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Priority

Global Scheduling

T1 T5 T3 T7

Single queue of tasks
ordered by priority

Tasks can execute on any processor



Global Scheduling

In practice,
        not scalable due to high overheads

In theory, desirable analytical properties
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We can scale global scheduling
with low kernel overheads!



Making Global
Scheduling Practical

Overhead
reduction

Linux
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Why Global Scheduling?

Optimal schedulers
Work-conserving
Soft-real-time
and more...

Good for open and dynamic systems
Resilient to overloads

{Reasons



Why Global Scheduling?

Optimal schedulers
Work-conserving
Soft-real-time
and more...

Some global schedulers guarantee
bounded tardiness without utilization loss

{Reasons



Why Global Scheduling?

Optimal schedulers
Work-conserving
Soft-real-time
and more...

Supports priority inheritance
Useful in race-to-idle energy conservation

{Reasons



Why Global Scheduling?

Optimal schedulers
Work-conserving
Soft-real-time
and more...

Properties not fully guaranteed by 
Partitioned and Clustered Scheduling!

{Reasons



Global Schedulers
in Practice

Default scheduler for Linux, QNX and VXWorks.
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This Talk

1) Why global scheduling?

2) Current implementations

3) Root causes of overhead

4) How to scale global scheduling?

5) Evaluation

G-EDF as a representative of global scheduling
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GSN-EDF

T1 T5 T3 T7

Global-EDF with support for
Suspension-based protocols and O(1)
Non-preemptable sections

Link-based scheduler
(Block et al., 07)



GSN-EDF

Link-based scheduler
(Block et al., 07)
➡ allows simplified locking

Global-EDF with support for
Suspension-based protocols and O(1)
Non-preemptable sections

T1 T5 T3 T7



GSN-EDF

T1 T5 T3 T7

Single task queue

Coarse-grained lock



GSN-EDF

T1 T5 T3 T7 Simple 
implementation!

Coarse-grained lock

Single task queue



GSN-EDF

How does it scale?

T1 T5 T3 T7 Simple 
implementation!

Coarse-grained lock

Single task queue



Experimental Setup

• Intel Xeon X7550 @2.0GHz, with 64 cores

• Linux 3.10 with patches
➡ LITMUS^RT 2013.1 and SCHED_DEADLINE v8

• Lightweight build — disabled most drivers 
and debugging options
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GSN-EDF

Global Lock Does Not Scale!
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Comparing Two 
Extremes

GSN-EDF

SCHED_DEADLINE

Distributed state,
multiple locks

Globally share state,
single lock



SCHED_DEADLINE
Design inherited

from Linux scheduler
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Design inherited
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Per-CPU task queues

Per-CPU locks



SCHED_DEADLINE

Intuition:
Fine-grained locking
decreases contention

Per-CPU task queues

Per-CPU locks

Design inherited
from Linux scheduler
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Fine-Grained vs. 
Coarse-Grained Locks

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 8  16  24  32  48  64

o
v
e
rh

e
a
d
s 

(i
n
 m

s)

number of processors



Fine-Grained vs. 
Coarse-Grained Locks

SCHED_DEADLINE (Max)
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This Talk

1) Why global scheduling?

2) Current implementations

3) Root causes of overhead

4) How to scale global scheduling?

5) Evaluation
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Fine-grained Locking:
Average Case

Task

Task

Low contention!Lock

Lock



Fine-grained Locking:
Worst Case

Locking every processor: 
O(m) iterations

Task
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waiting for this lock

Locking every processor: 
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Task

Lock

O(m) processors already 
waiting for this lock

Locking every processor: 
O(m) iterations

Fine-grained Locking:
Worst Case

wait queue

O(m) iterations x O(m) blocking
= quadratic blocking times



Peak Contention

Observation #1:
Peak Contention is more important

than synchronization granularity
with respect to worst-case blocking.



Cache-Line Bouncing
Cache-line ownership jumps from core to core

Scheduler state shared among all cores

SCHED_DEADLINEGSN-EDF



Observation #2:
State sharing results in overheads
due to cache-line bouncing, even
if it’s distributed across cores.

Cache-Line Bouncing



Root Causes of Overhead

Peak Contention

Cache-Line Bouncing



This Talk

1) Why global scheduling?

2) Current implementations

3) Root causes of overhead

4) How to scale global scheduling?

5) Evaluation
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complex garbage collection and serialization,
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Lock-free algorithms

Wait-free queue of events



Candidate Solutions

multiple CAS in the same location,
unpredictable fail-retry operations

complex garbage collection and serialization,
didn’t reduce cache-line bouncing 

All-to-all broadcast of events

Lock-free algorithms

Wait-free queue of events



message ordering, consensus
All-to-all broadcast of events

Lock-free algorithms

Wait-free queue of events

multiple CAS in the same location,
unpredictable fail-retry operations

complex garbage collection and serialization,
didn’t reduce cache-line bouncing 

Candidate Solutions



Scheduler
State

Reducing Cache-Line Bouncing

T6 T7



D
Scheduler

State
Dedicated Scheduler Processor
• Stores the full scheduler state
• Dedicated interrupt handling

Reducing Cache-Line Bouncing

T6 T7
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Scheduler
State

Client Processors
• Only know which task they 
should schedule (local state)

Dedicated Scheduler Processor
• Stores the full scheduler state
• Dedicated interrupt handling

Local states

Reducing Cache-Line Bouncing

Centralized state
reduces sharing

T3 T2 T5

T6 T7
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Scheduler
State

Local states

Communication with low
Peak Contention

Centralized coordination
• No interaction among clients
• Low-cost communication via 
message passing

T3 T2 T5

T6 T7



D

C C C

Scheduler
State

Local states

Communication with low
Peak Contention

Contention limited to 
at most two processors

Centralized coordination
• No interaction among clients
• Low-cost communication via 
message passing

T3 T2 T5

T6 T7
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decision

C

Message Passing
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change
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T5 T6 T7

Scheduling
decision

Task state 
changeC

D

C C C

Scheduler
State

T4 completed!

Message Passing

P1 P2 P3

T3 T2 T4



T5 T6 T7

Message Passing
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D

C C C

Scheduler
StateScheduling

decision

Task state 
change

Computing
scheduling decision

P1 P2 P3

T3 T2
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P3, execute T5!

Message Passing
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Scheduler
StateScheduling

decision

Task state 
change

Message Passing

P1 P2 P3

T3 T2 T5

T6 T7

P3, execute T5!



Implementing Messages 
Efficiently

• Message passing via
per-cpu-socket mailboxes

• Shared-memory buffer with
wait-free writes

D

Source code at
www.litmus-rt.org

http://www.litmus-rt.org
http://www.litmus-rt.org


G-EDF-MP

Global-EDF via Message Passing

D

C C C

Scheduler
State

Centralized Scheduling
with Message passing

T3 T2 T5

T6 T7
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1) Why global scheduling?

2) Current implementations

3) Root causes of overhead

4) How to scale global scheduling?

5) Evaluation
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G-EDF-MP incurs
low maximum

scheduling 
overheads!
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Message-Passing Overheads

What’s the overall impact on schedulability?
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Hard-real-time

Soft-real-time

Max. overheads
Schedulability test

Avg. overheads
Bounded Tardiness

Overhead-Aware Analysis
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Hard-real-time schedulability
Higher schedulability,
even with additional

message-passing delays

G-EDF-MP scales well under worst-case scenarios!
What about the average case?

SCHED_DEADLINE does
not implement dedicated

interrupt handling, yielding
a pessimistic analysis



Soft-Real-Time Schedulability
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Soft-Real-Time Schedulability
SCHED_DEADLINE works well 

in the average case, but cannot 
be shown to do so analytically
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Soft-Real-Time Schedulability
G-EDF-MP also 

performs well in
the average case

SCHED_DEADLINE works well 
in the average case, but cannot 
be shown to do so analytically



Global-EDF with
Low Overheads

Pair-wise coordination
+

Message passing

Scalable G-EDF
implementation

up to 64 CPUs



Limitations

Dedicated scheduling processor is still a 
scalability bottleneck at extreme core counts.

➜ G-EDF-MP scales much further than prior approaches.

Global scheduling policies still subject to 
migration overheads.

➜ Migrations are inherent to global scheduling 
policies, irrespective of implementation.

G-EDF-MP is inappropriate for workloads that 
do not tolerate excessive migration overheads.



This approach can be
applied to global scheduling
in general, not just G-EDF.
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Conclusion

G-EDF-MP’s design can be applied to other global 
schedulers and extends the range of processor 

counts that can be practically supported.

Fine-grained locking is not enough. Scalability 
of worst-case overheads requires avoiding 

peak contention and cache-line bouncing.

To reduce overheads, we used a centralized 
scheduler and message passing.
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