task ⌧

i

executed on processor ⇡
j

, for each i and each j. We will show
that all the constraints in APA-Feas(⌧,⇡) are satisfied when
x

i,j

 (f

i,j

/u

i

) for each i, j.

Constraints (1.1): The total amount of execution received by
task i over [0, P) is given by

X

j2↵

i

(f

i,j

· P) = P

X

j2↵

i

(f

i,j

) .

There are P

T

i

jobs of task ⌧

i

with arrival times and deadlines
in [0, P); in a schedule in which all job deadlines are met,
⌧

i

will therefore have received C

i

· P

T

i

units of execution over

Core
1

Core
2

τ1

τ2

τ3

not urgent full

Define bipartite graph & find matching
‣ vertices: tasks & cores
‣ edges according to affinity
‣construct matching (in three steps)
‣ existence follows from Hall’s theorem

All full processors and all urgent tasks must be matched.

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

result: schedule
template

High-Level Overview: Iterative Template Construction

61

given: APA
instance

C C C

C C C
construct & solve

linear program

obtain vertex solution

pick template
length l fill in template

from rear
& set l ← l - δ

1

2

3

4
5 6

l = 0

7

no

8
apply heuristics

100τ30
τ1τ

0τ2

yes

100
τ1τ30

Next…

pick step
size δ

identify urgent tasks
and full processors

construct bipartite graph
& determine matching

➡ τ1,…,τn
➡ α1,…, αn

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Step 7: Schedule Construction

62

Core
1

Core
2

τ1

τ2

τ3

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Step 7: Schedule Construction

63

Core
1

Core
2

1.0l = 0.90

Core
1

Core
2

τ1

τ2

τ3

l = 0.9 δ = 0.3
template length step size

➞ assign tasks for interval (0.6, 0.9]

l - δ = 0.6

subsequent iterations this iteration

subsequent iterations this iteration

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

subsequent iterations

subsequent iterations

Step 7: Schedule Construction

64

Core
1

Core
2

1.0l = 0.9l - δ = 0.6

τ1

τ3

0

Core
1

Core
2

τ1

τ2

τ3

l = 0.9 δ = 0.3
template length step size

➞ assign tasks for interval (0.6, 0.9]

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

subsequent iterations

subsequent iterations

Finally, Update & Repeat

65

Core
1

Core
2

1.0l = 0.9l - δ = 0.6

τ1

τ3

0

l ← l - δ
…

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

subsequent iterations

subsequent iterations

Finally, Update & Repeat

66

Core
1

Core
2

1.0l = 0.9l - δ = 0.6

τ1

τ3

0

subsequent
iterationsCore

1

Core
2

1.0l0

next
iteration

subsequent
iterations

l - δ

next
iteration

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Iterate until l=0

67

Given this APA instance (⌧,⇡), our scheduling strategy
proceeds in three steps:

1) First, we construct a linear program that has a solution
(is feasible, in the language of linear programming) if
and only if (⌧,⇡) is APA-feasible – how we do this is
described in Section IV-A.

2) We then solve this linear program, and use the solution to
construct a schedule “template” — this step is described
in Section IV-B.

3) In Section IV-C, we describe how we then use this
schedule template to actually construct a schedule during
run-time.

We will use the following example throughout this section, to
illustrate our algorithm.

Example 1: Our APA instance (⌧,⇡) has ⌧ = {⌧1, ⌧2, ⌧3}
with parameters as given below, while ⇡ = {⇡1,⇡2}.

⌧

i

C
i

T
i

↵

i

u
i

⌧1 7 10 {1} 0.7

⌧2 6 10 {2} 0.6

⌧3 10 20 {1, 2} 0.5

A. Constructing a linear program

As a first step in obtaining a run-time scheduling algorithm,
we will represent APA feasibility as a linear programming
problem. We define n ⇥m real-valued variables x

i,j

for i =

1, . . . , n and j = 1, . . . ,m, with variable x

i,j

denoting the
fraction of ⌧

i

that executes on processor ⇡
j

. We constrain each
x

i,j

variable to be non-negative: x
i,j

� 0 for all i, j. (While
we could also constrain each x

i,j

to be no larger than one,
specifying such a constraint turns out to be unnecessary in the
sense that it is implied by other constraints that we will add
to the linear program.)

We now seek to enforce the requirement that each task
receives its appropriate amount of execution time. Since the
affinity mask of task ⌧

i

restricts the processors upon which
⌧

i

may execute, this requirement can be represented by n

equations of the following form, one for each i = 1, 2, . . . , n:
X

j2↵

i

x

i,j

= 1 (1.1)

Next, we seek to enforce the requirement that the capacity
constraint of each processor is met. This is represented by
m inequalities of the following form, one for each j =

1, 2, . . . ,m:
n

X

i=1

�

u

i

x

i,j

�

 1 (1.2)

The resulting LP problem incorporating these two sets of
constraints for any APA instance (⌧,⇡), over the (n ⇥ m)

variables {x
i,j

}
i=1,...,n;j=1,...,m which are all constrained to

being � 0 and 1, is depicted in Figure 1.

Example 2: The linear program for the instance of Exam-
ple 1 is

x11 = 1

x22 = 1

x31 + x32 = 1

0.7x11 + 0.5x31 1

0.6x22 + 0.5x32 1

where the first three constraints correspond to instantiations
of Constraint (1.1) for tasks ⌧1, ⌧2, and ⌧3 respectively, while
the last two correspond to instantiations of Constraint (1.2) for
processors ⇡1 and ⇡2.

(Note that this linear program has no objective function
specified: we are simply seeking to determine any assignment
of values to the x

ij

variables that would cause all the con-
straints to evaluate to true.)

It may be verified that the following assignment of values
to the x

ij

variables

x11 = 1;x22 = 1;x31 = 0.4; and x32 = 0.6 (2)

constitutes a possible solution to this linear program.

It is immediately evident that the linear program APA-
Feas(⌧,⇡) has a solution if the instance (⌧,⇡) is APA-feasible;
this is formally demonstrated in Lemma 1 below.

Lemma 1: If instance (⌧,⇡) is APA-feasible, then APA-
Feas(⌧,⇡) has a solution.

Proof: Since (⌧,⇡) is APA-feasible, it is possible to
generate a schedule for any sequence of jobs that could legally
be generated by this instance. Let us therefore consider the
sequence of job arrivals in which jobs of each task ⌧

i

arrive
at all instants k · T

i

, for all k = 0, 1, 2, . . ., and executes for
exactly C

i

time units. Let P denote the least common multiple
(lcm) of the periods of the n tasks.

Consider a schedule for this sequence of job arrivals, in
which all job deadlines are met. Let f

i,j

denote the fraction
of the total amount of time over [0, P) during which task ⌧

i

executed on processor ⇡
j

, for each i and each j. We will show
that all the constraints in APA-Feas(⌧,⇡) are satisfied when
x

i,j

 (f

i,j

/u

i

) for each i, j.

Constraints (1.1): The total amount of execution received by
task i over [0, P) is given by

X

j2↵

i

(f

i,j

· P) = P

X

j2↵

i

(f

i,j

) .

There are P

T

i

jobs of task ⌧

i

with arrival times and deadlines
in [0, P); in a schedule in which all job deadlines are met,
⌧

i

will therefore have received C

i

· P

T

i

units of execution over

Core
1

Core
2

1.00.90.6

τ1

τ3

0

Fill in template from back to front…

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Iterate until l=0

68

Given this APA instance (⌧,⇡), our scheduling strategy
proceeds in three steps:

1) First, we construct a linear program that has a solution
(is feasible, in the language of linear programming) if
and only if (⌧,⇡) is APA-feasible – how we do this is
described in Section IV-A.

2) We then solve this linear program, and use the solution to
construct a schedule “template” — this step is described
in Section IV-B.

3) In Section IV-C, we describe how we then use this
schedule template to actually construct a schedule during
run-time.

We will use the following example throughout this section, to
illustrate our algorithm.

Example 1: Our APA instance (⌧,⇡) has ⌧ = {⌧1, ⌧2, ⌧3}
with parameters as given below, while ⇡ = {⇡1,⇡2}.

⌧

i

C
i

T
i

↵

i

u
i

⌧1 7 10 {1} 0.7

⌧2 6 10 {2} 0.6

⌧3 10 20 {1, 2} 0.5

A. Constructing a linear program

As a first step in obtaining a run-time scheduling algorithm,
we will represent APA feasibility as a linear programming
problem. We define n ⇥m real-valued variables x

i,j

for i =

1, . . . , n and j = 1, . . . ,m, with variable x

i,j

denoting the
fraction of ⌧

i

that executes on processor ⇡
j

. We constrain each
x

i,j

variable to be non-negative: x
i,j

� 0 for all i, j. (While
we could also constrain each x

i,j

to be no larger than one,
specifying such a constraint turns out to be unnecessary in the
sense that it is implied by other constraints that we will add
to the linear program.)

We now seek to enforce the requirement that each task
receives its appropriate amount of execution time. Since the
affinity mask of task ⌧

i

restricts the processors upon which
⌧

i

may execute, this requirement can be represented by n

equations of the following form, one for each i = 1, 2, . . . , n:
X

j2↵

i

x

i,j

= 1 (1.1)

Next, we seek to enforce the requirement that the capacity
constraint of each processor is met. This is represented by
m inequalities of the following form, one for each j =

1, 2, . . . ,m:
n

X

i=1

�

u

i

x

i,j

�

 1 (1.2)

The resulting LP problem incorporating these two sets of
constraints for any APA instance (⌧,⇡), over the (n ⇥ m)

variables {x
i,j

}
i=1,...,n;j=1,...,m which are all constrained to

being � 0 and 1, is depicted in Figure 1.

Example 2: The linear program for the instance of Exam-
ple 1 is

x11 = 1

x22 = 1

x31 + x32 = 1

0.7x11 + 0.5x31 1

0.6x22 + 0.5x32 1

where the first three constraints correspond to instantiations
of Constraint (1.1) for tasks ⌧1, ⌧2, and ⌧3 respectively, while
the last two correspond to instantiations of Constraint (1.2) for
processors ⇡1 and ⇡2.

(Note that this linear program has no objective function
specified: we are simply seeking to determine any assignment
of values to the x

ij

variables that would cause all the con-
straints to evaluate to true.)

It may be verified that the following assignment of values
to the x

ij

variables

x11 = 1;x22 = 1;x31 = 0.4; and x32 = 0.6 (2)

constitutes a possible solution to this linear program.

It is immediately evident that the linear program APA-
Feas(⌧,⇡) has a solution if the instance (⌧,⇡) is APA-feasible;
this is formally demonstrated in Lemma 1 below.

Lemma 1: If instance (⌧,⇡) is APA-feasible, then APA-
Feas(⌧,⇡) has a solution.

Proof: Since (⌧,⇡) is APA-feasible, it is possible to
generate a schedule for any sequence of jobs that could legally
be generated by this instance. Let us therefore consider the
sequence of job arrivals in which jobs of each task ⌧

i

arrive
at all instants k · T

i

, for all k = 0, 1, 2, . . ., and executes for
exactly C

i

time units. Let P denote the least common multiple
(lcm) of the periods of the n tasks.

Consider a schedule for this sequence of job arrivals, in
which all job deadlines are met. Let f

i,j

denote the fraction
of the total amount of time over [0, P) during which task ⌧

i

executed on processor ⇡
j

, for each i and each j. We will show
that all the constraints in APA-Feas(⌧,⇡) are satisfied when
x

i,j

 (f

i,j

/u

i

) for each i, j.

Constraints (1.1): The total amount of execution received by
task i over [0, P) is given by

X

j2↵

i

(f

i,j

· P) = P

X

j2↵

i

(f

i,j

) .

There are P

T

i

jobs of task ⌧

i

with arrival times and deadlines
in [0, P); in a schedule in which all job deadlines are met,
⌧

i

will therefore have received C

i

· P

T

i

units of execution over

after two more iterations
 & heuristics to avoid preemptions…

Core
1

Core
2

1.00.90.6

τ3

0

τ1τ3

0.2

τ2

Core
1

Core
2

1.00.90.6

τ1

τ3

0

final template

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

result: schedule
template

High-Level Overview: Iterative Template Construction

69

given: APA
instance

C C C

C C C
construct & solve

linear program

obtain vertex solution

pick template
length l

pick step
size δ

identify urgent tasks
and full processors

construct bipartite graph
& determine matching

fill in template
from rear

& set l ← l - δ

1

2

3

4
5 6

l = 0

7

no

8
apply heuristics

100τ30
τ1τ

0τ2

yes

100
τ1τ30

➡ τ1,…,τn
➡ α1,…, αn

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

result: schedule
template

High-Level Overview: Iterative Template Construction

70

given: APA
instance

➡ T1,…,Tn
➡ α1,…, αn

C C C

C C C
construct & solve

linear program

obtain vertex solution

pick template
length l

pick step
size δ

identify urgent tasks
and full processors

construct bipartite graph
& determine matching

fill in template
from rear

& set l ← l - δ

1

2

3

4
5 6

l = 0

7

no

8
apply heuristics

100τ30
τ1τ

0τ2

yes

100
τ1τ30

How to use the template?

How many tasks migrate?

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

How to use the template?

71

Core
1

Core
2

1.00.90.6

τ3

0

τ1τ3

0.2

τ2

final template

0 1 2 3 4 5 6 7 8
…time

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

How to use the template?

72

Core
1

Core
2

1.00.90.6

τ3

0

τ1τ3

0.2

τ2

final template

0 1 2 3 4 5 6 7 8
…

Naïve approach: instantiate for each quantum (impractical, but shows existence).
See paper for sketch of more practical EDF-based scheduler…

time

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Degree of Migration

73

Schedule template not very useful
in practice if “too many” tasks migrate…

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Degree of Migration

74

Schedule template not very useful
in practice if “too many” tasks migrate…

Migration Bound
At most m tasks migrate.

Other tasks are statically assigned to a single
processor compliant with their PA: ➜ semi-partitioning.

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Other tasks are statically assigned to a single
processor compliant with their PA: ➜ semi-partitioning.

Degree of Migration

75

Schedule template not very useful
in practice if “too many” tasks migrate…

Migration Bound
At most m tasks migrate.

Why?

Vertex solution & fewer constraints than variables in LP
(details in paper…)

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Open Questions

76

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Open Questions

77

Why study APA scheduling?

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Open Questions

78

Relevance
Virtually every major (real-time) operating system supports PAs.

Practitioners have to (and want to) deal with it.

Why study APA scheduling?

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Open Questions

79

Generality
Every solution assuming the APA model immediately solves the same

problem for global / partitioned / clustered scheduling as well.

Relevance
Virtually every major (real-time) operating system supports PAs.

Practitioners have to (and want to) deal with it.

Why study APA scheduling?

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Open Problem 1/3
Feasibility with Constrained Deadlines

80

R
s

is active if T
i

has any pending jobs. That is, R
s

is
active at time t if there exists a job J

i

of T
i

with arrival time
t
a

and finish time t
f

such that t
a

 t < t
f

. If there are no
pending jobs, a CBS is inactive or idle. If a new job of task
T
i

is released at time t
a

and R
s

is already active, then the
job is queued. If a job arrives when R

s

is idle, two cases
are possible; if C

s

� (Dk

s

� t
a

)�
s

, the server assigns a new
deadline Dk

s

= t
a

+D
s

and the server budget is replenished
to the maximum C

s

= e
s

; otherwise, it executes the job
immediately (and its parameters remain unchanged).

R
s

’s budget C
s

is consumed by one unit for every unit
of time a job of the contained task T

i

executes. Further,
we assume suspension-oblivious reservations that treat job
suspensions as regular execution time, that is, jobs that are
suspended but incomplete continue to consume budget. If
the current server budget C

s

reaches zero while R
s

is active,
it is immediately replenished (C

s

= Q
s

) and a new server
deadline is assigned: Dk+1

s

= Dk

s

+ P
s

. It should be noted
that assigning a single task T

i

= (e
i

, p
i

, d
i

) to a reservation
R

s

with parameters Q
s

= e
i

, P
s

= p
i

and D
s

= d
i

ensures
that the deadline will not be postponed unless the task over-
runs its budget. In the case of an overrun, R

s

continues to
execute at a lower priority (i.e., with a postponed deadline)
without impacting the timeliness of other tasks.

A key feature of the original CBS [1] is that it is work-
conserving, that is, R

s

always remains eligible for execution
while active, as the budget C

s

is immediately replenished
(and the deadline postponed) when it reaches zero. Following
the terminology established by Rajkumar et al. [33] in their
work on resource kernels, we refer to this version of CBS as
soft CBS. A variant of CBS, called hard CBS [11], cuts a task
off from further supply until the current server deadline has
been reached. That is, in the case of hard CBS, the budget is
only recharged (and the deadline postponed) after the current
server deadline has passed. Intuitively, soft reservations are
appropriate for sporadic real-time tasks that should complete
as soon as possible in case of an overrun, whereas hard CBS
is more appropriate for encapsulating potentially backlogged
applications that require rate limiting.

Strictly speaking, a collection of CBS reservations is
schedulable if each server is guaranteed to be able to con-
sume its entire budget before its current deadline. Since we
assume that each task is encapsulated in a CBS reservation
with matching parameters, this is equivalent to stating that all
tasks that do not exceed their provisioned budget will meet
all deadlines; we therefore use the terms CBS reservation
and task interchangeably in the remainder of this paper.

Schedulability analysis. In the seminal work on uniproces-
sor EDF schedulability analysis [4], Baruah et al. gave an
exact processor demand test. They showed that a task set ⌧
of n sporadic tasks is schedulable on a uniprocessor under
EDF if and only if U(⌧) 1 and

8t � 0

nX

i=1

DBF (T
i

, t) t, (2.1)

where DBF (T
i

, t) = max(0, b t�di
pi

c+1) · e
i

is the demand
bound function of task T

i

[4]. Intuitively, DBF (T
i

, t) upper-
bounds the cumulative execution requirement of all jobs of
T
i

that both arrive and have a deadline within any contiguous
interval of length t. Crucially, Baruah et al. established a
bound on t for which Eq. (2.1) must be checked [4]. This
interval was further reduced in subsequent work (e.g., [38]).
Approximation of DBFs. Working with precise DBFs can
be computationally expensive. Albers and Slomka proposed
a method of approximating DBFs [2], which we adopt in our
implementation to improve runtime efficiency and reduce
memory overheads. The basic idea behind their scheme is
that after a certain number of steps k, the DBF of a task
is bounded by a straight line with a slope equal to the
task’s utilization. The k-steps approximation of the DBF
of a task T

i

= (e
i

, p
i

, d
i

) is denoted DBF (T
i

, t, k), where
DBF (T

i

, t, k) = DBF (T
i

, t) if t < d
i

+ (k � 1)p
i

, and
DBF (T

i

, t, k) = u
i

(t� d
i

)+ e
i

otherwise. Importantly, for
any t � 0, DBF (T

i

, t, k) � DBF (T
i

, t).
In summary, Abeni and Buttazzo’s CBS [1] and Baruah

et al.’s processor demand analysis [4] constitutes FlaRe’s
analytical foundation, as we describe next.

3 FlaRe Capabilities
In a nutshell, FlaRe realizes seL4’s hierarchical isolation
and sub-capability derivation semantics [17, 23]—with re-
gard to timely processor access—on top of flat (i.e., non-
hierarchical) P-EDF. Full isolation is ensured using per-task
CBS reservations [1] based on Baruah et al.’s exact schedu-
lability condition [4]. We begin with an overview of FlaRe
and discuss the intuition behind its design in Sec. 3.1, and
then formally define the semantics of temporal capabilities
(Sec. 3.2) and describe FlaRe’s runtime support (Sec. 3.3).

3.1 Intuition and Overview
First of all, what does it mean to use a temporal capability?
In FlaRe, using a temporal capability means creating a new
CBS reservation on a particular processor. The limited re-
source controlled by FlaRe’s temporal capabilities is thus
processor demand, as defined by Baruah et al. [4].

Intuitively, a process that holds a temporal capability may
thus “become” a real-time task by first creating a CBS reser-
vation with arbitrary parameters, but subject to the limits on
maximum processor demand represented by its capability,
and by then attaching itself to the reservation. That is, analo-
gous to seL4’s memory capabilities, a process may “cast” (a
part of) its unallocated (i.e., “untyped”) processor demand
into a specific (i.e., “typed”) CBS reservation with concrete
parameters. Similarly to seL4’s memory capability seman-
tics, which ensure that the total amount of typed memory
never exceeds the total memory supply, FlaRe maintains
Eq. (2.1) on each processor, that is, FlaRe ensures that the
total demand never exceeds the total processor capacity.

The most challenging operation to support is the splitting
of capabilities (i.e., the derivation of sub-capabilities), which
is central to seL4’s hierarchical resource management seman-

3

Requires reasoning about demand
➡ More than polynomial number of

constraints (if done naively).

No longer “few” migrating tasks
➡ LP structure essential.

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Open Problem 1/3
Feasibility with Constrained Deadlines

81

R
s

is active if T
i

has any pending jobs. That is, R
s

is
active at time t if there exists a job J

i

of T
i

with arrival time
t
a

and finish time t
f

such that t
a

 t < t
f

. If there are no
pending jobs, a CBS is inactive or idle. If a new job of task
T
i

is released at time t
a

and R
s

is already active, then the
job is queued. If a job arrives when R

s

is idle, two cases
are possible; if C

s

� (Dk

s

� t
a

)�
s

, the server assigns a new
deadline Dk

s

= t
a

+D
s

and the server budget is replenished
to the maximum C

s

= e
s

; otherwise, it executes the job
immediately (and its parameters remain unchanged).

R
s

’s budget C
s

is consumed by one unit for every unit
of time a job of the contained task T

i

executes. Further,
we assume suspension-oblivious reservations that treat job
suspensions as regular execution time, that is, jobs that are
suspended but incomplete continue to consume budget. If
the current server budget C

s

reaches zero while R
s

is active,
it is immediately replenished (C

s

= Q
s

) and a new server
deadline is assigned: Dk+1

s

= Dk

s

+ P
s

. It should be noted
that assigning a single task T

i

= (e
i

, p
i

, d
i

) to a reservation
R

s

with parameters Q
s

= e
i

, P
s

= p
i

and D
s

= d
i

ensures
that the deadline will not be postponed unless the task over-
runs its budget. In the case of an overrun, R

s

continues to
execute at a lower priority (i.e., with a postponed deadline)
without impacting the timeliness of other tasks.

A key feature of the original CBS [1] is that it is work-
conserving, that is, R

s

always remains eligible for execution
while active, as the budget C

s

is immediately replenished
(and the deadline postponed) when it reaches zero. Following
the terminology established by Rajkumar et al. [33] in their
work on resource kernels, we refer to this version of CBS as
soft CBS. A variant of CBS, called hard CBS [11], cuts a task
off from further supply until the current server deadline has
been reached. That is, in the case of hard CBS, the budget is
only recharged (and the deadline postponed) after the current
server deadline has passed. Intuitively, soft reservations are
appropriate for sporadic real-time tasks that should complete
as soon as possible in case of an overrun, whereas hard CBS
is more appropriate for encapsulating potentially backlogged
applications that require rate limiting.

Strictly speaking, a collection of CBS reservations is
schedulable if each server is guaranteed to be able to con-
sume its entire budget before its current deadline. Since we
assume that each task is encapsulated in a CBS reservation
with matching parameters, this is equivalent to stating that all
tasks that do not exceed their provisioned budget will meet
all deadlines; we therefore use the terms CBS reservation
and task interchangeably in the remainder of this paper.

Schedulability analysis. In the seminal work on uniproces-
sor EDF schedulability analysis [4], Baruah et al. gave an
exact processor demand test. They showed that a task set ⌧
of n sporadic tasks is schedulable on a uniprocessor under
EDF if and only if U(⌧) 1 and

8t � 0

nX

i=1

DBF (T
i

, t) t, (2.1)

where DBF (T
i

, t) = max(0, b t�di
pi

c+1) · e
i

is the demand
bound function of task T

i

[4]. Intuitively, DBF (T
i

, t) upper-
bounds the cumulative execution requirement of all jobs of
T
i

that both arrive and have a deadline within any contiguous
interval of length t. Crucially, Baruah et al. established a
bound on t for which Eq. (2.1) must be checked [4]. This
interval was further reduced in subsequent work (e.g., [38]).
Approximation of DBFs. Working with precise DBFs can
be computationally expensive. Albers and Slomka proposed
a method of approximating DBFs [2], which we adopt in our
implementation to improve runtime efficiency and reduce
memory overheads. The basic idea behind their scheme is
that after a certain number of steps k, the DBF of a task
is bounded by a straight line with a slope equal to the
task’s utilization. The k-steps approximation of the DBF
of a task T

i

= (e
i

, p
i

, d
i

) is denoted DBF (T
i

, t, k), where
DBF (T

i

, t, k) = DBF (T
i

, t) if t < d
i

+ (k � 1)p
i

, and
DBF (T

i

, t, k) = u
i

(t� d
i

)+ e
i

otherwise. Importantly, for
any t � 0, DBF (T

i

, t, k) � DBF (T
i

, t).
In summary, Abeni and Buttazzo’s CBS [1] and Baruah

et al.’s processor demand analysis [4] constitutes FlaRe’s
analytical foundation, as we describe next.

3 FlaRe Capabilities
In a nutshell, FlaRe realizes seL4’s hierarchical isolation
and sub-capability derivation semantics [17, 23]—with re-
gard to timely processor access—on top of flat (i.e., non-
hierarchical) P-EDF. Full isolation is ensured using per-task
CBS reservations [1] based on Baruah et al.’s exact schedu-
lability condition [4]. We begin with an overview of FlaRe
and discuss the intuition behind its design in Sec. 3.1, and
then formally define the semantics of temporal capabilities
(Sec. 3.2) and describe FlaRe’s runtime support (Sec. 3.3).

3.1 Intuition and Overview
First of all, what does it mean to use a temporal capability?
In FlaRe, using a temporal capability means creating a new
CBS reservation on a particular processor. The limited re-
source controlled by FlaRe’s temporal capabilities is thus
processor demand, as defined by Baruah et al. [4].

Intuitively, a process that holds a temporal capability may
thus “become” a real-time task by first creating a CBS reser-
vation with arbitrary parameters, but subject to the limits on
maximum processor demand represented by its capability,
and by then attaching itself to the reservation. That is, analo-
gous to seL4’s memory capabilities, a process may “cast” (a
part of) its unallocated (i.e., “untyped”) processor demand
into a specific (i.e., “typed”) CBS reservation with concrete
parameters. Similarly to seL4’s memory capability seman-
tics, which ensure that the total amount of typed memory
never exceeds the total memory supply, FlaRe maintains
Eq. (2.1) on each processor, that is, FlaRe ensures that the
total demand never exceeds the total processor capacity.

The most challenging operation to support is the splitting
of capabilities (i.e., the derivation of sub-capabilities), which
is central to seL4’s hierarchical resource management seman-

3

Requires reasoning about demand
➡ More than polynomial number of

constraints (if done naively).

No longer “few” migrating tasks
➡ LP structure essential.

MPI-SWS

Introduction to Multiprocessor Real-Time Scheduling

Brandenburg

PD2 Illustration

25

group deadline
(if past window)

release

completion

deadline

scheduled on processor 1

scheduled on processor 2

pfair window

1050 time

T1

T2

T3

T4

T5

1

21 3

2

1

4

3

5

4

21

1

6

2

5 6

1

7

3

6

1
2

3

4

5

1
2

1

1

1

2

3

6

1
2

3

4
5

7

Tuesday, May 14, 13
MPI-SWS

Introduction to Multiprocessor Real-Time Scheduling

Brandenburg

Optimal Online Scheduling of Sporadic
Tasks with Arbitrary Deadlines

26

Is it possible to extend Pfair/PD2 to support arbitrary deadlines?

Tuesday, May 14, 13

MPI-SWS

Introduction to Multiprocessor Real-Time Scheduling

Brandenburg

Optimal Online Scheduling of Sporadic
Tasks with Arbitrary Deadlines

27

Theorem: there does not exist an online scheduler that
optimally schedules sporadic tasks with constrained deadlines.

Fisher, Goossens, Baruah (2010), Optimal online multiprocessor scheduling of sporadic real-time tasks is impossible. Real-Time Systems, volume 45, pp 26-71.

Tuesday, May 14, 13
MPI-SWS

Introduction to Multiprocessor Real-Time Scheduling

Brandenburg

Non-Existence of Optimal Online
Schedulers for General Sporadic Tasks

28

Task WCET Deadline Period

T1

T2

T3

T4

T5

T6

2 2 5

1 1 5

1 2 6

2 4 100

2 6 100

4 8 100

1050 time

T1

T2

T3

T4

T5

T6

which job goes next?

Tuesday, May 14, 13

Fisher, Goossens, Baruah (2010), Optimal online multiprocessor scheduling of
sporadic real-time tasks is impossible. Real-Time Systems, volume 45, pp 26-71.

Optimal online scheduling with
constrained deadlines
➡ Our test constructs online strategy.
➡ Such a strategy does not always

exists if di < pi.

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Open Problem 2/3
Efficient Online APA Scheduling

82

Open systems
➡ Cannot solve LP on fork()…

Why not use Linux’s approach?
➡ well-known APA implementation

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Open Problem 2/3
Efficient Online APA Scheduling

83

Open systems
➡ Cannot solve LP on fork()…

Why not use Linux’s approach?
➡ well-known APA implementation
➡ inefficient
‣high maximum overheads
‣ also w.r.t. schedulability

0

1000

2000

3000

4000

5000

8 16 24 32 48 64

m
ax

. s
ch

ed
ul

in
g

 o
ve

rh
ea

d
in

 µ
s

#cores

Linux Push & Pull Overhead

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Open Problem 2/3
Efficient Online APA Scheduling

84

Open systems
➡ Cannot solve LP on fork()…

Why not use Linux’s approach?
➡ well-known APA implementation
➡ inefficient
‣high maximum overheads
‣ also w.r.t. schedulability

Goal
➡ Fast scheduler
➡ Fast task admission
➡ Efficient APA semantics
➡ Semi-partitioned?

0

1000

2000

3000

4000

5000

8 16 24 32 48 64

m
ax

. s
ch

ed
ul

in
g

 o
ve

rh
ea

d
in

 µ
s

#cores

Linux Push & Pull Overhead

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

This paper: feasibility in general
➡ Solution: “non-standard” dynamic priority scheduler
➡ Industry prefers simpler fixed-priority scheduling

Open Problem 3/3
JLFP/FP Feasibility and Priority Assignment

85

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

This paper: feasibility in general
➡ Solution: “non-standard” dynamic priority scheduler
➡ Industry prefers simpler fixed-priority scheduling

Open problem: FP feasibility
➡ Exact schedulability test …also for global scheduling.

Open Problem 3/3
JLFP/FP Feasibility and Priority Assignment

86

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

This paper: feasibility in general
➡ Solution: “non-standard” dynamic priority scheduler
➡ Industry prefers simpler fixed-priority scheduling

Open problem: FP feasibility
➡ Exact schedulability test …also for global scheduling.

Joint priority and affinity assignment
➡ “Good” priority assignment can mask “bad” processor affinities.
➡ “Good” processor affinities can mask “bad” priority assignment.

Open Problem 3/3
JLFP/FP Feasibility and Priority Assignment

87

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Conclusion

88

Core
1

Core
2

Core
3

Core
4

Core
5

Core
6

αi = {2, 3, 5, 6}

APA
arbitrary processor affinity

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Conclusion

89

Core
1

Core
2

Core
3

Core
4

Core
5

Core
6

αi = {2, 3, 5, 6}

A polynomial-time feasibility test for
the APA scheduling problem.

APA
arbitrary processor affinity

The APA Scheduling Problem

Offline APA optimization
Reduce APAs such that task set

remains (or becomes) schedulable

APA instance
Task set with designer-specified APAs.

Online APA scheduling
OS scheduler enforces reduced APAs

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Conclusion

90

Core
1

Core
2

Core
3

Core
4

Core
5

Core
6

αi = {2, 3, 5, 6}

A polynomial-time feasibility test for
the APA scheduling problem.

APA
arbitrary processor affinity

Constructs a semi-partitioned
schedule template with

at most m migrating tasks.

The APA Scheduling Problem

Offline APA optimization
Reduce APAs such that task set

remains (or becomes) schedulable

APA instance
Task set with designer-specified APAs.

Online APA scheduling
OS scheduler enforces reduced APAs

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Conclusion

91

Core
1

Core
2

Core
3

Core
4

Core
5

Core
6

αi = {2, 3, 5, 6}

A polynomial-time feasibility test for
the APA scheduling problem.

APA
arbitrary processor affinity

?A general model and conceptual
framework that originates in

practice with plenty of open problems!

Constructs a semi-partitioned
schedule template with

at most m migrating tasks.

The APA Scheduling Problem

Offline APA optimization
Reduce APAs such that task set

remains (or becomes) schedulable

APA instance
Task set with designer-specified APAs.

Online APA scheduling
OS scheduler enforces reduced APAs

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Appendix

92

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Degree of Migration — Explanation

93

feasible region

non-vertex
optimal solution

vertex optimal solution
x1

x2

Construct linear program

➡ n × m variables and n + m constraints +

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Degree of Migration — Explanation

94

feasible region

non-vertex
optimal solution

vertex optimal solution
x1

x2

Construct linear program

➡ n × m variables and n + m constraints

A linear program with…
➡ X non-negative variables (= n × m),
➡ C additional constraints (= n + m).

If C < X, then…
➡ at most C non-zero values (= n + m)
➡ at each vertex of the feasible region.

+

+
A basic fact about linear programs…

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Degree of Migration — Explanation

95

feasible region

non-vertex
optimal solution

vertex optimal solution
x1

x2

Construct linear program

➡ n × m variables and n + m constraints

A linear program with…
➡ X non-negative variables (= n × m),
➡ C additional constraints (= n + m).

If C < X, then…
➡ at most C non-zero values (= n + m)
➡ at each vertex of the feasible region.

+

+
A basic fact about linear programs…

➞ At most n + m utilization
fractions xij are non-zero.

Multiprocessor feasibility analysis of recurrent task systems with specified processor affinities

Baruah & BrandenburgUNC & MPI-SWS

Degree of Migration — Explanation

96

feasible region

non-vertex
optimal solution

vertex optimal solution
x1

x2

Construct linear program

➡ n × m variables and n + m constraints

A linear program with…
➡ X non-negative variables (= n × m),
➡ C additional constraints (= n + m).

If C < X, then…
➡ at most C non-zero values (= n + m)
➡ at each vertex of the feasible region.

+

+
A basic fact about linear programs…

➞ At most n + m utilization
fractions xij are non-zero.

➜ at most m of the n tasks
are associated with more

than one non-zero variable
(= at most m migrate).

