
Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 1

Response-Time Analysis of
Limited-Preemptive Parallel DAG Tasks

Under Global Scheduling

Mitra Nasri Björn Brandenburg Geoffrey Nelissen

MAX PLANCK INSTITUTE
FOR SOFTWARE SYSTEMS

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 2

Our work in a nutshell

Bounded
uncertainty

time

Deadline
(hard or soft)

Arrival model

Execution model

Task model

And

And

bounded
uncertainty

Best case
(BCET)

Worst case (WCET)

Global job-level
fixed-priority (JLFP)

Scheduler model

Multicore
(identical cores)

Platform model

Limited preemptive
(fixed-preemption points)

Execution model

Preemption points at
segment boarders

We obtain the worst-case and best-case response time

Workload model

Parallel DAG tasks
(or job sets)

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 3

Our work in a nutshell

Global job-level
fixed-priority (JLFP)

Scheduler model

Multicore
(identical cores)

Platform model

Limited preemptive
(fixed-preemption points)

Execution model

We obtain the worst-case and best-case response time

Workload model

Parallel DAG tasks
(or job sets)

Release jitter
Deadline

Job model 𝐽1
Deadline

𝐽2

𝐽1
𝐽2

𝐽2 𝐽2

𝐽2

…

Examples:
• Transactions
• Multi-frame tasks
• Periodic DAG tasks
• …

This job model supports bounded non-
deterministic arrivals, but not sporadic tasks
(un-bounded non-deterministic arrivals)

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 4

State of the art

4

Closed-form analyses
(e.g., problem-window analysis)

• Fast • Pessimistic
• Hard to extend

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 5

State of the art

5

Closed-form analyses
(e.g., problem-window analysis)

• Fast • Pessimistic
• Hard to extend

Exact tests in generic formal
verification tools (e.g., UPPAAL)

• Accurate
• Easy to extend

• Not scalable

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 6

State of the art

6

Closed-form analyses
(e.g., problem-window analysis)

• Fast • Pessimistic
• Hard to extend

Exact tests in generic formal
verification tools (e.g., UPPAAL)

• Accurate
• Easy to extend

• Not scalable

• Applicable to complex problems
• Easy to extend
• Highly accurate
• Relatively fast

Response-time analysis using
schedule abstraction

Industrial use cases are typically
large, complex, and require

accurate analysis

This line of work

Idea: explore all
possible schedules

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 7

State of the art: comparison

0.00

0.25

0.50

0.75

1.00

3 6 9 12 15 18 21 24 27

sc
h

ed
u

la
b

ili
ty

 r
at

io

number of tasks

4 cores, 30% utilization

exact test (timeout)

this paper

exact test (UPPAAL)

0

500

1,000

1,500

2,000

2,500

3,000

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

ru
n

ti
m

e
(s

ec
)

number of tasks

8 cores

4 cores

2 cores

1 core
this paper
(8 cores)

Accuracy

Runtime

Almost as accurate as
the exact test

Much faster

Experiment on sequential periodic tasks

Sequential periodic tasks
(global FP scheduling)

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 8

State of the art: comparison

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

sc
h

ed
u

la
b

ili
ty

 r
at

io

utilization

this paper (m=8) Serrano (m=8)

Effectiveness (for parallel DAG tasks)

Much less pessimistic than the
closed-form analysis

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 9

State of the art: schedule-abstraction-based analyses

[RTSS’17] M. Nasri and B. Brandenburg, "An Exact and Sustainable Analysis of Non-Preemptive Scheduling”.
[ECRTS’18] M. Nasri, G. Nelissen, and B. Brandenburg, “A Response-Time Analysis for Non-Preemptive Job Sets under Global Scheduling”.

[RTSS’17]

Work-conserving and
non-work-conserving

job-level fixed-priority scheduling (JLFP)

Uniprocessor

Exact

Independent
non-preemptive

jobs/tasks

[ECRTS’18]

Global work-conserving
job-level fixed-priority scheduling (JLFP)

Multiprocessor

Sufficient

Independent
non-preemptive

jobs/tasks

Global work-conserving
job-level fixed-priority scheduling (JLFP)

Multiprocessor

Sufficient

Non-preemptive
jobs/DAG tasks with

precedence constraints

[this work]

A new system abstraction (more scalable)

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 10

Agenda

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 11
11

Response-time analysis using
schedule abstraction

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 12

Highlights

Use job-ordering abstraction to analyze schedulability
by building a graph that represents all possible schedules

Solution

There are fewer permissible
job orderings than schedules

Observation

A sound analysis must consider
all possible execution scenarios

(i.e., combination of release times and execution times)

Due to scheduling
anomalies

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 13

A path represents a set of
similar schedules

Different paths have
different job orders

Response-time analysis using schedule-abstraction graphs

start end

A path aggregates all schedules
with the same job ordering

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 14

Response-time analysis using schedule-abstraction graphs

Earliest and latest finish time of 𝐽1
when it is dispatched after state 𝑣

start end

A path aggregates all schedules
with the same job ordering

A vertex abstracts a system state and
an edge represents a dispatched job

𝑱𝟏:[4, 8]
𝑣

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 15

Response-time analysis using schedule-abstraction graphs

Core 1:
Core 2:

10 30

15 20

A system state

Interpretation of an
uncertainty interval:

Possibly
available

Certainly
not available

Certainly
available

start end

A path aggregates all schedules
with the same job ordering

A vertex abstracts a system state and
an edge represents a dispatched job

A state is labeled with the
finish-time interval of

any path reaching the state

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 16

Earliest and latest completion times
of the job in the path

Obtaining the response time:

Response-time analysis using schedule-abstraction graphs

𝑱𝟏: [2, 5]

𝑱𝟏:[4, 8]
𝑱𝟏: [7, 15]

Best-case response time = min {completion times of the job} = 2
Worst-case response time = max {completion times of the job} = 15

A path aggregates all schedules
with the same job ordering

A vertex abstracts a system state and
an edge represents a dispatched job

A state represents the
finish-time interval of

any path reaching that state

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 17

Initial
state

merged

merged

merged

merged

Building the schedule-abstraction graph

Building the graph
(a breadth-first method)

Repeat until every path includes all jobs
1. Find the shortest path
2. For each not-yet-dispatched job that can be dispatched after the path:

2.1. Expand (add a new vertex)

2.2. Merge (if possible, merge the new vertex with an existing vertex)

System is idle and

no job has been scheduled

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 18

Building the schedule-abstraction graph

Expansion rules imply the
scheduling policy

Core 1:
Core 2:

10 30

15 20

State 𝒗𝒊
Next states

J1

J2

8 25
J2 Medium priority

17 30
J1 High priorityAvailable jobs

(at the state)

35 40
J3 Low priority

Expanding a vertex:
(reasoning on uncertainty intervals)

𝑣𝑖

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 19

Define the state
abstraction

Define the
expansion rules

Define merging
rules

How to use schedule-abstraction graphs to solve a new problem?

What is encoded by an edge?
What is encoded by a state?

How to create
new states?

How to identify
similar states?

And then, prove soundness
“the expansion rules must cover all possible schedules of the job set”

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 20

Agenda

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 21

Handling precedence constraints

2 7 15
J4

J1

J2

J3

J4An example schedule:

𝐽4 cannot
become ready
before time 7

The latest time at which
all predecessors have

been completed

release time

1 7 10
J2

J1 153 5

J3
2 4 9

BCET = 2 WCET = 12

Is that enough?

Core 1:

Core 2:

Core 3:

𝐶3 ∈ 2, 5

𝐶2 ∈ 6, 9

𝐶1 ∈ 2, 12

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 22

1 3

Challenge 1: modeling precedence constraint as release jitter
may cover impossible scenarios (→ pessimism)

0
J2

An example schedule:

J2

J1 0 1 3
Core 1:

Core 2:
1 3 5

Is there a scenario at which
two cores are busy at any
time in the interval [1, 3]?

No! because 𝑱𝟐 can start its execution only if 𝑱𝟏 has finished

5
Core 1:

3

Core 2: idle

J1 J2

𝐶1 ∈ 1, 3 𝐶2 ∈ 2, 4

𝐽1 𝐽2

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 23

Challenge 1’s solution: keep track of running jobs in a state

5
Core 1:

3

Core 2: idle

Maintain a set 𝑆 of certainly
running jobs and their

completion time intervals

When scheduling 𝐽𝑖:
Remove all its

predecessors from 𝑆

Update availability of cores
considering the removal of

𝐽𝑖’s predecessors

J1 J2

𝐶1 ∈ 1, 3 𝐶2 ∈ 2, 4𝐽1 𝐽2

𝐽1 𝐽2

Running jobs: { }

Core 1:

Core 2: idle

3
Core 1:

1

Core 2: idle

Running jobs: {𝐽1: 1, 3 }

5
Core 1:

3

Core 2: idle

Running jobs: {𝐽2: 3, 5 }

idle

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 24

Challenge 2: Updating certainly running jobs after the merge phase

𝑆 =
𝐽1: 2, 5 ,

𝐽2: 7, 10

𝒗𝒑

𝒗𝒑 merged with 𝒗𝒒

𝑆 = 𝐽1: 2, 8

𝑆 =
𝐽1: 4, 8 ,

𝐽3: 3, 9

𝒗𝒒

…

…

…

…

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 25

Assume that these jobs
can be scheduled on
either of the cores

Core 1:

state

Available jobs:
{ 𝐽1, 𝐽2}

Core 10:

…

J1 on Core 10

J1 on Core 1

J2 on Core 10

J2 on Core 1

Symmetry increases the cost of
“expansion phase”

Note: these vertices will likely “merge”
during the merge phase anyway

Prior work [ECRTS’18]:

Challenge 3: improving the scalability (with a new state abstraction)

…
…

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 26

2 cores

Our new state abstraction

This work
1 core 10 25

15 40

𝐴3
𝑚𝑎𝑥

3 cores 30 45

𝐴3
𝑚𝑖𝑛

[ECRTS’18]

How does it help?
When a new job is dispatched, it only affects

the first core availability interval

𝐸𝐹𝑇𝑖: earliest finish time of the 𝑖𝑡ℎ core
𝐿𝐹𝑇𝑖: latest finish time of the 𝑖𝑡ℎ core

𝐿𝐹𝑇3

25Core 3 15

𝐸𝐹𝑇3

Core 2 4030

𝐿𝐹𝑇2𝐸𝐹𝑇2

Core 1 10 45

𝐿𝐹𝑇1𝐸𝐹𝑇1

𝐴2
𝑚𝑎𝑥𝐴2

𝑚𝑖𝑛

𝐴1
𝑚𝑖𝑛 𝐴1

𝑚𝑎𝑥

because there is no need to expand all
combination of jobs and cores!

𝐴𝑖
𝑚𝑖𝑛: earliest availability time of 𝑖 cores

𝐴𝑖
𝑚𝑎𝑥: latest availability time of 𝑖 cores

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 27

Evaluating the effect of the new abstraction
Non-preemptive periodic tasks, 4 cores, utilization = 70%

2,115

166

0

500

1,000

1,500

2,000

2,500

6 9 12 15 18 21 24 27 30

ru
n

ti
m

e
 (

s)
9

5
th

p
e

rc
e

n
ti

le

Number of tasks

Nasri18 this paper[ECRTS’18] This work

12x

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 28

Agenda

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 29

Experiment setup

DAG tasks:

• Periods in [500, 100000]
• Utilization of a task: uUniFast

• Series-parallel DAGs with nested fork-joins generated with the
method from [Cassini 2018, Serrano 2017, Melani 2015, Peng 2014]
• Maximum nodes in a DAG: 50
• Maximum length of the critical path: 10
• Maximum nested branches: 3

Experiment platform
• Multi-threaded C++ program.

We parallelized the breadth-first exploration of the schedule-abstraction graph using Intel’s open-
source Thread Building Blocks (TBB) library.

• A cluster of machines each equipped with 256 GiB RAM and Intel Xeon E5-2667 v2 processors
clocked at 3.3 GHz.

• We report the CPU time of all of the threads together as the runtime of the analysis

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 30

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

sc
h

ed
u

la
b

ili
ty

 r
at

io

utilization

this paper (m=4) Serrano (m=4)

10 parallel random DAG tasksParallel DAG tasks

M. Serrano, A. Melani, S. Kehr, M. Bertogna, and E. Quiñones, “An Analysis of Lazy and Eager Limited Preemption Approaches under DAG-
Based Global Fixed Priority Scheduling”, ISORC, 2017.

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

sc
h

ed
u

la
b

ili
ty

 r
at

io

utilization

this paper (m=8) Serrano (m=8)

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

sc
h

ed
u

la
b

ili
ty

 r
at

io

utilization

this paper (m=16) Serrano (m=16)

39

294

41
8

0

100

200

300

m=4 m=8 m=16

ru
n

ti
m

e
 (

s)

average
0.90 percentile
0.95 percentile
0.98 percentile

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 31

More tasks than cores: each
task has smaller utilization

More cores than tasks:
higher parallelism

DAG tasks: varying cores (m) and tasks (n)

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

sc
h

e
d

u
la

b
ili

ty
 r

at
io

ratio of DAG tasks to cores (n / m)

m=4 m=8 m=16 m=32 m=64

U=50%

Scalability experiment

20 DAG tasks, 16 cores

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 32

0.01

0.1

1

10

100

1000

10000

100000

 m=4 m=8 m=16 m=32 m=64

ru
n

ti
m

e
 (

se
c)

9
5

th
p

e
rc

e
n

ti
le

n=5 n=10 n=15 n=20

DAG tasks: varying cores (m) and tasks (n)
U=50%

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 33
33

Conclusions and future directions

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 34

Conclusion

Response-time analysis using schedule abstraction

+ New abstraction

+ Expansion rules to support precedence constraints

Results: achieving high accuracy (similar to UPPAAL) while
being able to scale to practically relevant system sizes

(𝑛 ≤ 20,𝑚 ≤ 64)

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 35

Questions

MAX PLANCK INSTITUTE
FOR SOFTWARE SYSTEMS

Mitra Nasri, Geoffrey Nelissen, Björn Brandenburg

Thank you

This work

Global job-level fixed-priority
scheduling (JLFP)

Multiprocessor

Better state
abstraction

Parallel DAG tasks

near future in a few years eventually

• Preemptive execution
• Partial-order reduction

• Heterogeneous platforms
• Self-suspending tasks

• Sporadic tasks
• Gang scheduling

• Shared resources
• Co-running tasks

• Dynamic schedulers
• Combine the framework with

timing analysis tools

Future work

The framework is open source. You can find that on the authors’ page.

