RTAS'13 April 10, 2013

Max Planck Institute for Software Systems

Björn B. Brandenburg bbb@mpi-sws.org

Semaphores + P-FP Scheduling Used in practice: VxWorks, QNX, ThreadX, Real-Time Linux variants, ...

binary semaphore

A blocked task suspends & yields processor.

Partitioned Fixed-Priority (P-FP) <u>scheduling</u>

Tasks statically assigned to cores.

How to Implement Semaphores?

How to order conflicting critical sections?

→ FIFO vs. Priority Queues

MPI-SWS

How to Implement Semaphores?

How to order conflicting critical sections?

→ FIFO vs. Priority Queues

Where to execute critical sections?

Shared-Memory vs. Distributed Locking Protocols

time

7

Brandenburg

time

Semaphore Protocol Choices

How to order conflicting critical sections?

Where to execute critical sections?

Wait Queue	priority queue	FIFO queue	priority queue	FIFO queue
Protocol Type	shared-memory	shared-memory	distributed	distributed

Multiprocessor Priority Ceiling Protocol

	MPCP (Rajkumar, 1990; Lakshmanan et al., 2009)			
Wait Queue	priority queue	FIFO queue	priority queue	FIFO queue
Protocol Type	shared-memory	shared-memory	distributed	distributed

Se FIFO Multiprocessor Locking Protocol					
	MPCP (Rajkumar, 1990; Lakshmanan et al., 2009)	FMLP+ (Brandenburg, 2011)			
Wait Queue	priority queue	FIFO queue	priority queue	FIFO queue	
Protocol Type	shared-memory	shared-memory	distributed	distributed	

Semaphore Protocol Choices

	MPCP (Rajkumar, 1990; Lakshmanan et al., 2009)	FMLP+ (Brandenburg, 2011)		
Wait Queue	priority queue	FIFO queue	priority queue	FIFO queue
Protocol Type	shared-memory	shared-memory	distributed	distributed
Asymptotically optimal? (w.r.t. maximum blocking)	NO	YES		

Semaphore

	MPCP (Rajkumar, 1990; Lakshmanan et al., 2009)	FMLP+ (Brandenburg, 2011)	DPCP (Rajkumar et al., 1988)		
Wait Queue	priority queue	FIFO queue	priority queue	FIFO queue	
Protocol Type	shared-memory	shared-memory	distributed	distributed	
Asymptotically optimal? (w.r.t. maximum blocking)	NO	YES	NO		

Distributed Priority Ceiling Protocol

	MPCP (Rajkumar, 1990; Lakshmanan et al., 2009)	FMLP+ (Brandenburg, 2011)
Wait Queue	priority queue	FIFO queue
Protocol Type	shared-memory	shared-memo
Asymptotically optimal? (w.r.t. maximum blocking)	NO	YES

Improved Analysis and Evaluation of Poal Time Somanhora Protocols for DED Schoduling

Asymptotically FIFO queues offer lower maximum blocking.

But: constants matter...

	MPCP (Rajkumar, 1990; Lakshmanan et al., 2009)	FMLP+ (Brandenburg, 2011)	DPCP (Rajkumar et al., 1988)	DFLP (Brandenburg, 2012)
Wait Queue	priority queue	FIFO queue	priority queue	FIFO queue
Protocol Type	shared-memory	shared-memory	distributed	distributed
Asymptotically optimal? (w.r.t. maximum blocking)	NO	YES	NO	YES

Part 1 Improved Analysis

Brandenburg

MPI-SWS

Non-Asymptotic, Fine-Grained Analysis Derive tightest possible bound reflecting all constant factors.

pending interval (vulnerable to contention)

job under analysis

MPI-SWS

Non-Asymptotic, Fine-Grained Analysis Derive tightest possible bound reflecting all constant factors.

Brandenburg

MPI-SWS

Declarative Fine-Grained Analysis

Concise.

Easy to write, easy to read, easy to check.

Not inherently pessimistic.

Compositional: analyst should not have to reason about protocol as a whole.

Easy to implement.

- Sound by construction
 - Not based on ad-hoc formalism.

Declarative Fine-Grained Analysis

Approach

Use linear programming to derive task-set-specific blocking bounds.

(not integer linear programming!)

Blocking Fractions

with regard to a fixed schedule (i.e., one particular execution)

For the vth concurrent critical section of conflicting task T_x w.r.t. resource q:

$$0 \leq X_{X,q,V} \leq 1$$

Brandenburg

actual amount of blocking caused

maximum critical section length w.r.t. q

Blocking Fraction – Example

suppose maximum critical section length of task T_x is 3 time units

Blocking Fraction – Example

suppose maximum critical section length of task T_x is 3 time units

Total Blocking in a Fixed Schedule

Brandenburg

total blocking incurred by one job =

$\sum \sum X_{x,q,v} \cdot \frac{maximum}{section length w.r.t. q}$

actual amount of blocking caused

maximum critical section length w.r.t. q

X_{x,q,v} :

Linear combination of *all* blocking fractions! Use this as the **objective function** of a linear program (LP).

X_{**x,q,v** • **maximum** critical section length w.r.t. q}

actual amount of blocking caused

Brandenburg

maximum critical section length w.r.t. q

From a Fixed to All Possible Schedules

<u>maximize</u>

<u>subject to</u>

MPI-SWS

\$WORKLOAD-CONSTRAINTS \$PROTOCOL-CONSTRAINTS

Brandenburg

XXmaximum criticalXXsection length w.r.t. q

From a Fixed to All Possible Schedules

<u>subject to</u>

\$WORKLOAD-CONSTRAINTS \$PROTOCOL-CONSTRAINTS

Brandenburg

MPI-SWS

Find worst-case blocking across all possible schedules.

X_{**x,q,v** • **maximum** critical **section** length w.r.t. **q**}

Rule out impossible schedules.

rule out impossible schedules not compliant with FIFO ordering

Constraint 12. In any schedule of τ under the FMLP⁺:

Example FIFO Constraint with FIFO ordering

For each resource q and each conflicting task T_x...

Constraint *?*. In any schedule of τ under the FMLP⁺:

 $\forall \ell_q : \forall T_x$: $\sum X_{x,q,v} \leq N_{i,q}$.

For each resource q and each conflicting task T_x...

with FIFO ordering

...all **possibly concurrent** critical sections **v**...

In any schedule of τ under the FMLP⁺:

 $\sum X_{x,q,v} \le N_{i,q}.$

For each resource q and each conflicting task T_x...

...the sum of all blocking fractions...

Brandenburg

with FIFO ordering

...all **possibly concurrent** critical sections **v**...

In any schedule of τ under the FMLP⁺:

... cannot exceed the number of requests for the resource issued by task T_i (the task under analysis).

rule out impossible schedules not compliant with FIFO ordering

Constraint 12. In any schedule of τ under the FMLP⁺:

Suppose not: then there exists a schedule in which the sum of the blocking fractions of one task T_x exceeds the number of requests issued.

Thus one request of *T_i* must have been blocked by at least two requests of T_{x} . This is impossible in a FIFO queue.

Advantages

Constraint 12. In any schedule of τ under the FMLP⁺:

$$\forall \ell_q : \forall T_x \in \tau^i : \sum_{v=1}^{N_x^i}$$

Powerful analysis technique

- compositional: LP solver combines constraints
- → flexible: can handle many protocols
- declarative: much easier to read and check

Accuracy

- Never counts a request twice.
- Much less pessimistic...

 $\sum_{j=1}^{n,q} X_{x,q,v}^D \leq N_{i,q}.$

Improved Analysis Accuracy

16 cores, 16 shared resources, max. 5 critical sections per task and resource, 10μ s-50 μ s CS length, each task accesses a given resource with probability 0.1

MPI-SWS

Improved Analysis Accuracy

16 cores, 16 shared resources, max. 5 critical sections per task and resource, 10μ s-50 μ s CS length, each task accesses a given resource with probability 0.1

Brandenburg

Improved Analysis Accuracy

16 cores, 16 shared resources, max. 5 critical sections per task and resource, 10μ s-50 μ s CS length, each task accesses a given resource with probability 0.1

New analysis roughly doubled number of supported tasks! And: offers new observations on MPCP / FMLP+ relative performance.

MPI-SWS

Part 2 Improved Evaluation

Brandenburg

MPI-SWS

Evaluated Protocols

	MPCP (Rajkumar, 1990; Lakshmanan et al., 2009)	FMLP+ (Brandenburg, 2011)	DPCP (Rajkumar et al., 1988)	DFLP (Brandenburg, 2012)
Wait Queue	priority queue	FIFO queue	priority queue	FIFO queue
Protocol Type	shared-memory	shared-memory	distributed	distributed
Asymptotically optimal? (w.r.t. maximum blocking)	NO	YES	NO	YES

Improved Analysis and Evaluation of Poal Time Somanhore Protocols for DED Schoduling

Distributed locking protocols require cross-core interaction.

Overheads matter...

	MPCP (Rajkumar, 1990; Lakshmanan et al., 2009)	FMLP+ (Brandenburg, 2011)	DPCP (Rajkumar et al., 1988)	DFLP (Brandenburg, 2012)
Wait Queue	priority queue	FIFO queue	priority queue	FIFO queue
Protocol Type	shared-memory	shared-memory	distributed	distributed
Asymptotically optimal? (w.r.t. maximum blocking)	NO	YES	NO	YES

Taking Overheads Into Account

Platform

Overhead Tracing

- \Rightarrow > 20h of real-time exeuction
- \Rightarrow > 400 GB of trace data
- \Rightarrow > 15 billion valid samples
- Statistics and details in online appendix.

MPI-SWS

Example: Context Switch Overhead

P-FP: measured context-switch overhead (host=nanping-16) min=0.26us max=40.99us avg=2.72us median=2.15us

 $max = 40.99 \mu s$

$avg = 2.72 \mu s$

Brandenburg

MPI-SWS

samples: total=1511236394 [IQR filter not applied]

 $med = 2.15 \mu s$

 $max = 40.99 \mu s$ $avg = 2.72 \mu s$ MPI-SWS Brandenburg

 $med = 2.15 \mu s$

number of tasks (n)

MPI-SWS

Overhead-Aware Schedulability

8 cores, 8 shared resources, max. 5 critical sections per task and resource, 10μ s-50 μ s CS length, each task accesses a given resource with probability 0.3

8 cores, 8 shared resources, max. 5 critica

FIFO Protocols Perform Well

8 cores, 8 shared resources, max. 5 critical sections per task and resource, 10μ s-50 μ s CS length, each task accesses a given resource with probability 0.3

fraction of schedulable task sets

What is the "best" protocol?

All results available online (>6,000 plots).

What is the "best" protocol?

There is no single "best" protocol! (w.r.t. schedulability)

Results are highly workload-dependent!

What is the "best" protocol?

How to order conflicting critical sections?

→ FIFO works well, but priority queues needed for highly heterogenous timing parameters.

Where to execute critical sections?

→ **Distributed** protocols very competitive for many resources with high contention; **shared-memory** protocols better for few resources.

Summary & Outlook

Contributions

- There is no single best protocol yet.
- Distributed protocols perform surprisingly well.
- Use linear programs to analyze blocking.

Future Work

- Generalized protocol that always works.
- Support clustered scheduling.
- Analyze spin locks with LPs.
- Extend LPs to handle nesting.

Thanks!

SchedCAT

Schedulability test Collection And Toolkit

www.mpi-sws.org/~bbb/projects/schedcat

MPI-SWS

