. . Max
' Planck
@ ‘ Institute
for

Software Systems

Offline Equivalence:

A Non-Preemptive Scheduling Technique
for Resource-Constrained Embedded Real-Time Systems

Mitra Nasri* Bjorn B. Brandenburg

MPI-SWS, Kaiserslautern, Germany

RTAS, April 2017

What do you do if
you have a nice scheduling table
that doesn’t fit into memory?

Offline Equivalence

allows you to store only a little “crucial” information
to rebuild your table at runtime
with the help of an efficient online scheduling algorithm. '&

Arm Cortex MCU family

5TM32 32-bit ARM Cortex MCUs < STM32F2 Series = STM32F3 Series = STM32F4 Series STM32F7 Series S

Motivation

Total Parts: (752) for STM32 32-bit ARM Cortex MCUs | Matching Parts : (90)

» Many embedded systems (still) have limited FLASH T # internal T &
Size (kB) RAM Size
. (Prog) (kB)
processing power and memory

» Usually no operating system 16

» Naturally non-preemptive 16

16

16

16

16

16

64

Home Appliance
Control

Existing Approaches

Table-driven scheduling Online
or cyclic executive scheduling

——————————— _———

[0 No ne table

| -

| | High schedulability ratio 0 _ _\\\ . -

: =--=- Offline — _ 0 Stores less information
1

|

1

|

|

7
[\
|
|
|

—

Flexible: allows adding i E uivalence N @ o e e e e e e _o
|
]

constraints during

g construction —
e — _of 0 Less flexibility to add
| complex constraints
Table must be stored .
. work—conservmg
In memory (fixed-priority, EDF, etc.)
Non-work-conserving
A power train ECU [Anssi13]: An automotive benchmark from Bosch [Kramer15]: (Precautious-RM, CW-EDF, etc.)
* 6 periodic tasks with release offset * Periods are {1, 2, 5, 10, 20, 50, 100, 200, 1000}
* Periods {1, 5, 10, 10, 40, 100} * 1886 jobs in a hyperperiod
* 500 jobs in a hyperperiod * Adding a functionality with 30 frames per second
* Offline table is at least 2 KiB leads to 63,238 jobs in a hyperperiod

d

This Paper: Offline Equivalence

Offline table generator

Types of irregularities
* Priority inversion
* Idle interval

Scheduling

table

Scan the table and Modify online scheduler
store differences to use differential data

Our online

Scheduler (OE)
Differential

Online scheduling algorithm : data' : Modified onIir_me
 (irregularities) | scheduling algorithm

Contributions

==) Offline equivalence technique

“1 = i
| » An efficient offline table generation algorithm
Ea (for a non-preemptive set of jobs)

Agenda

table

Scan the table and Modify online scheduler
Store differences to use differential data
Our online scheduler (OE) \/

» Efficient table generation mm..g [y Tp—
ahnrilhm <r1> scheduling algorithm

» Evaluation

oottt

7

/

» Offline equivalence %

» Conclusion

Two Key Components of Offline Equivalence

Offline table
generator

A
Schedule
table @

Modify online scheduler

to use differential data

- Our online scheduler (OE) l

Online scheduling Differential data Modified online
algorithm (irregularities) scheduling algorithm

Scan Phase

» Scan the table to identify irregularities w.r.t. the online policy and store them
° Priority inversion irregularity
o ldle interval irregularity

Online policy:
rate monotonic

Idle interval

r3=(8,60)T 19, 101 .]
S R e ——
2(T) -3% —— 51) - 6TO

L

Only two entries were needed
Idle-time irregularity table (lIT) Priority inversion table (PIT)

From time 9, for 1 time unit The 3 Job of 7, starts at 30

_

Modifying Baseline Online Scheduler to Use Differential Data

Idle-time irregularity table (lIT)
(sorted by start time)

This loop

runs for ever

Start time| Duration

SChedule an #

idle interval

now? Busy-wait until the
no end of idle interval

Priority inversion table (PIT)
(sorted by Task# and Job#)

Is there an
irregular job that
must start now?

Task # | Job # | Start time

Find the highest
priority pending job

Execute the job

W(CETs are already
padded to include

Busy-wait until the scheduler overhead
end of its WCET

If one hyperperiod has
passed, reset all time
variables and local data

—

Implementation

» Baseline online scheduling policy: non-preemptive RM

» Implementation platform: Arduino

> Entire implementation of OE scheduler is just 200 lines of simple C++ code
o Possibility to store extra tables:

* in flash memory

* in RAM

o Available online at
People.mpi-sws.org/~bbb/papers/details/rtas17m/index.html

http://people.mpi-sws.org/~bbb/papers/details/rtas17m/index.html

Agenda

» Offline equivalence approach = A

» Efficient table generation

» Evaluation

» Conclusion

Task model ‘

o Periodic Tasks

Strongly NP-Hard!

o Constrained deadline
> No release offset

———

Why Non-preemptive Scheduling is Hard?

Branch énd bound is a common I

approach [Moore68, Pinedo16, ...]:

The original problem iSjOb Sequencing: e Tries all possible combinations of the

jobs in the ordering
* Even with pruning conditions it is still a

Given a set of jobs
Find an ordering such that all timing constraints are met

A simpler approach:

1. For each possible schedule for J; iterative bathraCklng

1.1. If J; and all other scheduled jobs meet their timing constrains
1.1.1. Recursively try to schedule J;,4 (all other not scheduled jobs)
1.1.2. If succeeded, return the schedule

Successful: now follow step 1.1.1

New job J; 1 l
]

WCET C;

e, b =

— Deadli (—
|—_‘_ﬂeadline miss (- ®
— Deadline miss mm @8 S

miss

This paper:

To reduce the backtracking steps and improve the search speed,
group jobs in chained windows!

What is a Chained Window?

A chained window is a tuple that represents a job sequence, a window of time,

and a slack value and
any schedule that starts and finishes the job sequence within the window, respects
all timing constraints of the jobs

I : ! — :
: 20 30
I 3 '
Js 2] — l
112 :32
5, — | !
12 25 :
I 1 | |

Chained Window Technique in a Nutshell

New job J; I Ci L
WCET C, I
{ ___________________ | fﬂ/ __________ \(‘7‘/ ________________
W1 - 2 L —
! —— i " —
o - I i
S -

N e o oo oo o o o o e o e o o e o = = N o o o o o | o o o o o — — — — — — — - J
Create a new r r »
[V Y/ 1
1 i 1 1
chained windows ——— |
1 |

(oo T TTTTTTTTIN T TNy, T T T T T T N7 S |
1 2 nv3
I _I I : " _ :
: I | I I — I
D — poon —_— ! . |
' ' I |
- . — ,
Merge
- - -~~~/ /7 7 7 7 7 - - - 7 =---"--"-"""" \
| I
W1 - TR
| \
|]l - :| W2 |
! — I :
| |
| —_— . _ :
| —_— | _— .
| I ' .
| 1 |
— , ,

o e o o o o R R R R R M M R R R M R O o Em EE EE EE EE S S S O O . .

15

Agenda

» Evaluation

» Conclusion

Main Questions

» How efficient is Offline Equivalence (OE)?
o What is the memory requirement of OE?
o What is the timing overhead of OE online scheduler?

o Implementation platform:
Arduino Mega 5056

6 KiB RAM, 256 KiB Flash memory, 16MHz processor speed
o Measurements:

Required memory for OE tables (in Bytes)

OE online scheduler’s run time (in microseconds)

» How fast and efficient is the Chained Window technique?
o Measurements:

Schedulability ratio for varying system utilization
Schedulability ratio for varying time budget

_

Offline Equivalence Reduces Memory Requirements

—=—QOE Tables -e--Original Schedule Table
"= 3,000
£ 2,555 2,571 2,657
I 3 I 2 519 2 513 2 450 2 518 2 530 2 480 7 __-- P
212,500 @=mmm--e-m..l B e g T
: E : |
' 812,000 !
D :
|
: § : 1,500 This is the best result among all 21x |
: o | considered table generation algorithms. :
Y 1,000 I
'3 |
I g’ol |
=k '
! 0

f

: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9} «
3 Total Utilization :

Memory Savings Depend on the Table Generation Algorithm

—a—CW-EDF —& -Chained Window -e--Original Time Table
$ 3,000
S 2,571 2657
3 2,519 2, 513 3,450 2518 2,530 2,555 3 480 e
£ 2,500 S A £--"""" e 2,384
£ | ' ' 1,923 -
% ! I |
o 2000, | 21x1 &
O I | I
Q
(.'/_,') I l v /
‘5 [| A-1,160
o 1,000 I 1 7
N | | 613 /
N | |
o >00 ' 104 179 272/ - “

I

g 10 16 __ Q2 — 39 49 69 90 ‘{33
2 0 A A e =

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Total Utilization

Q

What is the Runtime Overhead of OE?

—— o —

\

“ ﬂ/“.._. (IAvY) al
‘ 12— (AVY) 30

|

\

4 m o—p INY-dN

\ 1 m._|_|. 1a3-dN
\

40d3-MD

/
\
1
7/

404 -~ ~
L
T

-

S~ (AvY)al

1
\
K
1
1
o (WVY) 30
@ ! .
&, INY-dN
a1
| 403-dN
1
I 403-MD
1
1
1
“ (IWvy) aL
a4 | (WVY) 30
= | !
ﬁ 1 1 NYH-dN
1 \
© ,) v\ VR — 4Q3-dN
! bo | \
1 (=] \ \
“ I M A —— 4d3-MD
I ! \ \]
I | _ “ \ \ 1 !
! e | A / _ 2_ (s (1)
_ LS | k vy Iflﬂq.u_.@”_.w.@._. !
! AP \ W [vy 30
o “ (e |! \ /_ < i I
v | \ e O — e
M | I % \ / o INY-dN
! Lo : \ Yy 1,_._
“ | ! R TR
~2- ot ' 4a3-mD
o o o o o o o o o o
Tp] o LN o N o LN o [T
< < (48] (48] o~ ™~ — —

(spuodasousdiw ul)
pEeayJaA0 UOI1BIOAUI J3|NPAYIS

Main Questions

» How efficient is Offline Equivalence (OE)?
o What is the memory requirement of OE?
o What is the timing overhead of OE online scheduler?

o Implementation platform:
Arduino Mega 5056

6 KiB RAM, 256 KiB Flash memory, 16MHz processor speed
o Measurements:

Required memory for OE tables (in Bytes)

OE online scheduler’s run time (in microseconds)

» How fast and efficient is Chained Window technique?
o Measured outputs:

Schedulability ratio for varying system utilization
Schedulability ratio for varying time budget

How Efficient is the Chained Window Technique?

—— o o o o o e oy

: —Chalned Wlndow ,‘ ’ ’=2=NP-EDF ,',-'I*-BB-NaTve i
1
|

|
-a-BB- Moore

1
0.9

0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Schedulability Ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Utilization

—

How Fast is the Chained Window Technique?

= J=BB-Moore —® -BB-Naive = Chained Window
1T 0507
| S
0.9 1/ ® 0.835 0.856 T
2 s {0.795]
4= : (RN]
© e e i i I R
e ' e e eem——-— U
< 0.7 | i P =+ = N oa e
2 06 . .
2 os | More experiments in the paper.
_g 04 1 T _]
|
g 0.3 : | - 0.401
A 0.2 ' 0.133_;~
[
0.1 : 0 : 0.002 0.007 0.013
0 | O —— === == —0 _ _ .
\ I

10 tasks per task set. Utilization 0.9.

—

Agenda

» Conclusion and future work

Summary and Conclusions

¥~ What does it do? '?’ ' What does it not do?
Offline Schedule.s task according to a Guarantees that the extra required
given schedule information fits in a the memory

Equivalence

Reduces memory consumption x Minimizes memory consumption

Has low runtime overhead

Chained Is fast and efficient in Optimal, i.e., is able to find a schedule
Window generating a schedule for any feasible task set

Technique

Open Problems and Future Directions

Generate a schedule with the least

number of irregularities

Find the best policy, parameters
and encoding that minimizes
the size of stored data

schedule

Find a set of differential parameters
such that differential data
fits in a given memory size

+
schedule

|
- : Max .
Planck .
%' Institute
for
Software Systems
-~

Offline equivalence available at

http://people.mpi-sws.org/~bbb/papers/details/rtas17m/index.html

Thank you

{ ;’ ¢ AN N | I, (A\ 4 { \ \‘1
/ Y & ovc NG, | At S) o g L B I o v A o

,(‘ iy
A, ‘> :M‘\‘

A -

by

I \

http://people.mpi-sws.org/~bbb/papers/details/rtas17m/index.html

