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What do you do if
you have a nice scheduling table
that doesn’t fit into memory?

Offline Equivalence

allows you to store only a little “crucial” information
to rebuild your table at runtime
with the help of an efficient online scheduling algorithm. '&




Arm Cortex MCU family

5TM32 32-bit ARM Cortex MCUs < STM32F2 Series = STM32F3 Series = STM32F4 Series  STM32F7 Series S

Motivation

Total Parts: (752) for STM32 32-bit ARM Cortex MCUs | Matching Parts : (90)

» Many embedded systems (still) have limited FLASH T # internal T &
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Existing Approaches

Table-driven scheduling Online
or cyclic executive scheduling
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Table must be stored .
. work—conservmg
In memory (fixed-priority, EDF, etc.)
Non-work-conserving
A power train ECU [Anssi13]: An automotive benchmark from Bosch [Kramer15]: (Precautious-RM, CW-EDF, etc.)
* 6 periodic tasks with release offset * Periods are {1, 2, 5, 10, 20, 50, 100, 200, 1000}
* Periods {1, 5, 10, 10, 40, 100} * 1886 jobs in a hyperperiod
* 500 jobs in a hyperperiod * Adding a functionality with 30 frames per second
* Offline table is at least 2 KiB leads to 63,238 jobs in a hyperperiod
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This Paper: Offline Equivalence

Offline table generator

Types of irregularities
* Priority inversion
* Idle interval

Scheduling

table

Scan the table and Modify online scheduler
store differences to use differential data

Our online

Scheduler (OE)
Differential

Online scheduling algorithm : data' : Modified onIir_me
 (irregularities) | scheduling algorithm




Contributions

== ) Offline equivalence technique

“1 = . . . . i
| » An efficient offline table generation algorithm
Ea (for a non-preemptive set of jobs)
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Two Key Components of Offline Equivalence

Offline table
generator

A
Schedule
table @

Modify online scheduler

to use differential data

- Our online scheduler (OE) l

Online scheduling Differential data Modified online
algorithm (irregularities) scheduling algorithm




Scan Phase

» Scan the table to identify irregularities w.r.t. the online policy and store them
° Priority inversion irregularity
o ldle interval irregularity

Online policy:
rate monotonic

Idle interval

r3=(8,60)T 19, 101 . ]
S R e ——
2(T) -3% —— 51) - 6TO

L

Only two entries were needed
Idle-time irregularity table (lIT) Priority inversion table (PIT)

From time 9, for 1 time unit The 3 Job of 7, starts at 30

_




Modifying Baseline Online Scheduler to Use Differential Data

Idle-time irregularity table (lIT)
(sorted by start time)

This loop

runs for ever

Start time| Duration

SChedule an #

idle interval

now? Busy-wait until the
no end of idle interval

Priority inversion table (PIT)
(sorted by Task# and Job#)

Is there an
irregular job that
must start now?

Task # | Job # | Start time

Find the highest
priority pending job

Execute the job

W(CETs are already
padded to include

Busy-wait until the scheduler overhead
end of its WCET

If one hyperperiod has
passed, reset all time
variables and local data

—




Implementation

» Baseline online scheduling policy: non-preemptive RM

» Implementation platform: Arduino

> Entire implementation of OE scheduler is just 200 lines of simple C++ code
o Possibility to store extra tables:

* in flash memory

* in RAM

o Available online at
People.mpi-sws.org/~bbb/papers/details/rtas17m/index.html



http://people.mpi-sws.org/~bbb/papers/details/rtas17m/index.html

Agenda

» Offline equivalence approach = A

» Efficient table generation

» Evaluation

» Conclusion

Task model ‘

o Periodic Tasks

Strongly NP-Hard!

o Constrained deadline
> No release offset

———



Why Non-preemptive Scheduling is Hard?

Branch énd bound is a common I

approach [Moore68, Pinedo16, ...]:

The original problem iSjOb Sequencing: e Tries all possible combinations of the

jobs in the ordering
* Even with pruning conditions it is still a

Given a set of jobs
Find an ordering such that all timing constraints are met

A simpler approach:

1. For each possible schedule for J; iterative bathraCklng

1.1. If J; and all other scheduled jobs meet their timing constrains
1.1.1. Recursively try to schedule J;,4 (all other not scheduled jobs)
1.1.2. If succeeded, return the schedule

Successful: now follow step 1.1.1

New job J; 1 l
]

WCET C;

e, b =

— Deadli (—
|—_‘_ﬂeadline miss (- ®
— Deadline miss mm @8 S

miss

This paper:

To reduce the backtracking steps and improve the search speed,
group jobs in chained windows!




What is a Chained Window?

A chained window is a tuple that represents a job sequence, a window of time,

and a slack value and
any schedule that starts and finishes the job sequence within the window, respects
all timing constraints of the jobs
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Chained Window Technique in a Nutshell
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Main Questions

» How efficient is Offline Equivalence (OE)?
o What is the memory requirement of OE?
o What is the timing overhead of OE online scheduler?

o Implementation platform:
Arduino Mega 5056

6 KiB RAM, 256 KiB Flash memory, 16MHz processor speed
o Measurements:

Required memory for OE tables (in Bytes)

OE online scheduler’s run time (in microseconds)

» How fast and efficient is the Chained Window technique?
o Measurements:

Schedulability ratio for varying system utilization
Schedulability ratio for varying time budget

_



Offline Equivalence Reduces Memory Requirements
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Memory Savings Depend on the Table Generation Algorithm
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What is the Runtime Overhead of OE?
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Main Questions

» How efficient is Offline Equivalence (OE)?
o What is the memory requirement of OE?
o What is the timing overhead of OE online scheduler?

o Implementation platform:
Arduino Mega 5056

6 KiB RAM, 256 KiB Flash memory, 16MHz processor speed
o Measurements:

Required memory for OE tables (in Bytes)

OE online scheduler’s run time (in microseconds)

» How fast and efficient is Chained Window technique?
o Measured outputs:

Schedulability ratio for varying system utilization
Schedulability ratio for varying time budget




How Efficient is the Chained Window Technique?
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How Fast is the Chained Window Technique?

= J=BB-Moore —® -BB-Naive = Chained Window
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Summary and Conclusions

¥~ What does it do? '?’ ' What does it not do?
Offline Schedule.s task according to a Guarantees that the extra required
given schedule information fits in a the memory

Equivalence

Reduces memory consumption x Minimizes memory consumption

Has low runtime overhead

Chained Is fast and efficient in Optimal, i.e., is able to find a schedule
Window generating a schedule for any feasible task set

Technique




Open Problems and Future Directions

Generate a schedule with the least

number of irregularities

Find the best policy, parameters
and encoding that minimizes
the size of stored data

schedule

Find a set of differential parameters
such that differential data
fits in a given memory size

+
schedule
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Offline equivalence available at

http://people.mpi-sws.org/~bbb/papers/details/rtas17m/index.html

Thank you
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