
Björn Brandenburg
MPI-SWS, Germany

31st IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS)
 May 9, 2025

The Linux Real-Time Task Model Extractor

Cédric Courtaud
Huawei Technologies, France

Filip Marković
University of Southampton, UK

Bite Ye
MPI-SWS, Germany

[Authors listed in alphabetical order. Work carried out while affiliated with MPI-SWS.]

established real-
time task models

https://lime.mpi-sws.org/

LiME in a nutshell:

blackbox threads
running on Linux

no source code
& no static analysis of binary

no user input
& no RT or kernel expertise required

well-studied in the RT literature
& schedulability analysis available

online (= constant-memory) inference
& conservative w.r.t. observations

Enter event or section title

The Problem
Being Solved

MPI-SWS 4

The System-Model-Analysis-Prediction Cycle
Cyber-Physical System (CPS)

Real-Time
System

schedulability analysis

∀
 α

 ∃
 ɸ

 ε
 η

 #

real-time task models

system behavior predictions

Bounds on
response times, data age, end-to-end

latency, deadline miss rates, deadline-
miss patterns, tardiness, buffer sizes,

sampling jitter, synchronization delays…

τi = (Ci, Ti, Φ, Ji)

τ = {τ1, …, τn}

τj = (Cj, αj(Δ)) τk = (Ck, Tk, Sk)
τl = (Cl, Tl)…

1 2 3 54 6 7 8 109 11 12 13 140

T1 J1,1 J1,2

Scheduling theory
guides & validates

system implementation.

MPI-SWS 8

Linux has Become a Serious RT Platform
Cyber-Physical System (CPS)

Real-Time
System

schedulability analysis

∀
 α

 ∃
 ɸ

 ε
 η

 #

real-time task models

system behavior predictions

Bounds on
response times, data age, end-to-end

latency, deadline miss rates, deadline-
miss patterns, tardiness, buffer sizes,

sampling jitter, synchronization delays…

τi = (Ci, Ti, Φ, Ji)

τ = {τ1, …, τn}

τj = (Cj, αj(Δ)) τk = (Ck, Tk, Sk)
τl = (Cl, Tl)…

1 2 3 54 6 7 8 109 11 12 13 140

T1 J1,1 J1,2

But what if we’re
using Linux…?

MPI-SWS

The “Dual Expertise” Barrier

State of the Art
➡ No tool support whatsoever!

Doing it the hard way:
1. Become familiar with Linux’s low-level

tracing facilities (eBPF).
2. Become familiar with Linux system call

semantics below libc level.
➡ Dozens of relevant syscalls and flags…

3. Become familiar with applicable RT theory.
➡ In particular, identify suitable task models

that fit Linux thread behavior!
4. Build and test your own in-house tooling.

➡ Or a mess of buggy shell scripts…

9

Real-Time
System

real-time task models

τi = (Ci, Ti, Φ, Ji)

τ = {τ1, …, τn}

τj = (Cj, αj(Δ)) τk = (Ck, Tk, Sk)
τl = (Cl, Tl)…

1 2 3 54 6 7 8 109 11 12 13 140

T1 J1,1 J1,2

This Paper
Can we fully automate

Linux Model Extraction
and bridge this gap

once and for all? ?

Enter event or section title

LiME in Action

MPI-SWS

$ sudo lime-rtw extract -o demo -- cyclictest -p fifo -D 10

defaulting realtime priority to 2
/dev/cpu_dma_latency set to 0us
policy: fifo: loadavg: 0.08 0.02 0.00 1/214 567452

T: 0 (567452) P: 2 I:1000 C: 9991 Min: 18 Act: 54 Avg: 52 Max: 75

Results saved in demo.

Demo: Tracing cyclictest

11

Online extraction of task models.
(Offline extraction also supported.)

JSON files containing
task model parameters.

Let's have a look with LiME's viewer...

Normal output of
cyclictest.

MPI-SWS

lime-rtw view /tmp/demo

12

Job Separator
By default, cyclictest uses

clock_nanosleep to enact periodic activations.

Inferred Period
1000000 ns = 1 ms

Observed Max. Release Jitter
25610 ns ≈ 25.61 µs

Detected Tasks
Here, we launched only one thread

(➔ one task).

MPI-SWS

Demo: Tracing ping

13

$ sudo lime-rtw extract --best-effort -o demo-ping
 -- ping -c 1000 -i 0.1 contact.mpi-sws.org
PING contact.mpi-sws.org (139.19.171.199) 56(84) bytes of data.
64 bytes from contact.mpi-sws.org (139.19.171.199): icmp_seq=1 ttl=59 time=1.27 ms
64 bytes from swscontact.mpi-sws.org (139.19.171.199): icmp_seq=2 ttl=59 time=1.30 ms
64 bytes from swscontact3.mpi-sws.org (139.19.171.199): icmp_seq=3 ttl=59 time=1.30 ms
64 bytes from swscontact3.mpi-sws.org (139.19.171.199): icmp_seq=4 ttl=59 time=1.32 ms
[…]
64 bytes from swscontact3.mpi-sws.org (139.19.171.199): icmp_seq=1000 ttl=59 time=1.28 ms

--- contact.mpi-sws.org ping statistics ---
1000 packets transmitted, 1000 received, 0% packet loss, time 100508ms
rtt min/avg/max/mdev = 1.248/1.309/2.106/0.058 ms

Results saved in demo-ping.

Can trace arbitrary (and non-RT) tasks.

MPI-SWS

lime-rtw view /tmp/demo-ping

14

Release Curve
Suitable for complex activation behavior.Suspension Separator

Each thread wake-up
is a new activation.

MPI-SWS

lime-rtw view /tmp/demo-ping

15

Minimum Separation ("delta min")
Shortest interval in which jobs arrive.

➔ enables response-time analysis (RTA)

N

Enter event or section title

How Does LiME Work?

MPI-SWS 17

The LiME Pipeline

struct timespec next = {…};
while (true){

clock_nanosleep(…,next);
do_something();
next_activation(&next, period);

}

 "separator": {
 "type": “clock_nanosleep”, …},
 "jobs": [{…},…,{…},

 {
 "arrival": 50,
 "release": 51,
 "end": 58,
 "execution_time": 7,

…
 },

{…},…,{…}]

…
{ "wcet": 7 }
{
 "model": "sporadic",
 "mit": 20
},
{
 "model": "periodic",
 "period": 20,
 "offset": 10,
 "max_jitter": 1
},
...

...
...

...

Workload Implementation Run-time 1. Event Tracing 2. Task Mapping 3. Job Extraction 4. Model Inference 5. RT Models~
~

~

thread PID=4

thread PID=8

thread PID=1

PID ...

...

sched_switched_out8 46

sched_switched_out1 47

sched_wake_up4 51

sched_switched_in4 52

exit_system_call4 54

enter_clock_nanosleep4 55

sched_switched_out4 58

sched_wake_up8 63

sched_switched_in8 65

PID ...

...

enter_clock_nanosleep4 35

sched_switched_out4 36

sched_wake_up4 51

sched_switched_in4 52

exit_system_call4 54

enter_clock_nanosleep4 55

sched_switched_out4 58

sched_wake_up4 71

sched_switched_in4 72 4~models.json

C4 = 7

(C4, T4) = (7,20)

(C4, Φ4, T4, J4)
=

(7,10,20,1)

......

Blackbox Threads
any code using any system
calls in any order, without
access to source code or
static analysis of binary

Split Event Stream by Task
One thread can correspond to multiple tasks

over time (see paper for details).

Kernel Instrumentation
installs 65 eBPF probes in scheduler, selected

system calls, etc. monitoring all threads

Identify Individual Task
Activations (= Jobs)

RT task models assume
repeatedly activated tasks:

task = stream of jobs

Online Model
Inference

Infer task parameters
from stream of jobs

with bounded memory.

Output
Conservative models:

each model must
reflect all

observations.

MPI-SWS 18

Key Idea: Job Separators
Target real-time task models: “a task is a sequence of jobs”

But Linux is jobless: each thread is an arbitrary sequence of system calls!

Fundamental Challenge
Where does one job end and the next start?

(1) LiME Insight

On Linux, a job (= one task activation) always
starts with a potentially blocking system call.

A real-time task must wait for next event or
passage of time ➔ blocking system calls.

(2) LiME Heuristic

Recurrent real-time tasks
≈ “doing the same thing over and over”

➔ typically every job starts with the same
system call, so LiME assumes this.

MPI-SWS

Job Separator Examples

In both examples:
➡ one job = one loop iteration
➡ each job starts with potentially

blocking system call
➡ all jobs of one task start with

the same system call

Inherent ambiguity:
➡ task may execute many

different system calls in
do_something()

➡ There are potentially many job
separator candidates.

19

struct timespec next = now();
while (true) {
/* periodic activation */
clock_nanosleep(&next);
do_something();
timespec_add(&next, PERIOD);
}

int fd = open_udp_socket(PORT);
while (true) {
/* sporadic activation */
int nbytes = read(fd, &buf);
if (nbytes <= 0) break;
do_something(buf, nbytes);
}

➔ job separator: clock_nanosleep ➔ job separator: read(fd)

Time-driven: Event-driven:

MPI-SWS 20

Dataflow from Kernel to Model Extraction

struct timespec next = {…};
while (true){

clock_nanosleep(…,next);
do_something();
next_activation(&next, period);

}

 "separator": {
 "type": “clock_nanosleep”, …},
 "jobs": [{…},…,{…},

 {
 "arrival": 50,
 "release": 51,
 "end": 58,
 "execution_time": 7,

…
 },

{…},…,{…}]

…
{ "wcet": 7 }
{
 "model": "sporadic",
 "mit": 20
},
{
 "model": "periodic",
 "period": 20,
 "offset": 10,
 "max_jitter": 1
},
...

...
...

...

Workload Implementation Run-time 1. Event Tracing 2. Task Mapping 3. Job Extraction 4. Model Inference 5. RT Models~
~

~

thread PID=4

thread PID=8

thread PID=1

PID ...

...

sched_switched_out8 46

sched_switched_out1 47

sched_wake_up4 51

sched_switched_in4 52

exit_system_call4 54

enter_clock_nanosleep4 55

sched_switched_out4 58

sched_wake_up8 63

sched_switched_in8 65

PID ...

...

enter_clock_nanosleep4 35

sched_switched_out4 36

sched_wake_up4 51

sched_switched_in4 52

exit_system_call4 54

enter_clock_nanosleep4 55

sched_switched_out4 58

sched_wake_up4 71

sched_switched_in4 72 4~models.json

C4 = 7

(C4, T4) = (7,20)

(C4, Φ4, T4, J4)
=

(7,10,20,1)

......
Task Model A

Task Model B

Task Model E

…

Job stream for
separator X

Job stream for
separator Y

…
Job stream for

separator Z

Event stream of
task 1

Event stream of
task 2

Event stream of
task N

…

filter events by
PIDs of threads

of interest

 eBPF-generated
events for all

running threads

LiME design choice: expose job-separator ambiguity to user.

kernel space (eBPF)

user space (Rust)

Enter event or section title

Supported Task Models

MPI-SWS 22

Supported Task Models

Execution Time

sporadic
(Mok, 1983)

arrival curves
(Thiele et al., 2000; Richter, 2005)

periodic + jitter & offset
(Liu & Layland, 1973; Leung & Merril,
1980; Audsley et al., 1993)

Arrival Models

WCET
(Liu & Layland, 1973)

WCET(n)
(Quinton et al., 2012)

Self-Suspension
dynamic
(Ming, 1994)

generalized segmented
(von der Brüggen et al., 2017)

(measurement-based)

MPI-SWS

Why Curve-Based Models?
Example: Linux kernel threads
➡ migration threads (one per core)
➡ assist Linux process scheduler
➡ execute at max. RT priority
➡ their CPU use must be accounted for

How much CPU use in 300 ms?

23

Why not stick with “tried and true” scalar model parameters?

WCET Arrivals Bound

scalar scalar > 1500 ms

curve scalar > 340 ms

scalar curve ≈ 4.3 ms

curve curve ≈ 0.99 ms

bursty activations

rare case

Enter event or section title

LiME: The Linux Real-Time Task Model Extractor
Björn B. Brandenburg⇤ Cédric Courtaud† Filip Marković‡ Bite Ye⇤

⇤Max Planck Institute for Software Systems, Germany

†Huawei Technologies, Paris Research Center, France

‡University of Southampton, United KingdomAbstract—We present LIME, a novel dynamic real-time task

model extractor. LIME observes the temporal behavior of Linux

real-time threads and automatically maps the observed activity

to established real-time task models: sporadic and periodic tasks,

upper and lower arrival curves, cumulative execution-time curves,

and two self-suspension models (dynamic and segmented). LIME

runs on unmodified Linux kernels and requires neither knowledge

of real-time theory nor familiarity with Linux internals to be used

effectively. An extensive evaluation shows LIME to achieve very

high inference accuracy—in particular 100% accuracy for com-

mon automotive periods—with low kernel overhead, low latency

impact, and low processor utilization (at best-effort priority).
I. INTRODUCTION

The recent acceptance of the PREEMPT RT patch into the

mainline Linux kernel, after 20 years of development [58], has

made official what has long been true: Linux is a major platform

for hosting modern, complex real-time workloads across various

industries. Notable examples feature demanding application

domains such as automotive systems [52], autonomous vehi-

cles [30, 31], unmanned aerial vehicles (UAVs) [19, 27, 35],

and spacecraft [37], in particular crewed rockets [59], NASA’s

Mars helicopter Ingenuity [57], and tens of thousands of Linux

systems deployed in orbit as part of Starlink constellations [54].

As noted recently by Erik Vallow, a representative of the

RTOS vendor LYNX Software Technologies, in a retrospective

on the evolving role of Linux in the aerospace and defense

industries [56]: “Linux has become a formidable contender

in safety-critical systems due to advancements in real-time

capabilities and reliability. [. . .] Linux is increasingly capable

of meeting the demands of real-time applications on its own,

reducing the need for a separate RTOS in some cases.” In

addition, the availability of drivers for high-performance GPUs

is increasingly a factor favoring the consolidation of AI-enabled

or otherwise GPU-accelerated real-time workloads on Linux.

However, while the popularity of Linux as a versatile and

feature-rich RTOS has soared in the real-time systems industry,

there is a growing disconnect with the analytical foundations

studied in the scientific literature on real-time systems. Rooted

in abstract system models and high-level mathematical descrip-

tions of workloads, state-of-the-art methods for establishing

temporal guarantees are far removed from the engineering

realities of a low-level embedded Linux environment.

It stands to reason, then, that only a diminishingly small

fraction of the many real-time workloads deployed on Linux

⇤†‡ Authors are listed in alphabetical order. †‡ This work was carried out

while affiliated with the Max Planck Institute for Software Systems, Germany.

over the past decade have been modeled and formally evaluated

using published schedulability analyses. A major contributor to

this disconnect is the lack of tool support: without automated

system introspection tools, engineers interested in formally char-

acterizing the timing properties of a real-time workload running

on Linux require dual expertise in both Linux implementation

details, particularly the kernel’s low-level tracing facilities and

system-call interface, and state-of-the-art temporal modeling

and analysis techniques. This, along with the associated manual

effort that would be required (and not just once, but repeatedly

as systems evolve to meet changing requirements), presents a

formidable barrier to the widespread adoption of state-of-the-art

real-time analysis techniques in a Linux context.
Could the schedulability analysis of Linux workloads be

automated and thus made easily accessible to non-experts? Mo-

tivated by this question, we address the first, fundamental prob-

lem that precedes any practical analysis: the automated model-

ing of real-time tasks deployed on unmodified Linux kernels.

While applications developed using higher-level model-first

approaches [9, 24, 44], or using programming languages with

explicit timing semantics [7, 10, 11, 15, 26, 28, 42, 43], can

certainly be compiled down to Linux binaries and executed

efficiently (i.e., model-driven engineering), the converse is far

from obvious: Is it possible to extract high-level temporal

models of running Linux threads suitable for schedulability

analysis simply by observing their low-level runtime behavior?

Is it possible to do this for black-box threads (i.e., without

access to source code)? Fully automatically, without user

guidance, annotations, or specifications of intended timing?

And can it be done in situ on a target embedded platform

without unduly perturbing the timing of the real-time threads?

This paper. We show that the answer to each of these questions

is ‘yes’ by presenting LIME, the Linux real-time task Model

Extractor (Sec. III). LIME is a dynamic introspection tool

that maps sequences of low-level thread-kernel interactions

(Sec. II-A), observed via the kernel’s eBPF tracing facility, to

task models from the real-time scheduling literature (Sec. II-B).

Fig. 1 illustrates the entire pipeline: Given an arbitrary

black-box workload (in Fig. 1, a thread implementing pe-

riodic activations with clock_nanosleep), LIME uses eBPF to

observe key scheduling events and system calls throughout the

whole system (Inset 1). After reconstructing the timeline for

each target thread (Inset 2), LIME identifies job boundaries

based on its builtin understanding of Linux system call

Evaluation in the Paper

MPI-SWS 25

LiME is Accurate and Effective

The ROSACE Case Study: From Simulink
Specification to Multi/Many-Core Execution

Claire Pagetti⇤, David Saussié†, Romain Gratia⇤, Eric Noulard⇤, Pierre Siron⇤
⇤ONERA - Toulouse, France † Polytechnique Montréal - Canada

Abstract—This paper presents a complete case study - named

ROSACE for Research Open-Source Avionics and Control Engi-

neering - that goes from a baseline flight controller, developed

in MATLAB/SIMULINK, to a multi-periodic controller executing

on a multi/many-core target. The interactions between control

and computer engineers are highlighted during the development

steps, in particular by investigating several multi-periodic config-

urations. We deduced ways to improve the discussion between

engineers in order to ease the integration on the target. The

whole case study is made available to the community under an

open-source license.

I. INTRODUCTION

The purpose of the paper is twofold: first, to provide an
open-source avionic control engineering case study1 that can
be used as a benchmark, and second, to illustrate a way of
translating such a high level SIMULINK [1] specification down
to a multi-threaded code executing on a multi/many-core target
that is compliant with the high level requirements This case
study is analyzed with respect to real-time implementation and
ways to reduce as much as possible the effort on the integration
while preserving the correct behaviour.

A. Design of a parallel flight controller

We rely on a standard avionic development process but use
recent languages and tools to design a parallel flight controller
on a challenging to embed target. It is of paramount importance
to prepare the embedding of multi/many-core COTS [2], [3]
because they will be the only available processors on the market
and because they dramatically lack of predictability. The design
of a flight controller works as follows:
Step 1: Production of a multi-periodic controller. A multi-
periodic flight controller is developed in SIMULINK around a
given operating point [4]. The methodology to obtain such a
controller is described in Section II-A. Controllers are usually
verified and validated against several properties (i.e. stability,
performance, robustness). Since our objective is to validate the
real-time aspects, we mainly focus on time-domain performance

specifications on both the transient response and the steady-
state response. Four types of properties are analyzed on the
system response to a step input:
P1 : settling time, that is the time required to settle within

5% (resp. 1% or 2%) of the steady-state value;
P2 : overshoot, that is the maximum value attained minus the

steady-state value;

1The complete case study can be found on the svn repository https://svn.
onera.fr/schedmcore/branches/schedmcore-RTAS2014/Case_Study_RTAS.

P3 : rise time, that is the time it takes to rise from 10% to
90% of the steady-state value;

P4 : steady-state error, that is the difference between the input
and the output for a prescribed test input as t ! 1.

The time-domain performance properties are illustrated in the
figure 1 for a step input. At this stage, these properties are
analyzed through SIMULINK simulations.

Overshoot

Settling time

Rise time

Steady−state

Time

Signal

Figure 1. Performance properties

Step 2: Coding. The discrete SIMULINK specification is then
translated within the PRELUDE/SCHEDMCORE framework. To
do so, each block, executing at a given rate, is translated as a
sequential C code and the multi-periodic assembly is translated
into a PRELUDE program [5]. Currently, those translations are
manual but future work could consider automatic translation
using tools detailed in Section V.

The designer can then simulate the code with the SCHEDM-
CORE toolbox [6]. The code has been instrumented in order
to generate SIMULINK-compliant traces, so that the designer
can compare the tracings obtained by the simulation of the
implementation with those of the high level design. Several
assembly versions can be constructed by varying the periods
and the precedence constraints in order to ease the integration.
This stage is described in Section III.
Step 3: Validation on the target. Finally, the designer can
integrate the implementation on the real target. To do so, the
multi/many-core must be used in a predictable way by relying
for instance on an appropriate execution model [7]. Such a
model is a set of rules to be followed by the designer in
order to avoid, or at least reduce, unpredictable behaviours. In
this work, we reuse some ideas from the literature: off-line
non preemptive partitioned schedule, static storage of code
and variables in the caches, explicit communication using the
network on chip (NoC). The experiments have been made on
the TILERA TILEMPOWERGX-36 platform [8].

To validate the performances with regard to the environment
dynamics, there are mainly three approaches: (1) hardware-in-
the-loop validation; (2) connecting the controller executing on

Pagetti et al., RTAS 2014

ROSACE Case Study
➔ longterm observation
➔ detect subtle timing drift
➔ validate fix

100% Inference Accuracy
➔ automotive periods
➔ random periods (ms-granularity)

MPI-SWS 26

LiME Causes Only Low Overhead
CPU overhead
Kernel (eBPF): < 2.5% (of 4 cores)
User space: < 2.0%
(on a Raspberry Pi 4 “Model B”)

cyclictest latency benchmark
➔ avg. latency impact ≈ 25µs

Redis key-value server
➔ minor throughput impact

Enter event or section title

Conclusion

MPI-SWS 28

What Can LiME Do For You?

1 If you are doing systems research:
➔ Integrate schedulability analysis (almost) "for free"

2 If you are working with a real system:
➔ Monitor, understand, debug, validate its timing behavior

3 If you work on schedulability analysis:
➔ Get some real models rather than just random numbers
➔ Demonstrate that your model assumptions are viable

4 If you teach:
➔ Let students explore RT foundations hands-on

https://lime.mpi-sws.org/

established real-
time task models

blackbox threads
running on Linux

➔ highly accurate
➔ low overheads

➔ fully automated
➔ online inference

Thank you for your attention! Any Questions?

