
Björn Brandenburg
MPI-SWS

The Case for
Migratory Priority Inheritance

in Linux: Bounded Priority Inversions on Multiprocessors

Andrea Bastoni
SYSGO AG

Why “Migratory”?
Classic uniprocessor priority inheritance is

ineffective under non-global scheduling (Linux).

The most-studied multiprocessor real-time locking
primitive is not a good fit for Linux.

A (simple) "tweak" to Linux's existing priority
inheritance solution restores predictability.

Part 1

Classic uniprocessor priority inheritance is
ineffective under non-global scheduling (Linux).

But it works great on uniprocessors…

Why is Classic Priority Inheritance
Effective on Uniprocessors?

Classic Priority Inheritance
=

Blocking task is scheduled with (at least) the priority of blocked task.

Effective on Uniprocessors
=

“Priority inversion” when blocking on a lock
is limited to duration of one critical section (per lock acquisition).

Analysis of Fixed-Priority
Scheduling (SCHED_FIFO)

maximum response time ≤ relative deadline

Analysis of Fixed-Priority
Scheduling (SCHED_FIFO)

response time
(time for a task to react to input)

= own execution
(time to compute response)

+ execution of higher-priority tasks
(preemptions / scheduling delays due to higher-priority tasks)

 Lower-priority tasks do not cause delays if tasks are independent.

Analysis of Fixed-Priority
Scheduling (SCHED_FIFO)

response time
(time for a task to react to input)

= own execution
(time to compute response)

+ execution of higher-priority tasks
(preemptions / scheduling delays due to higher-priority tasks)

+ durations of priority inversion
(any delay not attributable to higher-priority tasks)

Priority inversion: any delay due to lower-priority tasks.

Example Task Set

Task WCET Period Deadline Critical
Section Priority

TA

TB

TC

TD

6 20 7 — 99

11 20 20 2 98

6 200 70 — 97

11 200 200 2 96

scheduled
w/o lock

critical
section

On CPU

job release

job completion

deadline

job suspended

Example Task Set

Task WCET Period Deadline Critical
Section Priority

TA

TB

TC

TD

6 20 7 — 99

11 20 20 2 98

6 200 70 — 97

11 200 200 2 96

scheduled
w/o lock

critical
section

On CPU

job release

job completion

deadline

job suspended

Worst-Case Execution Time
How much CPU time required to react to input

event in the worst case?

Example Task Set

Task WCET Period Deadline Critical
Section Priority

TA

TB

TC

TD

6 20 7 — 99

11 20 20 2 98

6 200 70 — 97

11 200 200 2 96

scheduled
w/o lock

critical
section

On CPU

job release

job completion

deadline

job suspended

How long may a response be delayed?

Example Task Set

Task WCET Period Deadline Critical
Section Priority

TA

TB

TC

TD

6 20 7 — 99

11 20 20 2 98

6 200 70 — 97

11 200 200 2 96

scheduled
w/o lock

critical
section

On CPU

job release

job completion

deadline

job suspended

How frequently does new input arrive?

Example Task Set

Task WCET Period Deadline Critical
Section Priority

TA

TB

TC

TD

6 20 7 — 99

11 20 20 2 98

6 200 70 — 97

11 200 200 2 96

scheduled
w/o lock

critical
section

On CPU

job release

job completion

deadline

job suspended

Deadline-Monotonic Priorities
(shorter relative deadline ⇒ higher priority)

Example Task Set

Task WCET Period Deadline Critical
Section Priority

TA

TB

TC

TD

6 20 7 — 99

11 20 20 2 98

6 200 70 — 97

11 200 200 2 96

scheduled
w/o lock

critical
section

On CPU

job release

job completion

deadline

job suspended

Tasks TB and TD share a data structure protected by a lock.

Example:
Unbounded Priority Inversion

Task WCET Period Deadline Critical
Section Priority

TA

TB

TC

TD

6 20 7 — 99

11 20 20 2 98

6 200 70 — 97

11 200 200 2 96

50 10 15 20 25 30 35

priority inversion

TD

TC

TB

TA

scheduled
w/o lock

critical
section

On CPU

job release

job completion

deadline

job suspended

Example:
Unbounded Priority Inversion

Task WCET Period Deadline Critical
Section Priority

TA

TB

TC

TD

6 20 7 — 99

11 20 20 2 98

6 200 70 — 97

11 200 200 2 96

50 10 15 20 25 30 35

priority inversion

TD

TC

TB

TA

scheduled
w/o lock

critical
section

On CPU

job release

job completion

deadline

job suspended

TD is preempted while holding a lock.
TB blocks on the lock and is delayed while TC executes.

Example:
Priority Inheritance

Task WCET Period Deadline Critical
Section Priority

TA

TB

TC

TD

6 20 7 — 99

11 20 20 2 98

6 200 70 — 97

11 200 200 2 96

scheduled
w/o lock

critical
section

On CPU

job release

job completion

deadline

job suspended

Example:
Priority Inheritance

50 10 15 20 25 30 35

priority inversion

priority inheritance

TD

TC

TB

TA

Task WCET Period Deadline Critical
Section Priority

TA

TB

TC

TD

6 20 7 — 99

11 20 20 2 98

6 200 70 — 97

11 200 200 2 96

scheduled
w/o lock

critical
section

On CPU

job release

job completion

deadline

job suspended

Example:
Priority Inheritance

50 10 15 20 25 30 35

priority inversion

priority inheritance

TD

TC

TB

TA

Task WCET Period Deadline Critical
Section Priority

TA

TB

TC

TD

6 20 7 — 99

11 20 20 2 98

6 200 70 — 97

11 200 200 2 96

scheduled
w/o lock

critical
section

On CPU

job release

job completion

deadline

job suspended

TD is preempted while holding a lock.
TC cannot preempt TD while TB blocks on the lock due to priority inheritance.

Why is Priority Inheritance Ineffective
under Non-Global Scheduling?

non-global multiprocessor scheduling
=

 not every task may execute on every processor
This talk: partitioned scheduling = each task assigned to one CPU.

Why is Priority Inheritance Ineffective
under Non-Global Scheduling?

non-global multiprocessor scheduling
=

 not every task may execute on every processor

priority inheritance is ineffective
=

priority inversions are not always
limited to the lengths of critical sections

This talk: partitioned scheduling = each task assigned to one CPU.

Analysis of
Partitioned Fixed-Priority Scheduling

response time
(time for a task to react to input)

= own execution
(time to compute response)

+ execution of local, higher-priority tasks
(preemptions / scheduling delays due to local, higher-priority tasks)

 Lower-priority and remote tasks do not cause delays
if tasks are independent.

Analysis of
Partitioned Fixed-Priority Scheduling

response time
(time for a task to react to input)

= own execution
(time to compute response)

+ execution of local, higher-priority tasks
(preemptions / scheduling delays due to local, higher-priority tasks)

Priority inversion: any delay due to local, lower-priority or remote tasks.

+ durations of priority inversion
(any delay not attributable to local, higher-priority tasks)

Analysis of
Partitioned Fixed-Priority Scheduling

response time
(time for a task to react to input)

= own execution
(time to compute response)

+ execution of local, higher-priority tasks
(preemptions / scheduling delays due to local, higher-priority tasks)

Priority inversion: any delay due to local, lower-priority or remote tasks.

+ durations of priority inversion
(any delay not attributable to local, higher-priority tasks)

Remote higher-priority
tasks are problematic…

Motivation: Increased Frequency

Task WCET Period Deadline Critical
Section Priority

TA

TB

TC

TD

6 20 7 — 99

11 20 20 2 98

6 200 70 — 97

11 200 200 2 96

Uniprocessor Task Set

Task WCET Period Deadline Critical
Section Priority Processor

TA

TB

TC

TD

6 20 7 — 99 1

11 20 20 2 97 1

6 20 7 — 98 2

11 20 20 2 96 2

Multiprocessor Task Set

Motivation: Increased Frequency

Task WCET Period Deadline Critical
Section Priority

TA

TB

TC

TD

6 20 7 — 99

11 20 20 2 98

6 200 70 — 97

11 200 200 2 96

Uniprocessor Task Set

Task WCET Period Deadline Critical
Section Priority Processor

TA

TB

TC

TD

6 20 7 — 99 1

11 20 20 2 97 1

6 20 7 — 98 2

11 20 20 2 96 2

Multiprocessor Task Set

Operating frequency of
tasks TC and TD is scaled

up from 5 Hz to 50 Hz.

Switched
priorities:

TC has a shorter
deadline now.

Motivation: Increased Frequency

Task WCET Period Deadline Critical
Section Priority

TA

TB

TC

TD

6 20 7 — 99

11 20 20 2 98

6 200 70 — 97

11 200 200 2 96

Uniprocessor Task Set

Task WCET Period Deadline Critical
Section Priority Processor

TA

TB

TC

TD

6 20 7 — 99 1

11 20 20 2 97 1

6 20 7 — 98 2

11 20 20 2 96 2

Multiprocessor Task Set

Symmetric
workloads
on the two
processors.

Multiprocessor Example:
Priority Inheritance is Ineffective

Task WCET Period Deadline Critical
Section Priority Processor

TA

TB

TC

TD

6 20 7 — 99 1

11 20 20 2 97 1

6 20 7 — 98 2

11 20 20 2 96 2

50 10 15 20 25 30 35

priority inversion

TD

TC

TB

TA

scheduled
w/o lock

critical
section

CPU 1

job release

job completion

deadline

job suspended

CPU 2

Multiprocessor Example:
Priority Inheritance is Ineffective

Task WCET Period Deadline Critical
Section Priority Processor

TA

TB

TC

TD

6 20 7 — 99 1

11 20 20 2 97 1

6 20 7 — 98 2

11 20 20 2 96 2

50 10 15 20 25 30 35

priority inversion

TD

TC

TB

TA

scheduled
w/o lock

critical
section

CPU 1

job release

job completion

deadline

job suspended

CPU 2

TD is again preempted while holding a lock.
Despite priority inheritance, TC preempts TD while TB is blocked.

Uniprocessor w/o PI vs.
Multiprocessor with PI

50 10 15 20 25 30 35

priority inversion

TD

TC

TB

TA

50 10 15 20 25 30 35

priority inversion

TD

TC

TB

TA
multiprocessor schedule
w/ priority inheritance

uniprocessor schedule
w/o priority inheritance

Uniprocessor w/o PI vs.
Multiprocessor with PI

50 10 15 20 25 30 35

priority inversion

TD

TC

TB

TA

50 10 15 20 25 30 35

priority inversion

TD

TC

TB

TA
multiprocessor schedule
w/ priority inheritance

uniprocessor schedule
w/o priority inheritance

Ineffective
Despite priority inheritance, no reduction in worst-case priority inversion length!

Summary: Classic
Priority Inheritance

• Great solution on uniprocessors, essential to
Linux's success as a real-time platform.

• The key property of priority inheritance breaks
on non-globally scheduled multiprocessors.

• Changing priorities or processor assignment
not always a viable workaround.

The most-studied multiprocessor real-time locking
primitive is not a good fit for Linux.

Part 2

The Standard Solution

Root problem: preemption of lock-holding tasks.

Priority Boosting
Temporarily raise the effective priority of tasks in

critical sections above that of "normal" tasks.
(Rajkumar et al., 1988; Rajkumar, 1990)

in real-time locking protocols for partitioned scheduling

Example: Priority Boosting
avoids Lock-Holder Preemptions

Task WCET Period Deadline Critical
Section Priority Processor

TA

TB

TC

TD

6 20 7 — 99 1

11 20 20 2 97 1

6 20 7 — 98 2

11 20 20 2 96 2

50 10 15 20 25 30 35

TD

TC

TB

TA

priority inversion

priority boosting

scheduled
w/o lock

critical
section

CPU 1

job release

job completion

deadline

job suspended

CPU 2

Example: Priority Boosting
avoids Lock-Holder Preemptions

Task WCET Period Deadline Critical
Section Priority Processor

TA

TB

TC

TD

6 20 7 — 99 1

11 20 20 2 97 1

6 20 7 — 98 2

11 20 20 2 96 2

50 10 15 20 25 30 35

TD

TC

TB

TA

priority inversion

priority boosting

scheduled
w/o lock

critical
section

CPU 1

job release

job completion

deadline

job suspended

CPU 2

A higher-priority task is triggered while TD is holding a lock.
Due to priority boosting, Tc cannot preempt TD while TB is blocked.

But there's a catch...

What if one of the "normal" tasks is urgent
 and cannot tolerate delays?

How is priority boosting different from turning off interrupts?
(In the worst case, it isn’t.)

50 10 15 20 25 30 35

TD

TC

TB

TA

priority inversion

priority boosting

Example: Priority Boosting
avoids Lock-Holder Preemptions

Task WCET Period Deadline Critical
Section Priority Processor

TA

TB

TC

TD

6 20 7 — 99 1

11 20 20 2 97 1

6 20 7 — 98 2

11 20 20 2 96 2

scheduled
w/o lock

critical
section

CPU 1

job release

job completion

deadline

job suspended

CPU 2

Example: Priority Boosting
Increases Scheduling Latencies

Task WCET Period Deadline Critical
Section Priority Processor

TA

TB

TC

TD

6 20 7 — 99 1

11 20 20 2 97 1

6 20 7 — 98 2

11 20 20 2 96 2

50 10 15 20 25 30 35

TD

TC

TB

TA

priority inversion

scheduling latency

scheduled
w/o lock

critical
section

CPU 1

job release

job completion

deadline

job suspended

CPU 2

Example: Priority Boosting
Increases Scheduling Latencies

Task WCET Period Deadline Critical
Section Priority Processor

TA

TB

TC

TD

6 20 7 — 99 1

11 20 20 2 97 1

6 20 7 — 98 2

11 20 20 2 96 2

50 10 15 20 25 30 35

TD

TC

TB

TA

priority inversion

scheduling latency

scheduled
w/o lock

critical
section

CPU 1

job release

job completion

deadline

job suspended

CPU 2

Due to priority boosting, Tc cannot preempt TD immediately.
This results in increased scheduling latency and Tc misses its deadline!

Summary:
Priority Boosting

• Simple solution to the lock-holder
preemption problem.

• In the worst case, no different from simply
turning off interrupts: increased latency.

• Unconditional boosting of priorities does not
play nice with the FUTEX API.

A (simple) "tweak" to Linux's existing priority
inheritance solution restores predictability.

Part 3

The Desired Property

A blocked task should be scheduled but is not.
=

A blocked task would be the highest-priority task
on its assigned processor(s) if it were runnable.

The blocking task is scheduled
(on some processor).

A Simple Solution:
Migratory Priority Inheritance

Priority Inheritance
Blocking tasks are eligible to execute
with the priority of blocked tasks.

A Simple Solution:
Migratory Priority Inheritance

Processor Affinity Mask Inheritance
Blocking tasks are eligible to execute

on the processor(s) of blocked tasks.

Priority Inheritance
Blocking tasks are eligible to execute
with the priority of blocked tasks.

+

Migratory Priority Inheritance
Bounds Priority Inversions

Task WCET Period Deadline Critical
Section Priority Processor

TA

TB

TC

TD

6 20 7 — 99 1

11 20 20 2 97 1

6 20 7 — 98 2

11 20 20 2 96 2

50 10 15 20 25 30 35

TD

TC

TB

TA

priority inversion

migratory priority inheritance

scheduled
w/o lock

critical
section

CPU 1

job release

job completion

deadline

job suspended

CPU 2

Migratory Priority Inheritance
Bounds Priority Inversions

Task WCET Period Deadline Critical
Section Priority Processor

TA

TB

TC

TD

6 20 7 — 99 1

11 20 20 2 97 1

6 20 7 — 98 2

11 20 20 2 96 2

50 10 15 20 25 30 35

TD

TC

TB

TA

priority inversion

migratory priority inheritance

scheduled
w/o lock

critical
section

CPU 1

job release

job completion

deadline

job suspended

CPU 2

Due to processor affinity mask inheritance,
TD migrates to TB’s CPU when TB blocks on TD.

Migratory Priority Inheritance
Does Not Increase Latencies

Task WCET Period Deadline Critical
Section Priority Processor

TA

TB

TC

TD

6 20 7 — 99 1

11 20 20 2 97 1

6 20 7 — 98 2

11 20 20 2 96 2

50 10 15 20 25 30 35

priority inversion

migratory priority inheritance

TD

TC

TB

TA

scheduled
w/o lock

critical
section

CPU 1

job release

job completion

deadline

job suspended

CPU 2

Migratory Priority Inheritance
Does Not Increase Latencies

Task WCET Period Deadline Critical
Section Priority Processor

TA

TB

TC

TD

6 20 7 — 99 1

11 20 20 2 97 1

6 20 7 — 98 2

11 20 20 2 96 2

50 10 15 20 25 30 35

priority inversion

migratory priority inheritance

TD

TC

TB

TA

scheduled
w/o lock

critical
section

CPU 1

job release

job completion

deadline

job suspended

CPU 2

Under migratory priority inheritance,
Tc can preempt TD immediately and TD migrates to TB’s CPU.

When TB’s CPU becomes unavailable TD migrates back.

Properties of
Migratory Priority Inheritance

1. Bounds priority inversions in all cases, on
multiprocessors, with arbitrary affinity masks.

2. Reduces to classic priority inheritance on
uniprocessors and under global scheduling.

3. Does not increase worst-case scheduling latency.

4. Takes only effect in case of contention: fully FUTEX
compatible.

5. POSIX compliant and fully transparent to developers!

Implementation
implementation complexity vs. analysis accuracy

Two Variants of
Migratory Priority Inheritance

Simplified
• Requires careful tracking

of all inherited priorities
and affinity masks.

• More complicated push/
pull migration logic.

• Fewer priority inversions
(similar to uniprocessors).

Full
• Easier to implement, likely

lower overheads.

• Can reuse large parts of
Linux’s implementation.

• Occurrence of priority
inversion is not minimal.

Simplified Migratory
Priority Inheritance

effective priority
(priority used on all processors in mask)

= maximum inherited priority
(or its own priority if not blocking higher-priority tasks)

effective processor
affinity mask

(where is a lock-holder eligible to execute?)

= union of all inherited masks
(and a task’s own processor affinity masks)

priority and affinity mask are tracked independently

Full Migratory
Priority Inheritance

eligibility tuple = (priority, processor affinity mask)

effective priority
on processor P =

maximum priority among the
(inherited) tuples with

P in the processor affinity mask

Tracking of processor-specific priorities is difficult in Linux.

Classic priority inheritance is ineffective if tasks
have non-global processor affinity masks.

Priority boosting is not a good fit for Linux
since it increases worst-case latencies.

Adding processor affinity mask inheritance to
Linux's existing priority inheritance

implementation restores predictability.

Migratory Priority Inheritance

Prior Work

• “Local Helping” in Fiasco/L4
 (Hohmuth & Peter, 2001)

• Multiprocessor BandWidth Inheritance (MBWI)
 (Faggioli et al., 2010)

Using migrations to “help” preempted lock holders:

This principle keeps popping up… time to adopt it!

Thanks!
MPI-SWS is hiring PhD students,

post-docs, and tenure-track faculty.

But the user specified the
processor affinity mask!

• True, but the user also specified the priority.

• To obtain bounded priority inversions, scheduling
parameters have to be overridden; this is no
different from classic priority inheritance.

• At least all kernel code should tolerate possible
migrations (or call preempt_disable()).

• Userspace can get a new policy to opt in:
PRIO_INHERIT_MIGRATORY

This will create huge cache-
related migration overheads!

• Not really:

1. The migrating task was preempted anyway.

2. Only the working set of the critical section
is relevant, which is likely quite small.

Classic priority inheritance is
sufficient if you assign priorities
and processors in the right way!

• No, that's not always the case.

• The constructed example task set is feasible on two processors (it can be
scheduled with migratory priority inheritance without missing deadlines).

• There does not exist a priority assignment that ensures that all deadlines will
always be met under classic priority inheritance. (Try it.)

• Similarly, the task set cannot be scheduled under priority boosting.

Task WCET Period Deadline Critical
Section Priority Processor

TA

TB

TC

TD

6 20 7 — 99 1

11 20 20 2 97 1

6 20 7 — 98 2

11 20 20 2 96 2

