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Timers in Real-Time OSes

Job Releases
Tasks can be woken up periodically using timers

Budget Enforcement
Schedulers use timers to prevent budget overruns

Self-Suspensions
Tasks can use POSIX clock_nanosleep() to suspend themselves
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Earliest expiring 
timer is programmed 

into hardware

Linux’s hrtimer subsystem

But, earliest timer 
could belong to the 

lowest-priority task!

May interrupt a 
higher-priority task!

Key Problem
hrtimers does not take into 

account the priority of the process 
that created the timer
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Mask all the 
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These operations need to be 
inexpensive to work well in practice

1. Find and reprogram 
the earliest timer with 

priority ≥ HP 

2. Process expired timers 
of the highest priority

(lower priority ones can 
still be deferred)
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1: Find the earliest timer at each priority level

A Range Minimum 
Query! (RMQ)

2: Among these, find the earliest timer in the priority 
range [curr_task_prio, max_system_prio]
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2: Range Minimum Query – Segment Tree

N = number of (fixed) 
priority levels

Constant time 
operation!

Provides an efficient, O(log N) mechanism to find the earliest 
timer in the priority range

[curr_task_prio, max_sys_prio]
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Further details in the paper!

Open-source implementation at
https://people.mpi-sws.org/~bbb/papers/details/rtas17p/

TimerShield Implementation
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HP Task Response Time
1 KHz control loop with 

approx. 200μs 
computation time

Taskset parameters based on S. Kramer, D. Ziegenbein, and A. Hamann, 

“Real world automotive benchmark for free,” in WATERS, 2015.

cyclictest tasks
which periodically call 

clock_nanosleep()
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HP Task Response Time

From 1 to 100 LP
cyclictest tasks

1 KHz control loop with 
approx. 200μs 

computation time

cyclictest tasks
which periodically call 

clock_nanosleep()

Taskset parameters based on S. Kramer, D. Ziegenbein, and A. Hamann, 

“Real world automotive benchmark for free,” in WATERS, 2015.
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Means 60% of the 
measured samples have a 
response time ≤ 214.8us
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1 LP cyclictest

50 LP cyclictests

100 LP cyclictests

Long tail,
high unpredictability
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Response time with 1, 50 or 
100 LP timers remains 

consistent!

Slight shift due to cache 
effects of increasing number 

of low-priority tasks
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How Bad Can It Get?

Using Linux’s timerfd API

Linux (and POSIX) provide no protection, and 
specifies no upper limit on timer creation
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Nearly 45us (22%) response-
time increase with 1000 

low-priority timers
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1000 LP timers

100  LP timers

Idle System

TimerShield protects high-priority task response times 
from low-priority timer interrupts!
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How is the context-switch duration affected?
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We measured the total additional time incurred by TimerShield
during context-switches in a timer-heavy scenario

Note: Results for a scenario without a timer-heavy load can be found in the paper.

Additional Context-Switch Delay

During context-switches, TimerShield processes expired timers, 
performs a RMQ, and optionally reprograms hardware 



1 high-priority and 50 low-priority 
timer-using tasks of the same priority
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We measured the total additional time incurred by TimerShield
during context-switches in a timer-heavy scenario

Note: Results for a scenario without a timer-heavy load can be found in the paper.

Additional Context-Switch Delay

During context-switches, TimerShield processes expired timers, 
performs a RMQ, and optionally reprograms hardware 
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Context-switch delay due to TimerShield is small, and its 
batch processing of timers is faster than hrtimers
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How is the context-switch duration affected?
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Data-Structure Overheads
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Note: Results for a scenario with a timer-heavy load can be found in the paper.

We measured the timer enqueue and dequeue cost on both 
subsystems for this setup

The worst case for TimerShield’s data-structures is with a single 
timer, because each operation modifies the segment tree
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Evaluation Summary

TimerShield’s data structure costs are 
comparable to hrtimers

100Note: Further experiments, including results for ARM, can be found in the paper.

Additional context-switch delay is small, and batch 
timer processing is faster with TimerShield

Impossible for high-priority tasks to be interrupted 
by low-priority timers under TimerShield
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Implementation currently assumes unchanging timer priorities
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Real-time locking protocols, or users, may change task priorities

Dynamic Timer Priorities

Works implicitly for the immediate priority ceiling protocol

Implicitly works if priority is changed with no pending timers

Can be easily extended to deal with dynamic priorities



Future Work

Support for Earliest Deadline First (EDF) schedulers

Applying similar techniques to other, multiplexed 
interrupt sources such as network packet interrupts
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Summary
Low-priority timer interrupts have a significant 
negative impact on high-priority task execution

Existing high-resolution timer subsystems, such as 
Linux hrtimers, are not priority aware

TimerShield completely avoids low-priority timer
interrupt interference with small overheads
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FP scheduling on 
uniprocessor/partitioned 

multiprocessors
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Source Code
https://people.mpi-sws.org/~bbb/papers/details/rtas17p/
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Why Not Global Scheduling?
Not deferring the wakeup of a low-priority task might allow it to 

execute on a different, possibly idle CPU
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Segment Tree
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Code Size and Memory

Increase in text segment 2 KiB

Increase in data segment 35 KiB per core
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How big is TimerShield code, and what are it’s memory 
requirements?
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