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This Paper
Setting

• Real-time scheduling with restricted processor affinities  
➔ each task may run only on certain processors



This Paper

• Identify hierarchical (or laminar) affinities  
➔ as a special case of great practical relevance 

• Non-obvious online scheduling algorithm  
➔ with improved runtime complexity 

• Performance characterization: 
1. speed-up bounds for clustered and bi-level affinities 
2. prototype implementation in LITMUSRT and overhead 

evaluation on 24-core Xeon multicore platform

Setting
• Real-time scheduling with restricted processor affinities  
➔ each task may run only on certain processors

Contributions



Background



Processor Affinity
• interface to restrict the set of processors on 

which a task may be scheduled 

• widely available in multiprocessor (real-time) OSs

Linux: sched_setaffinity() 
FreeBSD: cpuset_setaffinity()
Windows: SetThreadAffinityMask()
QNX: ThreadCtl(_NTO_TCTL_RUNMASK)
VxWorks: taskCpuAffinitySet()



Arbitrary Processor Affinity (APA) 
Scheduling (Gujarati et al., 2013)
• first analysis of processor affinity in real-time 

systems 

• the usual sporadic task model: Ci, Di, Ti

• set of (identical) processors !1…!m

• plus an arbitrary per-task affinity set  

↵i ✓ {⇧1, . . . ,⇧m}



Strong vs. Weak APA Scheduling 
(Gujarati et al., 2014)

• Linux, QNX, etc. 

• easier to implement

strong APA invariant

weak invariant + no way to 
“re-arrange" higher-

priority jobs to free up a 
core for a backlogged job

weak APA invariant

a job is backlogged only if 
all processors in its affinity 
execute jobs of equal or 

higher priority

• better schedulability 

• this paper



Arbitrary Affinities: Difficult 
Scheduling Problem

• difficult to analyze • difficult to schedule at runtime

Core
1

Core
2

Core
3

Core
4

Core
5

Core
6

arbitrary processor affinities



Basic Operations
Job Arrival: preemption necessary?

• for each core in affinity, check if new job can be placed
• weak APA: only by preempting lower-priority tasks
• strong APA: also by shifting higher-priority tasks to other cores

→ O(m2)

n…number of tasks m…number of cores



Basic Operations
Job Arrival: preemption necessary?

• for each core in affinity, check if new job can be placed
• weak APA: only by preempting lower-priority tasks
• strong APA: also by shifting higher-priority tasks to other cores

Job Departure: schedule backlogged job?
• for each backlogged job, check if freed processor can be used
• weak APA: only if freed processor is in affinity set
• strong APA: also by shifting higher-priority tasks to other cores

→ O(m2)

n…number of tasks m…number of cores
→ O(nm)



Prior Strong APA 
Scheduling Results 

Strong APA 
(Gujarati et al., 2014)

Job arrival cost O(m2)

Job departure cost O(nm)

Speed-up bound —

Implemented in OS? —

Schedulability test sufficient 

Difficult to improve 
the general case. 

(combinatorial 
structure)

But what if we rule 
out pathological 
combinations?

n…number of tasks m…number of cores



Hierarchical 
Processor Affinities (HPA)



Arbitrary Processor Affinities?
Why do users typically restrict processor affinities?
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Arbitrary Processor Affinities?

• cache affinity: e.g., stay on same core / pair of cores / socket to 
maintain L1 / L2 / L3 affinity, respectively

• interrupt throughput: e.g., execute network-facing daemon on 
same core that processes network interrupts

• interrupt isolation: e.g., execute only on half of cores that do not 
handle device interrupts

• security isolation: e.g., avoid micro-architectural timing channels 
by forcing sensitive and less trusted tasks to run on separate cores 

Why do users typically restrict processor affinities?

All resulting affinities naturally exhibit structure. 
They are not completely arbitrary!



Natural Affinity Structure
• Goal: isolation  
➔ system sliced into differently sized "compartments" 
➔ affinities do not overlap (complete exclusion) 

• Goal: cache affinity  
➔ affinities reflect memory hierarchy  
➔ smaller affinities part of larger affinities (full inclusion)  

• Goal: sequencing of tasks (partial partitioning)  
➔ singleton affinities 

• Goal: average-case response-time improvements  
➔ global (or at least very large) affinities 



Hierarchical (or Laminar) 
Processor Affinities (HPA)

• Laminar family of affinity sets (tree-like structure) 

• For any two jobs i and j, either:

↵i ✓ ↵j ↵j ✓ ↵i ↵j \ ↵i = ;or or



Example HPA Inclusion Tree

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

all cores 
(global affinity)

two sockets 
(e.g., shared L3)

half of socket 
(e.g., shared L2)



Overview of Results
Strong APA 

(Gujarati et al., 2014)
Strong HPA
(this paper)

Job arrival cost O(m2) O(m)

Job departure cost O(nm) O( log n + m2 )

Speed-up bound — 2.415 (bi-level + EDF) 
3.562 (clustered + EDF)

Implemented in OS? — LITMUSRT 

Schedulability test sufficient — 
[prior APA test applies]

n…number of tasks m…number of cores



An Efficient Strong 
HPA Scheduler



Insight: Separate Job 
Selection from Job Placement
• Job selection (or admission): determine the set of 

jobs that should receive processor service 

• at most m, but subject to affinity constraints. 

• Job placement: map set of selected jobs to 
processors, while respecting 

• all affinity constraints and 

• the strong APA invariant.



Algorithms in Paper
• Algorithms 1 & 2: conceptual scheduling algorithm  
➔ proof of strong APA invariant, but bad complexity 

• Algorithms 3–5: runtime scheduling algorithm  
➔ same schedule, but better complexity   

• Algorithm 6: locality-aware assignment algorithm  
➔ avoids some migrations, but worse complexity  
➔ better suited for kernel-level implementation



Algorithms in Paper
• Algorithms 1 & 2: conceptual scheduling algorithm  
➔ proof of strong APA invariant, but bad complexity 

• Algorithms 3–5: runtime scheduling algorithm  
➔ same schedule, but better complexity   

• Algorithm 6: locality-aware assignment algorithm  
➔ avoids some migrations, but worse complexity  
➔ better suited for kernel-level implementation

[this talk]



Insight: Maintain State for 
each Distinct Affinity Set

• don’t have per-
processor run-
queues (Linux, etc.) 

• don’t have just a 
single run queue 

• instead, associate 
state with each 
distinct affinity 
(affinity tree node) Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12



Data Structures
For each distinct affinity 

• doubly linked list of 
scheduled jobs 
➔ O(1) Insert, Remove  
➔ O(n) FindMax 

• strict Fibonacci heap 
of backlogged jobs  
➔ O(1) Insert, FindMax  
➔ O(log n) Remove Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12



Job Arrival Step 1: Find Beta

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12
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Job Arrival Step 1: Find Beta

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

�

↵i
affinity of arriving job

first “full” affinity on path to root (or root)

full: #scheduled jobs (list) = #processors in affinity
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Job Arrival Step 2: Walk Up 
the Tree and Insert into Lists

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

�

↵i
affinity of arriving job

first “full” affinity on path to root (or root)

(unconditionally) insert new job 
into list of scheduled jobs in 

each affinity on path to root



Job Arrival Step 3: Find Lowest-
Priority Job in Beta Affinity’s List

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

�

↵i
affinity of arriving job

first “full” affinity on path to root (or root)



Job Arrival Step 3: Find Lowest-
Priority Job in Beta Affinity’s List

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

�

↵i
affinity of arriving job

first “full” affinity on path to root (or root)

Search list of “scheduled” jobs 
to find lowest-priority job



Job Arrival Step 4: Clean Up 
Lists along Path to Root

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

affinity of lowest-priority job
↵r



Job Arrival Step 4: Clean Up 
Lists along Path to Root

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

affinity of lowest-priority job
↵r

remove from list in each affinity 
on path to root, thereby ensuring 

that #scheduled ≤ #cores



Job Arrival Step 5: Add to 
Heap of Backlogged Jobs

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

affinity of lowest-priority job
↵r



Job Arrival Step 5: Add to 
Heap of Backlogged Jobs

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

affinity of lowest-priority job
↵r

add to heap of backlogged 
jobs (only in own affinity)
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Complexity of Job Selection 
upon Arrival: O(m)

1. Find beta affinity, first “full” affinity: O(height of tree) = 
O(m)

2. Walk up the tree and insert new job into doubly-linked 
lists: O(height of tree) = O(m)

3. Find lowest-priority job in beta affinity’s list of scheduled 
jobs: O(length of list) = O(size of affinity) = O(m)

4. Walk up the tree and remove lowest-priority job from 
doubly-linked lists: O(height of tree) = O(m)

5. Add to strict Fibonacci heap of backlogged jobs: O(1)

m…number of cores
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Job Arrival Part 2: Placing the 
Set of Selected Jobs: O(m)

1. Make a list for each leaf node in the affinity tree, containing the 
free processors in the affinity: O(m)

2. copy the list of scheduled jobs from the root node: O(m)

3. sort the list of jobs by increasing affinity level 
(= decreasing distance to root node): O(m) — counting sort

4. for each job (bottom-up): 
• assign to first core in job affinity’s free processor list and remove 

core from list: O(m) 
• when moving up a level, concatenate the processor lists of all 

child nodes and assign to parent node: O(number of distinct 
affinities) = O(m)
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Insight: Reuse Job Arrival Procedure 
for "Cleanup" After Job Departure 

• Problem: restoring the strong APA invariant after a job 
departure is not trivial. 

• The next job to be scheduled could come from 
any of the affinity nodes in the tree.

• Solution: simulate a job arrival of the highest-
priority backlogged job for each distinct affinity 

➔  O(log n + m2)

remove from strict 
Fibonacci heap

run O(m) arrival 
procedure for each of 
O(m) distinct affinities



Speed-Up Bounds



• quantifiable relation to system optimality 

• a way to structure the space of non-optimal algorithms 

• the lower the speed-up bound, the better

Speed-up bound X for algorithm A
If a task set is schedulable under any policy on m 
unit-speed processors, then it is also schedulable 
under A with m processors of speed X.



First Speed-Up Results for Real-Time 
Scheduling with Affinity Restrictions

Considered special cases: 

• job priorities determined with EDF 

and either 

• bi-level affinities or 

• clustered affinities.
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Bi-Level Affinities 
• each task is assigned either 

• a global affinity (can use all cores) or 

• a singleton affinity (can use only one specific 
core)

HPA-EDF + Bi-Level Affinities
required speed-up s:  s < 2.415

Context
speed-up bound 
of global EDF is 2
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Clustered Affinities 
• each task is assigned either 

• a global affinity (can use all cores) or 

• a clustered affinity (can use only subset of cores) 

• all clusters are mutually disjoint

HPA-EDF + Clustered Affinities
required speed-up s:  s < 3.562 



Implementation in 

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

www.litmus-rt.org
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• real-time extension of the Linux kernel 
(currently, Linux 4.1) 

• continuously maintained since 2006 

• makes it easy easier to implement and 
evaluate (multiprocessor) real-time resource 
management policies on real hardware 

• relevant highlights: built-in global migration 
support and overhead tracing 
infrastructure

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

[2006–2011]

[2011– ]



Evaluation Questions

• Can you actually run the proposed HPA scheduler 
in a real OS kernel? 

• What practical tweaks are required? 

• Isn't this algorithm prohibitively expensive in terms 
of actual runtime overheads?



Baseline
• HPA-FP (HPA + fixed priority) implemented on top of Cerqueira 

et al.’s message-passing-based global scheduler [RTAS’14]. 

• Basic idea 
➔ one designated scheduling processor (DSP) 
➔ DSP makes all scheduling decisions (for all cores) 
➔ application processors send job state changes via messages 
➔ simple dispatcher enacts scheduling decisions on app procs.

DSP APP

APP APP

job assignment

job departure



Baseline
• HPA-FP (HPA + fixed priority) implemented on top of Cerqueira 

et al.’s message-passing-based global scheduler [RTAS’14]. 

• Basic idea 
➔ one designated scheduling processor (DSP) 
➔ DSP makes all scheduling decisions (for all cores) 
➔ application processors send job state changes via messages 
➔ simple dispatcher enacts scheduling decisions on app procs.

DSP APP

APP APP

job assignment

job departure

+ no locking of 
scheduler state

+ no cache-line 
bouncing

+ better scalability 
[max. overheads]
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Practical Tweaks
• Affinity tree is explicitly stored in kernel and dynamically 

extended as tasks are admitted

• Message-passing-based design removes the need to 
synchronize tree traversals (big plus!).

• Strict Fibonacci heaps are complicated & slow 
➔ use standard priority bitmap + linked lists  
➔ effectively O(1) for fixed #priorities

• Locality-aware task mapping to avoid needless migrations 
(Algorithm 6) 
➔ implemented with sets (=bit operations) 
➔ effectively O(1) for fixed, small #cores



Platform & Workloads 
Platform 
• Xeon E7 8857, two sockets, 12 cores each (m = 24) 
• private L1 and L2 (32 KiB and 256 KiB, resp.) 
• shared L3 (30 MiB) per socket
Workload 
• 75%/85% utilization 
• execution costs: Emberson et al. (2010) 
• log-uniform periods 1ms to 1000ms 
• 2m to 10m tasks (48 to 240) 
• three affinity levels: global, socket, partitioned 
• rate-monotonic priorities



Experiments
• 150 task sets per scheduler 

• 60 seconds per task set 

• traced scheduler  
overheads with 
Feather-Trace 

• 34 GiB trace data 

• extracted 700,000,000 valid samples



Results Overview
• substantially increased costs (~1.5x to ~3.5x), but 

still in a feasible range (a few microseconds)
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Evaluation Questions
• Can you actually run the proposed HPA scheduler 

in a real OS kernel? 

• What practical tweaks are required? 

• Isn't this algorithm prohibitively expensive in terms 
of actual runtime overheads?

➔ Yes!

➔ locality-aware assignment and simpler queues

➔ more costly, but not prohibitively so
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Summary
Hierarchical processor affinities are an important special case.

The laminar affinity structure allows for a much more 
efficient online scheduler. 

first speed-up result for real-
time scheduling with restricted 

processor affinities 

first implementation of a 
strong APA scheduler in a real  

OS kernel



Some Open Questions
• A more efficient weak HPA scheduler? 

• Speed-up bounds for more general cases? 

• More accurate schedulability tests for strong and 
weak HPA scheduling?  

• Is there some interesting class of affinities 
between arbitrary and hierarchical?

APA > ?PA > HPA



• New release 2016.1  
➔ framework for proper reservation-based scheduling 

• A new tutorial: Getting Started with LITMUSRT 
➔ http://www.litmus-rt.org/tutor16/

• Detailed artifact evaluation instructions 
➔ how to run our HPA scheduler  
➔ how to collect and process data  
➔ https://www.mpi-sws.org/~bbb/papers/ae/ecrts16/laminar-apa.html 

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems
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Job Departure Step 1: 
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Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

affinity of departing job
↵r

remove from list in each 
affinity on path to root
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Job Departure Step 3: 
Simulate Arrivals

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

find highest-priority 
backlogged job in each 

distinct affinity 
(Fibonacci Heap)

J1 J2 J3 J4

J5 J6

J7
run arrival procedure for 

each such job (in any order) 
[but don’t modify 

backlogged heap]
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Job Departure Step 4:  
Remove from Backlogged Heap

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

J5

at most one job will 
effectively be added to list 

of scheduled jobs

remove this job from the 
heap of backlogged jobs



Complexity of Job 
Departure: O(log n + m2)

n…number of tasks m…number of cores



Complexity of Job 
Departure: O(log n + m2)

1. Walk up the tree and remove departing job from 
lists: O(height of tree) = O(m)

n…number of tasks m…number of cores



Complexity of Job 
Departure: O(log n + m2)

1. Walk up the tree and remove departing job from 
lists: O(height of tree) = O(m)

2. Find highest-priority backlogged job in each 
affinity: O(#distinct affinities) = O(m)

n…number of tasks m…number of cores



Complexity of Job 
Departure: O(log n + m2)

1. Walk up the tree and remove departing job from 
lists: O(height of tree) = O(m)

2. Find highest-priority backlogged job in each 
affinity: O(#distinct affinities) = O(m)

3. Simulate arrivals: O(#distinct affinities x m) = 
O(m2)

n…number of tasks m…number of cores



Complexity of Job 
Departure: O(log n + m2)

1. Walk up the tree and remove departing job from 
lists: O(height of tree) = O(m)

2. Find highest-priority backlogged job in each 
affinity: O(#distinct affinities) = O(m)

3. Simulate arrivals: O(#distinct affinities x m) = 
O(m2)

4. Remove from backlogged: O(log n)

n…number of tasks m…number of cores


