N

G(IP)2

Temporally Isolated IPC with Server-To-Server Invocations
Cédric Courtaud, Bjérn Brandenburg 23/05/12, RTAS’23 San Antonio, TX

)
o MAX PLANCK INSTITUTE
O EOR SOFTWARE SYSTEMS

- J

An Alternative to Locking
Suitable for Mixed-Criticality Systems

Locking protocol
wiw —e—|
' = I 7 ht ‘
I . > ' i S L L) 27 >
CLIENT
Acquire lock Release lock

Prepare food

Locking requires trust!

N 1 K - ’
% N (%, WA .

ignore L eave the resource “Forget” to

Ruin everybody’s meal
the lock in an inconsistent state release the lock y y

An untrusted client can

A Better Approach: Resource Servers

No direct access
to the shared resource

Invoke resource server
) oty
. . . '
—_—)
Aol . > ?
CLIENT nm
IPC protocol

Resource Server

0 Delegating critical section provides logical fault ' Q What about temporal isolation?
Isolation. '

Fo 0.

S
Unreliable clients

r

What About Temporal Isolation?

i

Concurrent clients “

..Q@

Time-critical clients

KQ > | A

IPC protocol

Resource Server

Server must reply in bounded time

Can we satisfy time-critical clients even if

>I
—
—

e

The total number of clients

Some clients try
is not known a priori?

to monopolize the server?

Preventing Resource Server Flooding
With Reservation-Based Scheduling

—E&D

~ feeserves] - A
aan —P '_:_lﬁ B | WorkIN
CCCCCC s__ CLIENT PROGRESS I

Each client is encapsulated in a A ton i tive if £ it
reservation with a reservation IS actuve IT one Ot ItS

CPU time budget and a priority clients has a pending job.

Tee ey

. o A scheduled reservation drains budget
A reservation can be scheduled if it ot unit rate and ceases to be

is active and has non-zero budget. scheduled when its budget is depleted.

Clients cannot monopolize the processor

CLry
\-.-O'J

¥

What About Temporal Isolation?

60.
Unreliable clients ﬂﬁﬁﬁ]

[o Concurrent clients
o
IPC protocol

Time-critical clients

Resource Server

Server must reply in bounded time

Can we satisfy time-critical clients even if

(with reservation-
based scheduling)

! 19

Some clients try
to monopolize the server?

How to provision
the budget of
time-critical clients?

and ﬁﬁﬁﬁ irrrrrrrrrrmul

297 '

The total number of clients
is not known a priori?

Prior Work: MC-IPC protocol

"A synchronous IPC protocol for predictable access to shared
resources in mixed-criticality systems." RTSS 2074

Time-critical clients in reservations
Resource servers migrate in the reserval can be provisioned with enough
budget to satisfy their requests

q —» |11
'.-l
Tm A EEEREEEEE
= c‘.‘]I.IENT LIT TPl
Reservation HEEE N
Clients embedded in re.servatlons Queuing strdcture |n.sp|red Resource Server
with processor time budget by real-time locking

Combine techniques from

Reservation-Based Sl e Lealiis Mlxed-Crltlcallty
Microkernels

Scheduling

® Isolation Properties @ Main limitation

Bounded Interference Independence No support for
Preservation
Bound on budget drained for IPC calls server-to-server (SZS)

That is independent of the number of _ requests
clients No interference from unrelated requests

A Motivational Example

Real-Time Secure Database

1. Query database
2. Fetch file
3. Fetch block
E I'h
4. Decipher block > T
. NN
5. Sign result
File System
r n E:E_E Server
4o i =
—
Time-Critical Database
Client Server

l

-

Crypto
Server

|

Nesting Is Painful

— iR

HDD

Server

rh
.
NN D
NFS
Server
rh
|—
NN
BTRFS
P Server
Time-Critical Database
Client Server

—— g L]

Servers can be * Nested requests

called individually can be delayed
10

Crypto
Server

Can lead to
* exponential budget
drain

Our Contribution

The Group-Independence-Preserving |IPC Protocol

-
CLIENT

Features

Bounded Interference Group-Independence

$2S requests Preservation Deadlock-free

Based on technigques from

Reservation-based Nested Mixed-Criticality
scheduling Real-time Locking Microkernels
11

G(IP)*C: Temporally Isolated Multiprocessor
Real-Time IPC with Server-to-Server Invocations

Cédric Courtaud.

Bjirn B. Brandenburg

Max Planck Institute for Sofoware Systems (MPI-SWS)

Abstraci—Synchronous inter-process communication (IPC) s a
central operation in microkernel-based operating systems, which
are commonly employed in mixed-criicality real-time systems. A
key desideratum in an IPC protocol for time-sensitive systems is

temporal isolation: when invoking a shared server, the wors-case
interference incurred by the waiting client (ic., the maximum

should be bounded irrespective of the behavior of competing,
untrusted clients. Additionally, an IPC protocol should support
server-to-server (S25) invocations, so_ that servers may invoke

ther servers when handling requests, which enables modern
Software engineering practices (e.;, reuse of shared functionality,
decompositi

multiprocesso scheduling ensures a strong

placing any restrictions on which and servers
reside on. The protocol i defined as a set of request-sequencing,
andvidth-delegation, and budget-exhaustion rules, analyzed in
terms of maximum budget drain, extended to mult-occupancy
reservations and background tasks, and shown to be practically
realizable with a prototype implementation in LITMUS™.
1. INTRODUCTION

Many real-time operating systems for critical and mixed-
eriicaliy systems follow a microkernel design. Notable exam-
ples are QNX [32], the L4 familly [10, 18], Quest-V (2], and.
CompositeOS [29]. A key driver for this design preference is
the high degree of isolation and fault containment achievable:
by microkemel-based systems, which realize most of the
functionality provided by the operating system (device drivers,
file systems, efc.) in user-space processes called servers.

In particular, microkernel-based systems offer an elegant

as actual hardware devices or higher-level OS facilities) can
be mediated by encapsulating them in resource servers. In this
approach, instead of exercising direct, unchecked access o
shared resources (which would require frus), clients invoke.
the corresponding resource servers using a synchronous inier-
process communication (IPC) protocol to request operations

be carried out on their behalf according to a well-defined,
access-controlled interface (which requires trusting the server,
but not other clients). Unsurprisingly, the IPC infrastructure:
is a central part of any microkemel, influencing its overall de-
sign [23], and subject to much optimization and benchmarking.

/hen_hosting_time-sensitive. applications, temporal

dictability also becomes a key design objective. Consequently,

a real-time IPC protocol should guarantee femporal isolation
(i.., bounded delay) to clients invoking shared resource servers,
‘which however i easier said than done. In the context of mixed-

offer since the number of competing tasks may be unce
and since tasks cannot be trusted to be well-behaved [5].
ensuring temporal isolation d
easier if resource servers may invoke other servers as part of
handling requests. We refer to such requests as server-fo-server
(525) requests, as opposed o client-fo-server (C2S) requests
emited by top-level applications. 525 i
possibility for a client to be dela
servers it does not explicitly invoke. This problem is similar
to the transitive blocking problem encountered in the context
of nested locking protocols, which can result in exponential
delays as shown by Takada and Sakamura [34].

‘While IPC protocols are typically designed to be extremely
fust in the absence of contention [10, 23, 24], historically,
much less attention has been given 1o the sequencing of
concurrent requests, and even less o in the context of
multiprocessor systems. Prior work in this space can
divided roughly into two categories: (1) flexible approaches
permitting 525 invocations, which however do not ensure
temporal isolation, and (2) approaches offering strong temporal
isolation guarantees that alas support only C2S requests.

jated work in the first category (reviewed in Section IX)
focuses mostly on FIFO and priority queues, which do not

tee temporal isolation in the presence of untrusted tasks,
especially if servers and clients reside on different proces-
sors. To our knowledge, the mixed-criticality IPC (MC-IPC)
protocol [5] is the only protocol in the second category. The
MC-IPC protocol offers strong temporal isolation properties
in the context of mixed-criticality systems, regardless of the
number and behavior of competing tasks. Unfortunately, the
MC-IPC protocol lacks support for S25 requests

Proper handling of S2S requests must reconcile two difficult
problems: first, how (o interleave concurrent 25 requests in a
‘way that does not cause deadlock or exponential worst-case:
delays for clients; and second, how to do so while preserving
some level of paralelism? Advances in real-time nested locking
protocols, especially the real-time nesied locking protocol
(RNLP) (36, 37] and more recently the group-independence-
preseving protocol (GIPP) [31], offer solutions that can help
reconcile these aspects in systems using job-level fixed priority
(LFP) schedulers. However, these solutions do not dircctly
apply in the IPC context since they assume fully trusted

Paper Content

+ Background tasks support

Extensions + Muti-occupancy reservations

« Handling budget exhaustion

Abortion Rules during IPC

Progress Rules - Scheduling context transfer
s1=To |U[=Tpleflp[s PR{EI[=538 - Concurrent request ordering

Main entities involved in the protocol

System Model

12

This talk

System Model

to a server group

group g

RESERVED

o

RESERVED

-
Jaavva.

CLIENT

= o ;ESERVED Y group h
h I CLIENT

Processors Reservations Clients Resource Server * Limitation lifted in the paper

CPU RESERVED o0
X T
CLIENT

m n Partitioned 1 client q

processors reservations scheduling per reservation* resource servers
13

Synchronous IPC API

Clients can invoke
any server

Servers can invoke other
servers if they belong
to the same group

group g
gip_invoke

Cllent to server glp_wait
(C2S) request
CLIENT *--------------------------
E Server to server
gip_invoke gip_wait gip_reply (S2S) request
o
()
r I group h
AN | Forbidden
inter-group
Emit Select and commit Complete E S2S requests
a next current
request pending request request
) 3 3
CLIENT A A

C2S request S2S request

14

C2S Request Lifecycle

2

Completed
C2S request

Committed
C2S request

Emitted
C2S request

Aborted
if client exhausts its Cannot be
reservation budget aborted anymore
@ @ @
4 4 Possible S2S requests 4
gip_invoke gip_wait gip_reply

~
[N\
CLIENT

C2S Request Representation

Tracking
metadata

- C2S requests progress tracked
by IPC contexts IPC context Rec uest

stiick

- |[PC context contains a request
stack and tracking metadata

- Servers pick requests from the
request stack

Inspect and
commit head

16

C2S Requests

A Straw-Man Approach

© s <— i S2

Global group queue Work-conserving
(1 per server group) resource servers

e ESI

1. Each server group has a global group queue of IPC
contexts

) 4

2. IPC contexts enqueued in FIFO order in the group
quUEuUE.

3. Resource servers traverse the group queue and
commit requests as soon as possible

18

Max. Budget drained per server (ms)

The Problem with the Straw-Man Approach

30

25

20

15

10

How to avoid interference from later requests?

X

preﬁX” Unbounded e
j: " Group Queue _x”
ot length bounded
- amber of client:
7’
//
o
//
Bound _x~ G(IP)2C

——————————j);—‘yc ® ° ® ° o-

P ' a globa

1 2 3 4 5 6 7 8
Clients per core ¢ (#)

queue.

Max. Budget drained per server (ms)

18

16

14

12

10

8

4

-

prefix Work-conserving =7
T @ servers | -*==x_ %
-%- wce ya Sx”
s =%"
4
/
/
/
X
‘/
/X
7/
X
/
/
x/
Bogm'd G(IP)2C
- ;;;*(;’.&‘.E——'._._.—.—H—'—'_'._._._ =1
2 4 6 8 10 12 14 16

Nesting Depth g (#)

IPC contexts enqueued in FIFO order in the group

Resource servers traverse the group queue and

commit requests as soon as possible

19

Revised Architecture
An RNLP Based Approach

How to avoid interference from later requests?

e e sEssseEsssEssssEsssEsssEEsssEsssessseEsssesssenas
: :
: :
- -

O] © o
% & i o |

Non-Work-conserving
resource servers

O ESI

1. Each server group has a global group queue of IPC contexts

No longer delayed

2. Client acquires an |IPC context.

3. Once acquired, the IPC context is enqueued in FIFO order in the group
queue

4. Resource servers traverse the queue and commit requests that cannot
Interfere with earlier ones. Need to predict the future!

20

Server Tickets

Present and Future Resource Server Invocation Tracking

contains n
PN
Ticket
multiset (LD gip_invoke
anC f Server tickets -
context Ticket pleage!

Server ticket for S1

Server tickets are A ticket is needed The handled ticket
server-specific tokens to invoke is consumed
stored in IPC contexts a resource server when the server replies

An IPC context with a ticket for Sy in its ticket multiset
has a request for S1 or will have one in the future

21

Non-Work-Conserving Resource Servers

A request is committed only if there is
no preceding IPC context in the group queue
with overlapping ticket multiset.

tickets(Cy) N tickets(Cy) =D tickets(C)) Ntickets(C,) = {TD}

. 'S2 will call STin
group queue S V the future [S
| C- =
‘—
D

S1 and S2 can safely run in parallel C1 blocks C2’s request

Key property
Once committed, a C2S request is never delayed.

22

What budget is needed to satisfy a request?

IPC Context Request

Acquisition Service
|. |. ... |

Client Request Request Request
Invokes a Server Emitted Committed Completed
Discussed in the paper! At most (m-1) No interference for
paper: earlier C2S requests committed C2S requests

max
(m+1)- LM+ (m—1)-LI' + I . L L,

Max required budget
by a request in group g

\ 7 max
)L,

© Does not depend Allows for compositional
on the number of clients! budget provisioning &3

23

What budget
IS drained

IN
practice
t,

Experimental Setup

CPU

CPU

Evaluation Benchmark

LITMUSRT

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

Prototype implemented

R4 1 measured client

in LITMUSRT * Chain of g servers
-~ :
22| ° Onaverage 1ms of budget required (N -1) stressing client
per server

CPU

4-core i5-4590

- Intel evaluation target -
L%~ 1ms q € [1,8]

Invocation patterns

bbog

o
D
CLIENT

Sequential Random Distributed
Adversaries invoke Servers randomly picked Servers evenly assigned
the first server by adversaries to adversaries

25

Our Theoretical Bound is Verified in Practice

Bound is tight

)
- Bound d srd . | max
= e bl i b et Ll S L s Rt - 9 Liink
o 1 1
c 8 = =
O
7!
| -
S 6
Q. pattern
e
GC) V1 B Scquential
S 4 . E ' I Random
o - In-group parallelism P B Distributed
52 H o e S =
O : ' .
3 . o o o o o o e e . o . 8
m
1 2 3 4 5 6 I 8

Clients per core ¢ (#)

26

J.Thank you for your attention!

“ (2m+1) - L Group-Independence Deadlock
Bounded Interference Preserving Free

Contribution Scope

G(IP)2C: The first synchronous Multiprocessor systems
under partitioned

IPC protocol with temporal isolation @
for S2S invocations. reservation-based scheduling

Key properties

There is more Iin the paper!

93 Full proof ?@ Progress rules X Abortion Rules

& d)

[l

Limitations Extensions

Requires careful resource partitioning Support for background jobs

Higher Runtime Overhead than simpler protocols Multi-occupancy reservations

27

