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High-Resolution Timers

Core-local timers with cycle precision

Core 1l Core 2
Timer Timer
Core 3 Core 4
Timer Timer

Can be programmed to raise an
interrupt at a desired time
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Timers in Real-Time OSes

Job Releases
Tasks can be woken up periodically using timers

Budget Enforcement
Schedulers use timers to prevent budget overruns

Self-Suspensions
Tasks can use POSIX clock _nanosleep() to suspend themselves
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Assumptions

Fixed-priority scheduling

‘ Uniprocessor \ ‘ Partitioned Multiprocessor \
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Timer-Interrupt Interference

Calls clock_nanosleep(6)

LP
0 2 4 6 8 10 12

Low-Priority Task

Timer hardware is
programmed to fire at the
specified time
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Timer-Interrupt Interference
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At t = 6, timer hardware
fires an interrupt




Timer-Interrupt Interference

HP is preempted to
service the interrupt
(LP task is woken up)

! _10 :
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At t = 6, timer hardware
fires an interrupt
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Timer-Interrupt Interference

HP is preempted to
service the interrupt HP task resumes
(LP task is woken up)




Timer-Interrupt Interference

Unnecessary
interference
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Why Does Interference Occur?

Linux’s hrtimer subsystem

Multiplexes many
software timers on a
single hardware timer
using a time-ordered
red-black tree
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Linux’s hrtimer subsystem

But, earliest timer
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timer is programmed
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Why Does Interference Occur?

May interrupt a Linux’s hrtimer subsystem

higher-prior

Key Problem
hrtimers does not take into
account the priority of the process
that created the timer

But, earlies
could belon
lowest-prio

Earliest expiring
timer is programmed
into hardware
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How Does TimerShield Work?

Timer processing
(interrupt top-half)
is safely deferred
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How is TimerShield Implemented?

2. Process expired timers
of the highest priority
(lower priority ones can

still be deferred)

1. Find and reprogram
the earliest timer with
priority 2 HP

N r’d

These operations need to be
inexpensive to work well in practice
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Priority-Based Earliest Timer

1: Find the earliest timer at each priority level

2: Among these, find the earliest timer in the priority
range [curr_task_prio, max_system_prio]

A Range Minimum
Query! (RMQ)



1: Replicating Red-Black Trees

Priority Level 1 2

140

NULL
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1: Replicating Red-Black Trees

Priority Level

140

Earliest timer for each
priority level

NULL
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2: Range Minimum Query — Segment Tree |

min [0 3] Leaf nodes are the
earliest timers for

each priority level
/ \ min [2, 3]

\ / \
©O 0 O
[1] [2] [3]

min [0,1]

[0]
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2: Range Minimum Query — Segment Tree

min [0, 3]
N

Provides an efficient, O(log N) mechanism to find the earliest
timer in the priority range
[curr_task_prio, max_sys_prio]

N /N
©O 0 O
[1] [2] [3]

[0]

55



2: Range Minimum Query — Segment Tree

min [0, 3]
N

Provides an efficient, O(log N) mechanism to find the earliest
timer in the priority range
[curr_task_prio, max_sys_prio]

N = number of (fixed) Constant time
priority levels ) ‘ operation!

[O] [1] [2] [3]
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TimerShield Implementation

Further details in the paper!

Open-source implementation at
https://people.mpi-sws.org/~bbb/papers/details/rtas17p/
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Evaluation

Intel Core-i5
4 x 3.2Ghz

Prototyped in
PREEMPT_RT

ARM Cortex-A53
4 x1.2Ghz
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Prototyped in
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ARM Cortex-A53
4 x1.2Ghz

60



Evaluation

How effective is TimerShield at isolating high-priority
tasks from low-priority timer interrupts?

| How is the context-switch duration affected? \
| How costly are the new queueing data structures? \
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HP Task Response Time

1 KHz control loop with
approx. 200us
computation time

We measured the response time of a high-priority task with
varying number of low-priority, timer-using tasks

cyclictest tasks
which periodically call
clock_nanosleep()

From 1 to 100 LP
cyclictest tasks

Taskset parameters based on S. Kramer, D. Ziegenbein, and A. Hamann,
“Real world automotive benchmark for free,” in WATERS, 2015.
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How Bad Can It Get?

Linux (and POSIX) provide no protection, and

specifies no upper limit on timer creation

We measured the response time of a high-priority task with a
single, unprivileged, user-space task that spawned timers

Using Linux’s timerfd API
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Evaluation

How effective is TimerShield at isolating high-priority
tasks from low-priority timer interrupts?

| How is the context-switch duration affected? I
| How costly are the new queueing data structures? I
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Additional Context-Switch Delay

During context-switches, TimerShield processes expired timers,
performs a RMQ, and optionally reprograms hardware

Note: Results for a scenario without a timer-heavy load can be found in the paper. 83
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Additional Context-Switch Delay

During context-switches, TimerShield processes expired timers,

performs a RMQ, and optionally reprograms hardware
¥

We measured the total additional time incurred by TimerShield
during context-switches in a timer-heavy scenario

1 high-priority and 50 low-priority
timer-using tasks of the same priority

Note: Results for a scenario without a timer-heavy load can be found in the paper.
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Additional Context-Switch Delay

9
8
=7 Mean and median delay
>
& 6 (typical case) is much
©
c 5 less than a microsecond
S
Q 4
(@)
53
€2
1
0

Mean Median 99.9th percentile

87



Additional Context-Switch Delay
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Batch Processing is Better!

hrtimers takes longer
due to the repetitive
switches to interrupt
context!

microseconds (us)

16
14

=
o N

Timer Processing Delay

o N B OO 00

M Hrtimers ™ TimerShield

90



Batch Processi

—

(%)
>

N

ng is Better!

16
14
12

Context-switch delay due to TimerShield is small, and its
batch processing of timers is faster than hrtimers

2 “
0

Timer Processing Delay

M Hrtimers ™ TimerShield

91



Evaluation

How effective is TimerShield at isolating high-priority
tasks from low-priority timer interrupts?

| How is the context-switch duration affected? I
| How costly are the new queueing data structures? I
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Data-Structure Overheads

The worst case for TimerShield’s data-structures is with a single
timer, because each operation modifies the segment tree

Note: Results for a scenario with a timer-heavy load can be found in the paper. o



Data-Structure Overheads

The worst case for TimerShield’s data-structures is with a single
timer, because each operation modifies the segment tree

We measured the timer enqueue and dequeue cost on both
subsystems for this setup

Note: Results for a scenario with a timer-heavy load can be found in the paper.
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Timer Dequeue Cost

0.4

0.35 Both subsystems have very
similar dequeue costs

o
w

0.25

0.15

microseconds (us)
o
N

o
(Y

0.05

, mil m I ..

Mean Median 99.9th percentile Max

. . H . . .
‘ Lower is Better I Hrtimers TimerShield




Evaluation Summary

Impossible for high-priority tasks to be interrupted
by low-priority timers under TimerShield

Note: Further experiments, including results for ARM, can be found in the paper. 98



Evaluation Summary

Impossible for high-priority tasks to be interrupted
by low-priority timers under TimerShield

Additional context-switch delay is small, and batch
timer processing is faster with TimerShield

Note: Further experiments, including results for ARM, can be found in the paper. 99



Evaluation Summary

Impossible for high-priority tasks to be interrupted
by low-priority timers under TimerShield

Additional context-switch delay is small, and batch
timer processing is faster with TimerShield

TimerShield’s data structure costs are
comparable to hrtimers

Note: Further experiments, including results for ARM, can be found in the paper. 100
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Dynamic Timer Priorities

| Real-time locking protocols, or users, may change task priorities |

| Implementation currently assumes un‘changing timer priorities \

Implicitly works if priority is changed with no pending timers

Works implicitly for the immediate priority ceiling protocol

{

Can be easily extended to deal with dynamic priorities
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Future Work

| Support for Earliest Deadline First (EDF) schedulers \

Applying similar techniques to other, multiplexed
interrupt sources such as network packet interrupts
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negative impact on high-priority task execution
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FP scheduling on
uniprocessor/partitioned
multiprocessors

Summary

Low-priority timer interrupts have a significant
negative impact on high-priority task execution

Existing high-resolution timer subsystems, such as
Linux hrtimers, are not priority aware

TimerShield completely avoids low-priority timer
interrupt interference with small overheads

109



Thank youl!

Source Code
https://people.mpi-sws.org/~bbb/papers/details/rtas17p/

1
Ny MAX PLANCK INSTITUTE
- FOR SOFTWARE SYSTEMS
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Why Not Global Scheduling?

Not deferring the wakeup of a low-priority task might allow it to
execute on a different, possibly idle CPU

0 2 4 GT 8 10 12
o) ==
0 2 4 6 8 10 12




Leaf nodes

Segment Tree Corres.pond-to the

earliest timer
min [0 3] obtained from each

red-black tree
/ \
\ /
O O
[1] [2]

min [0,1] min [2, 3]

N\
o
[3]

Priority Level [0]



Parent nodes store
the minimum of their

Segment Tree child nodes, and

depict the earliest
min [O 3] timer for the

resulting
Priority Range priority range
min [0,1] / \
[1] 2]

min [2, 3]

\
o
[3]

[0]
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Code Size and Memory

How big is TimerShield code, and what are it’'s memory
requirements?

Increase in text segment 2 KiB

Increase in data segment 35 KiB per core



Timer Enqueue Cost (timer-heavy)
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Timer Dequeue Cost (timer-heavy)

0.6

05
=
«w 0.4
©
c
S 0.3
S
2 0.2
5
o il mu I

Mean Median 99.9th percentile

- W Hrtimers ® TimerShield
‘ Lower is Better I 117




HP Task Throughput Reduction

With 1000 background LP timers
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