
Cédric Courtaud, Björn Brandenburg

G(IP)2C
Temporally Isolated IPC with Server-To-Server Invocations

23/05/12, RTAS’23 San Antonio, TX

Suitable for Mixed-Criticality Systems
An Alternative to Locking

2

Acquire lock Release lock

ignore

the lock

Leave the resource

in an inconsistent stateAn untrusted client can “Forget” to

release the lock Ruin everybody’s meal

Locking requires trust!
Prepare food

Locking protocol

A Better Approach: Resource Servers

3

Resource Server

IPC protocol
Reply

Delegating critical section provides logical fault
isolation.

What about temporal isolation?

Invoke resource server

No direct access

to the shared resource

What About Temporal Isolation?

4

Resource Server

IPC protocol Reply
Time-critical clients

Server must reply in bounded time

Can we satisfy time-critical clients even if

Some clients try

to monopolize the server?

The total number of clients

is not known a priori?

and ⋯

???

Concurrent clients
Unreliable clients

Each client is encapsulated in a
reservation with a

CPU time budget and a priority

Preventing Resource Server Flooding

5

A reservation is active if one of its
clients has a pending job.

A reservation can be scheduled if it
is active and has non-zero budget.

A scheduled reservation drains budget
at unit rate and ceases to be

scheduled when its budget is depleted.

With Reservation-Based Scheduling

Priority

Clients cannot monopolize the processor

What About Temporal Isolation?

6

Resource Server

IPC protocol Reply
Time-critical clients

Server must reply in bounded time

Can we satisfy time-critical clients even if

Some clients try

to monopolize the server?

The total number of clients

is not known a priori?

and ⋯

???

Concurrent clients
Unreliable clients

Yes

(with reservation-
based scheduling)

How to provision

the budget of

time-critical clients?

Prior Work: MC-IPC protocol

7

Resource Server

Budget
Reservation

Clients embedded in reservations

with processor time budget

Resource servers migrate in the reservation of their clients

Queuing structure inspired

by real-time locking

Reservation-Based
Scheduling Real-Time Locking Mixed-Criticality

Microkernels

Combine techniques from

Bounded Interference

Bound on budget drained for IPC calls

That is independent of the number of

clients

Independence

Preservation

No interference from unrelated requests

No support for

server-to-server (S2S)

requests

😎 Isolation Properties 😖 Main limitation

Time-critical clients in reservations
can be provisioned with enough
budget to satisfy their requests

"A synchronous IPC protocol for predictable access to shared
resources in mixed-criticality systems." RTSS 2014

Nesting
is

EVERYWHERE

A Motivational Example

9

Database

Server

File System

Server

Crypto

Server

1.

2.

3.

5.

SSD

Server

4.

Real-Time Secure Database

Time-Critical

Client

1. Query database
2. Fetch file
3. Fetch block
4. Decipher block
5. Sign result

Nesting Is Painful

10

Database

Server

BTRFS

Server

Crypto

Server

NFS

Server

HDD

Server

Video Server

Can lead to
exponential budget

drain

Time-Critical

Client

Servers can be

called individually

Nested requests
can be delayed

Bounded Interference Group-Independence
Preservation

Supports

S2S requests Deadlock-free

Features

Our Contribution

Based on techniques from

The Group-Independence-Preserving IPC Protocol

Budget
G(IP)2C

Mixed-Criticality

Microkernels

Passive Servers

Nested

Real-time Locking

RNLP GIPP

Reservation-based
scheduling

Budgeting

11

Paper Content

12

Progress Rules

Abortion Rules

Extensions

• Handling budget exhaustion
during IPC

• Background tasks support

• Muti-occupancy reservations

• Scheduling context transfer

System Model

Sequencing Rules

• Main entities involved in the protocol

• Concurrent request ordering

This talk{

System Model Each server belongs

to a server group

group g

group h

* Limitation lifted in the paper

 m
processors

 n
reservations

1 client
per reservation*

 q
resource servers

⋮ ⋮
⋮

Partitioned
scheduling

13

Resource ServerClientsReservationsProcessors

Synchronous IPC API

14

group g

group h

S1

Client to server

(C2S) request

Server to server

(S2S) request

Forbidden

inter-group

S2S requests

gip_invoke

gip_wait

gip_reply

gip_reply

Complete
current
request

gip_wait

Select and commit
next

pending request

gip_invoke

Emit
a

request

C2S request

 emits

S2S request

 emits

Servers can invoke other
servers if they belong

to the same groupClients can invoke

any server

C2S Request Lifecycle

Aborted
if client exhausts its
reservation budget

Emitted
C2S request

Completed
C2S request

Committed
C2S request

Cannot be
aborted anymore

gip_invoke gip_wait gip_reply

Possible S2S requests

C2S Request Representation

16

• C2S requests progress tracked
by IPC contexts

• IPC context contains a request
stack and tracking metadata

• Servers pick requests from the
request stack

IPC context Request

stack

Tracking

metadata

Request

pushed

gip_invoke

Inspect and

commit head

gip_wait

Head

popped

gip_reply

C2S Requests

Sequencing

A Straw-Man Approach

18

⋯

3.

1. Each server group has a global group queue of IPC
contexts

2. IPC contexts enqueued in FIFO order in the group
queue.

3. Resource servers traverse the group queue and
commit requests as soon as possible

Global group queue

(1 per server group)

Work-conserving
resource servers

2.

1.

S1

S2

The Problem with the Straw-Man Approach

19

⋯

3.

2.

1. Each server group has a global group queue of IPC
contexts

2. IPC contexts enqueued in FIFO order in the group
queue.

3. Resource servers traverse the group queue and
commit requests as soon as possible

Work-conserving
resource servers

1.

Group queue length bounded by

unknown number of clients

Delayed by a

later request😱 😰

M
ax

. B
ud

ge
t d

ra
in

ed
 p

er
 s

er
ve

r (
m

s)

G(IP)2C

Unbounded

Group Queue

Bound

How to avoid interference from later requests?How to bound the group queue?

S1

S2

M
ax

. B
ud

ge
t d

ra
in

ed
 p

er
 s

er
ve

r (
m

s)

G(IP)2C

Work-conserving
servers

Bound

Nesting Depth

S1

S2

Revised Architecture

20

At most m IPC contexts No longer delayed
4.

2.

Shared IPC
Context

1 per processor
&

server group
3.

1. Each server group has a global group queue of IPC contexts

2. Client acquires an IPC context.

3. Once acquired, the IPC context is enqueued in FIFO order in the group
queue

4. Resource servers traverse the queue and commit requests that cannot
interfere with earlier ones.

Non-Work-conserving
resource servers

1.

How to avoid interference from later requests?How to bound the group queue?
An RNLP Based Approach

Need to predict the future!

Present and Future Resource Server Invocation Tracking
Server Tickets

21

S1

S1

A ticket is needed

to invoke

a resource server

Server tickets are

server-specific tokens

stored in IPC contexts

The handled ticket

is consumed

when the server replies

S1 S1

S1

Ticket please!

gip_reply

Ticket
multiset

IPC
context

Server tickets

Server ticket for S1

An IPC context with a ticket for S1 in its ticket multiset

has a request for S1 or will have one in the future

contains

gip_invoke

Non-Work-Conserving Resource Servers

22

A request is committed only if there is

no preceding IPC context in the group queue

with overlapping ticket multiset.

Key property
Once committed, a C2S request is never delayed.

S1

S2

group queue

tickets(C1) ∩ tickets(C2) = Ø

S1 and S2 can safely run in parallel

C1 C2
S1

S2

S2 will call S1 in
the future

tickets(C1) ∩ tickets(C2) = { }

C1 blocks C2’s request

C1 C2

Client

Invokes a Server

23

Request

Emitted

Request
Committed

Request

Completed

No interference for
committed C2S requests

1 ⋅ Lmax
g

B = (2m + 1) ⋅ Lmax
g

😃 Does not depend

on the number of clients!

What budget is needed to satisfy a request?

At most (m-1)
earlier C2S requests

(m − 1) ⋅ Lmax
g +

Discussed in the paper!

(m + 1) ⋅ Lmax
g +

Max required budget
by a request in group g

Lmax
g

IPC Context
Acquisition

Request
Service

Allows for compositional

budget provisioning 🥳⇒

What budget

is drained

in
practice

?

Experimental Setup

25

Random

Servers randomly picked

by adversaries

Distributed

Servers evenly assigned

to adversaries

Sequential

Adversaries invoke

the first server

Invocation patterns

Prototype implemented

in LITMUSRT

4-core i5-4590

Intel evaluation target

1 measured client

(N -1) stressing client
• Chain of q servers

• On average 1ms of budget required

per server

⋯

Lmax
server ≈ 1ms q ∈ [1,8]

Evaluation Benchmark

Our Theoretical Bound is Verified in Practice

26

Bound is tight

Bu
dg

et
 d

ra
in

ed
 p

er
 s

er
ve

r (
m

s)

Bound

Sequential

Random

DistributedIn-group parallelism

Deadlock

FreeBounded Interference

(2m + 1) ⋅ Lmax
g Group-Independence

Preserving

Key properties

Contribution
G(IP)2C: The first synchronous
IPC protocol with temporal isolation
for S2S invocations.

Scope
Multiprocessor systems

under partitioned
reservation-based scheduling

🙏Thank you for your attention!

There is more in the paper!

 Abortion Rules Full proof Progress rules

27

Limitations
Requires careful resource partitioning

Higher Runtime Overhead than simpler protocols

Extensions
Support for background jobs

Multi-occupancy reservations

