
Scaling Global Scheduling
with Message Passing

Felipe Cerqueira
Manohar Vanga

Björn Brandenburg

Priority

Global Scheduling

T1 T5 T3 T7

Single queue of tasks
ordered by priority

Tasks can execute on any processor

Global Scheduling

In practice,
 not scalable due to high overheads

In theory, desirable analytical properties

 0

 1

 2

 3

 4

 5

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 m

s)

number of processors

Linux

Making Global
Scheduling Practical

Linux

 0

 1

 2

 3

 4

 5

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 m

s)

number of processors (m)

Linux

 0

 1

 2

 3

 4

 5

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 m

s)

number of processors

Linux

Making Global
Scheduling Practical

Linux

 0

 1

 2

 3

 4

 5

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 m

s)

number of processors (m)

Linux

We can scale global scheduling
with low kernel overheads!

Making Global
Scheduling Practical

Overhead
reduction

Linux

Our
approach 0

 1

 2

 3

 4

 5

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 m

s)

number of processors

Linux
Our Approach

This Talk

1) Why global scheduling?

2) Current implementations

3) Root causes of overhead

4) How to scale global scheduling?

5) Evaluation

This Talk

1) Why global scheduling?

2) Current implementations

3) Root causes of overhead

4) How to scale global scheduling?

5) Evaluation

Why Global Scheduling?

Optimal schedulers
Work-conserving
Soft-real-time
and more...

{Reasons

Why Global Scheduling?

Optimal schedulers
Work-conserving
Soft-real-time
and more...

Optimal real-time schedulers are global

{Reasons

Why Global Scheduling?

Optimal schedulers
Work-conserving
Soft-real-time
and more...

Good for open and dynamic systems
Resilient to overloads

{Reasons

Why Global Scheduling?

Optimal schedulers
Work-conserving
Soft-real-time
and more...

Some global schedulers guarantee
bounded tardiness without utilization loss

{Reasons

Why Global Scheduling?

Optimal schedulers
Work-conserving
Soft-real-time
and more...

Supports priority inheritance
Useful in race-to-idle energy conservation

{Reasons

Why Global Scheduling?

Optimal schedulers
Work-conserving
Soft-real-time
and more...

Properties not fully guaranteed by
Partitioned and Clustered Scheduling!

{Reasons

Global Schedulers
in Practice

Default scheduler for Linux, QNX and VXWorks.

This Talk

1) Why global scheduling?

2) Current implementations

3) Root causes of overhead

4) How to scale global scheduling?

5) Evaluation

This Talk

1) Why global scheduling?

2) Current implementations

3) Root causes of overhead

4) How to scale global scheduling?

5) Evaluation

G-EDF as a representative of global scheduling

Comparing Two
Extremes

GSN-EDF

SCHED_DEADLINE

Comparing Two
Extremes

GSN-EDF

SCHED_DEADLINE

Distributed state,
multiple locks

Globally shared state,
single lock

Comparing Two
Extremes

GSN-EDF

SCHED_DEADLINE

Distributed state,
multiple locks

Globally shared state,
single lock

GSN-EDF

T1 T5 T3 T7

Global-EDF with support for
Suspension-based protocols and O(1)
Non-preemptable sections

Link-based scheduler
(Block et al., 07)

GSN-EDF

Link-based scheduler
(Block et al., 07)
➡ allows simplified locking

Global-EDF with support for
Suspension-based protocols and O(1)
Non-preemptable sections

T1 T5 T3 T7

GSN-EDF

T1 T5 T3 T7

Single task queue

Coarse-grained lock

GSN-EDF

T1 T5 T3 T7 Simple
implementation!

Coarse-grained lock

Single task queue

GSN-EDF

How does it scale?

T1 T5 T3 T7 Simple
implementation!

Coarse-grained lock

Single task queue

Experimental Setup

• Intel Xeon X7550 @2.0GHz, with 64 cores

• Linux 3.10 with patches
➡ LITMUS^RT 2013.1 and SCHED_DEADLINE v8

• Lightweight build — disabled most drivers
and debugging options

 0

 0.5

 1

 1.5

 2

 2.5

 3

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 m

s)

number of processors

 Maximum
 Average GSN-EDF

Higher is worse
Scheduling Overheads

Overheads Under GSN-EDF

GSN-EDF

Global Lock Does Not Scale!

 0

 0.5

 1

 1.5

 2

 2.5

 3

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 m

s)

number of processors

 Maximum
 Average

 0

 0.5

 1

 1.5

 2

 2.5

 3

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 m

s)

number of processors

 Maximum
 Average

GSN-EDF

Average
overheads:

~0.5 ms

Global Lock Does Not Scale!

 0

 0.5

 1

 1.5

 2

 2.5

 3

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 m

s)

number of processors

 Maximum
 Average

GSN-EDF

Global Lock Does Not Scale!For 64 CPUs,
maximum

overheads of ~3 ms

Average
overheads:

~0.5 ms

Comparing Two
Extremes

GSN-EDF

SCHED_DEADLINE

Distributed state,
multiple locks

Globally share state,
single lock

SCHED_DEADLINE
Design inherited

from Linux scheduler

SCHED_DEADLINE
Design inherited

from Linux scheduler

Per-CPU task queues

Per-CPU locks

SCHED_DEADLINE

Intuition:
Fine-grained locking
decreases contention

Per-CPU task queues

Per-CPU locks

Design inherited
from Linux scheduler

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 m

s)

number of processors

Average

Benefit of
Fine-Grained Locking

SCHED_DEADLINE

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 µ

s)

number of processors (m)

Average

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 m

s)

number of processors

Average

Benefit of
Fine-Grained Locking

SCHED_DEADLINE

Average
overheads

below 50 μs!

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 µ

s)

number of processors (m)

Average

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 m

s)

number of processors

 Maximum
 Average

Fine-Grained Locking
Fails in the Worst Case

SCHED_DEADLINE

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 µ

s)

number of processors (m)

Average

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 µ

s)

number of processors (m)

 Maximum
 Average

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 m

s)

number of processors

 Maximum
 Average

Fine-Grained Locking
Fails in the Worst Case

SCHED_DEADLINE

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 µ

s)

number of processors (m)

Average

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 µ

s)

number of processors (m)

 Maximum
 Average

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 m

s)

number of processors

 Maximum
 Average

SCHED_DEADLINE

Fine-Grained Locking
Fails in the Worst Case

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 µ

s)

number of processors (m)

Average

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 µ

s)

number of processors (m)

 Maximum
 Average

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 µ

s)

number of processors (m)

Average

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 µ

s)

number of processors (m)

 Maximum
 Average

Very high
overheads in the

worst case!

Fine-Grained vs.
Coarse-Grained Locks

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 m

s)

number of processors

Fine-Grained vs.
Coarse-Grained Locks

SCHED_DEADLINE (Max)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 m

s)

number of processors

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 m

s)

number of processors

Fine-Grained vs.
Coarse-Grained Locks

GSN-EDF (Max)

SCHED_DEADLINE (Max)

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 m

s)

number of processors

Fine-Grained vs.
Coarse-Grained Locks

Both approaches
do not scale in the

worst case!

SCHED_DEADLINE (Max)

GSN-EDF (Max)

This Talk

1) Why global scheduling?

2) Current implementations

3) Root causes of overhead

4) How to scale global scheduling?

5) Evaluation

Fine-grained Locking:
Average Case

Task

Fine-grained Locking:
Average Case

Task

Lock

Fine-grained Locking:
Average Case

Task
Lock

Fine-grained Locking:
Average Case

Task

Lock

Fine-grained Locking:
Average Case

Task

Task

Low contention!Lock

Lock

Fine-grained Locking:
Worst Case

Locking every processor:
O(m) iterations

Task

Fine-grained Locking:
Worst Case

wait queue

O(m) processors already
waiting for this lock

Locking every processor:
O(m) iterations

Task

Lock

Fine-grained Locking:
Worst Case

wait queue

O(m) processors already
waiting for this lock

Locking every processor:
O(m) iterations

Task

Lock

Fine-grained Locking:
Worst Case

wait queue

O(m) processors already
waiting for this lock

Locking every processor:
O(m) iterations

Task
Lock

O(m) processors already
waiting for this lock

Locking every processor:
O(m) iterations

Fine-grained Locking:
Worst Case

wait queue

Task

Lock

Task

Lock

O(m) processors already
waiting for this lock

Locking every processor:
O(m) iterations

Fine-grained Locking:
Worst Case

wait queue

O(m) iterations x O(m) blocking
= quadratic blocking times

Peak Contention

Observation #1:
Peak Contention is more important

than synchronization granularity
with respect to worst-case blocking.

Cache-Line Bouncing
Cache-line ownership jumps from core to core

Scheduler state shared among all cores

SCHED_DEADLINEGSN-EDF

Observation #2:
State sharing results in overheads
due to cache-line bouncing, even
if it’s distributed across cores.

Cache-Line Bouncing

Root Causes of Overhead

Peak Contention

Cache-Line Bouncing

This Talk

1) Why global scheduling?

2) Current implementations

3) Root causes of overhead

4) How to scale global scheduling?

5) Evaluation

Candidate Solutions
Lock-free algorithms

Candidate Solutions

multiple CAS in the same location,
unpredictable fail-retry operations

Lock-free algorithms

Candidate Solutions

multiple CAS in the same location,
unpredictable fail-retry operations

Lock-free algorithms

Wait-free queue of events

Candidate Solutions

multiple CAS in the same location,
unpredictable fail-retry operations

complex garbage collection and serialization,
didn’t reduce cache-line bouncing

Lock-free algorithms

Wait-free queue of events

Candidate Solutions

multiple CAS in the same location,
unpredictable fail-retry operations

complex garbage collection and serialization,
didn’t reduce cache-line bouncing

All-to-all broadcast of events

Lock-free algorithms

Wait-free queue of events

message ordering, consensus
All-to-all broadcast of events

Lock-free algorithms

Wait-free queue of events

multiple CAS in the same location,
unpredictable fail-retry operations

complex garbage collection and serialization,
didn’t reduce cache-line bouncing

Candidate Solutions

Scheduler
State

Reducing Cache-Line Bouncing

T6 T7

D
Scheduler

State
Dedicated Scheduler Processor
• Stores the full scheduler state
• Dedicated interrupt handling

Reducing Cache-Line Bouncing

T6 T7

D

C C C

Scheduler
State

Client Processors
• Only know which task they
should schedule (local state)

Dedicated Scheduler Processor
• Stores the full scheduler state
• Dedicated interrupt handling

Local states

Reducing Cache-Line Bouncing

T3 T2 T5

T6 T7

D

C C C

Scheduler
State

Client Processors
• Only know which task they
should schedule (local state)

Dedicated Scheduler Processor
• Stores the full scheduler state
• Dedicated interrupt handling

Local states

Reducing Cache-Line Bouncing

Centralized state
reduces sharing

T3 T2 T5

T6 T7

D

C C C

Scheduler
State

Local states

Communication with low
Peak Contention

Centralized coordination
• No interaction among clients
• Low-cost communication via
message passing

T3 T2 T5

T6 T7

D

C C C

Scheduler
State

Local states

Communication with low
Peak Contention

Contention limited to
at most two processors

Centralized coordination
• No interaction among clients
• Low-cost communication via
message passing

T3 T2 T5

T6 T7

Scheduling
decision

C

Message Passing

D

C C C

Scheduler
State

Task state
change

P1 P2 P3

T3 T2 T4

T5 T6 T7

T5 T6 T7

Scheduling
decision

Task state
changeC

D

C C C

Scheduler
State

T4 completed!

Message Passing

P1 P2 P3

T3 T2 T4

T5 T6 T7

Message Passing

C

D

C C C

Scheduler
StateScheduling

decision

Task state
change

Computing
scheduling decision

P1 P2 P3

T3 T2

C

D

C C C

Scheduler
StateScheduling

decision

Task state
change

P3, execute T5!

Message Passing

P1 P2 P3

T3 T2

T5 T6 T7

C

D

C C C

Scheduler
StateScheduling

decision

Task state
change

Message Passing

P1 P2 P3

T3 T2 T5

T6 T7

P3, execute T5!

Implementing Messages
Efficiently

• Message passing via
per-cpu-socket mailboxes

• Shared-memory buffer with
wait-free writes

D

Source code at
www.litmus-rt.org

http://www.litmus-rt.org
http://www.litmus-rt.org

G-EDF-MP

Global-EDF via Message Passing

D

C C C

Scheduler
State

Centralized Scheduling
with Message passing

T3 T2 T5

T6 T7

This Talk

1) Why global scheduling?

2) Current implementations

3) Root causes of overhead

4) How to scale global scheduling?

5) Evaluation

Low Scheduling Overheads

Maximum

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 m

s)

number of processors

GSN-EDF
G-EDF-MP

SD

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 m

s)

number of processors

GSN-EDF
G-EDF-MP

SD

Low Scheduling Overheads

Maximum

G-EDF-MP incurs
low maximum

scheduling
overheads!

Low Scheduling Overheads

Average

Low Scheduling Overheads

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 m

s)

number of processors

GSN-EDF
G-EDF-MP

SD

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 m

s)

number of processors

GSN-EDF
G-EDF-MP

SD

Average

Low Scheduling Overheads

G-EDF-MP incurs
low average
overheads!

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 8 16 24 32 48 64

o
v
e
rh

e
a
d
s

(i
n
 m

s)

number of processors

GSN-EDF
G-EDF-MP

SD

Low Scheduling Overheads

But G-EDF-MP incurs additional
message-passing overheads!

Average

C

Two Sources of Overhead

T5 T6 T7

D

C C C

Scheduler
State

T4T2T3

waiting...

Message
Latency

P1 P2 P3

T4 completed!

C

Two Sources of Overhead

T5 T6 T7

D

C C C

Scheduler
State

T4T2T3

P1 P2 P3

waiting...

Computing
scheduling decision

Message
Latency

Message
Callback
Overhead

Message-Passing Overheads

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 8 16 24 32 48 64

ov
er

he
ad

s
(in

 m
s)

number of processors

Client Latency (Max)
Callback Overhead (Max)

Client Latency (Avg)
Callback Overhead (Avg)

Message passing
overheads

are significant!

Message-Passing Overheads

What’s the overall impact on schedulability?

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 8 16 24 32 48 64

ov
er

he
ad

s
(in

 m
s)

number of processors

Client Latency (Max)
Callback Overhead (Max)

Client Latency (Avg)
Callback Overhead (Avg)

Message passing
overheads

are significant!

Hard-real-time

Soft-real-time

Max. overheads
Schedulability test

Avg. overheads
Bounded Tardiness

Overhead-Aware Analysis

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 12 16 20 24 28 32 36 40 44 48

s
c
h

e
d

u
l
a

b
i
l
i
t
y

r
a

t
i
o

task set utilization

Theory

G-EDF-MP

GSN-EDF

SD

Higher is better

Schedulability Results
for 64 CPUs

Overhead-Aware
Schedulability

Hard-Real-Time Schedulability

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 12 16 20 24 28 32 36 40 44 48

s
c
h

e
d

u
l
a

b
i
l
i
t
y

r
a

t
i
o

task set utilization

No overheads

G-EDF-MP

GSN-EDF

SD

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 12 16 20 24 28 32 36 40 44 48

s
c
h

e
d

u
l
a

b
i
l
i
t
y

r
a

t
i
o

task set utilization

No overheads

G-EDF-MP

GSN-EDF

SD

Hard-Real-Time Schedulability
Higher schedulability,
even with additional

message-passing delays

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 12 16 20 24 28 32 36 40 44 48

s
c
h

e
d

u
l
a

b
i
l
i
t
y

r
a

t
i
o

task set utilization

No overheads

G-EDF-MP

GSN-EDF

SD

Hard-real-time schedulability
SCHED_DEADLINE does

not implement dedicated
interrupt handling, yielding

a pessimistic analysis

Higher schedulability,
even with additional

message-passing delays

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 12 16 20 24 28 32 36 40 44 48

s
c
h

e
d

u
l
a

b
i
l
i
t
y

r
a

t
i
o

task set utilization

No overheads

G-EDF-MP

GSN-EDF

SD

Hard-real-time schedulability
Higher schedulability,
even with additional

message-passing delays

G-EDF-MP scales well under worst-case scenarios!
What about the average case?

SCHED_DEADLINE does
not implement dedicated

interrupt handling, yielding
a pessimistic analysis

Soft-Real-Time Schedulability

 0

 0.2

 0.4

 0.6

 0.8

 1

 8 16 24 32 40 48 56 64

s
c
h

e
d

u
l
a

b
i
l
i
t
y

r
a

t
i
o

task set utilization

No overheads

G-EDF-MP

GSN-EDF

SD

 0

 0.2

 0.4

 0.6

 0.8

 1

 8 16 24 32 40 48 56 64

s
c
h

e
d

u
l
a

b
i
l
i
t
y

r
a

t
i
o

task set utilization

No overheads

G-EDF-MP

GSN-EDF

SD

 0

 0.2

 0.4

 0.6

 0.8

 1

 8 16 24 32 40 48 56 64

s
c
h

e
d

u
l
a

b
i
l
i
t
y

r
a

t
i
o

task set utilization

No overheads

G-EDF-MP

GSN-EDF

SD

 0

 0.2

 0.4

 0.6

 0.8

 1

 8 16 24 32 40 48 56 64

s
c
h

e
d

u
l
a

b
i
l
i
t
y

r
a

t
i
o

task set utilization

No overheads

G-EDF-MP

GSN-EDF

SD

Soft-Real-Time Schedulability
SCHED_DEADLINE works well

in the average case, but cannot
be shown to do so analytically

 0

 0.2

 0.4

 0.6

 0.8

 1

 8 16 24 32 40 48 56 64

s
c
h

e
d

u
l
a

b
i
l
i
t
y

r
a

t
i
o

task set utilization

No overheads

G-EDF-MP

GSN-EDF

SD

 0

 0.2

 0.4

 0.6

 0.8

 1

 8 16 24 32 40 48 56 64

s
c
h

e
d

u
l
a

b
i
l
i
t
y

r
a

t
i
o

task set utilization

No overheads

G-EDF-MP

GSN-EDF

SD

Soft-Real-Time Schedulability
G-EDF-MP also

performs well in
the average case

SCHED_DEADLINE works well
in the average case, but cannot
be shown to do so analytically

Global-EDF with
Low Overheads

Pair-wise coordination
+

Message passing

Scalable G-EDF
implementation

up to 64 CPUs

Limitations

Dedicated scheduling processor is still a
scalability bottleneck at extreme core counts.

➜ G-EDF-MP scales much further than prior approaches.

Global scheduling policies still subject to
migration overheads.

➜ Migrations are inherent to global scheduling
policies, irrespective of implementation.

G-EDF-MP is inappropriate for workloads that
do not tolerate excessive migration overheads.

This approach can be
applied to global scheduling
in general, not just G-EDF.

Conclusion

Conclusion
Fine-grained locking is not enough. Scalability
of worst-case overheads requires avoiding

peak contention and cache-line bouncing.

Conclusion

To reduce overheads, we used a centralized
scheduler and message passing.

Fine-grained locking is not enough. Scalability
of worst-case overheads requires avoiding

peak contention and cache-line bouncing.

Conclusion

G-EDF-MP’s design can be applied to other global
schedulers and extends the range of processor

counts that can be practically supported.

Fine-grained locking is not enough. Scalability
of worst-case overheads requires avoiding

peak contention and cache-line bouncing.

To reduce overheads, we used a centralized
scheduler and message passing.

Thanks!

www.litmus-rt.org

New release 2014.1 is now available!

http://www.litmus-rt.org
http://www.litmus-rt.org

