Response-Time Analysis of
Limited-Preemptive Parallel DAG Tasks
Under Global Scheduling

N o

e R

AR '; / L ﬁ'
El
‘;' A 3

Mitra Nasri Geoffrey Nelissen Bjorn Brandenburg
4 ./ —

) & MAX PLANCK INSTITUTE
TUDelft CISTER & £0R SOFTWARE SYSTEMS

eeeeeeeeeeeeeeee

Our work in a nutshell

We obtain the Worst-case and best-case response time

Workload model Platform model Scheduler model Execution model

[Parallel DAGtasks}[Multicore }[Global job-level }[Limited preemptive }

(or job sets) (identical cores) fixed-priority (JLFP) (fixed-preemption points)

Bounded

taint Deadline
UMV (hard or soft)
Task model < Arrival model T T l , time

Worst case (WCET)

Execution model

& N

Best case \bounded,
(BCET) uncertainty

And 4
A

Preemption points at
segment boarders

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 2

Our work in a nutshell

We obtain the Worst-case and best-case response time

Workload model Platform model Scheduler model Execution model

Parallel DAG tasks Multicore Global job-level Limited preemptive
(or job sets) (identical cores) fixed-priority (JLFP) (fixed-preemption points)

Release jitter

Deadline
= :
1ob model () | Examples:
ob mode J1 > Transactions
Deadline * Multi-frame tasks
I T T — l$ * Periodic DAG tasks

N

This job model supports bounded non-
deterministic arrivals, but not sporadic tasks
(un-bounded non-deterministic arrivals)

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 3

State of the art

Closed-form analyses
(e.g., problem-window analysis)

e. Fast a * Pessimistic

* Hard to extend

1—1
RO =c+> ¢
J=1

RK —_ c; + i IVRI(k 1)‘\ _ Dbns oI 1owWer-priority tasks. A response-ume

i g : T; g AG-based task-set with a limited-preemptive

= rity scheduler is computed by iterating the

ropowing equation until a fixed point is reached, starting with
Iy = len(Gy) + #(/'n/((.’,\.) — len(Gy)):

o 1 ~ — ']]
Ry +— len(Gr) + — (vol(Gr) — len(Gy) + [:\f' -+ I;") 1)
e

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling

State of the art

Closed-form analyses Exact tests in generic formal
(e.g., problem-window analysis) verification tools (e.g., UPPAAL)
e * Fast a * Pessimistic Q * Accurate e Not scalable
e Hard to extend * Easy to extend

a) SYNCH (b) TASK . (¢) SCHED
t offset

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 5

State of the art

Closed-form analyses Exact tests in generic formal
(e.g., problem-window analysis) verification tools (e.g., UPPAAL)
e * Fast a * Pessimistic Q * Accurate e Not scalable
* Hard to extend * Easy to extend

This line of work

Response-time analysis using

Idea: explore all L schedule abstraction J
possible schedules a

Applicable to complex problems
Easy to extend

Highly accurate
Relatively fast

Industrial use cases are typically
large, complex, and require
accurate analysis

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 6

State of the art: comparison Sequential periodic tasks

Experiment on sequential periodic tasks

Accuracy
1.00

0.75

0.50

schedulability ratio

0.25

0.00

Runtime
3,000
2,500
2,000
1,500
1,000
500

runtime (sec)

(global FP scheduling)

4 cores, 30% utilization

Almost as accurate as
i exact test (timeout)

=O=this paper
—A—exact test (UPPAAL)

the exact test

3 6 9 12 15 18 21 24 27

number of tasks

4 cores

2 cores
A A
7 SR Much faster

8 cores £ ;

P

.
pr A A
A A

this paper
3 6 9 12 1518 21 24 27 30 33 36 39 42 45 48 51 54 57 60 (8 cores)
number of tasks

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 7

State of the art: comparison

Effectiveness (for parallel DAG tasks)

schedulability ratio

0.8
0.6
0.4
0.2

-8-this paper (m=8) -@-Serrano (m==8)
'“--Q\ —a ®

\
\‘
‘\ \
*

B .
01 02 03 04 05 06 07 08

utilization

Much less pessimistic than the

closed-form analysis

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling

State of the art: schedule-abstraction-based analyses

 [RTSS’17] 3
| Uniprocessor Independent Work-conserving and i
non-preemptive non-work-conserving
i Exact jobs/tasks job-level fixed-priority scheduling (JLFP) E
" [ECRTS’18] ‘5
Multiprocessor Independent Global work-conserving i
o non-preemptive job-level fixed-priority scheduling (JLFP) !
Sufficient jobs/tasks
(ran s N
[this work]
Multiprocessor Non-preemptive Global work-conserving
jobs/DAG tasks with job-level fixed-priority scheduling (JLFP)
Sufficient precedence constraints A new system abstraction (more scalable)
- J

[RTSS’17] M. Nasri and B. Brandenburg, "An Exact and Sustainable Analysis of Non-Preemptive Scheduling”.
[ECRTS’18] M. Nasri, G. Nelissen, and B. Brandenburg, “A Response-Time Analysis for Non-Preemptive Job Sets under Global Scheduling”.

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 9

Agenda

. ScheduIe-abstraction-based analysis

 « Supporting precedence constraints

« Challenges
e A new abstraction

« Evaluation

« Conclusion and future work

Response-Time Analysi imi
alysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduli
eduling

10

Response-time analysis using
schedule abstraction

Highlights

A sound analysis must consider (oo ~

all possible execution scenarios
(i.e., combination of release times and execution times)

~= Due to scheduling
1 anomalies

—— e ————— —

Observation

There are fewer permissible
job orderings than schedules

Solution

-

-

Use job-ordering abstraction to analyze schedulability

~

by building a graph that represents all possible schedules

J

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling

12

Response-time analysis using schedule-abstraction graphs

A path aggregates all schedules
with the same job ordering

A path represents a set of
similar schedules

start end

Different paths have
different job orders

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling

13

Response-time analysis using schedule-abstraction graphs
A path aggregates all schedules A vertex abstracts a system state and

start end

Earliest and latest finish time of J;
when it is dispatched after state v

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling

14

Response-time analysis using schedule-abstraction graphs

A state is labeled with the
finish-time interval of
any path reaching the state

A path aggregates all schedules A vertex abstracts a system state and

with the same job ordering an edge represents a dispatched job

start Z — end

{ 10 30
| {cOre1:-)
.| Core 2: () |
- 15 20 !

Certainly Possibly Certainly

not available available available
Interpretation ofan - - N R - ~
uncertainty interval:)

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 15

Response-time analysis using schedule-abstraction graphs

A
A path aggregates all schedules A vertex abstracts a system state and . s.t ate B sents the
: - i an edge represents a dispatched job finishtime interval of
with the same job ordering gerep P J any path reaching that state

EJbtaining the response time:

ll: [Zr 5]

Earliest and latest completion times
of the job in the path

Best-case response time = min {completion times of the job} = 2
Worst-case response time = max {completion times of the job} =15

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 16

Building the schedule-abstraction graph

p—

Building the graph ‘:__:" Repeat until every path includes all jobs

(a breadth-first method) w, L Find the shortest p.ath . .

' 2. For each not-yet-dispatched job that can be dispatched after the path:
i 2.1. Expand (add a new vertex)
1
\

2.2. Merge (if possible, merge the new vertex with an existing vertex)

—

p
System is idle and

no job has been scheduled

N

Initial
state

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling

__

__

————— ————— -

17

Building the schedule-abstraction graph

Expanding a vertex:
(reasoning on uncertainty intervals)

Expansion rules imply the
scheduling policy

state . T . Next states
| tate V; 10 s ()
{Core 1:)
. | Core 2: ()
_ 1520 — 2
Available jobs J; ! ! l » High priority
17 30
(at the state) l
.’2 2 T » Medium priority
.13 T T J' » Low priority

35 40

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling

18

How to use schedule-abstraction graphs to solve a new problem?

What is encoded by an edge? How to create How to identify
What is encoded by a state? new states? similar states?
Define the state Define the Define merging
abstraction expansion rules rules

And then, prove soundness
“the expansion rules must cover all possible schedules of the job set”

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling

Agenda

.« Supporting precedence constraints

e Challenges
e Anew abstraction

« Evaluation

« Conclusion and future work

Response-Time Analysi imi
alysis of Limited-Preemptive Parallel DAG Tasks Under Global Schedul
cheduling

20

Handling precedence constraints C; € [2,12] | J;

J J
An example schedule: C; €16,9] %2 4
BCET =2 WCET =12
core 1 J e | C3 €12,5]] /5
ore 1: 1 3 5 i 15 >
1
1 1
: D 3
Core 2: Jz ; L
1 ? 10 i
— - | Is that enough?
Core 3: -/3 : —>
2 4 9]
]]
1 1
1 1
J T TWWWT -
o/ 7 15
release time
J4 cannot The latest time at which
become ready all predecessors have
before time 7 been completed
Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 21

Challenge 1: modeling precedence constraint as release jitter
may cover impossible scenarios (— pessimism)

J],
c,e[1,3] C,e[24]

An example schedule:

Corel: J; —_— l >
0 1 ;
Core2: J, _ S Is there a scenario at which
L 3 5 two cores are busy at any

.. : A
/74 time in the interval [1, 3]?

v

3
Core 1: n—()
) R
O .] Q {Core 2: idle

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 22

Challenge 1’s solution: keep track of running jobs in a state

. 2 S J S
Q :m :O {Corel.—) 1 > 72

J1 ~ I Core 2: idle C, €[1,3] C,€|24]

Maintain a set S of certainly When scheduling J;:
running jobs and their Remove all its
completion time intervals predecessors from S

Update availability of cores
considering the removal of

Ji’s predecessors
N |

. v 4
o—=2 o R

1 3 3
Core 1:idle Core 1: I() Core 1: —(
Core 2: idle Core 2: idle Core 2: idle

Running jobs: { } Running jobs: {J;:[1, 3] } Running jobs: {J,:[3, 5] }

/U1

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 23

Challenge 2: Updating certainly running jobs after the merge phase

v, merged with v,

S — {]1: [21 5])}
J2:17,10] W@

S — {]1: [21 8]}
O Vq
S =]1: [4) 8]
]3: [3) 9]
Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 24

Challenge 3: improving the scalability (with a new state abstraction)

Prior work [ECRTS’18]: J, on Core 1
, on Core

J; on Core 10

-

-
-
-

_— e e e e e e = = = ——— T

-

J, on Core 1

o e e e o -

>an Core 10

Available jobs:

{J1,]2} _
Symmetry increases the cost of

“expansion phase”

Assume that these jobs
can be scheduled on

either of the cores . - p ”
Note: these vertices will likely “merge

during the merge phase anyway

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling

25

Our new state abstraction

[ECRTS’18] This work
~ Corel 10 45 ~1lcore 10 25
EFT.) min)max
1 LFT; A1 Al
< Core 2 30 40 < 2 cores 15 40
D _
EFT, LFT, Amin Amax
Core 3 15 253 3cores - 30 2 4)5
e e
. EFT; LFT; \. Agnm Argnax

: 5 When a new job is dispatched, it only affects
How does it heIp. the first core availability interval

because there is no need to expand all
LFT;: latest finish time of the i"* core

AT earliest availability time of i cores
AT'**: |atest availability time of i cores

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 26

Evaluating the effect of the new abstraction

Non-preemptive periodic tasks, 4 cores, utilization = 70%

H [ECRTS’18] This work
2,500
2,000

1,500
1,000
500 I 166
o _ 1
6 9 12 15 18 21 24 27 30

Number of tasks

2,115

runtime (s)
95t percentile

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling

27

Agenda

«Challenges
«__Anew-abstraction

« Evaluations

« Conclusion and future work

a0 aion)
3

”

Response-Time Analysi imi
ysis of Limited-Preempti
ptive Parallel DAG Tasks U
nder Global Schedulin
g
28

Experiment setup

Experiment platform

e Multi-threaded C++ program.
We parallelized the breadth-first exploration of the schedule-abstraction graph using Intel’s open-
source Thread Building Blocks (TBB) library.

* A cluster of machines each equipped with 256 GiB RAM and Intel Xeon E5-2667 v2 processors
clocked at 3.3 GHz.

 We report the CPU time of all of the threads together as the runtime of the analysis

DAG tasks:

* Periods in [500, 100000]
e Utilization of a task: uUniFast

e Series-parallel DAGs with nested fork-joins generated with the
method from [Cassini 2018, Serrano 2017, Melani 2015, Peng 2014]
* Maximum nodes in a DAG: 50
* Maximum length of the critical path: 10
* Maximum nested branches: 3

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling

29

Parallel DAG tasks 10 parallel random DAG tasks

== this paper (m=4) - B~ Serrano (m=4) =@—this paper (m=8) -®=Serrano (m=38)
o 1 1
= o
© e
« 0.8 + 0.8
> o
£ 06 Z06
® 04 2 0.4
S £
S 02 S 0.2
]
L 0 <
3 2 o
0.1 0.2 03 04 05 06 0.7 0.8 01 02 03 04 05 06 07 038
utilization -utilization
——thi =16 ~&=S =16 /504 |
o is paper (m=16) errano (m=16) 200 »/ 234’,,' W average
= 0.8 I/’ ! M 0.90 percentile
; : - / / [0 0.95 percentile
£ 0.6 o 200 /'I 1 [00.98 percentile
2 04 £
3 02 €100 / '
8 . E ”l 39 /I 41
g 0 ui a ;
2 0.1 02 03 04 05 06 07 08 o= —=" ——
utilization " m=4 m=8 m=16

M. Serrano, A. Melani, S. Kehr, M. Bertogna, and E. Quifiones, “An Analysis of Lazy and Eager Limited Preemption Approaches under DAG-
Based Global Fixed Priority Scheduling”, ISORC, 2017.

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 30

DAG tasks: varying cores (m) and tasks (n)

U=50% N
b Scalability experiment
< Frm=4 ©-m=8 @ m=16 <>-m=32 AX-m=64
2 1 . o F —]
2 o O O
= 038
x O
s 0.6
0L
_g 0.4 20 DAG tasks, 16 cores
<
c 0.2
n
0
0 1 2 3 4 5
ratio of DAG tasks to cores (n / m)
More cores than tasks: More tasks than cores: each
higher parallelism task has smaller utilization

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling 31

DAG tasks: varying cores (m) and tasks (n)

U=50%
0 n=5 O n=10 B n=15 W n=20 «

100000

10000
1000
100

LERRE
1

0.1

runtime (sec)
95th percentile

m=4 m=8 =16 —32 -64
0.0

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling

Conclusions and future directions

Conclusion

Response-time analysis using schedule abstraction

+ New abstraction

+ Expansion rules to support precedence constraints

¥

Results: achieving high accuracy (similar to UPPAAL) while

being able to scale to practically relevant system sizes
(n < 20,m < 64)

Response-Time Analysis of Limited-Preemptive Parallel DAG Tasks Under Global Scheduling

34

Mitra Nasri, Geoffrey Nelissen, Bjorn Brandenburg
-i-;U Delft oz Cvl‘l MAX PLANCK INSTITUTE
CISTER _ =, FOR SOFTWARE SYSTEMS
ReatTime & Embecided
Computing Systems
This work

Multiprocessor J Parallel DAG tasks J

Global job-level fixed-priority
scheduling (JLFP) J

Better state
abstraction

Future work

near future in a few years

Sporadic tasks
Gang scheduling

e Shared resources
Co-running tasks

Preemptive execution
Partial-order reduction

Heterogeneous platforms
Self-suspending tasks

The framework is open source. You can find that on the authors’ page.

T

td

eventually

* Dynamic schedulers
* Combine the framework with
timing analysis tools

Thank you

