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Embedded systems are susceptible to 
environmentally-induced transient faults

Harsh environments 
➡ Robots operating under hard radiation 
➡ Industrial systems near high-power machinery 
➡ Electric motors inside automobile systems 

Bit-flips in registers, buffers, network

➡ One bit-flip in a 1 MB SRAM every 1012 hours of operation 
➡ 0.5 billion cars with an average daily operation time of 5% 
➡ About 5,000 cars are affected by a bit-flip every day

Example*
*Mancuso R. Next-generation safety-critical systems 
on multi-core platforms. PhD thesis, UIUC, 2017.
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Failures and errors due to transient 
faults in distributed real-time systems

Transmission errors 
➡ Faults on the network

Omission Errors 
➡ Fault-induced kernel panics

Incorrect computation Errors 
➡ Faults in the memory buffers

Failures in: 
➡ value domain (incorrect outputs) 
➡ time domain (deadline violations)} Input Output

A

B

E.g., safety-critical control system

Incorrect, 
delayed, 
or skipped
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Transmission errors 
➡ Faults on the network

Omission Errors 
➡ Fault-induced kernel panics

Incorrect computation Errors 
➡ Faults in the memory buffers

Retransmissions at the network layerTransmission errors 
➡ Faults on the network

Dual modular redundancy (DMR)Omission Errors 
➡ Fault-induced kernel panics

Triple modular redundancy (TMR)Incorrect computation Errors 
➡ Faults in the memory buffers

How does the real-time requirement affect system reliability? 
When does it really become a bottleneck?

Mitigating the effects of transient faults 
in distributed real-time systems

What if the system is weakly-hard real-time, 
i.e., it can tolerate a few failures?
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Problem: Reliability analysis of 
networked control systems

3 Active replication scheme (DMR, TMR, others)
4 Peak transient fault rates (for the network and the hosts)

A safe upper bound on the failure rate of 
the networked control system

Given

Objective
Failures-In-Time (FIT) = Expected # failures in one billion operating hours

Networked control system (messages, period) 1

2 Robustness specification (weakly-hard constraints) 
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Sensor task 
replicas S1 S2 S3

Physical sensor
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Controller task replicas
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Sensor 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➡ Simple majority voting 
➡ Clock synchronization 
➡ Atomic broadcast* Controller Area Network
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CAN bus

Sensor task 
replicas S1 S2 S3

Physical sensor

S1 S2 S3

Controller task replicas

A

Physical actuatorControlled plant

Actuator 
task

Sensor 
message replicas

Control command 
replicas

Assumptions: 
➡ Physical plant reliable 
➡ Simple majority voting 
➡ Clock synchronization 
➡ Atomic broadcast

2. What is the likelihood of a complete 
control failure?

Controlled plant

1. How often does the final actuation 
deviate from an error-free scenario 

(iteration failure)?

Failures and errors in a FT-SISO 
networked control loop
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1. Modeling control loop iteration failures

Final actuation is successful

Control loop iterations I1 I2 I3 In In+1In-1... ...

Success Failure

Error-free Erroneous
Final actuation failed (different from         ) 1 2

3

1

2 1

3 Final actuation is successful (same as         )  
despite the errors

1

Explicitly account for fault tolerance
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2. Modeling control failure based on the 
(m, k)-firm constraint

}
Hard constraint Control failure upon first iteration failure

(2, 3) constraint Control failure when less than 2 iterations successful in 3 consecutive iterations

Control loop iterations

FS S S S S S S S S S SF F
time

Success Failure
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Analysis of a Controller Area Network (CAN) based networked control system
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fault rates Using poisson model 

for fault arrivals
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message parameters
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Upper-bound the 
control failure rate
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for all possible fault rates
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2 3

4

Poisson
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≥ P ( In = F )
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Message 
replica M2

Incorrect computation 
& deadline violation

Is the upper bound Vn ( P1, P2, P3, ... ) 
safe for all possible fault rates?

Simple majority  
(ties broken randomly)

Voter

Message 
replica M1

Message 
replica M3

Omission
P1, P2, P3 ... defined such that: 
➡ M1 is omitted 
➡ M2 is incorrectly computed 
➡ M2 misses its deadline Vn ( P1, P2, P3, ... ) = 0

In practice, there may be no deadline violations! 
➡ The peak fault rates are just upper bounds

Vn ( P1, P2, P3, ... ) = 0.5



Is the upper bound Vn ( P1, P2, P3, ... ) 
safe for all possible fault rates?
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A fudge factor 𝜟 is added to 
ensure monotonicity*
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*Arpan Gujarati, Mitra Nasri, and Björn B Brandenburg. Quantifying the resiliency of fail-operational real-time networked control systems. Technical Report 
MPI-SWS2018-005, Max Planck Institute for Software Systems, Germany, 2018. URL: http://www.mpi-sws.org/tr/2018-005.pdf.
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+

*Arpan Gujarati, Mitra Nasri, and Björn B Brandenburg. Quantifying the resiliency of fail-operational real-time networked control systems. Technical Report 
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Is the upper bound Vn ( P1, P2, P3, ... ) 
safe for all possible fault rates?

Vn ( P1, P2, P3, ... ) ≥ P ( In = F )

Un ( P1, P2, P3, ... ) ≥ P ( In = F )

=

Safe if Vn is monotonic 
in P1, P2, P3, ...

http://www.mpi-sws.org/tr/2018-005.pdf
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FITUB for a single 
control loop 

∑Upper bound on the FIT 
rate of the entire 

networked control system

FITUB for L1

FITUB for Ln
…FITUB for L2

Compute FIT bounds 
for all control loops in the 
networked control system
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Evaluation overview

How accurate is the analysis? 
➡ Comparison with simulation results

Case study: FIT vs. (m, k) constraints vs. replication schemes



CAN-based active suspension workload*

Four control loops L1, L2, L3, L4 
➡ to control the four wheels with 

magnetic suspension

Messages Length 
(bytes)

Period (ms) Deadline (ms) Priority
Clock sync. 1 50 50 High
Current mon. 1 4 4
Temperature 
mon.

1 10 10
L1 messages 3 1,75 1,75
L2 messages 3 1,75 1,75
L3 messages 3 1,75 1,75
L4 messages 3 1,75 1,75
Logging 8 100 100 Low

*Adolfo Anta and Paulo Tabuada. On the benefits of relaxing the periodicity assumption for networked control systems over CAN. 
In Proceedings of the 30th Real-Time Systems Symposium, pages 3–12. IEEE, 2009.
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CAN-based active suspension workload*

Four control loops L1, L2, L3, L4 
➡ to control the four wheels with 

magnetic suspension

Messages Length 
(bytes)

Period (ms) Deadline (ms) Priority
Clock sync. 1 50 50 High
Current mon. 1 4 4
Temperature 
mon.

1 10 10
L1 messages 3 1,75 1,75
L2 messages 3 1,75 1,75
L3 messages 3 1,75 1,75
L4 messages 3 1,75 1,75
Logging 8 100 100 Low

This talk: Control loop L1's 
tasks were replicated

In the paper: Experiments 
with all replica schemes

*Adolfo Anta and Paulo Tabuada. On the benefits of relaxing the periodicity assumption for networked control systems over CAN. 
In Proceedings of the 30th Real-Time Systems Symposium, pages 3–12. IEEE, 2009.
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Discrete event simulation of 
a CAN-based system 
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Poisson process for faults on Host 1

... and so onSimulation is 
not safe
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Pessimism incurred stays within an order 
of magnitude for up to four replicas



Analysis versus simulation

At high network utilization, 
worst-case response-time analysis 

affects the analysis accuracy
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Case study

FIT analysis for different (m, k)-firm constraints 
➡ (9, 100) ~ 9% 
➡ (19, 20) ~ 95% 
➡ (99, 100) ~ 99% 
➡ (9999, 10000) ~ 99.99%

Replication factor of loop L1's tasks varied from 1 to 5

What should be the replication factor to achieve FIT under 10-6?
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better reliability
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FIT rate vs. replication factor 
vs. (m, k) parameters

FIT rate decreases with 
increasing replication



FIT rate vs. replication factor 
vs. (m, k) parameters

If the desired FIT 
rate is under 10-6 

Prefer three replicas
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Summary

A safe Failures-In-Time (FIT) analysis for networked control systems 
➡ CAN-based networked control system model

Focus on failures and errors due to transient faults 
➡ omission errors 
➡ incorrect computation errors 
➡ transmission errors

... and on robust systems that can tolerate a few iteration failures 
➡ (m,k)-firm model for control failure

Accounting for other robustness criteria

Future work: Byzantine errors + BFT protocols


