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Semaphores + P-FP Scheduling

2

Binary Semaphores
in POSIX

pthread_mutex_lock(…)
// critical section
pthread_mutex_unlock(…)

binary semaphore
A blocked task suspends

& yields processor.
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Partitioned Fixed-Priority (P-FP)
scheduling

Tasks statically assigned to cores.

Used in practice: VxWorks, QNX, ThreadX, Real-Time Linux variants, …



MPI-SWS Brandenburg

Improved Analysis and Evaluation of Real-Time Semaphore Protocols for P-FP Scheduling

How to Implement Semaphores?

How to order conflicting critical sections?

➔  FIFO vs. Priority Queues
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How to Implement Semaphores?
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How to order conflicting critical sections?

Where to execute critical sections?

➔  FIFO vs. Priority Queues

➔  Shared-Memory vs. Distributed
Locking Protocols



MPI-SWS Brandenburg

Improved Analysis and Evaluation of Real-Time Semaphore Protocols for P-FP Scheduling

Example: Shared-Memory Protocol
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Example: Shared-Memory Protocol
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(CPU 1 not affected by critical sections on other CPUs)
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Example: Distributed Protocol
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Example: Distributed Protocol
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Example: Distributed Protocol
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Semaphore Protocol Choices

MPCP
(Rajkumar, 1990;
Lakshmanan et al., 

2009)

FMLP+
(Brandenburg, 

2011)

DPCP
(Rajkumar et al., 

1988)

DFLP
(Brandenburg, 

2012)

Wait Queue

Protocol Type

Asymptotically 
optimal?

(w.r.t. maximum 
blocking)

priority queue FIFO queue priority queue FIFO queue

shared-memory shared-memory distributed distributed

NO YES NO YES

How to order conflicting critical sections?

Where to execute critical sections?
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Semaphore Protocol Choices

MPCP
(Rajkumar, 1990;
Lakshmanan et al., 

2009)

FMLP+
(Brandenburg, 

2011)

DPCP
(Rajkumar et al., 

1988)

DFLP
(Brandenburg, 

2012)

Wait Queue

Protocol Type

Asymptotically 
optimal?

(w.r.t. maximum 
blocking)

priority queue FIFO queue priority queue FIFO queue

shared-memory shared-memory distributed distributed

NO YES NO YES

Multiprocessor Priority Ceiling Protocol
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Semaphore Protocol Choices

MPCP
(Rajkumar, 1990;
Lakshmanan et al., 

2009)

FMLP+
(Brandenburg, 

2011)

DPCP
(Rajkumar et al., 

1988)

DFLP
(Brandenburg, 

2012)

Wait Queue

Protocol Type

Asymptotically 
optimal?

(w.r.t. maximum 
blocking)

priority queue FIFO queue priority queue FIFO queue

shared-memory shared-memory distributed distributed

NO YES NO YES

FIFO Multiprocessor Locking Protocol
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Semaphore Protocol Choices

MPCP
(Rajkumar, 1990;
Lakshmanan et al., 

2009)

FMLP+
(Brandenburg, 

2011)

DPCP
(Rajkumar et al., 

1988)

DFLP
(Brandenburg, 

2012)

Wait Queue

Protocol Type

Asymptotically 
optimal?

(w.r.t. maximum 
blocking)

priority queue FIFO queue priority queue FIFO queue

shared-memory shared-memory distributed distributed

NO YES NO YES
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Semaphore Protocol Choices

MPCP
(Rajkumar, 1990;
Lakshmanan et al., 

2009)

FMLP+
(Brandenburg, 

2011)

DPCP
(Rajkumar et al., 

1988)

DFLP
(Brandenburg, 

2012)

Wait Queue

Protocol Type

Asymptotically 
optimal?

(w.r.t. maximum 
blocking)

priority queue FIFO queue priority queue FIFO queue

shared-memory shared-memory distributed distributed

NO YES NO YES

Distributed Priority Ceiling Protocol
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Semaphore Protocol Choices

MPCP
(Rajkumar, 1990;
Lakshmanan et al., 

2009)

FMLP+
(Brandenburg, 

2011)

DPCP
(Rajkumar et al., 

1988)

DFLP
(Brandenburg, 

2012)

Wait Queue

Protocol Type

Asymptotically 
optimal?

(w.r.t. maximum 
blocking)

priority queue FIFO queue priority queue FIFO queue

shared-memory shared-memory distributed distributed

NO YES NO YES

Distributed FIFO Locking Protocol
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Semaphore Protocol Choices

MPCP
(Rajkumar, 1990;
Lakshmanan et al., 

2009)

FMLP+
(Brandenburg, 

2011)

DPCP
(Rajkumar et al., 

1988)

DFLP
(Brandenburg, 

2012)

Wait Queue

Protocol Type

Asymptotically 
optimal?

(w.r.t. maximum 
blocking)

priority queue FIFO queue priority queue FIFO queue

shared-memory shared-memory distributed distributed

NO YES NO YES

Asymptotically FIFO queues offer lower maximum blocking.

But: constants matter…
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Part 1

Improved Analysis

17
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Non-Asymptotic, Fine-Grained Analysis

18

job under analysis

time

A

B B B B

A

Derive tightest possible bound reflecting all constant factors.

pending interval (vulnerable to contention)

conflicting
critical sections
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conflicting
critical sections

Non-Asymptotic, Fine-Grained Analysis
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job under analysis

time

A

B B B B

A

Derive tightest possible bound reflecting all constant factors.

pending interval (vulnerable to contention)

Exploit activation frequency.
Don’t overestimate worst-case contention.
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conflicting
critical sections

Non-Asymptotic, Fine-Grained Analysis
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job under analysis

time

A

B B B B

A

Derive tightest possible bound reflecting all constant factors.

Exploit activation frequency.
Don’t overestimate worst-case contention.

Exploit per-task maximum critical section lengths.
Don’t overestimate worst-case duration of lock unavailability.

pending interval (vulnerable to contention)
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conflicting
critical sections

Non-Asymptotic, Fine-Grained Analysis
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job under analysis

time

A

B B B B

A

Derive tightest possible bound reflecting all constant factors.

Exploit activation frequency.
Don’t overestimate worst-case contention.

Exploit per-task maximum critical section lengths.
Don’t overestimate worst-case duration of lock unavailability.

pending interval (vulnerable to contention)Exploit protocol-specific properties.
E.g., strong progress in FIFO queues.
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conflicting
critical sections

Non-Asymptotic, Fine-Grained Analysis
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job under analysis

time

A

B B B B

A

Derive tightest possible bound reflecting all constant factors.

pending interval (vulnerable to contention)

The key problem:

ease of exposition 
vs. 

pessimism!
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Declarative Fine-Grained Analysis

23

Concise. 

Easy to write, easy to read, easy to check. 

Not inherently pessimistic. 

Compositional: analyst should not have
to reason about protocol as a whole. 

Easy to implement.

Sound by construction.

Not based on ad-hoc formalism.
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Declarative Fine-Grained Analysis
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Concise. 

Easy to write, easy to read, easy to check. 

Not inherently pessimistic. 

Compositional: analyst should not have
to reason about protocol as a whole. 

Easy to implement.

Sound by construction.

Not based on ad-hoc formalism.

Approach

Use linear programming to derive
task-set-specific blocking bounds.

(not integer linear programming!)
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Blocking Fractions
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For the vth concurrent critical section
of conflicting task Tx w.r.t. resource q:

with regard to a fixed schedule (i.e., one particular execution)

Xx,q,v = 
actual amount of blocking caused

maximum critical section length w.r.t. q

0 ≤ Xx,q,v ≤ 1
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Blocking Fraction — Example
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suppose maximum critical section length of task Tx is 3 time units
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Blocking Fraction — Example
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Ti critical sectiontask 
blocked

time

TX critical section

0 1 2 3 4 5 6

suppose maximum critical section length of task Tx is 3 time units
In this particular schedule

actual blocking = 1 time unit
➔ blocking fraction = actual / max = 1/3
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Total Blocking in a Fixed Schedule
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total blocking incurred by one job =

∑
each

resource q

∑
each

task Tx

∑
each
CS v

Xx,q,v・ 
maximum critical

section length w.r.t. q

Xx,q,v = 
actual amount of blocking caused

maximum critical section length w.r.t. q
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total blocking incurred by one job =

Total Blocking in a Fixed Schedule

29

∑
each

resource q

∑
each

task Tx

∑
each
CS v

Xx,q,v・ 
maximum critical

section length w.r.t. q

Xx,q,v = 
actual amount of blocking caused

maximum critical section length w.r.t. q

Actual amount of blocking incurred (may be zero).

All potentially concurrent critical sections.
(No cleverness and hence no errors involved!)
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total blocking incurred by one job =

Total Blocking in a Fixed Schedule
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∑
each

resource q

∑
each

task Tx

∑
each
CS v

Xx,q,v・ 
maximum critical

section length w.r.t. q

Xx,q,v = 
actual amount of blocking caused

maximum critical section length w.r.t. q

Linear combination of all blocking fractions!
Use this as the objective function

of a linear program (LP).
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From a Fixed to All Possible Schedules
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maximize

∑
each

resource q

∑
each

task Tx

∑
each
CS v

Xx,q,v・ 
maximum critical

section length w.r.t. q

subject to

$PROTOCOL-CONSTRAINTS

$WORKLOAD-CONSTRAINTS
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From a Fixed to All Possible Schedules
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maximize

∑
each

resource q

∑
each

task Tx

∑
each
CS v

Xx,q,v・ 
maximum critical

section length w.r.t. q

subject to

$PROTOCOL-CONSTRAINTS

$WORKLOAD-CONSTRAINTS

Find worst-case blocking
across all possible schedules.

Rule out impossible schedules.
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Example FIFO Constraint

33

a resource), Ji suspends only due to lock contention, that is, at
most

Pn
r

u=1 Ni,u times. When Ji is released, and each time Ji

resumes, each other local, lower-priority task Tx can delay Ji

with at most one critical section. Hence, jobs of each other local,
lower-priority task Tx have at most 1+

Pn
r

u=1 Ni,u opportunities
to delay Ji in any way by executing a critical section.

Next, we derive protocol-specific constraints to limit direct
and indirect request delay under the FMLP+ and the MPCP.

B. Analysis of the FMLP+

Like its sibling protocol DFLP, the defining characteristic of
the FMLP+ is its pervasive use of FIFO queuing to resolve all
job ordering, with regard to both lock contention and processor
contention (among priority-boosted jobs). In fact, most of the
analysis pertaining to the DFLP applies analogously to the
FMLP+; we briefly state the applicable constraints here.

Constraint 12. In any schedule of ⌧ under the FMLP

+
:

8`q : 8Tx 2 ⌧ i
:

Ni

x,qX

v=1

XD
x,q,v  Ni,q.

Proof: Analogously to Constraint 4: due to FIFO queueing,
other jobs can directly delay Ji at most once per request.

Next, we introduce a constraint that limits the total ex-
tent of both direct and indirect delay due to each remote
task, similarly to Constraint 5. To this end, we let ⌧(Pk) ,
{Tx | P (Tx) = Pk } denote the set of tasks assigned to proces-
sor Pk, such that ⌧(P (Tx)) is the set of tasks local to task Tx.

Constraint 13. In any schedule of ⌧ under the FMLP

+
:

8Tx 2 ⌧ i
:

n
rX

q=1

Ni

x,qX

v=1

XD
x,q,v + XI

x,q,v


n
rX

u=1

min

0

@Ni,u,
X

T
y

2⌧(P (T
x

))

N i
y,u

1

A

Proof: Under the FMLP+, each other task can block Ji at
most once per request, either directly or indirectly, but not both
[6]. Further, jobs of Tx can indirectly delay Ji only when a job
of another task Ty (local to Tx, i.e., P (Tx) = P (Ty)) directly
delays one of Ji’s requests (for some resource). Thus, the number
of Ji’s requests (for any resource) that are directly delayed by
any task on Tx’s processor implies a bound on the total number
of critical sections of Tx that directly or indirectly delay Ji.
For each resource `u, Ji issues at most Ni,u requests. Further,
tasks on processor P (Tx) issue at most

P
T
y

2⌧(P (T
x

)) N i
y,u

conflicting requests for `u while Ji is pending. Thus at most
min

⇣
Ni,u,

P
T
y

2⌧(P (T
x

)) N i
y,u

⌘
of the requests issued by Ji

for `u are directly delayed by some task on processor P (Tx).
Thus, at most

Pn
r

u=1 min

⇣
Ni,u,

P
T
y

2⌧(P (T
x

)) N i
y,u

⌘
of Ji’s

requests for any resource are directly delayed by some task on
processor P (Tx), which yields the stated constraint.

Finally, we bound indirect request delay on a per-processor
basis based on analysis of direct request delay analogous to
Constraint 13 above. The key difference between Constraint 13

above and Constraint 14 below is that Constraint 14 pertains to
only indirect request delay, whereas Constraint 13 pertains to
both direct and indirect request delay.

Constraint 14. In any schedule of ⌧ under the FMLP

+
:

8Tx 2 ⌧ i
:

n
rX

q=1

Ni

x,qX

v=1

XI
x,q,v


n
rX

u=1

min

0

BB@Ni,u,
X

T
y

2⌧(P (T
x

))
T
y

6=T
x

N i
y,u

1

CCA .

Proof: Under the FMLP+, a job Jx causes Ji to incur
indirect request delay at most once per request, and only if
Jx preempts or delays another job Jy that causes Ji to incur
direct request delay. Hence the maximum number of requests
of Ji that are directly delayed by jobs of tasks on processor
P (Tx) other than task Tx implies a bound on the number
of times that jobs of Tx indirectly delay Ji. A bound on
the maximum number of times that a request of Ji for `u
is directly delayed by some task Ty other than Tx is given
by

Pn
r

u=1 min

⇣
Ni,u,

P
T
y

2⌧(P (T
x

))^T
y

6=T
x

N i
y,u

⌘
. The stated

constraint follows.
Even though Constraints 13 and 14 are structurally very simi-

lar, they do not imply each other (i.e., they are not redundant).
For a given task Tx, since Tx is not included in the right-
hand side of Constraint 14, it can be more constraining than
Constraint 13 if Tx is responsible for the majority of times that
Ji directly conflicts with tasks on processor P (Tx).

This concludes our analysis of the FMLP+.

C. Analysis of the MPCP

The analysis of the MPCP uses the same basic setup described
in Appendix A. Major differences to the FMLP+ arise, however,
due to the MPCP’s use of priority queues and priority ceilings.
This necessitates a slightly different use of the objective function,
which we explain after first introducing the MPCP-specific
constraints.

1) MPCP-Specific Constraints: To begin with, we limit direct
request delay caused by lower-priority tasks.

Constraint 15. In any schedule of ⌧ under the MPCP:

8`q :

X

T
x

2⌧ i

x>i

Ni

x,qX

v=1

XD
x,q,v  Ni,q.

Proof: Under the MPCP, jobs gain access to contended
resources in priority order. This implies that at most one lower-
priority task (i.e., a task Tx with x > i) directly delays Ji each
time that it requests a resource. Hence, with respect to each `q,
the total number of critical sections of lower-priority tasks that
cause Ji to incur direct request delay is limited by Ni,q .

Further, Ji is never directly delayed due to resources that it
does not require.

14

rule out impossible schedules not compliant with FIFO ordering
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rule out impossible schedules not compliant with FIFO ordering
Example FIFO Constraint
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a resource), Ji suspends only due to lock contention, that is, at
most

Pn
r

u=1 Ni,u times. When Ji is released, and each time Ji

resumes, each other local, lower-priority task Tx can delay Ji

with at most one critical section. Hence, jobs of each other local,
lower-priority task Tx have at most 1+

Pn
r

u=1 Ni,u opportunities
to delay Ji in any way by executing a critical section.

Next, we derive protocol-specific constraints to limit direct
and indirect request delay under the FMLP+ and the MPCP.

B. Analysis of the FMLP+

Like its sibling protocol DFLP, the defining characteristic of
the FMLP+ is its pervasive use of FIFO queuing to resolve all
job ordering, with regard to both lock contention and processor
contention (among priority-boosted jobs). In fact, most of the
analysis pertaining to the DFLP applies analogously to the
FMLP+; we briefly state the applicable constraints here.

Constraint 12. In any schedule of ⌧ under the FMLP

+
:

8`q : 8Tx 2 ⌧ i
:

Ni

x,qX

v=1

XD
x,q,v  Ni,q.

Proof: Analogously to Constraint 4: due to FIFO queueing,
other jobs can directly delay Ji at most once per request.

Next, we introduce a constraint that limits the total ex-
tent of both direct and indirect delay due to each remote
task, similarly to Constraint 5. To this end, we let ⌧(Pk) ,
{Tx | P (Tx) = Pk } denote the set of tasks assigned to proces-
sor Pk, such that ⌧(P (Tx)) is the set of tasks local to task Tx.

Constraint 13. In any schedule of ⌧ under the FMLP

+
:

8Tx 2 ⌧ i
:

n
rX

q=1

Ni

x,qX

v=1

XD
x,q,v + XI

x,q,v


n
rX

u=1

min

0

@Ni,u,
X

T
y

2⌧(P (T
x

))

N i
y,u

1

A

Proof: Under the FMLP+, each other task can block Ji at
most once per request, either directly or indirectly, but not both
[6]. Further, jobs of Tx can indirectly delay Ji only when a job
of another task Ty (local to Tx, i.e., P (Tx) = P (Ty)) directly
delays one of Ji’s requests (for some resource). Thus, the number
of Ji’s requests (for any resource) that are directly delayed by
any task on Tx’s processor implies a bound on the total number
of critical sections of Tx that directly or indirectly delay Ji.
For each resource `u, Ji issues at most Ni,u requests. Further,
tasks on processor P (Tx) issue at most

P
T
y

2⌧(P (T
x

)) N i
y,u

conflicting requests for `u while Ji is pending. Thus at most
min

⇣
Ni,u,

P
T
y

2⌧(P (T
x

)) N i
y,u

⌘
of the requests issued by Ji

for `u are directly delayed by some task on processor P (Tx).
Thus, at most

Pn
r

u=1 min

⇣
Ni,u,

P
T
y

2⌧(P (T
x

)) N i
y,u

⌘
of Ji’s

requests for any resource are directly delayed by some task on
processor P (Tx), which yields the stated constraint.

Finally, we bound indirect request delay on a per-processor
basis based on analysis of direct request delay analogous to
Constraint 13 above. The key difference between Constraint 13

above and Constraint 14 below is that Constraint 14 pertains to
only indirect request delay, whereas Constraint 13 pertains to
both direct and indirect request delay.

Constraint 14. In any schedule of ⌧ under the FMLP

+
:

8Tx 2 ⌧ i
:

n
rX

q=1

Ni

x,qX

v=1

XI
x,q,v


n
rX

u=1

min

0

BB@Ni,u,
X

T
y

2⌧(P (T
x

))
T
y

6=T
x

N i
y,u

1

CCA .

Proof: Under the FMLP+, a job Jx causes Ji to incur
indirect request delay at most once per request, and only if
Jx preempts or delays another job Jy that causes Ji to incur
direct request delay. Hence the maximum number of requests
of Ji that are directly delayed by jobs of tasks on processor
P (Tx) other than task Tx implies a bound on the number
of times that jobs of Tx indirectly delay Ji. A bound on
the maximum number of times that a request of Ji for `u
is directly delayed by some task Ty other than Tx is given
by

Pn
r

u=1 min

⇣
Ni,u,

P
T
y

2⌧(P (T
x

))^T
y

6=T
x

N i
y,u

⌘
. The stated

constraint follows.
Even though Constraints 13 and 14 are structurally very simi-

lar, they do not imply each other (i.e., they are not redundant).
For a given task Tx, since Tx is not included in the right-
hand side of Constraint 14, it can be more constraining than
Constraint 13 if Tx is responsible for the majority of times that
Ji directly conflicts with tasks on processor P (Tx).

This concludes our analysis of the FMLP+.

C. Analysis of the MPCP

The analysis of the MPCP uses the same basic setup described
in Appendix A. Major differences to the FMLP+ arise, however,
due to the MPCP’s use of priority queues and priority ceilings.
This necessitates a slightly different use of the objective function,
which we explain after first introducing the MPCP-specific
constraints.

1) MPCP-Specific Constraints: To begin with, we limit direct
request delay caused by lower-priority tasks.

Constraint 15. In any schedule of ⌧ under the MPCP:

8`q :

X

T
x

2⌧ i

x>i

Ni

x,qX

v=1

XD
x,q,v  Ni,q.

Proof: Under the MPCP, jobs gain access to contended
resources in priority order. This implies that at most one lower-
priority task (i.e., a task Tx with x > i) directly delays Ji each
time that it requests a resource. Hence, with respect to each `q,
the total number of critical sections of lower-priority tasks that
cause Ji to incur direct request delay is limited by Ni,q .

Further, Ji is never directly delayed due to resources that it
does not require.

14

For each resource q and each conflicting task Tx…
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rule out impossible schedules not compliant with FIFO ordering
Example FIFO Constraint
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a resource), Ji suspends only due to lock contention, that is, at
most

Pn
r

u=1 Ni,u times. When Ji is released, and each time Ji

resumes, each other local, lower-priority task Tx can delay Ji

with at most one critical section. Hence, jobs of each other local,
lower-priority task Tx have at most 1+

Pn
r

u=1 Ni,u opportunities
to delay Ji in any way by executing a critical section.

Next, we derive protocol-specific constraints to limit direct
and indirect request delay under the FMLP+ and the MPCP.

B. Analysis of the FMLP+

Like its sibling protocol DFLP, the defining characteristic of
the FMLP+ is its pervasive use of FIFO queuing to resolve all
job ordering, with regard to both lock contention and processor
contention (among priority-boosted jobs). In fact, most of the
analysis pertaining to the DFLP applies analogously to the
FMLP+; we briefly state the applicable constraints here.

Constraint 12. In any schedule of ⌧ under the FMLP

+
:

8`q : 8Tx 2 ⌧ i
:

Ni

x,qX

v=1

XD
x,q,v  Ni,q.

Proof: Analogously to Constraint 4: due to FIFO queueing,
other jobs can directly delay Ji at most once per request.

Next, we introduce a constraint that limits the total ex-
tent of both direct and indirect delay due to each remote
task, similarly to Constraint 5. To this end, we let ⌧(Pk) ,
{Tx | P (Tx) = Pk } denote the set of tasks assigned to proces-
sor Pk, such that ⌧(P (Tx)) is the set of tasks local to task Tx.

Constraint 13. In any schedule of ⌧ under the FMLP

+
:

8Tx 2 ⌧ i
:

n
rX

q=1
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))
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Proof: Under the FMLP+, each other task can block Ji at
most once per request, either directly or indirectly, but not both
[6]. Further, jobs of Tx can indirectly delay Ji only when a job
of another task Ty (local to Tx, i.e., P (Tx) = P (Ty)) directly
delays one of Ji’s requests (for some resource). Thus, the number
of Ji’s requests (for any resource) that are directly delayed by
any task on Tx’s processor implies a bound on the total number
of critical sections of Tx that directly or indirectly delay Ji.
For each resource `u, Ji issues at most Ni,u requests. Further,
tasks on processor P (Tx) issue at most

P
T
y

2⌧(P (T
x

)) N i
y,u

conflicting requests for `u while Ji is pending. Thus at most
min

⇣
Ni,u,

P
T
y

2⌧(P (T
x

)) N i
y,u

⌘
of the requests issued by Ji

for `u are directly delayed by some task on processor P (Tx).
Thus, at most

Pn
r

u=1 min

⇣
Ni,u,

P
T
y

2⌧(P (T
x

)) N i
y,u

⌘
of Ji’s

requests for any resource are directly delayed by some task on
processor P (Tx), which yields the stated constraint.

Finally, we bound indirect request delay on a per-processor
basis based on analysis of direct request delay analogous to
Constraint 13 above. The key difference between Constraint 13

above and Constraint 14 below is that Constraint 14 pertains to
only indirect request delay, whereas Constraint 13 pertains to
both direct and indirect request delay.

Constraint 14. In any schedule of ⌧ under the FMLP
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:
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1
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Proof: Under the FMLP+, a job Jx causes Ji to incur
indirect request delay at most once per request, and only if
Jx preempts or delays another job Jy that causes Ji to incur
direct request delay. Hence the maximum number of requests
of Ji that are directly delayed by jobs of tasks on processor
P (Tx) other than task Tx implies a bound on the number
of times that jobs of Tx indirectly delay Ji. A bound on
the maximum number of times that a request of Ji for `u
is directly delayed by some task Ty other than Tx is given
by

Pn
r

u=1 min

⇣
Ni,u,

P
T
y

2⌧(P (T
x

))^T
y

6=T
x

N i
y,u

⌘
. The stated

constraint follows.
Even though Constraints 13 and 14 are structurally very simi-

lar, they do not imply each other (i.e., they are not redundant).
For a given task Tx, since Tx is not included in the right-
hand side of Constraint 14, it can be more constraining than
Constraint 13 if Tx is responsible for the majority of times that
Ji directly conflicts with tasks on processor P (Tx).

This concludes our analysis of the FMLP+.

C. Analysis of the MPCP

The analysis of the MPCP uses the same basic setup described
in Appendix A. Major differences to the FMLP+ arise, however,
due to the MPCP’s use of priority queues and priority ceilings.
This necessitates a slightly different use of the objective function,
which we explain after first introducing the MPCP-specific
constraints.

1) MPCP-Specific Constraints: To begin with, we limit direct
request delay caused by lower-priority tasks.

Constraint 15. In any schedule of ⌧ under the MPCP:

8`q :

X

T
x

2⌧ i

x>i

Ni

x,qX

v=1

XD
x,q,v  Ni,q.

Proof: Under the MPCP, jobs gain access to contended
resources in priority order. This implies that at most one lower-
priority task (i.e., a task Tx with x > i) directly delays Ji each
time that it requests a resource. Hence, with respect to each `q,
the total number of critical sections of lower-priority tasks that
cause Ji to incur direct request delay is limited by Ni,q .

Further, Ji is never directly delayed due to resources that it
does not require.

14

For each resource q and each conflicting task Tx…

…all possibly concurrent critical sections v…
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a resource), Ji suspends only due to lock contention, that is, at
most

Pn
r

u=1 Ni,u times. When Ji is released, and each time Ji

resumes, each other local, lower-priority task Tx can delay Ji

with at most one critical section. Hence, jobs of each other local,
lower-priority task Tx have at most 1+

Pn
r

u=1 Ni,u opportunities
to delay Ji in any way by executing a critical section.

Next, we derive protocol-specific constraints to limit direct
and indirect request delay under the FMLP+ and the MPCP.

B. Analysis of the FMLP+

Like its sibling protocol DFLP, the defining characteristic of
the FMLP+ is its pervasive use of FIFO queuing to resolve all
job ordering, with regard to both lock contention and processor
contention (among priority-boosted jobs). In fact, most of the
analysis pertaining to the DFLP applies analogously to the
FMLP+; we briefly state the applicable constraints here.

Constraint 12. In any schedule of ⌧ under the FMLP

+
:

8`q : 8Tx 2 ⌧ i
:

Ni

x,qX

v=1

XD
x,q,v  Ni,q.

Proof: Analogously to Constraint 4: due to FIFO queueing,
other jobs can directly delay Ji at most once per request.

Next, we introduce a constraint that limits the total ex-
tent of both direct and indirect delay due to each remote
task, similarly to Constraint 5. To this end, we let ⌧(Pk) ,
{Tx | P (Tx) = Pk } denote the set of tasks assigned to proces-
sor Pk, such that ⌧(P (Tx)) is the set of tasks local to task Tx.

Constraint 13. In any schedule of ⌧ under the FMLP
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8Tx 2 ⌧ i
:
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q=1

Ni

x,qX

v=1

XD
x,q,v + XI

x,q,v


n
rX

u=1

min

0

@Ni,u,
X

T
y

2⌧(P (T
x

))
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Proof: Under the FMLP+, each other task can block Ji at
most once per request, either directly or indirectly, but not both
[6]. Further, jobs of Tx can indirectly delay Ji only when a job
of another task Ty (local to Tx, i.e., P (Tx) = P (Ty)) directly
delays one of Ji’s requests (for some resource). Thus, the number
of Ji’s requests (for any resource) that are directly delayed by
any task on Tx’s processor implies a bound on the total number
of critical sections of Tx that directly or indirectly delay Ji.
For each resource `u, Ji issues at most Ni,u requests. Further,
tasks on processor P (Tx) issue at most

P
T
y

2⌧(P (T
x

)) N i
y,u

conflicting requests for `u while Ji is pending. Thus at most
min

⇣
Ni,u,

P
T
y

2⌧(P (T
x

)) N i
y,u

⌘
of the requests issued by Ji

for `u are directly delayed by some task on processor P (Tx).
Thus, at most

Pn
r

u=1 min

⇣
Ni,u,

P
T
y

2⌧(P (T
x

)) N i
y,u

⌘
of Ji’s

requests for any resource are directly delayed by some task on
processor P (Tx), which yields the stated constraint.

Finally, we bound indirect request delay on a per-processor
basis based on analysis of direct request delay analogous to
Constraint 13 above. The key difference between Constraint 13

above and Constraint 14 below is that Constraint 14 pertains to
only indirect request delay, whereas Constraint 13 pertains to
both direct and indirect request delay.

Constraint 14. In any schedule of ⌧ under the FMLP
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Proof: Under the FMLP+, a job Jx causes Ji to incur
indirect request delay at most once per request, and only if
Jx preempts or delays another job Jy that causes Ji to incur
direct request delay. Hence the maximum number of requests
of Ji that are directly delayed by jobs of tasks on processor
P (Tx) other than task Tx implies a bound on the number
of times that jobs of Tx indirectly delay Ji. A bound on
the maximum number of times that a request of Ji for `u
is directly delayed by some task Ty other than Tx is given
by

Pn
r

u=1 min

⇣
Ni,u,

P
T
y

2⌧(P (T
x

))^T
y

6=T
x

N i
y,u

⌘
. The stated

constraint follows.
Even though Constraints 13 and 14 are structurally very simi-

lar, they do not imply each other (i.e., they are not redundant).
For a given task Tx, since Tx is not included in the right-
hand side of Constraint 14, it can be more constraining than
Constraint 13 if Tx is responsible for the majority of times that
Ji directly conflicts with tasks on processor P (Tx).

This concludes our analysis of the FMLP+.

C. Analysis of the MPCP

The analysis of the MPCP uses the same basic setup described
in Appendix A. Major differences to the FMLP+ arise, however,
due to the MPCP’s use of priority queues and priority ceilings.
This necessitates a slightly different use of the objective function,
which we explain after first introducing the MPCP-specific
constraints.

1) MPCP-Specific Constraints: To begin with, we limit direct
request delay caused by lower-priority tasks.

Constraint 15. In any schedule of ⌧ under the MPCP:

8`q :

X

T
x

2⌧ i

x>i

Ni

x,qX

v=1

XD
x,q,v  Ni,q.

Proof: Under the MPCP, jobs gain access to contended
resources in priority order. This implies that at most one lower-
priority task (i.e., a task Tx with x > i) directly delays Ji each
time that it requests a resource. Hence, with respect to each `q,
the total number of critical sections of lower-priority tasks that
cause Ji to incur direct request delay is limited by Ni,q .

Further, Ji is never directly delayed due to resources that it
does not require.

14

For each resource q and each conflicting task Tx…

…all possibly concurrent critical sections v…

…the sum of all blocking fractions…

…cannot exceed the number of requests for the resource
issued by task Ti (the task under analysis).
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a resource), Ji suspends only due to lock contention, that is, at
most

Pn
r

u=1 Ni,u times. When Ji is released, and each time Ji

resumes, each other local, lower-priority task Tx can delay Ji

with at most one critical section. Hence, jobs of each other local,
lower-priority task Tx have at most 1+

Pn
r

u=1 Ni,u opportunities
to delay Ji in any way by executing a critical section.

Next, we derive protocol-specific constraints to limit direct
and indirect request delay under the FMLP+ and the MPCP.

B. Analysis of the FMLP+

Like its sibling protocol DFLP, the defining characteristic of
the FMLP+ is its pervasive use of FIFO queuing to resolve all
job ordering, with regard to both lock contention and processor
contention (among priority-boosted jobs). In fact, most of the
analysis pertaining to the DFLP applies analogously to the
FMLP+; we briefly state the applicable constraints here.

Constraint 12. In any schedule of ⌧ under the FMLP

+
:

8`q : 8Tx 2 ⌧ i
:

Ni

x,qX

v=1

XD
x,q,v  Ni,q.

Proof: Analogously to Constraint 4: due to FIFO queueing,
other jobs can directly delay Ji at most once per request.

Next, we introduce a constraint that limits the total ex-
tent of both direct and indirect delay due to each remote
task, similarly to Constraint 5. To this end, we let ⌧(Pk) ,
{Tx | P (Tx) = Pk } denote the set of tasks assigned to proces-
sor Pk, such that ⌧(P (Tx)) is the set of tasks local to task Tx.

Constraint 13. In any schedule of ⌧ under the FMLP
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Proof: Under the FMLP+, each other task can block Ji at
most once per request, either directly or indirectly, but not both
[6]. Further, jobs of Tx can indirectly delay Ji only when a job
of another task Ty (local to Tx, i.e., P (Tx) = P (Ty)) directly
delays one of Ji’s requests (for some resource). Thus, the number
of Ji’s requests (for any resource) that are directly delayed by
any task on Tx’s processor implies a bound on the total number
of critical sections of Tx that directly or indirectly delay Ji.
For each resource `u, Ji issues at most Ni,u requests. Further,
tasks on processor P (Tx) issue at most

P
T
y

2⌧(P (T
x

)) N i
y,u

conflicting requests for `u while Ji is pending. Thus at most
min

⇣
Ni,u,

P
T
y
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)) N i
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⌘
of the requests issued by Ji

for `u are directly delayed by some task on processor P (Tx).
Thus, at most

Pn
r

u=1 min
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P
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x

)) N i
y,u

⌘
of Ji’s

requests for any resource are directly delayed by some task on
processor P (Tx), which yields the stated constraint.

Finally, we bound indirect request delay on a per-processor
basis based on analysis of direct request delay analogous to
Constraint 13 above. The key difference between Constraint 13

above and Constraint 14 below is that Constraint 14 pertains to
only indirect request delay, whereas Constraint 13 pertains to
both direct and indirect request delay.

Constraint 14. In any schedule of ⌧ under the FMLP
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Proof: Under the FMLP+, a job Jx causes Ji to incur
indirect request delay at most once per request, and only if
Jx preempts or delays another job Jy that causes Ji to incur
direct request delay. Hence the maximum number of requests
of Ji that are directly delayed by jobs of tasks on processor
P (Tx) other than task Tx implies a bound on the number
of times that jobs of Tx indirectly delay Ji. A bound on
the maximum number of times that a request of Ji for `u
is directly delayed by some task Ty other than Tx is given
by

Pn
r

u=1 min
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Ni,u,

P
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y

6=T
x

N i
y,u

⌘
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constraint follows.
Even though Constraints 13 and 14 are structurally very simi-

lar, they do not imply each other (i.e., they are not redundant).
For a given task Tx, since Tx is not included in the right-
hand side of Constraint 14, it can be more constraining than
Constraint 13 if Tx is responsible for the majority of times that
Ji directly conflicts with tasks on processor P (Tx).

This concludes our analysis of the FMLP+.

C. Analysis of the MPCP

The analysis of the MPCP uses the same basic setup described
in Appendix A. Major differences to the FMLP+ arise, however,
due to the MPCP’s use of priority queues and priority ceilings.
This necessitates a slightly different use of the objective function,
which we explain after first introducing the MPCP-specific
constraints.

1) MPCP-Specific Constraints: To begin with, we limit direct
request delay caused by lower-priority tasks.

Constraint 15. In any schedule of ⌧ under the MPCP:

8`q :

X

T
x

2⌧ i

x>i

Ni

x,qX

v=1

XD
x,q,v  Ni,q.

Proof: Under the MPCP, jobs gain access to contended
resources in priority order. This implies that at most one lower-
priority task (i.e., a task Tx with x > i) directly delays Ji each
time that it requests a resource. Hence, with respect to each `q,
the total number of critical sections of lower-priority tasks that
cause Ji to incur direct request delay is limited by Ni,q .

Further, Ji is never directly delayed due to resources that it
does not require.

14

Suppose not: then there exists a schedule in which
the sum of the blocking fractions of one task Tx

exceeds the number of requests issued.

Thus one request of Ti must have been blocked by
at least two requests of Tx. This is impossible in a FIFO queue.
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a resource), Ji suspends only due to lock contention, that is, at
most

Pn
r

u=1 Ni,u times. When Ji is released, and each time Ji

resumes, each other local, lower-priority task Tx can delay Ji

with at most one critical section. Hence, jobs of each other local,
lower-priority task Tx have at most 1+

Pn
r

u=1 Ni,u opportunities
to delay Ji in any way by executing a critical section.

Next, we derive protocol-specific constraints to limit direct
and indirect request delay under the FMLP+ and the MPCP.

B. Analysis of the FMLP+

Like its sibling protocol DFLP, the defining characteristic of
the FMLP+ is its pervasive use of FIFO queuing to resolve all
job ordering, with regard to both lock contention and processor
contention (among priority-boosted jobs). In fact, most of the
analysis pertaining to the DFLP applies analogously to the
FMLP+; we briefly state the applicable constraints here.

Constraint 12. In any schedule of ⌧ under the FMLP

+
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8`q : 8Tx 2 ⌧ i
:

Ni

x,qX

v=1

XD
x,q,v  Ni,q.

Proof: Analogously to Constraint 4: due to FIFO queueing,
other jobs can directly delay Ji at most once per request.

Next, we introduce a constraint that limits the total ex-
tent of both direct and indirect delay due to each remote
task, similarly to Constraint 5. To this end, we let ⌧(Pk) ,
{Tx | P (Tx) = Pk } denote the set of tasks assigned to proces-
sor Pk, such that ⌧(P (Tx)) is the set of tasks local to task Tx.

Constraint 13. In any schedule of ⌧ under the FMLP
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Proof: Under the FMLP+, each other task can block Ji at
most once per request, either directly or indirectly, but not both
[6]. Further, jobs of Tx can indirectly delay Ji only when a job
of another task Ty (local to Tx, i.e., P (Tx) = P (Ty)) directly
delays one of Ji’s requests (for some resource). Thus, the number
of Ji’s requests (for any resource) that are directly delayed by
any task on Tx’s processor implies a bound on the total number
of critical sections of Tx that directly or indirectly delay Ji.
For each resource `u, Ji issues at most Ni,u requests. Further,
tasks on processor P (Tx) issue at most

P
T
y

2⌧(P (T
x

)) N i
y,u

conflicting requests for `u while Ji is pending. Thus at most
min

⇣
Ni,u,
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⌘
of the requests issued by Ji

for `u are directly delayed by some task on processor P (Tx).
Thus, at most
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r

u=1 min
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⌘
of Ji’s

requests for any resource are directly delayed by some task on
processor P (Tx), which yields the stated constraint.

Finally, we bound indirect request delay on a per-processor
basis based on analysis of direct request delay analogous to
Constraint 13 above. The key difference between Constraint 13

above and Constraint 14 below is that Constraint 14 pertains to
only indirect request delay, whereas Constraint 13 pertains to
both direct and indirect request delay.

Constraint 14. In any schedule of ⌧ under the FMLP
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Proof: Under the FMLP+, a job Jx causes Ji to incur
indirect request delay at most once per request, and only if
Jx preempts or delays another job Jy that causes Ji to incur
direct request delay. Hence the maximum number of requests
of Ji that are directly delayed by jobs of tasks on processor
P (Tx) other than task Tx implies a bound on the number
of times that jobs of Tx indirectly delay Ji. A bound on
the maximum number of times that a request of Ji for `u
is directly delayed by some task Ty other than Tx is given
by
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r

u=1 min
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. The stated

constraint follows.
Even though Constraints 13 and 14 are structurally very simi-

lar, they do not imply each other (i.e., they are not redundant).
For a given task Tx, since Tx is not included in the right-
hand side of Constraint 14, it can be more constraining than
Constraint 13 if Tx is responsible for the majority of times that
Ji directly conflicts with tasks on processor P (Tx).

This concludes our analysis of the FMLP+.

C. Analysis of the MPCP

The analysis of the MPCP uses the same basic setup described
in Appendix A. Major differences to the FMLP+ arise, however,
due to the MPCP’s use of priority queues and priority ceilings.
This necessitates a slightly different use of the objective function,
which we explain after first introducing the MPCP-specific
constraints.

1) MPCP-Specific Constraints: To begin with, we limit direct
request delay caused by lower-priority tasks.

Constraint 15. In any schedule of ⌧ under the MPCP:

8`q :
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x
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x>i
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XD
x,q,v  Ni,q.

Proof: Under the MPCP, jobs gain access to contended
resources in priority order. This implies that at most one lower-
priority task (i.e., a task Tx with x > i) directly delays Ji each
time that it requests a resource. Hence, with respect to each `q,
the total number of critical sections of lower-priority tasks that
cause Ji to incur direct request delay is limited by Ni,q .

Further, Ji is never directly delayed due to resources that it
does not require.

14

Powerful analysis technique
➡ compositional: LP solver combines constraints
➡ flexible: can handle many protocols
➡ declarative: much easier to read and check

Accuracy
➡ Never counts a request twice.
➡ Much less pessimistic…
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Fig. 2. Comparison of schedulability under the DFLP, the DPCP with LP-based
analysis, and the DPCP with Rajkumar et al.’s classic analysis [23, 24].

to reflect that jobs execute critical sections locally in shared-
memory semaphore protocols (under the DPCP and the DFLP,
agent execution costs are included in the pi-blocking bounds).

Tasks were assigned rate-monotonic priorities (i.e., i < x
if pi < px) and partitioned using the worst-fit decreasing
heuristic, which ensures that all processors are roughly equally
utilized. Schedulability was tested on each processor with Eq. (1)
after bounding local and remote pi-blocking. There is a cyclic
dependency between Eq. (1), which yields ri given bli and bri for
each Ti, and the LP-based analysis, which yields bli and bri given
ri for each Ti (to compute each N i

x,q). This was resolved by
iteratively computing ri, bli, and bri starting from ri = ei until ri
converged for each task. Task sets that could not be partitioned,
or where ri > pi for some Ti, were counted as unschedulable.

We tested at least 1,000 task sets for each n and each of the
1,728 possible combinations of the listed parameters, for a total
of more than 100,000,000 task sets. All results are available
online [7]; the following discussion highlights major trends.

B. Algorithmic Comparison

In the first part of the study, we evaluated schedulability
(i.e., the fraction of task sets deemed schedulable) without
consideration of overheads to focus on algorithmic differences.
Naturally, the choice of locking protocol and analysis method is
not always relevant: if contention is negligible, then virtually any
protocol will do, and, if contention is excessive, the system will
be overloaded regardless of the protocol. However, in between
the two extremes, there exist many scenarios with significant,
but manageable contention. Here, LP-based analysis yields
substantial improvements. Importantly, with regard to priority vs.
FIFO queuing, the new analysis often changes the conclusion!

One such example is shown in Fig. 2, which depicts schedu-
lability under the DFLP and the DPCP using both classic and
LP-based analysis, assuming uniform light utilizations, short
periods, m = 8, nr = 16, Nmax

= 1, and pacc = 0.2. For
instance, consider n = 30: under the new, LP-based analysis,
all of the generated task sets can be supported using the DPCP,
whereas less than 40% are claimed schedulable under the old
analysis. Crucially, the DFLP performs clearly better than the
DPCP under classic analysis, but (slightly) worse than the DPCP
under LP-based analysis. This shows that our LP-based analysis
is substantially less pessimistic, and that it has a decisive effect
on relative performance in this and many other scenarios.

Fig. 3. Comparison of schedulability under the FMLP+, the MPCP with
LP-based analysis, and the MPCP with Lakshmanan et al.’s analysis [19].

Even larger gains are apparent in Fig. 3, which shows
schedulability under the FMLP+ and the MPCP using both
new and old analysis, assuming exponential light utilizations,
short periods, m = 16, nr = 16, Nmax

= 5, pacc = 0.1.
Whereas schedulability pessimistically declines at n ⇡ 50 under
the old analysis, virtually all task sets with up to 80 tasks are
found schedulable under the new, LP-based analysis—a more
than 50% increase in the number of supported tasks. Again, the
FMLP+ performs much better than the MPCP under old analysis,
but not quite as well as the MPCP under new analysis. This is not
to say that the MPCP always performs better—it does not—but
the new analysis clearly prevents a lopsided result in favor of
the FMLP+. In the following, we consider the MPCP and the
DPCP only in conjunction with the new, LP-based analysis.

Most surprisingly (to us), our data reveals that schedulability
can be much higher under distributed locking protocols than
under shared-memory protocols. This is apparent in Fig. 4,
which shows schedulability under the four considered protocols
assuming uniform light utilizations, homogeneous periods,
m = 16, nr = 16, Nmax

= 1, and pacc = 0.3. Additionally,
schedulability assuming zero pi-blocking (i.e., without resource
sharing) is shown to put the capacity loss due to pi-blocking into
perspective. The curves of the MPCP and the FMLP+ overlap
and exhibit deteriorating schedulability at n ⇡ 50, whereas
without contention, most task sets with up to 70 tasks are
schedulable, that is, the system’s capacity is (on average) reduced
by 20 tasks under the FMLP+ and the MPCP. Notably, under the
DPCP and the DFLP, this capacity loss is halved: schedulability
starts to decrease only at n ⇡ 60. To the best of our knowledge,
this is the first study to show that distributed locking protocols
can actually be superior in terms of schedulability. However,
overheads are decidedly not negligible in semaphore protocols
and must be considered to obtain practically meaningful results.

V. IMPACT OF OVERHEADS

We implemented the DFLP in LITMUSRT [1], which already
included implementations of the MPCP, DPCP, and FMLP+

from prior work [5], and used it to estimate worst-case overheads.
To measure overheads, LITMUSRT records timestamps before
and after an overhead-inducing code segment is executed.
Timestamps are written into a wait-free trace buffer, which is
periodically flushed to disk. This method is prone to outliers,
which prior LITMUSRT-based studies have addressed with
statistical filters, which can be problematic, as discussed in
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Fig. 2. Comparison of schedulability under the DFLP, the DPCP with LP-based
analysis, and the DPCP with Rajkumar et al.’s classic analysis [23, 24].

to reflect that jobs execute critical sections locally in shared-
memory semaphore protocols (under the DPCP and the DFLP,
agent execution costs are included in the pi-blocking bounds).

Tasks were assigned rate-monotonic priorities (i.e., i < x
if pi < px) and partitioned using the worst-fit decreasing
heuristic, which ensures that all processors are roughly equally
utilized. Schedulability was tested on each processor with Eq. (1)
after bounding local and remote pi-blocking. There is a cyclic
dependency between Eq. (1), which yields ri given bli and bri for
each Ti, and the LP-based analysis, which yields bli and bri given
ri for each Ti (to compute each N i

x,q). This was resolved by
iteratively computing ri, bli, and bri starting from ri = ei until ri
converged for each task. Task sets that could not be partitioned,
or where ri > pi for some Ti, were counted as unschedulable.

We tested at least 1,000 task sets for each n and each of the
1,728 possible combinations of the listed parameters, for a total
of more than 100,000,000 task sets. All results are available
online [7]; the following discussion highlights major trends.

B. Algorithmic Comparison

In the first part of the study, we evaluated schedulability
(i.e., the fraction of task sets deemed schedulable) without
consideration of overheads to focus on algorithmic differences.
Naturally, the choice of locking protocol and analysis method is
not always relevant: if contention is negligible, then virtually any
protocol will do, and, if contention is excessive, the system will
be overloaded regardless of the protocol. However, in between
the two extremes, there exist many scenarios with significant,
but manageable contention. Here, LP-based analysis yields
substantial improvements. Importantly, with regard to priority vs.
FIFO queuing, the new analysis often changes the conclusion!

One such example is shown in Fig. 2, which depicts schedu-
lability under the DFLP and the DPCP using both classic and
LP-based analysis, assuming uniform light utilizations, short
periods, m = 8, nr = 16, Nmax

= 1, and pacc = 0.2. For
instance, consider n = 30: under the new, LP-based analysis,
all of the generated task sets can be supported using the DPCP,
whereas less than 40% are claimed schedulable under the old
analysis. Crucially, the DFLP performs clearly better than the
DPCP under classic analysis, but (slightly) worse than the DPCP
under LP-based analysis. This shows that our LP-based analysis
is substantially less pessimistic, and that it has a decisive effect
on relative performance in this and many other scenarios.

Fig. 3. Comparison of schedulability under the FMLP+, the MPCP with
LP-based analysis, and the MPCP with Lakshmanan et al.’s analysis [19].

Even larger gains are apparent in Fig. 3, which shows
schedulability under the FMLP+ and the MPCP using both
new and old analysis, assuming exponential light utilizations,
short periods, m = 16, nr = 16, Nmax

= 5, pacc = 0.1.
Whereas schedulability pessimistically declines at n ⇡ 50 under
the old analysis, virtually all task sets with up to 80 tasks are
found schedulable under the new, LP-based analysis—a more
than 50% increase in the number of supported tasks. Again, the
FMLP+ performs much better than the MPCP under old analysis,
but not quite as well as the MPCP under new analysis. This is not
to say that the MPCP always performs better—it does not—but
the new analysis clearly prevents a lopsided result in favor of
the FMLP+. In the following, we consider the MPCP and the
DPCP only in conjunction with the new, LP-based analysis.

Most surprisingly (to us), our data reveals that schedulability
can be much higher under distributed locking protocols than
under shared-memory protocols. This is apparent in Fig. 4,
which shows schedulability under the four considered protocols
assuming uniform light utilizations, homogeneous periods,
m = 16, nr = 16, Nmax

= 1, and pacc = 0.3. Additionally,
schedulability assuming zero pi-blocking (i.e., without resource
sharing) is shown to put the capacity loss due to pi-blocking into
perspective. The curves of the MPCP and the FMLP+ overlap
and exhibit deteriorating schedulability at n ⇡ 50, whereas
without contention, most task sets with up to 70 tasks are
schedulable, that is, the system’s capacity is (on average) reduced
by 20 tasks under the FMLP+ and the MPCP. Notably, under the
DPCP and the DFLP, this capacity loss is halved: schedulability
starts to decrease only at n ⇡ 60. To the best of our knowledge,
this is the first study to show that distributed locking protocols
can actually be superior in terms of schedulability. However,
overheads are decidedly not negligible in semaphore protocols
and must be considered to obtain practically meaningful results.

V. IMPACT OF OVERHEADS

We implemented the DFLP in LITMUSRT [1], which already
included implementations of the MPCP, DPCP, and FMLP+

from prior work [5], and used it to estimate worst-case overheads.
To measure overheads, LITMUSRT records timestamps before
and after an overhead-inducing code segment is executed.
Timestamps are written into a wait-free trace buffer, which is
periodically flushed to disk. This method is prone to outliers,
which prior LITMUSRT-based studies have addressed with
statistical filters, which can be problematic, as discussed in

16 cores, 16 shared resources, max. 5 critical sections per task and resource,
10µs-50µs CS length, each task accesses a given resource with probability 0.1 
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Fig. 2. Comparison of schedulability under the DFLP, the DPCP with LP-based
analysis, and the DPCP with Rajkumar et al.’s classic analysis [23, 24].

to reflect that jobs execute critical sections locally in shared-
memory semaphore protocols (under the DPCP and the DFLP,
agent execution costs are included in the pi-blocking bounds).

Tasks were assigned rate-monotonic priorities (i.e., i < x
if pi < px) and partitioned using the worst-fit decreasing
heuristic, which ensures that all processors are roughly equally
utilized. Schedulability was tested on each processor with Eq. (1)
after bounding local and remote pi-blocking. There is a cyclic
dependency between Eq. (1), which yields ri given bli and bri for
each Ti, and the LP-based analysis, which yields bli and bri given
ri for each Ti (to compute each N i

x,q). This was resolved by
iteratively computing ri, bli, and bri starting from ri = ei until ri
converged for each task. Task sets that could not be partitioned,
or where ri > pi for some Ti, were counted as unschedulable.

We tested at least 1,000 task sets for each n and each of the
1,728 possible combinations of the listed parameters, for a total
of more than 100,000,000 task sets. All results are available
online [7]; the following discussion highlights major trends.

B. Algorithmic Comparison

In the first part of the study, we evaluated schedulability
(i.e., the fraction of task sets deemed schedulable) without
consideration of overheads to focus on algorithmic differences.
Naturally, the choice of locking protocol and analysis method is
not always relevant: if contention is negligible, then virtually any
protocol will do, and, if contention is excessive, the system will
be overloaded regardless of the protocol. However, in between
the two extremes, there exist many scenarios with significant,
but manageable contention. Here, LP-based analysis yields
substantial improvements. Importantly, with regard to priority vs.
FIFO queuing, the new analysis often changes the conclusion!

One such example is shown in Fig. 2, which depicts schedu-
lability under the DFLP and the DPCP using both classic and
LP-based analysis, assuming uniform light utilizations, short
periods, m = 8, nr = 16, Nmax

= 1, and pacc = 0.2. For
instance, consider n = 30: under the new, LP-based analysis,
all of the generated task sets can be supported using the DPCP,
whereas less than 40% are claimed schedulable under the old
analysis. Crucially, the DFLP performs clearly better than the
DPCP under classic analysis, but (slightly) worse than the DPCP
under LP-based analysis. This shows that our LP-based analysis
is substantially less pessimistic, and that it has a decisive effect
on relative performance in this and many other scenarios.

Fig. 3. Comparison of schedulability under the FMLP+, the MPCP with
LP-based analysis, and the MPCP with Lakshmanan et al.’s analysis [19].

Even larger gains are apparent in Fig. 3, which shows
schedulability under the FMLP+ and the MPCP using both
new and old analysis, assuming exponential light utilizations,
short periods, m = 16, nr = 16, Nmax

= 5, pacc = 0.1.
Whereas schedulability pessimistically declines at n ⇡ 50 under
the old analysis, virtually all task sets with up to 80 tasks are
found schedulable under the new, LP-based analysis—a more
than 50% increase in the number of supported tasks. Again, the
FMLP+ performs much better than the MPCP under old analysis,
but not quite as well as the MPCP under new analysis. This is not
to say that the MPCP always performs better—it does not—but
the new analysis clearly prevents a lopsided result in favor of
the FMLP+. In the following, we consider the MPCP and the
DPCP only in conjunction with the new, LP-based analysis.

Most surprisingly (to us), our data reveals that schedulability
can be much higher under distributed locking protocols than
under shared-memory protocols. This is apparent in Fig. 4,
which shows schedulability under the four considered protocols
assuming uniform light utilizations, homogeneous periods,
m = 16, nr = 16, Nmax

= 1, and pacc = 0.3. Additionally,
schedulability assuming zero pi-blocking (i.e., without resource
sharing) is shown to put the capacity loss due to pi-blocking into
perspective. The curves of the MPCP and the FMLP+ overlap
and exhibit deteriorating schedulability at n ⇡ 50, whereas
without contention, most task sets with up to 70 tasks are
schedulable, that is, the system’s capacity is (on average) reduced
by 20 tasks under the FMLP+ and the MPCP. Notably, under the
DPCP and the DFLP, this capacity loss is halved: schedulability
starts to decrease only at n ⇡ 60. To the best of our knowledge,
this is the first study to show that distributed locking protocols
can actually be superior in terms of schedulability. However,
overheads are decidedly not negligible in semaphore protocols
and must be considered to obtain practically meaningful results.

V. IMPACT OF OVERHEADS

We implemented the DFLP in LITMUSRT [1], which already
included implementations of the MPCP, DPCP, and FMLP+

from prior work [5], and used it to estimate worst-case overheads.
To measure overheads, LITMUSRT records timestamps before
and after an overhead-inducing code segment is executed.
Timestamps are written into a wait-free trace buffer, which is
periodically flushed to disk. This method is prone to outliers,
which prior LITMUSRT-based studies have addressed with
statistical filters, which can be problematic, as discussed in

16 cores, 16 shared resources, max. 5 critical sections per task and resource,
10µs-50µs CS length, each task accesses a given resource with probability 0.1 

MPCP
(with new analysis)

MPCP
(with prior analysis)

FMLP+
(with new analysis)
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Fig. 2. Comparison of schedulability under the DFLP, the DPCP with LP-based
analysis, and the DPCP with Rajkumar et al.’s classic analysis [23, 24].

to reflect that jobs execute critical sections locally in shared-
memory semaphore protocols (under the DPCP and the DFLP,
agent execution costs are included in the pi-blocking bounds).

Tasks were assigned rate-monotonic priorities (i.e., i < x
if pi < px) and partitioned using the worst-fit decreasing
heuristic, which ensures that all processors are roughly equally
utilized. Schedulability was tested on each processor with Eq. (1)
after bounding local and remote pi-blocking. There is a cyclic
dependency between Eq. (1), which yields ri given bli and bri for
each Ti, and the LP-based analysis, which yields bli and bri given
ri for each Ti (to compute each N i

x,q). This was resolved by
iteratively computing ri, bli, and bri starting from ri = ei until ri
converged for each task. Task sets that could not be partitioned,
or where ri > pi for some Ti, were counted as unschedulable.

We tested at least 1,000 task sets for each n and each of the
1,728 possible combinations of the listed parameters, for a total
of more than 100,000,000 task sets. All results are available
online [7]; the following discussion highlights major trends.

B. Algorithmic Comparison

In the first part of the study, we evaluated schedulability
(i.e., the fraction of task sets deemed schedulable) without
consideration of overheads to focus on algorithmic differences.
Naturally, the choice of locking protocol and analysis method is
not always relevant: if contention is negligible, then virtually any
protocol will do, and, if contention is excessive, the system will
be overloaded regardless of the protocol. However, in between
the two extremes, there exist many scenarios with significant,
but manageable contention. Here, LP-based analysis yields
substantial improvements. Importantly, with regard to priority vs.
FIFO queuing, the new analysis often changes the conclusion!

One such example is shown in Fig. 2, which depicts schedu-
lability under the DFLP and the DPCP using both classic and
LP-based analysis, assuming uniform light utilizations, short
periods, m = 8, nr = 16, Nmax

= 1, and pacc = 0.2. For
instance, consider n = 30: under the new, LP-based analysis,
all of the generated task sets can be supported using the DPCP,
whereas less than 40% are claimed schedulable under the old
analysis. Crucially, the DFLP performs clearly better than the
DPCP under classic analysis, but (slightly) worse than the DPCP
under LP-based analysis. This shows that our LP-based analysis
is substantially less pessimistic, and that it has a decisive effect
on relative performance in this and many other scenarios.

Fig. 3. Comparison of schedulability under the FMLP+, the MPCP with
LP-based analysis, and the MPCP with Lakshmanan et al.’s analysis [19].

Even larger gains are apparent in Fig. 3, which shows
schedulability under the FMLP+ and the MPCP using both
new and old analysis, assuming exponential light utilizations,
short periods, m = 16, nr = 16, Nmax

= 5, pacc = 0.1.
Whereas schedulability pessimistically declines at n ⇡ 50 under
the old analysis, virtually all task sets with up to 80 tasks are
found schedulable under the new, LP-based analysis—a more
than 50% increase in the number of supported tasks. Again, the
FMLP+ performs much better than the MPCP under old analysis,
but not quite as well as the MPCP under new analysis. This is not
to say that the MPCP always performs better—it does not—but
the new analysis clearly prevents a lopsided result in favor of
the FMLP+. In the following, we consider the MPCP and the
DPCP only in conjunction with the new, LP-based analysis.

Most surprisingly (to us), our data reveals that schedulability
can be much higher under distributed locking protocols than
under shared-memory protocols. This is apparent in Fig. 4,
which shows schedulability under the four considered protocols
assuming uniform light utilizations, homogeneous periods,
m = 16, nr = 16, Nmax

= 1, and pacc = 0.3. Additionally,
schedulability assuming zero pi-blocking (i.e., without resource
sharing) is shown to put the capacity loss due to pi-blocking into
perspective. The curves of the MPCP and the FMLP+ overlap
and exhibit deteriorating schedulability at n ⇡ 50, whereas
without contention, most task sets with up to 70 tasks are
schedulable, that is, the system’s capacity is (on average) reduced
by 20 tasks under the FMLP+ and the MPCP. Notably, under the
DPCP and the DFLP, this capacity loss is halved: schedulability
starts to decrease only at n ⇡ 60. To the best of our knowledge,
this is the first study to show that distributed locking protocols
can actually be superior in terms of schedulability. However,
overheads are decidedly not negligible in semaphore protocols
and must be considered to obtain practically meaningful results.

V. IMPACT OF OVERHEADS

We implemented the DFLP in LITMUSRT [1], which already
included implementations of the MPCP, DPCP, and FMLP+

from prior work [5], and used it to estimate worst-case overheads.
To measure overheads, LITMUSRT records timestamps before
and after an overhead-inducing code segment is executed.
Timestamps are written into a wait-free trace buffer, which is
periodically flushed to disk. This method is prone to outliers,
which prior LITMUSRT-based studies have addressed with
statistical filters, which can be problematic, as discussed in

New analysis roughly doubled number of supported tasks!
And: offers new observations on MPCP / FMLP+ relative performance.

16 cores, 16 shared resources, max. 5 critical sections per task and resource,
10µs-50µs CS length, each task accesses a given resource with probability 0.1 
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Evaluated Protocols

MPCP
(Rajkumar, 1990;
Lakshmanan et al., 

2009)

FMLP+
(Brandenburg, 

2011)

DPCP
(Rajkumar et al., 

1988)

DFLP
(Brandenburg, 

2012)

Wait Queue

Protocol Type

Asymptotically 
optimal?

(w.r.t. maximum 
blocking)

priority queue FIFO queue priority queue FIFO queue

shared-memory shared-memory distributed distributed

NO YES NO YES



MPI-SWS Brandenburg

Improved Analysis and Evaluation of Real-Time Semaphore Protocols for P-FP Scheduling

Evaluated Protocols

MPCP
(Rajkumar, 1990;
Lakshmanan et al., 

2009)

FMLP+
(Brandenburg, 

2011)

DPCP
(Rajkumar et al., 

1988)

DFLP
(Brandenburg, 

2012)

Wait Queue

Protocol Type

Asymptotically 
optimal?

(w.r.t. maximum 
blocking)

priority queue FIFO queue priority queue FIFO queue

shared-memory shared-memory distributed distributed

NO YES NO YES

Distributed locking protocols require cross-core interaction.

Overheads matter…
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Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

www.litmus-rt.org

8-core / 16-core
2.0 GHz Intel Xeon X7550

Platform

Overhead Tracing
➡ > 20h of real-time exeuction
➡ > 400 GB of trace data
➡ > 15 billion valid samples
➡ Statistics and details in online appendix.
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samples: total=1511236394
[IQR filter not applied]

max = 40.99µs avg = 2.72µs med = 2.15µs
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P-FP: measured context-switch overhead (host=nanping-16)
min=0.26us  max=40.99us  avg=2.72us  median=2.15us

samples: total=1511236394
[IQR filter not applied]

max = 40.99µs avg = 2.72µs med = 2.15µs

Overhead Experiments:

No statistical outlier filtering was applied.
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8 cores, 8 shared resources, max. 5 critical sections per task and resource,
10µs-50µs CS length, each task accesses a given resource with probability 0.3 
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8 cores, 8 shared resources, max. 5 critical sections per task and resource,
10µs-50µs CS length, each task accesses a given resource with probability 0.3 

Distributed Protocols
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8 cores, 8 shared resources, max. 5 critical sections per task and resource,
10µs-50µs CS length, each task accesses a given resource with probability 0.3 

FIFO Protocols
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8 cores, 8 shared resources, max. 5 critical sections per task and resource,
10µs-50µs CS length, each task accesses a given resource with probability 0.3 

Blocking is a significant bottleneck. w.r.t. schedulability.
In this example: DFLP can host >20% more tasks than MPCP.
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All results available online (>6,000 plots).
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There is no single “best” protocol!
(w.r.t. schedulability)

Results are highly workload-dependent!
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How to order conflicting critical sections?

Where to execute critical sections?

➔  FIFO works well, but priority queues needed for highly 
heterogenous timing parameters.

➔ Distributed protocols very competitive
for many resources with high contention;

shared-memory protocols better for few resources.
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Contributions
➡ There is no single best protocol yet.
➡ Distributed protocols perform 

surprisingly well.
➡ Use linear programs to analyze 

blocking.

Future Work
➡ Generalized protocol that always works.
➡ Support clustered scheduling.
➡ Analyze spin locks with LPs.
➡ Extend LPs to handle nesting.
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Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

www.litmus-rt.org

SchedCAT
Schedulability test Collection And Toolkit

www.mpi-sws.org/~bbb/projects/schedcat

http://www.litmus-rt.org
http://www.litmus-rt.org
http://www.mpi-sws.org/~bbb/projects/schedcat
http://www.mpi-sws.org/~bbb/projects/schedcat

