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Per job best-case and worst-case 
response time (BCRT and WCRT) 

Release jitter

Hard or soft timing 
constraints Our

analysis

Multiprocessor 
platform

Global
job-level fixed-priority (JLFP) 

work-conserving
scheduling policies

Execution time 
variation

Non-preemptive 
job sets

Global EDF
Global fixed priority
Global RM
…

Bounded 
jitter

Non-deterministic 
release time

Bounded variation

execution deadline

Applicable to
• Irregular release patterns
• Bursty releases
• And periodic tasks 

with/without offset
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Reduces the worst-case 
execution times (WCET)

Hence, it can be used to make multiprocessor platforms 
more (time) predictable

Preserves data affinity 
of local caches

Makes synchronization easy
(e.g., resolves lock-holder preemption problem)

Reduces context switches 
and scheduling overheads

Improves the accuracy of 
estimating the WCET by 

simplifying the execution
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We derive a response-time bound
for these cases

Finite 
job sets* 

open problem

Periodic tasks 
with offset

open problem

Analysis od sporadic 
tasks is applicable but 

very pessimistic

* In finite job sets, each job is known by its release time, release jitter, best-case and worst-case execution times, and deadline  
JLFP: job-level fixed-priority 

Synchronous 
periodic tasks

open problem

Analysis od sporadic 
tasks is applicable but 

very pessimistic

Sporadic
tasks

Exact analysis
Open problem

Sufficient analyses
• Global fixed-priority 

[Baruah06, Guan08, Guan11, Lee14, Lee17]
• Global EDF 

[Baruah06, Guan08]
• General work-conserving policy 

[Baruah06, Guan08]

Schedulability of global JLFP non-preemptive policies for

Applicable to
• Irregular release patterns
• Bursty releases
• Frame-based tasks
• …
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A response-time analysis 

for a wide class of global scheduling policies
based on searching the space of possible schedules 

We use and extend the notion of 
schedule-abstraction graphs [RTSS’17]

(recently introduced to analyze uniprocessor non-preemptive scheduling)

[RTSS’17] Mitra Nasri and Björn B. Brandenburg, "An Exact and Sustainable Analysis of Non-Preemptive Scheduling”, RTSS, 2017, pp. 1-12.



66

Schedule-Abstraction Graphs
(definition, usage, and construction)
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Job Release time
Min Max

Deadline Execution time
Min Max

Priority

𝐽1 0                    7 13 1                      5 high

𝐽2 2 5 15 2                      5 low

Arrival time
[Audsley93]

Latest release 
time

Best-case execution 
time (BCET)

Worst-case execution 
time (WCET)

Release jitter𝐽1 0 7

2 5 15𝐽2

13

Arrival time deadline

[Audsley’93] Neil Audsley, Alan Burns, Mike Richardson, Ken Tindell, and Andy J. Wellings. Applying new scheduling theory to static priority preemptive scheduling. Software 
Engineering Journal, 1993. 

Since there is no periodicity assumption about job releases, 
finding a worst-case scenario is fundamentally hard

Naively enumerating all possible combinations of release times 
and execution times (a.k.a. execution scenarios) is not practical  
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“schedule-abstraction graph” [RTSS’17] is a technique 
that allows us to aggregate “similar” schedules while 

searching for all possible schedules

[RTSS’17] Mitra Nasri and Björn B. Brandenburg, "An Exact and Sustainable Analysis of Non-Preemptive Scheduling”, RTSS, 2017, pp. 1-12.

Hence, it reduces the search space 
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A path in the graph represents an 
ordered set of dispatched jobs

𝑱𝟑𝑱𝟏 𝑱𝟐 𝑱𝟒

initial state: 
no job has been dispatched

final state: 
Every path includes all jobs

𝑱𝟏
𝑱𝟐



1010[RTSS’17] Mitra Nasri and Björn B. Brandenburg, "An Exact and Sustainable Analysis of Non-Preemptive Scheduling”, RTSS, 2017, pp. 1-12.

system state
(after dispatching 𝐽3)

system state
(before dispatching 𝐽3)

𝑱𝟑
finishes any time during [5, 10] 

A path in the graph represents an 
ordered set of dispatched jobs

A vertex abstracts a system state 
An edge abstracts a dispatched job



1111[RTSS’17] Mitra Nasri and Björn B. Brandenburg, "An Exact and Sustainable Analysis of Non-Preemptive Scheduling”, RTSS, 2017, pp. 1-12.

A state represents the 
finish-time interval of 

any path reaching that state

𝑣𝑝: 10, 25

𝑱𝟏 finishes 
in 𝟏𝟎, 15

𝑱𝟐 finishes 
in 12, 𝟐𝟓

A path in the graph represents an 
ordered set of dispatched jobs

A vertex abstracts a system state 
An edge abstracts a dispatched job

processor is certainly busy 
before time 10 

processor is certainly
available after time 25



1212[RTSS’17] Mitra Nasri and Björn B. Brandenburg, "An Exact and Sustainable Analysis of Non-Preemptive Scheduling”, RTSS, 2017, pp. 1-12.

𝑱𝟐 finishes 
in 12, 25

The worst-case (best-case) response time of a job 𝑱𝒊 is 
its largest (smallest) finish time among all edges whose label is 𝑱𝒊

𝑱𝟐 finishes 
in 20, 24𝑱𝟐 finishes 

in 3, 10

𝑱𝟐 finishes 
in 14, 18

BCRT = 3
WCRT = 28

Example for job 𝑱𝟐

𝑱𝟐 finishes 
in 16, 28
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[RTSS’17] used a 
breadth-first strategy

Initial 
state

Repeat until every path includes all jobs
1. Find the shortest path 
2. For each not-dispatched job that can be dispatched after the path:

2.1.  Expand (add a new vertex)
2.2.  Merge (if possible, merge the new vertex with an existing vertex)

merged

merged

merged

merged

[RTSS’17] Mitra Nasri and Björn B. Brandenburg, "An Exact and Sustainable Analysis of Non-Preemptive Scheduling”, RTSS, 2017, pp. 1-12.
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Schedule-Abstraction Graphs
for Global Scheduling Policies

(this work)
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EXPANSION RULES
(How to select jobs that can be dispatched 

“next” by the scheduling policy at any state?)

MERGING RULES
(When and how to merge 

two states?)

SYSTEM ABSTRACTION
(What is the system state? 

What is on the edges?)

How to encode the state of processor(s)? 

What are the other parameters that must be in the state? 
Examples: Cache stateOur prior work in [RTSS’17] was for uniprocessor system

Its state definition and expansion and merging rules 
are not applicable to multiprocessor scheduling

[RTSS’17] Mitra Nasri and Björn B. Brandenburg, "An Exact and Sustainable Analysis of Non-Preemptive Scheduling”, RTSS, 2017, pp. 1-12.

Goal: define and build a schedule-abstraction graph for global scheduling policies

In the talk In the paper
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𝑣𝑖 =
𝜑1: 𝐸𝐹𝑇1, 𝐿𝐹𝑇1
𝜑2: 𝐸𝐹𝑇2, 𝐿𝐹𝑇2
…
𝜑𝑚: [𝐸𝐹𝑇𝑚, 𝐿𝐹𝑇𝑚]

One interval for each 
of the 𝑚 cores

The earliest finish time of 
the job running on this core

The latest finish time of the 
job running on this core

𝑣𝑝:  
𝜑1 ∶ 10, 20
𝜑2 ∶ 30, 40

Core 𝝋𝟏 is certainly 
not available before time 10

time

𝜑1

𝜑2

2010

30 40𝑣𝑝

Core 𝝋𝟏 is possibly 
available from time 10

Core 𝝋𝟏 is certainly 
available from time 20

Example: 
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Rule 1: work-conserving scheduler
If at time 𝑡 there is a certainly released job and a certainly available core, a 
job will be dispatched at time 𝑡.

Rule 2: job-level fixed-priority scheduler
A lower priority job cannot be dispatched as soon as a higher-priority job is 
certainly released and not yet scheduled.

𝑣𝑝:  
𝜑1 ∶ 𝐸𝐹𝑇1, 𝐿𝐹𝑇1
𝜑2 ∶ 𝐸𝐹𝑇2, 𝐿𝐹𝑇2

(eligible jobs)
Which jobs may possibly be dispatched 

“next” on each of the cores? What is the new state?

𝐽𝑖 on 𝜑1

𝐽𝑖 on 𝜑2

𝐽ℎ on 𝜑1

𝑣𝑥:  
𝜑1 ∶ …
𝜑2 ∶ …

𝑣𝑦:  
𝜑1 ∶ …
𝜑2 ∶ …

𝑣𝑧:  
𝜑1 ∶ …
𝜑2 ∶ …
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Find the earliest start time (EST) of 𝐽𝑖 on 𝜑𝑘
1

Find the latest start time (LST) of 𝐽𝑖 on any 
core for a work-conserving and JLFP policy

2

If EST ≤ LST then add an edge for job 𝐽𝑖
dispatched on core 𝜑𝑘

3

Job Release time
Min Max

Deadline Execution time
Min Max

Priority

𝐽𝑙𝑜𝑤 5               15 50 2                 15 low

𝐽ℎ𝑖𝑔ℎ 12             20 45 1 10 high

𝜑1
𝜑2

2510

30 40𝑣𝑝

𝐽ℎ𝑖𝑔ℎ
12 20 50

𝐽𝑙𝑜𝑤 5 15 45

time𝐸𝑆𝑇
10

earliest start time

For each not-scheduled job 𝐽𝑖 on each core 𝜑𝑘 Example: is 𝐽𝑙𝑜𝑤 eligible on each core 𝜑1?
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Find the earliest start time (EST) of 𝐽𝑖 on 𝜑𝑘
1

Find the latest start time (LST) of 𝐽𝑖 on any 
core for a work-conserving and JLFP policy

2

If EST ≤ LST then add an edge for job 𝐽𝑖
dispatched on core 𝜑𝑘

3

Job Release time
Min Max

Deadline Execution time
Min Max

Priority

𝐽𝑙𝑜𝑤 5               15 50 2                 15 low

𝐽ℎ𝑖𝑔ℎ 12             20 45 1 10 high

𝜑1
𝜑2

2510

30 40𝑣𝑝

𝐽ℎ𝑖𝑔ℎ
12 20 50

𝐽𝑙𝑜𝑤 5 15 45

time𝐸𝑆𝑇
10

work-conserving 
policy

25

𝑤𝑐

Example: is 𝐽𝑙𝑜𝑤 eligible on each core 𝜑1?For each not-scheduled job 𝐽𝑖 on each core 𝜑𝑘

Merging rules and other details 
in the paper…
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Empirical Evaluation
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How much the proposed analysis improves schedulability
over the state of the art?

Does the proposed analysis scale (in terms of runtime) 
to practical workload sizes?

• For most cases that we cover, there is no prior test.
• So we compare against sporadic tests

Which state of the art?



22

[Baruah’06] Sanjoy Baruah, Samarjit Chakraborty. Schedulability analysis of non-preemptive recurring real-time tasks, IPDPS, 2006.

[Guan’11] Nan Guan, Wang Yi, Qingxu Deng, Zonghua Gu, and Ge Yu. Schedulability analysis for non-preemptive fixed-priority multiprocessor scheduling, JSA, 2011.

[Lee’17] Jinkyu Lee. Improved schedulability analysis using carry-in limitation for non-preemptive fixed-priority multiprocessor scheduling, TC, 2017.

Periodic task set generation
• Periods randomly chosen from [10000, 100000]𝜇𝑠 with log-uniform distribution
• Utilizations are obtained from RandFixSum
• Release jitter options: {no jitter, small jitter of 100𝜇𝑠}
• BCET = 0.1 ⋅ WCET
• A task set with more than 100000 jobs per hyperperiod is discarded

Baseline tests (designed for sporadic tasks)
• Baruah-EDF [Baruah’06]            for Global-EDF 
• Guan-Test1-WC [Guan’11]        for general work-conserving scheduling policies
• Guan-Test2-FP [Guan’11]          for Global-FP
• Lee-FP [Lee’17]                           for Global-FP

We used rate-monotonic priorities for all fixed-priority policies

Experiment platform
• Intel Xeon E7-8857 v2 processor
• 3 GHz clock speed and 1.5 TiB RAM
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10 tasks, 4 cores, varying utilization

0
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this paper: FP this paper: EDF Baruah-EDF Guan-Test1-WC Guan-Test2-FP Lee-FP

More than 60 percentage point 
improvement in detecting 

schedulable task sets
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10 tasks, U = 2.8, varying number of cores

More than 70 percentage point 
improvement in detecting 

schedulable task sets
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0.48
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0.44 0.45
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0.55
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number of tasks

this paper: FP this paper: EDF Baruah-EDF Guan-Test1-WC Guan-Test2-FP Lee-FP

4 cores, U = 2.8, varying number of tasks

More than 43 percentage point 
improvement in detecting 

schedulable task sets
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10 tasks, 4 cores, varying utilization 4 cores, U = 2.8, varying number of tasks

10 tasks, U = 2.8, varying number of cores

• Experiment performed on Intel Xeon E7-8857 v2 
processor 3 GHz clock speed and 1.5 TiB RAM

• A single-threaded implementation



27

0

20

40

60

80

100

0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4av
er

ag
e 

CP
U

 ti
m

e 
(s

ec
on

ds
)

utilization

this paper: FP
this paper: EDF

0

50

100

150

200

3 4 5 6 7 8 9

av
er

ag
e 

CP
U

 ti
m

e 
(s

ec
on

ds
)

cores

this paper: FP
this paper: EDF

0

100

200

300

400

6 9 12 15 18 21 24 27 30av
er

ag
e 

CP
U

 ti
m

e 
(s

ec
on

ds
)

number of tasks

this paper: FP

this paper: EDF

10 tasks, 4 cores, varying utilization 4 cores, U = 2.8, varying number of tasks

10 tasks, U = 2.8, varying number of cores

The analysis has acceptable runtime for 
small- and medium-sized workloads
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Conclusions and future directions
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Goal

We introduced a schedule-abstraction graph 
for global multiprocessor scheduling

Solution

Up to 70 percentage point improvement in schedulability ratio 
(w.r.t. the baseline analyses for sporadic tasks)

What did 
we get?

A response time analysis for non-preemptive job sets scheduled 
by global JLFP policies



3030 of  25A Framework to Construct Customized 
Harmonic Periods for RTS

Other scheduling policies
(e.g., dynamic job-priority policies)

Conditional or dynamic 
precedence constraints

Shared 
resources

Cache-related 
preemption delay

This work

Supporting 
precedence constraints 

(under submission)

Integrating with safety 
and reliability analysis
(accounting for fault tolerance 

methods and failures)
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Thank you
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Release jitter

Hard or soft timing 
constraints 

Per job best-case and worst-case 
response time (BCRT and WCRT) 

Our
analysis

Multiprocessor 
platform

Global
job-level fixed-priority 

work-conserving
scheduling policies

Execution time 
variation

Non-preemptive 
jobs

` Mitra Nasri
` Geoffrey Nelissen         
` Bjӧrn B. Brandenburg


