

signals in extra long trailers.

equipped with EBS.

Quantifying the Resiliency of Fail-Operational Real-Time Networked Control Systems

Arpan Gujarati, Mitra Nasri, **Björn B. Brandenburg**

MAX PLANCK INSTITUTE FOR SOFTWARE SYSTEMS

Embedded systems are susceptible to environmentally-induced transient faults

□ Harsh environments

- Robots operating under hard radiation
- Industrial systems near high-power machinery
- **Electric motors inside automobile systems**

Bit-flips in registers, buffers, network

Embedded systems are susceptible to environmentally-induced transient faults

□ Harsh environments

- Robots operating under hard radiation
- Industrial systems near high-power machinery
- Electric motors inside automobile systems

Bit-flips in registers, buffers, network

Example*

*Mancuso R. Next-generation safety-critical systems on multi-core platforms. PhD thesis, UIUC, 2017.

One bit-flip in a 1 MB SRAM every 10¹² hours of operation 0.5 billion cars with an average daily operation time of 5% About 5,000 cars are affected by a bit-flip every day

Failures and errors due to transient faults in distributed real-time systems

Failures and errors due to transient faults in distributed real-time systems

□ Transmission errors
 ➡ Faults on the network

Omission Errors

► Fault-induced kernel panics

Incorrect computation Errors
 Faults in the memory buffers

Failures and errors due to transient faults in distributed real-time systems

□ Transmission errors
 ➡ Faults on the network

Omission Errors

► Fault-induced kernel panics

Incorrect computation Errors
 Faults in the memory buffers

Failures in:

- value domain (incorrect outputs)
- time domain (deadline violations)

Transmission errors
 Faults on the network

Omission Errors

➡ Fault-induced kernel panics

Incorrect computation Errors
 Faults in the memory buffers

Retransmissions at the network layer

Dual modular redundancy (DMR)

Triple modular redundancy (TMR)

How can we objectively compare the reliability offered by different mitigation techniques?

Omission Errors

Fault-induced kernel panics

Incorrect computation Errors Faults in the memory buffers **Retransmissions at the network layer**

Dual modular redundancy (DMR)

Triple modular redundancy (TMR)

How does the real-time requirement affect system reliability? When does it really become a bottleneck?

Omission Errors

Fault-induced kernel panics

Incorrect computation Errors
 Faults in the memory buffers

Dual modular redundancy (DMR)

Triple modular redundancy (TMR)

How does the real-time requirement affect system reliability? When does it really become a bottleneck?

Omission Errors

➡ Fault-induced kernel panics

What if the system is weakly-hard real-time, i.e., it can tolerate a few failures?

Dual modular redundancy (DMR) y-hard real-time, w failures?

Given

2

3

4

Networked control system (messages, period)
Robustness specification (weakly-hard constraints)
Active replication scheme (DMR, TMR, others)
Peak transient fault rates (for the network and the hosts)

Given

2 3 4

Objective

- **Networked control system (messages, period) Robustness specification (weakly-hard constraints) Active replication scheme (DMR, TMR, others)**
- Peak transient fault rates (for the network and the hosts)

A safe upper bound on the failure rate of the networked control system

Given

Networked contra Robustness spec Active replication Peak transient fa

Objective A safe up the netwo

2

3

4

Failures-In-Time (FIT) = Expected # failures in one billion operating hours

- Networked control system (messages, period)
- **Robustness specification (weakly-hard constraints)**
- **Active replication scheme (DMR, TMR, others)**
- Peak transient fault rates (for the network and the hosts)
 - A safe upper bound on the failure rate of the networked control system

Analysis of a Controller Area Network (CAN) based networked control system

Outline

Analysis

Evaluation

Analysis of a Controller Area Network (CAN) based networked control system

System Model

Outline

Analysis

Evaluation

Physical sensor

Controlled plant

Physical actuator

Physical sensor

Sensor task replicas

Controlled plant

Physical actuator

C1 C2 C3

Controller task replicas

Actuator

task

Physical sensor

Sensor task
replicasS1S2S3

CAN bus*

* Controller Area Network

networked control loop

networked control loop

networked control loop

networked control loop

1. Modeling control loop iteration failures

Control loop iterations

$I_{1} I_{2} I_{3} \cdots I_{n-1} I_{n+1} \cdots$

1. Modeling control loop iteration failures

Control loop iterations

(1) Final actuation is successful

11 12 13 ···· In-1 In In+1 ···

1. Modeling control loop iteration failures

Control loop iterations

(2) Final actuation failed (different from (1))

1. Modeling control loop iteration failures

Control loop iterations

- **1** Final actuation is successful
 - Final actuation failed (different from (1))

2

Final actuation is successful (same as $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$) despite the errors

1. Modeling control loop iteration failures

Control loop iterations

- **1** Final actuation is successful
 - Final actuation failed (different from (1))

2

Final actuation is successful (same as $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$) despite the errors

Explicitly account for fault tolerance

2. Modeling control failure based on the (m, k)-firm constraint

2. Modeling control failure based on the (m, k)-firm constraint

Control loop iterations

time

SSSFSSSSFSFSSSS

2. Modeling control failure based on the (m, k)-firm constraint

Control loop iterations

Hard constraint

time

SSSFSSSSFSSSSS

Control failure upon first iteration failure

2. Modeling control failure based on the (m, k)-firm constraint

Control loop iterations

Success Failure

(2, 3) constraint

Hard constraint

Control failure when less than 2 iterations successful in 3 consecutive iterations

Analysis of a Controller Area Network (CAN) based networked control system

System Model

Outline

Analysis

Evaluation

Upper-bound the control failure rate

Peak fault rates (1) **Upper-bound message** error probabilities

Analysis steps

Upper-bound the control failure rate

Peak fault rates **Upper-bound iteration** failure probability (1)2 **Upper-bound message** error probabilities

Upper-bound the control failure rate

Peak fault rates **Upper-bound iteration** failure probability (1)3 2 Make the upper bound safe **Upper-bound message** error probabilities for all possible fault rates

Peak fault rates **Upper-bound iteration** failure probability (1)2 **Upper-bound message** error probabilities

Upper-bounding the message error probabilities

Using poisson model for fault arrivals

Upper-bounding the message error probabilities

Based on the message parameters

 $P_1 \ge P \pmod{t}$ (msg. is omitted at time t) $P_2 \ge P \pmod{100}$ (msg. is incorrectly computed) $P_3 \ge P$ (msq. is misses its deadline)

Upper-bounding the iteration failure probabilities

Accounting for all possible error scenarios error propagation and correlation voting protocol

Upper bounds on message error probabilities

 $P_1 \ge P$ (msg. is omitted at time t) $P_2 \ge P$ (msg. is incorrectly computed) $P_3 \ge P$ (msg. is misses its deadline)

Upper-bounding the iteration failure probabilities

Accounting for all possible error scenarios error propagation and correlation voting protocol

Upper bounds on message error probabilities

 $P_1 \ge P$ (msg. is omitted at time t) $P_2 \ge P$ (msg. is incorrectly computed) $P_3 \ge P$ (msg. is misses its deadline)

Let's look at a simple example!

Message replica M₁

Message replica M₂

Message replica M₃

Simple majority (ties broken randomly)

Omission Messige replica M₁

- P_1 , P_2 , P_3 ... defined such that: \rightarrow M₁ is omitted
 - M₂ is incorrectly computed
 - M₂ misses its deadline

Incorrect computation Message & deadline violation replica M₂

Message, replica M₃

Simple majority (ties broken randomly)

Omission Messige replica M₁

- P_1 , P_2 , P_3 ... defined such that: \rightarrow M₁ is omitted
 - M₂ is incorrectly computed
 - M₂ misses its deadline

Incorrect computation Message & deadline violation replica M₂

Message replica M₃

Only M₃ participates in the voting process

Simple majority (ties broken randomly)

Omission Mcssige replice M1

- *P*₁, *P*₂, *P*₃... defined such that:
 M₁ is omitted
 - M₂ is incorrectly computed
 - M₂ misses its deadline

Incorrect computation Message & deadline violation replica M₂

Message replica M₃

Only M₃ participates in the voting process

uch that: puted e Vn (P1, P2, P3, ...) = 0 Simple majority (ties broken randomly)

Omission Mcssige replica M1

- $P_1, P_2, P_3 \dots$ defined such M_1 is omitted
 - M₂ is incorrectly comp
 - M₂ misses its deadline

Incorrect computation

Message replica M₂

Message replica M₃ In practice, there may be no deadline violations! The peak fault rates are just upper bounds

ch that:	
outed e	$V_n (P_1, P_2, P_3,) = 0$
	Simple majority
Voter	(ties broken randomly)

Omission Mcssige replica M1

- *P*₁, *P*₂, *P*₃... defined such that:
 M₁ is omitted
 - M₂ is incorrectly computed
 - M₂ misses its deadline

Incorrect computation

Message replica M₂

Message replica M₃ In practice, there may be no deadline violations! The peak fault rates are just upper bounds

$V_n(P_1, P_2, P_3, ...) \ge P(I_n = F)$

Safe if V_n is monotonic in $P_1, P_2, P_3, ...$

$V_n(P_1, P_2, P_3, ...) \ge P(I_n = F)$

A fudge factor *∆* is added to ensure monotonicity*

*Arpan Gujarati, Mitra Nasri, and Björn B Brandenburg. Quantifying the resiliency of fail-operational real-time networked control systems. Technical Report MPI-SWS2018-005, Max Planck Institute for Software Systems, Germany, 2018. URL: http://<u>www.mpi-sws.org/tr/2018-005.pdf</u>.

Safe if V_n is monotonic in $P_1, P_2, P_3, ...$

$V_n(P_1, P_2, P_3, ...) \ge P(I_n = F)$ A fudge factor Δ is added to ensure monotonicity* $U_n(P_1, P_2, P_3, ...) \ge P(I_n = F)$

*Arpan Gujarati, Mitra Nasri, and Björn B Brandenburg. Quantifying the resiliency of fail-operational real-time networked control systems. Technical Report MPI-SWS2018-005, Max Planck Institute for Software Systems, Germany, 2018. URL: http://www.mpi-sws.org/tr/2018-005.pdf.

Safe if V_n is monotonic in P_1, P_2, P_3, \dots

$U_n(P_1, P_2, P_3, ...) \ge P(I_n = F)$

$= 10^9$ / MTTF (in hours) FIT (Mean Time To first control Failure) (expected # failures in 1 billion hours) 10^{9} $t \cdot f(t) dt$ (probability density function)

(probability ensity function) f(t) = P (first control failure at time t) = P (first violation of (2, 3)-firm constraint at time t) = P (first instance of FSF | FFS | SFF | FF at time t)

- 77 ed # failures lion hours)	-	10 ⁹ / MTTF (Mean Time To find)	(in hours)
		$\int_0^\infty t \cdot f(t) dt$	(probability density function)

-77 ed # failures lion hours)	10 ⁹ / MTTF (in hours) (Mean Time To first control Failure) 10 ⁹		
	$\int_0^\infty t \cdot f$	(t) dt	(probability density function)

= P (first violation of (2, 3)-firm constraint at time t)= P (first instance of FSF | FFS | SFF | FF at time t)

*M. Sfakianakis, S. Kounias, and A. Hillaris. "Reliability of a consecutive k-out-of-r-from-n: F system." IEEE Transactions on Reliability 41, no. 3 (1992): 442-447.

*M. Sfakianakis, S. Kounias, and A. Hillaris. "Reliability of a consecutive k-out-of-r-from-n: F system." IEEE Transactions on Reliability 41, no. 3 (1992): 442-447.

-77 ed # failures lion hours)	10 ⁹ / MTTF (in hours) (Mean Time To first control Failure) 10 ⁹		
	$\int_0^\infty t \cdot f$	(t) dt	(probability density function)

= P (first violation of (2, 3)-firm constraint at time t)= P (first instance of FSF | FFS | SFF | FF at time t)

FIT_{UB} for a single control loop

FITUB for Ln

Compute FIT bounds for all control loops in the networked control system

Analysis steps

Upper bound on the FIT rate of the entire networked control system

FIT_{UB} for a single control loop

FITUB for Ln

Compute FIT bounds for all control loops in the networked control system

Analysis of a Controller Area Network (CAN) based networked control system

System Model

Outline

Analysis

Evaluation

Evaluation overview

Evaluation overview

How accurate is the analysis? Comparison with simulation results

Evaluation overview

How accurate is the analysis? Comparison with simulation results

Case study: FIT vs. (m, k) constraints vs. replication schemes

CAN-based active suspension workload*

Four control loops L₁, L₂, L₃, L₄ to control the four wheels with magnetic suspension

*Adolfo Anta and Paulo Tabuada. On the benefits of relaxing the periodicity assumption for networked control systems over CAN. In Proceedings of the 30th Real-Time Systems Symposium, pages 3–12. IEEE, 2009.

Messages	Length	Period (ms)	Deadline (ms)	Priority
Clock sync.	1	50	50	High
Current mon.	1	4	4	
Temperature	1	10	10	
L ₁ messages	3	1,75	1,75	
L ₂ messages	3	1,75	1,75	
L ₃ messages	3	1,75	1,75	
L4 messages	3	1,75	1,75	
Logging	8	100	100	Low

CAN-based active suspension workload*

Four control loops L₁, L₂, L₃, L₄ to control the four wheels with magnetic suspension

This talk: Control loop L₁'s tasks were replicated

*Adolfo Anta and Paulo Tabuada. On the benefits of relaxing the periodicity assumption for networked control systems over CAN. In Proceedings of the 30th Real-Time Systems Symposium, pages 3–12. IEEE, 2009.

Messages	Length	Period (ms)	Deadline (ms)	Priority
Clock sync.	1	50	50	High
Current mon.	1	4	4	
Temperature	1	10	10	
L ₁ messages	3	1,75	1,75	
L ₂ messages	3	1,75	1,75	
L ₃ messages	3	1,75	1,75	
L4 messages	3	1,75	1,75	
Logging	8	100	100	Low

CAN-based active suspension workload*

Four control loops L₁, L₂, L₃, L₄ to control the four wheels with magnetic suspension

This talk: Control loop L₁'s tasks were replicated

In the paper: Experiments with <u>all replica schemes</u>

*Adolfo Anta and Paulo Tabuada. On the benefits of relaxing the periodicity assumption for networked control systems over CAN. In Proceedings of the 30th Real-Time Systems Symposium, pages 3–12. IEEE, 2009.

Messages	Length	Period (ms)	Deadline (ms)	Priority
Clock sync.	1	50	50	High
Current mon.	1	4	4	
Temperature	1	10	10	
L ₁ messages	3	1,75	1,75	
L ₂ messages	3	1,75	1,75	
L ₃ messages	3	1,75	1,75	
L4 messages	3	1,75	1,75	
Logging	8	100	100	Low

How accurate is the analysis?

Iteration failure probability bound

$U_n(P_1, P_2, P_3, ...) \ge P(I_n = F)$

Discrete event simulation of a CAN-based system

How accurate is the analysis?

Iteration failure probability bound

$U_n(P_1, P_2, P_3, ...) \ge P(I_n = F)$

Simulation is not safe

eration)

 10^{0}

 10^{-1}

 10^{-2}

 10^{-3}

 10^{-4}

 10^{-10}

□ FIT analysis for different (m, k)-firm constraints

- ➡ (9, 100) ~ 9%
- ➡ (19, 20) ~ 95%
- ➡ (99, 100) ~ 99%
- ➡ (9999, 10000) ~ 99.99%

Case study

FIT analysis for different (m, k)-firm constraints

- ➡ (9, 100) ~ 9%
- ➡ (19, 20) ~ 95%
- ➡ (99, 100) ~ 99%
- ➡ (9999, 10000) ~ 99.99%

 \Box Replication factor of loop L₁'s tasks varied from 1 to 5

Case study

FIT analysis for different (m, k)-firm constraints

- ➡ (9, 100) ~ 9%
- ➡ (19, 20) ~ 95%
- ➡ (99, 100) ~ 99%
- ➡ (9999, 10000) ~ 99.99%
- \Box Replication factor of loop L₁'s tasks varied from 1 to 5
- \Box What should be the replication factor to achieve FIT under 10⁻⁶?

Case study

FIT rate vs. replication factor vs. (m, k) parameters

FIT rate vs. replication factor vs. (m, k) parameters

FIT rate vs. replication factor vs. (m, k) parameters

vs. (m, k) parameters

Focus on failures and errors due to transient faults

- omission errors
- incorrect computation errors
- → transmission errors

Focus on failures and errors due to transient faults

- omission errors
- incorrect computation errors
- → transmission errors

In the second (m,k)-firm model for control failure

Focus on failures and errors due to transient faults

- omission errors
- incorrect computation errors
- → transmission errors

In and on robust systems that can tolerate a few iteration failures (m,k)-firm model for control failure

Future work: Byzantine errors + BFT protocols

Focus on failures and errors due to transient faults

- omission errors
- incorrect computation errors
- → transmission errors

(m,k)-firm model for control failure

Future work: Byzantine errors + BFT protocols

Accounting for other robustness criteria

