
Mitra Nasri Geoffrey Nelissen Bjӧrn B. Brandenburg

ECRTS 2018

MAX PLANCK INSTITUTE
FOR SOFTWARE SYSTEMS

2

Per job best-case and worst-case
response time (BCRT and WCRT)

Release jitter

Hard or soft timing
constraints Our

analysis

Multiprocessor
platform

Global
job-level fixed-priority (JLFP)

work-conserving
scheduling policies

Execution time
variation

Non-preemptive
job sets

Global EDF
Global fixed priority
Global RM
…

Bounded
jitter

Non-deterministic
release time

Bounded variation

execution deadline

Applicable to
• Irregular release patterns
• Bursty releases
• And periodic tasks

with/without offset

3

Reduces the worst-case
execution times (WCET)

Hence, it can be used to make multiprocessor platforms
more (time) predictable

Preserves data affinity
of local caches

Makes synchronization easy
(e.g., resolves lock-holder preemption problem)

Reduces context switches
and scheduling overheads

Improves the accuracy of
estimating the WCET by

simplifying the execution

4

We derive a response-time bound
for these cases

Finite
job sets*

open problem

Periodic tasks
with offset

open problem

Analysis od sporadic
tasks is applicable but

very pessimistic

* In finite job sets, each job is known by its release time, release jitter, best-case and worst-case execution times, and deadline
JLFP: job-level fixed-priority

Synchronous
periodic tasks

open problem

Analysis od sporadic
tasks is applicable but

very pessimistic

Sporadic
tasks

Exact analysis
Open problem

Sufficient analyses
• Global fixed-priority

[Baruah06, Guan08, Guan11, Lee14, Lee17]
• Global EDF

[Baruah06, Guan08]
• General work-conserving policy

[Baruah06, Guan08]

Schedulability of global JLFP non-preemptive policies for

Applicable to
• Irregular release patterns
• Bursty releases
• Frame-based tasks
• …

5

A response-time analysis

for a wide class of global scheduling policies
based on searching the space of possible schedules

We use and extend the notion of
schedule-abstraction graphs [RTSS’17]

(recently introduced to analyze uniprocessor non-preemptive scheduling)

[RTSS’17] Mitra Nasri and Björn B. Brandenburg, "An Exact and Sustainable Analysis of Non-Preemptive Scheduling”, RTSS, 2017, pp. 1-12.

66

Schedule-Abstraction Graphs
(definition, usage, and construction)

7
7

Job Release time
Min Max

Deadline Execution time
Min Max

Priority

𝐽1 0 7 13 1 5 high

𝐽2 2 5 15 2 5 low

Arrival time
[Audsley93]

Latest release
time

Best-case execution
time (BCET)

Worst-case execution
time (WCET)

Release jitter𝐽1 0 7

2 5 15𝐽2

13

Arrival time deadline

[Audsley’93] Neil Audsley, Alan Burns, Mike Richardson, Ken Tindell, and Andy J. Wellings. Applying new scheduling theory to static priority preemptive scheduling. Software
Engineering Journal, 1993.

Since there is no periodicity assumption about job releases,
finding a worst-case scenario is fundamentally hard

Naively enumerating all possible combinations of release times
and execution times (a.k.a. execution scenarios) is not practical

8
8

“schedule-abstraction graph” [RTSS’17] is a technique
that allows us to aggregate “similar” schedules while

searching for all possible schedules

[RTSS’17] Mitra Nasri and Björn B. Brandenburg, "An Exact and Sustainable Analysis of Non-Preemptive Scheduling”, RTSS, 2017, pp. 1-12.

Hence, it reduces the search space

99[RTSS’17] Mitra Nasri and Björn B. Brandenburg, "An Exact and Sustainable Analysis of Non-Preemptive Scheduling”, RTSS, 2017, pp. 1-12.

A path in the graph represents an
ordered set of dispatched jobs

𝑱𝟑𝑱𝟏 𝑱𝟐 𝑱𝟒

initial state:
no job has been dispatched

final state:
Every path includes all jobs

𝑱𝟏
𝑱𝟐

1010[RTSS’17] Mitra Nasri and Björn B. Brandenburg, "An Exact and Sustainable Analysis of Non-Preemptive Scheduling”, RTSS, 2017, pp. 1-12.

system state
(after dispatching 𝐽3)

system state
(before dispatching 𝐽3)

𝑱𝟑
finishes any time during [5, 10]

A path in the graph represents an
ordered set of dispatched jobs

A vertex abstracts a system state
An edge abstracts a dispatched job

1111[RTSS’17] Mitra Nasri and Björn B. Brandenburg, "An Exact and Sustainable Analysis of Non-Preemptive Scheduling”, RTSS, 2017, pp. 1-12.

A state represents the
finish-time interval of

any path reaching that state

𝑣𝑝: 10, 25

𝑱𝟏 finishes
in 𝟏𝟎, 15

𝑱𝟐 finishes
in 12, 𝟐𝟓

A path in the graph represents an
ordered set of dispatched jobs

A vertex abstracts a system state
An edge abstracts a dispatched job

processor is certainly busy
before time 10

processor is certainly
available after time 25

1212[RTSS’17] Mitra Nasri and Björn B. Brandenburg, "An Exact and Sustainable Analysis of Non-Preemptive Scheduling”, RTSS, 2017, pp. 1-12.

𝑱𝟐 finishes
in 12, 25

The worst-case (best-case) response time of a job 𝑱𝒊 is
its largest (smallest) finish time among all edges whose label is 𝑱𝒊

𝑱𝟐 finishes
in 20, 24𝑱𝟐 finishes

in 3, 10

𝑱𝟐 finishes
in 14, 18

BCRT = 3
WCRT = 28

Example for job 𝑱𝟐

𝑱𝟐 finishes
in 16, 28

1313

[RTSS’17] used a
breadth-first strategy

Initial
state

Repeat until every path includes all jobs
1. Find the shortest path
2. For each not-dispatched job that can be dispatched after the path:

2.1. Expand (add a new vertex)
2.2. Merge (if possible, merge the new vertex with an existing vertex)

merged

merged

merged

merged

[RTSS’17] Mitra Nasri and Björn B. Brandenburg, "An Exact and Sustainable Analysis of Non-Preemptive Scheduling”, RTSS, 2017, pp. 1-12.

1414

Schedule-Abstraction Graphs
for Global Scheduling Policies

(this work)

1515

EXPANSION RULES
(How to select jobs that can be dispatched

“next” by the scheduling policy at any state?)

MERGING RULES
(When and how to merge

two states?)

SYSTEM ABSTRACTION
(What is the system state?

What is on the edges?)

How to encode the state of processor(s)?

What are the other parameters that must be in the state?
Examples: Cache stateOur prior work in [RTSS’17] was for uniprocessor system

Its state definition and expansion and merging rules
are not applicable to multiprocessor scheduling

[RTSS’17] Mitra Nasri and Björn B. Brandenburg, "An Exact and Sustainable Analysis of Non-Preemptive Scheduling”, RTSS, 2017, pp. 1-12.

Goal: define and build a schedule-abstraction graph for global scheduling policies

In the talk In the paper

1616

𝑣𝑖 =
𝜑1: 𝐸𝐹𝑇1, 𝐿𝐹𝑇1
𝜑2: 𝐸𝐹𝑇2, 𝐿𝐹𝑇2
…
𝜑𝑚: [𝐸𝐹𝑇𝑚, 𝐿𝐹𝑇𝑚]

One interval for each
of the 𝑚 cores

The earliest finish time of
the job running on this core

The latest finish time of the
job running on this core

𝑣𝑝:
𝜑1 ∶ 10, 20
𝜑2 ∶ 30, 40

Core 𝝋𝟏 is certainly
not available before time 10

time

𝜑1

𝜑2

2010

30 40𝑣𝑝

Core 𝝋𝟏 is possibly
available from time 10

Core 𝝋𝟏 is certainly
available from time 20

Example:

1717

Rule 1: work-conserving scheduler
If at time 𝑡 there is a certainly released job and a certainly available core, a
job will be dispatched at time 𝑡.

Rule 2: job-level fixed-priority scheduler
A lower priority job cannot be dispatched as soon as a higher-priority job is
certainly released and not yet scheduled.

𝑣𝑝:
𝜑1 ∶ 𝐸𝐹𝑇1, 𝐿𝐹𝑇1
𝜑2 ∶ 𝐸𝐹𝑇2, 𝐿𝐹𝑇2

(eligible jobs)
Which jobs may possibly be dispatched

“next” on each of the cores? What is the new state?

𝐽𝑖 on 𝜑1

𝐽𝑖 on 𝜑2

𝐽ℎ on 𝜑1

𝑣𝑥:
𝜑1 ∶ …
𝜑2 ∶ …

𝑣𝑦:
𝜑1 ∶ …
𝜑2 ∶ …

𝑣𝑧:
𝜑1 ∶ …
𝜑2 ∶ …

1818

Find the earliest start time (EST) of 𝐽𝑖 on 𝜑𝑘
1

Find the latest start time (LST) of 𝐽𝑖 on any
core for a work-conserving and JLFP policy

2

If EST ≤ LST then add an edge for job 𝐽𝑖
dispatched on core 𝜑𝑘

3

Job Release time
Min Max

Deadline Execution time
Min Max

Priority

𝐽𝑙𝑜𝑤 5 15 50 2 15 low

𝐽ℎ𝑖𝑔ℎ 12 20 45 1 10 high

𝜑1
𝜑2

2510

30 40𝑣𝑝

𝐽ℎ𝑖𝑔ℎ
12 20 50

𝐽𝑙𝑜𝑤 5 15 45

time𝐸𝑆𝑇
10

earliest start time

For each not-scheduled job 𝐽𝑖 on each core 𝜑𝑘 Example: is 𝐽𝑙𝑜𝑤 eligible on each core 𝜑1?

1919

Find the earliest start time (EST) of 𝐽𝑖 on 𝜑𝑘
1

Find the latest start time (LST) of 𝐽𝑖 on any
core for a work-conserving and JLFP policy

2

If EST ≤ LST then add an edge for job 𝐽𝑖
dispatched on core 𝜑𝑘

3

Job Release time
Min Max

Deadline Execution time
Min Max

Priority

𝐽𝑙𝑜𝑤 5 15 50 2 15 low

𝐽ℎ𝑖𝑔ℎ 12 20 45 1 10 high

𝜑1
𝜑2

2510

30 40𝑣𝑝

𝐽ℎ𝑖𝑔ℎ
12 20 50

𝐽𝑙𝑜𝑤 5 15 45

time𝐸𝑆𝑇
10

work-conserving
policy

25

𝑤𝑐

Example: is 𝐽𝑙𝑜𝑤 eligible on each core 𝜑1?For each not-scheduled job 𝐽𝑖 on each core 𝜑𝑘

Merging rules and other details
in the paper…

2020

Empirical Evaluation

21

How much the proposed analysis improves schedulability
over the state of the art?

Does the proposed analysis scale (in terms of runtime)
to practical workload sizes?

• For most cases that we cover, there is no prior test.
• So we compare against sporadic tests

Which state of the art?

22

[Baruah’06] Sanjoy Baruah, Samarjit Chakraborty. Schedulability analysis of non-preemptive recurring real-time tasks, IPDPS, 2006.

[Guan’11] Nan Guan, Wang Yi, Qingxu Deng, Zonghua Gu, and Ge Yu. Schedulability analysis for non-preemptive fixed-priority multiprocessor scheduling, JSA, 2011.

[Lee’17] Jinkyu Lee. Improved schedulability analysis using carry-in limitation for non-preemptive fixed-priority multiprocessor scheduling, TC, 2017.

Periodic task set generation
• Periods randomly chosen from [10000, 100000]𝜇𝑠 with log-uniform distribution
• Utilizations are obtained from RandFixSum
• Release jitter options: {no jitter, small jitter of 100𝜇𝑠}
• BCET = 0.1 ⋅ WCET
• A task set with more than 100000 jobs per hyperperiod is discarded

Baseline tests (designed for sporadic tasks)
• Baruah-EDF [Baruah’06] for Global-EDF
• Guan-Test1-WC [Guan’11] for general work-conserving scheduling policies
• Guan-Test2-FP [Guan’11] for Global-FP
• Lee-FP [Lee’17] for Global-FP

We used rate-monotonic priorities for all fixed-priority policies

Experiment platform
• Intel Xeon E7-8857 v2 processor
• 3 GHz clock speed and 1.5 TiB RAM

23

10 tasks, 4 cores, varying utilization

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4

sc
he

du
la

bi
lit

y
ra

tio

utilization

this paper: FP this paper: EDF Baruah-EDF Guan-Test1-WC Guan-Test2-FP Lee-FP

More than 60 percentage point
improvement in detecting

schedulable task sets

24

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

3 4 5 6 7 8 9

sc
he

du
la

bi
lit

y
ra

tio

cores

this paper: FP this paper: EDF Baruah-EDF Guan-Test1-WC Guan-Test2-FP Lee-FP

10 tasks, U = 2.8, varying number of cores

More than 70 percentage point
improvement in detecting

schedulable task sets

25

0.48

0.38 0.37 0.38

0.44 0.45

0.51 0.51
0.55

0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

6 9 12 15 18 21 24 27 30

sc
he

du
la

bi
lit

y
ra

tio

number of tasks

this paper: FP this paper: EDF Baruah-EDF Guan-Test1-WC Guan-Test2-FP Lee-FP

4 cores, U = 2.8, varying number of tasks

More than 43 percentage point
improvement in detecting

schedulable task sets

26

0

20

40

60

80

100

0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4av
er

ag
e

CP
U

 ti
m

e
(s

ec
on

ds
)

utilization

this paper: FP
this paper: EDF

0

50

100

150

200

3 4 5 6 7 8 9

av
er

ag
e

CP
U

 ti
m

e
(s

ec
on

ds
)

cores

this paper: FP
this paper: EDF

0

100

200

300

400

6 9 12 15 18 21 24 27 30av
er

ag
e

CP
U

 ti
m

e
(s

ec
on

ds
)

number of tasks

this paper: FP

this paper: EDF

10 tasks, 4 cores, varying utilization 4 cores, U = 2.8, varying number of tasks

10 tasks, U = 2.8, varying number of cores

• Experiment performed on Intel Xeon E7-8857 v2
processor 3 GHz clock speed and 1.5 TiB RAM

• A single-threaded implementation

27

0

20

40

60

80

100

0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4av
er

ag
e

CP
U

 ti
m

e
(s

ec
on

ds
)

utilization

this paper: FP
this paper: EDF

0

50

100

150

200

3 4 5 6 7 8 9

av
er

ag
e

CP
U

 ti
m

e
(s

ec
on

ds
)

cores

this paper: FP
this paper: EDF

0

100

200

300

400

6 9 12 15 18 21 24 27 30av
er

ag
e

CP
U

 ti
m

e
(s

ec
on

ds
)

number of tasks

this paper: FP

this paper: EDF

10 tasks, 4 cores, varying utilization 4 cores, U = 2.8, varying number of tasks

10 tasks, U = 2.8, varying number of cores

The analysis has acceptable runtime for
small- and medium-sized workloads

2828

Conclusions and future directions

29

Goal

We introduced a schedule-abstraction graph
for global multiprocessor scheduling

Solution

Up to 70 percentage point improvement in schedulability ratio
(w.r.t. the baseline analyses for sporadic tasks)

What did
we get?

A response time analysis for non-preemptive job sets scheduled
by global JLFP policies

3030 of 25A Framework to Construct Customized
Harmonic Periods for RTS

Other scheduling policies
(e.g., dynamic job-priority policies)

Conditional or dynamic
precedence constraints

Shared
resources

Cache-related
preemption delay

This work

Supporting
precedence constraints

(under submission)

Integrating with safety
and reliability analysis
(accounting for fault tolerance

methods and failures)

31

Thank you

MAX PLANCK INSTITUTE
FOR SOFTWARE SYSTEMS

Release jitter

Hard or soft timing
constraints

Per job best-case and worst-case
response time (BCRT and WCRT)

Our
analysis

Multiprocessor
platform

Global
job-level fixed-priority

work-conserving
scheduling policies

Execution time
variation

Non-preemptive
jobs

` Mitra Nasri
` Geoffrey Nelissen
` Bjӧrn B. Brandenburg

