
TimerShield
Protecting High-Priority Tasks from

Low-Priority Timer Interference

Pratyush Patel1,2, Manohar Vanga1, Björn Brandenburg1

1MPI-SWS, 2Carnegie Mellon University

RTAS 2017
April 18, 2017

Pittsburgh, USAKaiserslautern, Germany

This Paper

2

PREEMPT_RT

hrtimers

This Paper

3

PREEMPT_RT

hrtimers

Default high-resolution
timer subsystem

4

This Paper

PREEMPT_RT

hrtimers

5

This Paper

Unnecessary low-
priority timer-interrupt

interference

Default high-resolution
timer subsystem

PREEMPT_RT

hrtimers

6

This Paper

Unnecessary low-
priority timer-interrupt

interference

Default high-resolution
timer subsystem

TimerShield

PREEMPT_RT

hrtimers

7

This Paper

Unnecessary low-
priority timer-interrupt

interference

Default high-resolution
timer subsystem

A drop-in replacement
for hrtimers

TimerShield

Unnecessary low-
priority timer-interrupt

interference

hrtimers

Default high-resolution
timer subsystem

TimerShield

A drop-in replacement
for hrtimers

8

This Paper

PREEMPT_RT

Unnecessary low-
priority timer-interrupt

interference

PREEMPT_RT

hrtimers

Default high-resolution
timer subsystem

Eliminates low-priority
timer-interrupt

interference

TimerShield

9

This Paper

A drop-in replacement
for hrtimers

Talk Overview

Timers and the Interference Problem

TimerShield Design

Evaluation

10

Talk Overview

Timers and the Interference Problem

TimerShield Design

Evaluation

11

High-Resolution Timers

12

Core 1

Timer

Core 2

Timer

Core 3

Timer

Core 4

Timer

High-Resolution Timers

13

Core-local timers with cycle precision
Core 1

Timer

Core 2

Timer

Core 3

Timer

Core 4

Timer

High-Resolution Timers

14

Can be programmed to raise an
interrupt at a desired time

Core-local timers with cycle precision
Core 1

Timer

Core 2

Timer

Core 3

Timer

Core 4

Timer

Timers in Real-Time OSes

15

Timers in Real-Time OSes

Job Releases
Tasks can be woken up periodically using timers

16

Timers in Real-Time OSes

Job Releases
Tasks can be woken up periodically using timers

Budget Enforcement
Schedulers use timers to prevent budget overruns

17

Timers in Real-Time OSes

Job Releases
Tasks can be woken up periodically using timers

Budget Enforcement
Schedulers use timers to prevent budget overruns

Self-Suspensions
Tasks can use POSIX clock_nanosleep() to suspend themselves

18

Assumptions

19

Uniprocessor Partitioned Multiprocessor

Fixed-priority scheduling

LP

Timer-Interrupt Interference

0 2 4 6 8 10 12

Low-Priority Task

20

LP

Timer-Interrupt Interference

0 2 4 6 8 10 12

Low-Priority Task

Calls clock_nanosleep(6)

21

LP

Timer-Interrupt Interference

0 2 4 6 8 10 12

Low-Priority Task

Calls clock_nanosleep(6)

Timer hardware is
programmed to fire at the

specified time 22

HPLP

Timer-Interrupt Interference

0 2 4 6 8 10 12

Low-Priority Task

High-Priority Task

High-priority task
is released

23

HPLP

Timer-Interrupt Interference

0 2 4 6 8 10 12

Low-Priority Task

High-Priority Task

At t = 6, timer hardware
fires an interrupt 24

HPLP

Timer-Interrupt Interference

0 2 4 6 8 10 12

Low-Priority Task

High-Priority Task

Timer Handler
At t = 6, timer hardware

fires an interrupt

HP is preempted to
service the interrupt
(LP task is woken up)

25

HP is preempted to
service the interrupt
(LP task is woken up)

HP task resumes

LPHPHPLP

Timer-Interrupt Interference

0 2 4 6 8 10 12

Low-Priority Task

High-Priority Task

Timer Handler
26

Unnecessary
interference

LPHPHPLP

Timer-Interrupt Interference

0 2 4 6 8 10 12

Low-Priority Task

High-Priority Task

Timer Handler
27

Why Does Interference Occur?

13

8 17

1 11 2015

28

Linux’s hrtimer subsystem

Why Does Interference Occur?

13

8 17

1 11 2015

29

Multiplexes many
software timers on a

single hardware timer
using a time-ordered

red-black tree

Linux’s hrtimer subsystem

Why Does Interference Occur?

13

8 17

1 11 2015

30

Earliest expiring
timer is programmed

into hardware

Linux’s hrtimer subsystem

Why Does Interference Occur?

13

8 17

1 11 2015

31

Earliest expiring
timer is programmed

into hardware

Linux’s hrtimer subsystem

But, earliest timer
could belong to the

lowest-priority task!

Why Does Interference Occur?

13

8 17

1 11 2015

32

Earliest expiring
timer is programmed

into hardware

Linux’s hrtimer subsystem

But, earliest timer
could belong to the

lowest-priority task!

May interrupt a
higher-priority task!

Why Does Interference Occur?

13

8 17

1 11 2015

33

Earliest expiring
timer is programmed

into hardware

Linux’s hrtimer subsystem

But, earliest timer
could belong to the

lowest-priority task!

May interrupt a
higher-priority task!

Key Problem
hrtimers does not take into

account the priority of the process
that created the timer

Talk Overview

Timers and the Interference Problem

TimerShield Design

Evaluation

34

How Does TimerShield Work?

LP

0 2 4 6 8 10 12

Low-Priority Task

35

How Does TimerShield Work?

LP

0 2 4 6 8 10 12

Low-Priority Task

High-Priority Task

36

How Does TimerShield Work?

LP

0 2 4 6 8 10 12

Low-Priority Task

High-Priority Task

Mask all the
low-priority timers

37

How Does TimerShield Work?

HPLP

0 2 4 6 8 10 12

Low-Priority Task

High-Priority Task

Mask all the
low-priority timers

38

Process the expired
low-priority timers

How Does TimerShield Work?

HPLP

0 2 4 6 8 10 12

Low-Priority Task

High-Priority Task

Mask all the
low-priority timers

39

Mask all the
low-priority timers

How Does TimerShield Work?

HPLP

0 2 4 6 8 10 12

Low-Priority Task

High-Priority Task

Timer Handler

Process the expired
low-priority timers

Timer processing
shifted

40

How Does TimerShield Work?

LPHPLP

0 2 4 6 8 10 12

Low-Priority Task

High-Priority Task

Timer Handler

Timer processing
(interrupt top-half)
is safely deferred

41

How is TimerShield Implemented?

LP

0 2 4 6 8 10 12

Low-Priority Task

42

Timer inherits
task priority

1. Find and reprogram
the earliest timer with

priority ≥ HP

How is TimerShield Implemented?

LP

0 2 4 6 8 10 12

Low-Priority Task

High-Priority Task

43

1. Find and reprogram
the earliest timer with

priority ≥ HP

How is TimerShield Implemented?

HPLP

0 2 4 6 8 10 12

Low-Priority Task

High-Priority Task

44

2. Process expired timers
of the highest priority

(lower priority ones can
still be deferred)

How is TimerShield Implemented?

HPLP

0 2 4 6 8 10 12

Low-Priority Task

High-Priority Task

45

1. Find and reprogram
the earliest timer with

priority ≥ HP

How is TimerShield Implemented?

HPLP

0 2 4 6 8 10 12

Low-Priority Task

High-Priority Task

Timer Handler
46

1. Find and reprogram
the earliest timer with

priority ≥ HP

2. Process expired timers
of the highest priority

(lower priority ones can
still be deferred)

How is TimerShield Implemented?

HPLP

0 2 4 6 8 10 12

Low-Priority Task

High-Priority Task

Timer Handler
47

These operations need to be
inexpensive to work well in practice

1. Find and reprogram
the earliest timer with

priority ≥ HP

2. Process expired timers
of the highest priority

(lower priority ones can
still be deferred)

Priority-Based Earliest Timer

48

1: Find the earliest timer at each priority level

Priority-Based Earliest Timer

49

1: Find the earliest timer at each priority level

2: Among these, find the earliest timer in the priority
range [curr_task_prio, max_system_prio]

Priority-Based Earliest Timer

50

1: Find the earliest timer at each priority level

A Range Minimum
Query! (RMQ)

2: Among these, find the earliest timer in the priority
range [curr_task_prio, max_system_prio]

1 2 3 …… 140

NULL

Priority Level

51

1: Replicating Red-Black Trees

1 2 3 …… 140

NULL

Priority Level

52

Earliest timer for each
priority level

1: Replicating Red-Black Trees

10

20 10

30 20 4010

[0] [1] [2] [3]

min [0,1] min [2, 3]

min [0, 3]

53

2: Range Minimum Query – Segment Tree

10

20 10

30 20 4010

[0] [1] [2] [3]

min [0,1] min [2, 3]

min [0, 3]

54

Leaf nodes are the
earliest timers for
each priority level

2: Range Minimum Query – Segment Tree

10

20 10

30 20 4010

[0] [1] [2] [3]

min [0,1] min [2, 3]

min [0, 3]

55

Provides an efficient, O(log N) mechanism to find the earliest
timer in the priority range

[curr_task_prio, max_sys_prio]

2: Range Minimum Query – Segment Tree

10

20 10

30 20 4010

[0] [1] [2] [3]

min [0,1] min [2, 3]

min [0, 3]

56

2: Range Minimum Query – Segment Tree

N = number of (fixed)
priority levels

Constant time
operation!

Provides an efficient, O(log N) mechanism to find the earliest
timer in the priority range

[curr_task_prio, max_sys_prio]

57

Further details in the paper!

Open-source implementation at
https://people.mpi-sws.org/~bbb/papers/details/rtas17p/

TimerShield Implementation

Talk Overview

Timers and the Interference Problem

TimerShield Design

Evaluation

58

Evaluation
Prototyped in
PREEMPT_RT

Intel Core-i5
4 x 3.2Ghz

ARM Cortex-A53
4 x 1.2Ghz

59

Evaluation
Prototyped in
PREEMPT_RT

Intel Core-i5
4 x 3.2Ghz

ARM Cortex-A53
4 x 1.2Ghz

Details in paper

60

Evaluation

How costly are the new queueing data structures?

How effective is TimerShield at isolating high-priority
tasks from low-priority timer interrupts?

61

How is the context-switch duration affected?

Evaluation

How costly are the new queueing data structures?

How effective is TimerShield at isolating high-priority
tasks from low-priority timer interrupts?

62

How is the context-switch duration affected?

63

HP Task Response Time

We measured the response time of a high-priority task with
varying number of low-priority, timer-using tasks

64

HP Task Response Time

Taskset parameters based on S. Kramer, D. Ziegenbein, and A. Hamann,

“Real world automotive benchmark for free,” in WATERS, 2015.

We measured the response time of a high-priority task with
varying number of low-priority, timer-using tasks

1 KHz control loop with
approx. 200μs

computation time

We measured the response time of a high-priority task with
varying number of low-priority, timer-using tasks

65

HP Task Response Time
1 KHz control loop with

approx. 200μs
computation time

Taskset parameters based on S. Kramer, D. Ziegenbein, and A. Hamann,

“Real world automotive benchmark for free,” in WATERS, 2015.

cyclictest tasks
which periodically call

clock_nanosleep()

We measured the response time of a high-priority task with
varying number of low-priority, timer-using tasks

66

HP Task Response Time

From 1 to 100 LP
cyclictest tasks

1 KHz control loop with
approx. 200μs

computation time

cyclictest tasks
which periodically call

clock_nanosleep()

Taskset parameters based on S. Kramer, D. Ziegenbein, and A. Hamann,

“Real world automotive benchmark for free,” in WATERS, 2015.

HP Task Response Time

67

HP Task Response Time

68

Means 60% of the
measured samples have a
response time ≤ 214.8us

Response Time - hrtimers

69

1 LP cyclictest

Response Time - hrtimers

70

1 LP cyclictest

50 LP cyclictests

100 LP cyclictests

Response Time - hrtimers

71

1 LP cyclictest

50 LP cyclictests

100 LP cyclictests

Long tail,
high unpredictability

Response Time - TimerShield

72

Response Time - TimerShield

73

Response time with 1, 50 or
100 LP timers remains

consistent!

Response Time - TimerShield

74

Response time with 1, 50 or
100 LP timers remains

consistent!

Slight shift due to cache
effects of increasing number

of low-priority tasks

75

How Bad Can It Get?

Linux (and POSIX) provide no protection, and
specifies no upper limit on timer creation

76

How Bad Can It Get?

We measured the response time of a high-priority task with a
single, unprivileged, user-space task that spawned timers

Linux (and POSIX) provide no protection, and
specifies no upper limit on timer creation

We measured the response time of a high-priority task with a
single, unprivileged, user-space task that spawned timers

77

How Bad Can It Get?

Using Linux’s timerfd API

Linux (and POSIX) provide no protection, and
specifies no upper limit on timer creation

Response Time - hrtimers

78

Idle system

100 LP timers 1000 LP timers

Response Time - hrtimers

79

Nearly 45us (22%) response-
time increase with 1000

low-priority timers

Response Time - TimerShield

80

1000 LP timers

100 LP timers

Idle System

Response Time - TimerShield

81

1000 LP timers

100 LP timers

Idle System

TimerShield protects high-priority task response times
from low-priority timer interrupts!

Evaluation

How costly are the new queueing data structures?

How effective is TimerShield at isolating high-priority
tasks from low-priority timer interrupts?

82

How is the context-switch duration affected?

83Note: Results for a scenario without a timer-heavy load can be found in the paper.

Additional Context-Switch Delay

During context-switches, TimerShield processes expired timers,
performs a RMQ, and optionally reprograms hardware

84

We measured the total additional time incurred by TimerShield
during context-switches in a timer-heavy scenario

Note: Results for a scenario without a timer-heavy load can be found in the paper.

Additional Context-Switch Delay

During context-switches, TimerShield processes expired timers,
performs a RMQ, and optionally reprograms hardware

1 high-priority and 50 low-priority
timer-using tasks of the same priority

85

We measured the total additional time incurred by TimerShield
during context-switches in a timer-heavy scenario

Note: Results for a scenario without a timer-heavy load can be found in the paper.

Additional Context-Switch Delay

During context-switches, TimerShield processes expired timers,
performs a RMQ, and optionally reprograms hardware

Additional Context-Switch Delay

86

0

1

2

3

4

5

6

7

8

9

Mean Median 99.9th percentile Max

m
ic

ro
se

co
n

d
s

(u
s)

Additional Context-Switch Delay

87

0

1

2

3

4

5

6

7

8

9

Mean Median 99.9th percentile Max

m
ic

ro
se

co
n

d
s

(u
s) Mean and median delay

(typical case) is much
less than a microsecond

Additional Context-Switch Delay

88

0

1

2

3

4

5

6

7

8

9

Mean Median 99.9th percentile Max

m
ic

ro
se

co
n

d
s

(u
s)

These reflect batch
processing of multiple

timers that were deferred

Timer Processing Delay

89

0

2

4

6

8

10

12

14

16

Timer Processing Delay
m

ic
ro

se
co

n
d

s
(u

s)
Hrtimers TimerShield

We measured the worst-
case increase in HP task

response time under
hrtimers with the same

experimental setup

Batch Processing is Better!

90

0

2

4

6

8

10

12

14

16

Timer Processing Delay
m

ic
ro

se
co

n
d

s
(u

s)
Hrtimers TimerShield

hrtimers takes longer
due to the repetitive
switches to interrupt

context!

Batch Processing is Better!

91

0

2

4

6

8

10

12

14

16

Timer Processing Delay
m

ic
ro

se
co

n
d

s
(u

s)
Hrtimers TimerShield

Context-switch delay due to TimerShield is small, and its
batch processing of timers is faster than hrtimers

Evaluation

How costly are the new queueing data structures?

How effective is TimerShield at isolating high-priority
tasks from low-priority timer interrupts?

92

How is the context-switch duration affected?

Data-Structure Overheads

93
Note: Results for a scenario with a timer-heavy load can be found in the paper.

The worst case for TimerShield’s data-structures is with a single
timer, because each operation modifies the segment tree

Data-Structure Overheads

94
Note: Results for a scenario with a timer-heavy load can be found in the paper.

We measured the timer enqueue and dequeue cost on both
subsystems for this setup

The worst case for TimerShield’s data-structures is with a single
timer, because each operation modifies the segment tree

Timer Enqueue Cost

95Lower is Better

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Mean Median 99.9th percentile Max

m
ic

ro
se

co
n

d
s

(u
s)

Hrtimers TimerShield

Timer Enqueue Cost

96

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Mean Median 99.9th percentile Max

m
ic

ro
se

co
n

d
s

(u
s)

Hrtimers TimerShield

Performs negligibly worse on
average

Favourable towards the max,
but the difference is miniscule

Lower is Better

Timer Dequeue Cost

97

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Mean Median 99.9th percentile Max

m
ic

ro
se

co
n

d
s

(u
s)

Hrtimers TimerShield

Both subsystems have very
similar dequeue costs

Lower is Better

Evaluation Summary
Impossible for high-priority tasks to be interrupted

by low-priority timers under TimerShield

98Note: Further experiments, including results for ARM, can be found in the paper.

Evaluation Summary

99Note: Further experiments, including results for ARM, can be found in the paper.

Additional context-switch delay is small, and batch
timer processing is faster with TimerShield

Impossible for high-priority tasks to be interrupted
by low-priority timers under TimerShield

Evaluation Summary

TimerShield’s data structure costs are
comparable to hrtimers

100Note: Further experiments, including results for ARM, can be found in the paper.

Additional context-switch delay is small, and batch
timer processing is faster with TimerShield

Impossible for high-priority tasks to be interrupted
by low-priority timers under TimerShield

Implementation currently assumes unchanging timer priorities

101

Dynamic Timer Priorities

Implementation currently assumes unchanging timer priorities

102

Real-time locking protocols, or users, may change task priorities

Dynamic Timer Priorities

Implementation currently assumes unchanging timer priorities

103

Real-time locking protocols, or users, may change task priorities

Dynamic Timer Priorities

Works implicitly for the immediate priority ceiling protocol

Implicitly works if priority is changed with no pending timers

Implementation currently assumes unchanging timer priorities

104

Real-time locking protocols, or users, may change task priorities

Dynamic Timer Priorities

Works implicitly for the immediate priority ceiling protocol

Implicitly works if priority is changed with no pending timers

Can be easily extended to deal with dynamic priorities

Future Work

Support for Earliest Deadline First (EDF) schedulers

Applying similar techniques to other, multiplexed
interrupt sources such as network packet interrupts

105

Summary

106

Summary
Low-priority timer interrupts have a significant
negative impact on high-priority task execution

107

FP scheduling on
uniprocessor/partitioned

multiprocessors

Summary
Low-priority timer interrupts have a significant
negative impact on high-priority task execution

108

Existing high-resolution timer subsystems, such as
Linux hrtimers, are not priority aware

FP scheduling on
uniprocessor/partitioned

multiprocessors

Summary
Low-priority timer interrupts have a significant
negative impact on high-priority task execution

Existing high-resolution timer subsystems, such as
Linux hrtimers, are not priority aware

TimerShield completely avoids low-priority timer
interrupt interference with small overheads

109

FP scheduling on
uniprocessor/partitioned

multiprocessors

Thank you!

110

Source Code
https://people.mpi-sws.org/~bbb/papers/details/rtas17p/

Appendix

111

LP

112

Why Not Global Scheduling?
Not deferring the wakeup of a low-priority task might allow it to

execute on a different, possibly idle CPU

HPHPLP

0 2 4 6 8 10 12

0 2 4 6 8 10 12

CPU 1

CPU 2

Segment Tree

10

20 10

30 20 4010

[0] [1] [2] [3]

min [0,1] min [2, 3]

min [0, 3]

Leaf nodes
correspond to the

earliest timer
obtained from each

red-black tree

Priority Level

113

Segment Tree

10

20 10

30 20 4010

[0] [1] [2] [3]

min [0,1] min [2, 3]

Parent nodes store
the minimum of their

child nodes, and
depict the earliest

timer for the
resulting

priority range

min [0, 3]

Priority Range

114

Code Size and Memory

Increase in text segment 2 KiB

Increase in data segment 35 KiB per core

115

How big is TimerShield code, and what are it’s memory
requirements?

0

0.2

0.4

0.6

0.8

1

1.2

Mean Median 99.9th percentile Max

m
ic

ro
se

co
n

d
s

(u
s)

Hrtimers TimerShield

Timer Enqueue Cost (timer-heavy)

116Lower is Better

Timer Dequeue Cost (timer-heavy)

117

0

0.1

0.2

0.3

0.4

0.5

0.6

Mean Median 99.9th percentile Max

m
ic

ro
se

co
n

d
s

(u
s)

Hrtimers TimerShield
Lower is Better

HP Task Throughput Reduction

118

0

20

40

60

80

100

120

140

Hrtimers TimerShield

R
eq

u
e

st
s/

m
s

With 1000 background LP timers

Idle Throughput: 7044.4 requests/msLower is Better

