TimerShield

Protecting High-Priority Tasks from
Low-Priority Timer Interference

Pratyush Patel!?2, Manohar Vanga?, Bjorn Brandenburg!
IMPI-SWS, 2Carnegie Mellon University
MAX PLANCK INSTITUTE RTAS 2017
a
C~ar™

- FOR SOFTWARE SYSTEMS April 18, 2017
| W .
Kaiserslautern, Germany Pittsburgh, USA

This Paper

This Paper

hrtimers

PREEMPT_RT

This Paper

hrtimers

\/

Default high-resolution
timer subsystem

PREEMPT_RT

hrtimers

\

Default high-resolution
timer subsystem

¥

Unnecessary low-
priority timer-interrupt
interference

This Paper

PREEMPT_RT

This Paper

hrtimers TimerShield

\

Default high-resolution
timer subsystem

v

PREEMPT RT
Unnecessary low- -

priority timer-interrupt
interference

This Paper

TimerShield

4

A drop-in replacement
for hrtimers

hrtimers

\

Default high-resolution
timer subsystem

v

PREEMPT RT
Unnecessary low- -

priority timer-interrupt
interference

This Paper

TimerShield
v

hrtimers

\/

A drop-in replacement
for hrtimers

Default high-resolution
timer subsystem

¥

PREEMPT_ RT
Unnecessary low- —

priority timer-interrupt ARM intel.

interference

hrtimers

\/

Default high-resolution
timer subsystem

¥

Unnecessary low-
priority timer-interrupt
interference

This Paper

PREEMPT_RT

ARM ('ntelw)

TimerShield
v

A drop-in replacement
for hrtimers

¥

Eliminates low-priority
timer-interrupt
interference

Talk Overview

Talk Overview

High-Resolution Timers

Core 1l Core 2
Timer Timer
Core 3 Core 4
Timer Timer

High-Resolution Timers

Core-local timers with cycle precision

Core 1l Core 2
Timer Timer
Core 3 Core 4
Timer Timer

High-Resolution Timers

Core-local timers with cycle precision

Core 1l Core 2
Timer Timer
Core 3 Core 4
Timer Timer

Can be programmed to raise an
interrupt at a desired time

Timers in Real-Time OSes

Timers in Real-Time OSes

Job Releases
Tasks can be woken up periodically using timers

Timers in Real-Time OSes

Job Releases
Tasks can be woken up periodically using timers

Budget Enforcement
Schedulers use timers to prevent budget overruns

17

Timers in Real-Time OSes

Job Releases
Tasks can be woken up periodically using timers

Budget Enforcement
Schedulers use timers to prevent budget overruns

Self-Suspensions
Tasks can use POSIX clock _nanosleep() to suspend themselves

18

Assumptions

Fixed-priority scheduling

‘ Uniprocessor \ ‘ Partitioned Multiprocessor \

19

Timer-Interrupt Interference

Timer-Interrupt Interference

Calls clock_nanosleep(6)

Timer-Interrupt Interference

Calls clock_nanosleep(6)

LP
0 2 4 6 8 10 12

Low-Priority Task

Timer hardware is
programmed to fire at the
specified time

Timer-Interrupt Interference

High-priority task
is released

Timer-Interrupt Interference

0 i 2 4 6 8 10 12

At t = 6, timer hardware
fires an interrupt

Timer-Interrupt Interference

HP is preempted to
service the interrupt
(LP task is woken up)

! _10 :
gy ik |
 ternder |

At t = 6, timer hardware
fires an interrupt

25

Timer-Interrupt Interference

HP is preempted to
service the interrupt HP task resumes
(LP task is woken up)

Timer-Interrupt Interference

Unnecessary
interference

Why Does Interference Occur?

Linux’s hrtimer subsystem

Why Does Interference Occur?

Linux’s hrtimer subsystem

Multiplexes many
software timers on a
single hardware timer
using a time-ordered
red-black tree

29

Why Does Interference Occur?

Linux’s hrtimer subsystem

Earliest expiring
timer is programmed
into hardware

Why Does Interference Occur?

Linux’s hrtimer subsystem

But, earliest timer
could belong to the
lowest-priority task!

Earliest expiring
timer is programmed
into hardware

31

Why Does Interference Occur?

Linux’s hrtimer subsystem

May interrupt a
higher-priority task!

But, earliest timer
could belong to the
lowest-priority task!

Earliest expiring
timer is programmed
into hardware

Why Does Interference Occur?

May interrupt a Linux’s hrtimer subsystem

higher-prior

Key Problem
hrtimers does not take into
account the priority of the process
that created the timer

But, earlies
could belon
lowest-prio

Earliest expiring
timer is programmed
into hardware

33

Talk Overview

How Does TimerShield Work?

How Does TimerShield Work?

How Does TimerShield Work?

Mask all the
low-priority timers

How Does TimerShield Work?

Mask all the
low-priority timers

How Does TimerShield Work?

Mask all the Process the expired
low-priority timers low-priority timers

How Does TimerShield Work?

Mask all the Process the expired
low-priority timers low-priority timers

Timer processing
shifted

How Does TimerShield Work?

Timer processing
(interrupt top-half)
is safely deferred

How is TimerShield Implemented?

Timer inherits
task priority

How is TimerShield Implemented?

1. Find and reprogram
the earliest timer with

priority 2 HP \

How is TimerShield Implemented?

1. Find and reprogram
the earliest timer with

priority 2 HP N

How is TimerShield Implemented?

2. Process expired timers
of the highest priority
(lower priority ones can
still be deferred)

1. Find and reprogram
the earliest timer with
priority 2 HP

0 i 2 4 6 8 10 12
t

How is TimerShield Implemented?

: 2. Process expired timers

1. Find and reprogram £ the hichest briorit

the earliest timer with orthe '_g gs priority
(lower priority ones can

s
priority 2 HP N /l still be deferred)

How is TimerShield Implemented?

2. Process expired timers
of the highest priority
(lower priority ones can

still be deferred)

1. Find and reprogram
the earliest timer with
priority 2 HP

N r’d

These operations need to be
inexpensive to work well in practice

47

Priority-Based Earliest Timer

1: Find the earliest timer at each priority level

Priority-Based Earliest Timer

1: Find the earliest timer at each priority level

2: Among these, find the earliest timer in the priority
range [curr_task prio, max_system_prio]

Priority-Based Earliest Timer

1: Find the earliest timer at each priority level

2: Among these, find the earliest timer in the priority
range [curr_task_prio, max_system_prio]

A Range Minimum
Query! (RMQ)

1: Replicating Red-Black Trees

Priority Level 1 2

140

NULL

51

1: Replicating Red-Black Trees

Priority Level

140

Earliest timer for each
priority level

NULL

2: Range Minimum Query — Segment Tree |

min [O 3]

/ \ min [2, 3]

\ /\
©O 0 O

[0] [1] [2] [3]

min [0,1]

2: Range Minimum Query — Segment Tree |

min [0 3] Leaf nodes are the
earliest timers for

each priority level
/ \ min [2, 3]

\ / \
©O 0 O
[1] [2] [3]

min [0,1]

[0]

54

2: Range Minimum Query — Segment Tree

min [0, 3]
N

Provides an efficient, O(log N) mechanism to find the earliest
timer in the priority range
[curr_task_prio, max_sys_prio]

N /N
©O 0 O
[1] [2] [3]

[0]

55

2: Range Minimum Query — Segment Tree

min [0, 3]
N

Provides an efficient, O(log N) mechanism to find the earliest
timer in the priority range
[curr_task_prio, max_sys_prio]

N = number of (fixed) Constant time
priority levels) ‘ operation!

[O] [1] [2] [3]

56

TimerShield Implementation

Further details in the paper!

Open-source implementation at
https://people.mpi-sws.org/~bbb/papers/details/rtas17p/

Talk Overview

Evaluation

Intel Core-i5
4 x 3.2Ghz

Prototyped in
PREEMPT_RT

ARM Cortex-A53
4 x1.2Ghz

59

Evaluation

Prototyped in
PREEMPT_RT

Intel Core-i5
4 x 3.2Ghz

ARM Cortex-A53
4 x1.2Ghz

60

Evaluation

How effective is TimerShield at isolating high-priority
tasks from low-priority timer interrupts?

| How is the context-switch duration affected? \
| How costly are the new queueing data structures? \

61

Evaluation

How effective is TimerShield at isolating high-priority
tasks from low-priority timer interrupts?

| How is the context-switch duration affected? I
| How costly are the new queueing data structures? I

62

HP Task Response Time

We measured the response time of a high-priority task with
varying number of low-priority, timer-using tasks

HP Task Response Time

1 KHz control loop with
approx. 200us
computation time

We measured the response time of a high-priority task with
varying number of low-priority, timer-using tasks

Taskset parameters based on S. Kramer, D. Ziegenbein, and A. Hamann,
“Real world automotive benchmark for free,” in WATERS, 2015.

HP Task Response Time

1 KHz control loop with
approx. 200us
computation time

We measured the response time of a high-priority task with
varying number of low-priority, timer-using tasks

cyclictest tasks
which periodically call
clock_nanosleep()

Taskset parameters based on S. Kramer, D. Ziegenbein, and A. Hamann,
“Real world automotive benchmark for free,” in WATERS, 2015.

HP Task Response Time

1 KHz control loop with
approx. 200us
computation time

We measured the response time of a high-priority task with
varying number of low-priority, timer-using tasks

cyclictest tasks
which periodically call
clock_nanosleep()

From 1 to 100 LP
cyclictest tasks

Taskset parameters based on S. Kramer, D. Ziegenbein, and A. Hamann,
“Real world automotive benchmark for free,” in WATERS, 2015.

CDF

1.0

0.6

HP Task Response Time

0.8 b oo

210

]]
215 220 225 230 235
Response Time (in us)

240

67

CDF

1.0

0.6

HP Task Response Time

-

Means 60% of the

0.2 -

I
Q&
\11/ measured samples have a
| response time < 214.8us
I
I

]]]
215 220 225 230 235
Response Time (in us)

68

CDF

1.0

0.6

Response Time - hrtimers

-

02t .1

1 LP cyclictest

210

215

]]
220 225 230 235 240
Response Time (in us) 60

CDF

Response Time - h r‘t imers

1.0

0.6

oal ..}

0.2 -

o0k -

__—_.—_,-'-— e

'-l.F'---

100 LP cyclictests

- 50 LP cyclictests

1 LP cyclictest

210

220 225 230
Response Time (in us)

|
235

70

CDF

Response Time - hrtimers

1.0 s T S——— f_ -

' ..l-"'..lll

f P

UB_; llr..i' f! Longta|l
0.6 5 .e! ’: 100 LP cyclictests hlgh unpredlctablllty

0.4F ey i.' .~ 50LP cyclictests

0.2F TN T R S |
Iyt 1 LP cyclictest | |

210 215 220 225 230 235
Response Time (in us)

CDF

Respo

1.0

0.6

o0k -

08b]

Uq_””“mu_.,m”””mnnimu_”m””“”m”””m”ﬂ“muu_mnﬁum“””m_

02 b i

nse Time - TimerShield

210

215

220 225 230

Response Time (in us)

e
235

240

CDF

Response Time - TimerShield

1.0

0.8L i
0.6

DAL T Response time with 1,50 or 1

: _ 100 LP timers remains
DIE [consistent!

o0k -

210 215 220 225 230 235 240
Response Time (in us)

73

CDF

Respo

nse Time - TimerShield

1.0 !
_ _ Slight shift due to cache
08L - T effectsofincreasing number -]
of low-priority tasks

0.6F -l

_ 100 LP timers remains
D.E consistent! e
ook - R R et SR EREr . o

210 215 220 225 230 235 240

Response Time (in us)

How Bad Can It Get?

Linux (and POSIX) provide no protection, and
specifies no upper limit on timer creation

75

How Bad Can It Get?

Linux (and POSIX) provide no protection, and

specifies no upper limit on timer creation

We measured the response time of a high-priority task with a
single, unprivileged, user-space task that spawned timers

76

How Bad Can It Get?

Linux (and POSIX) provide no protection, and

specifies no upper limit on timer creation

We measured the response time of a high-priority task with a
single, unprivileged, user-space task that spawned timers

Using Linux’s timerfd API

desisen 2SpoNse Time - hrtimers

1.0

f

I

0.6

CDF

0.2+ -

DOF === ...

-

#

I
!

-lll'—'-__

LP timers s

. m —

230 240
Response Time (in us)

260

78

CDF

o -) L -
-

1.0 / i - -
: i

ogl + 7 Nearly45us(22%)response- |
| ’ time increase with 1000 |

)
’ low-priority timers

Response Time - hrtimers

0.6

0.4bL -

0.2 -

230 240 250 260

Response Time (in us)

CDF

1.0 ! \
1000 LP timers

Ug_“m..n_..”J””””m_””””“””””“”MHHLHHHHHHMHHL””””””m””

100 LP timers
0.6 .

oal WM. .. e

0.0

o2t & E ST

Response Time - TimerShield

210 220 230 240
Response Time (in us)

250 260

80

1.0

0.8

Response Time - TimerShield

CDF

TimerShield protects high-priority task response times
from low-priority timer interrupts!

r 1000 LP timers | 5 |

0.2

0.0
2

] D

10 220 230 240 250
Response Time (in us)

260

81

Evaluation

How effective is TimerShield at isolating high-priority
tasks from low-priority timer interrupts?

| How is the context-switch duration affected? I
| How costly are the new queueing data structures? I

82

Additional Context-Switch Delay

During context-switches, TimerShield processes expired timers,
performs a RMQ, and optionally reprograms hardware

Note: Results for a scenario without a timer-heavy load can be found in the paper. 83

Additional Context-Switch Delay

During context-switches, TimerShield processes expired timers,

performs a RMQ, and optionally reprograms hardware
¥

We measured the total additional time incurred by TimerShield
during context-switches in a timer-heavy scenario

Note: Results for a scenario without a timer-heavy load can be found in the paper.

Additional Context-Switch Delay

During context-switches, TimerShield processes expired timers,

performs a RMQ, and optionally reprograms hardware
¥

We measured the total additional time incurred by TimerShield
during context-switches in a timer-heavy scenario

1 high-priority and 50 low-priority
timer-using tasks of the same priority

Note: Results for a scenario without a timer-heavy load can be found in the paper.

Additional Context-Switch Delay

Mean Median 99.9th percentile

microseconds (us)

O FrRr N WA OUVI O N 0 OO

Additional Context-Switch Delay

9
8
=7 Mean and median delay
>
& 6 (typical case) is much
©
c 5 less than a microsecond
S
Q 4
(@)
53
€2
1
0

Mean Median 99.9th percentile

87

Additional Context-Switch Delay

9

8 These reflect batch
g U processing of multiple
@ 6 timers that were deferred
c5
S
0 4
(@]
53
e 2

1

0

Mean Median 99.9th percentile Max

88

Timer Processing Delay

16

14

w12

We measured the worst- E 10

case increase in HP task § 8

response time under § 6

hrtimers with the same S 4
experimental setup £ 5 I

0

Timer Processing Delay

M Hrtimers ™ TimerShield

Batch Processing is Better!

hrtimers takes longer
due to the repetitive
switches to interrupt
context!

microseconds (us)

16
14

=
o N

Timer Processing Delay

o N B OO 00

M Hrtimers ™ TimerShield

90

Batch Processi

—

(%)
>

N

ng is Better!

16
14
12

Context-switch delay due to TimerShield is small, and its
batch processing of timers is faster than hrtimers

2 “
0

Timer Processing Delay

M Hrtimers ™ TimerShield

91

Evaluation

How effective is TimerShield at isolating high-priority
tasks from low-priority timer interrupts?

| How is the context-switch duration affected? I
| How costly are the new queueing data structures? I

92

Data-Structure Overheads

The worst case for TimerShield’s data-structures is with a single
timer, because each operation modifies the segment tree

Note: Results for a scenario with a timer-heavy load can be found in the paper. o

Data-Structure Overheads

The worst case for TimerShield’s data-structures is with a single
timer, because each operation modifies the segment tree

We measured the timer enqueue and dequeue cost on both
subsystems for this setup

Note: Results for a scenario with a timer-heavy load can be found in the paper.

Timer Enqueue Cost

0.4
0.35

o
w

0.25

0.15

0.05
° amill —=m HHE

Mean Median 99.9th percentile Max

‘ Lower is Better I M Hrtimers ™ TimerShield |nte|))5

microseconds (us)
o
N

o
=

Timer Enqueue Cost

0.4
035 Performs negligibly worse on
35 03 average
-‘é 0.25
S 0.2 Favourable towards the max,
g 0.15 but the difference is miniscule
S
= 0.1

En
, =mil on N
Mean Median 99.9th percentile

e . M . . .
‘ Lower is Better I Hrtimers M TimerShield

Max

96

Timer Dequeue Cost

0.4

0.35 Both subsystems have very
similar dequeue costs

o
w

0.25

0.15

microseconds (us)
o
N

o
(Y

0.05

, mil m I ..

Mean Median 99.9th percentile Max

. . H . . .
‘ Lower is Better I Hrtimers TimerShield

Evaluation Summary

Impossible for high-priority tasks to be interrupted
by low-priority timers under TimerShield

Note: Further experiments, including results for ARM, can be found in the paper. 98

Evaluation Summary

Impossible for high-priority tasks to be interrupted
by low-priority timers under TimerShield

Additional context-switch delay is small, and batch
timer processing is faster with TimerShield

Note: Further experiments, including results for ARM, can be found in the paper. 99

Evaluation Summary

Impossible for high-priority tasks to be interrupted
by low-priority timers under TimerShield

Additional context-switch delay is small, and batch
timer processing is faster with TimerShield

TimerShield’s data structure costs are
comparable to hrtimers

Note: Further experiments, including results for ARM, can be found in the paper. 100

Dynamic Timer Priorities

| Implementation currently assumes unchanging timer priorities \

Dynamic Timer Priorities

| Real-time locking protocols, or users, may change task priorities |

| Implementation currently assumes un‘changing timer priorities I

102

Dynamic Timer Priorities

| Real-time locking protocols, or users, may change task priorities |

| Implementation currently assumes un‘changing timer priorities \

Implicitly works if priority is changed with no pending timers

Works implicitly for the immediate priority ceiling protocol

103

Dynamic Timer Priorities

| Real-time locking protocols, or users, may change task priorities |

| Implementation currently assumes un‘changing timer priorities \

Implicitly works if priority is changed with no pending timers

Works implicitly for the immediate priority ceiling protocol

{

Can be easily extended to deal with dynamic priorities

104

Future Work

| Support for Earliest Deadline First (EDF) schedulers \

Applying similar techniques to other, multiplexed
interrupt sources such as network packet interrupts

105

Summary

FP scheduling on
uniprocessor/partitioned

multiprocessors S U m m a ry

Low-priority timer interrupts have a significant
negative impact on high-priority task execution

107

FP scheduling on
uniprocessor/partitioned
multiprocessors

Summary

Low-priority timer interrupts have a significant
negative impact on high-priority task execution

Existing high-resolution timer subsystems, such as
Linux hrtimers, are not priority aware

108

FP scheduling on
uniprocessor/partitioned
multiprocessors

Summary

Low-priority timer interrupts have a significant
negative impact on high-priority task execution

Existing high-resolution timer subsystems, such as
Linux hrtimers, are not priority aware

TimerShield completely avoids low-priority timer
interrupt interference with small overheads

109

Thank youl!

Source Code
https://people.mpi-sws.org/~bbb/papers/details/rtas17p/

1
Ny MAX PLANCK INSTITUTE
- FOR SOFTWARE SYSTEMS

110

Appendix

Why Not Global Scheduling?

Not deferring the wakeup of a low-priority task might allow it to
execute on a different, possibly idle CPU

0 2 4 GT 8 10 12
o) ==
0 2 4 6 8 10 12

Leaf nodes

Segment Tree Corres.pond-to the

earliest timer
min [0 3] obtained from each

red-black tree
/ \
\ /
O O
[1] [2]

min [0,1] min [2, 3]

N\
o
[3]

Priority Level [0]

Parent nodes store
the minimum of their

Segment Tree child nodes, and

depict the earliest
min [O 3] timer for the

resulting
Priority Range priority range
min [0,1] / \
[1] 2]

min [2, 3]

\
o
[3]

[0]

114

Code Size and Memory

How big is TimerShield code, and what are it’'s memory
requirements?

Increase in text segment 2 KiB

Increase in data segment 35 KiB per core

Timer Enqueue Cost (timer-heavy)

Mean Median 99.9th percentile

) M Hrtimers ™ TimerShield
‘ Lower is Better | 116

[EEY

microseconds (us)

o o O O :
O N B O 00 L, N

Timer Dequeue Cost (timer-heavy)

0.6

05
=
«w 0.4
©
c
S 0.3
S
2 0.2
5
o il mu I

Mean Median 99.9th percentile

- W Hrtimers ® TimerShield
‘ Lower is Better I 117

HP Task Throughput Reduction

With 1000 background LP timers

140
120

Requests/ms

=
N B O 0 O
o O O o O

o

Hrtimers TimerShield

Lower is Better Idle Throughput: 7044.4 requests/ms

