
Multiprocessor
Real-Time Scheduling with

Hierarchical Processor Affinities

Vincenzo Bonifaci
IASI–CNR

Björn Brandenburg
MPI-SWS

Gianlorenzo D'Angelo
Gran Sasso Science Institute

Alberto Marchetti-Spaccamela
Sapienza Università di Roma

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

This Paper
Setting

• Real-time scheduling with restricted processor affinities  
➔ each task may run only on certain processors

This Paper

• Identify hierarchical (or laminar) affinities  
➔ as a special case of great practical relevance

• Non-obvious online scheduling algorithm  
➔ with improved runtime complexity

• Performance characterization:
1. speed-up bounds for clustered and bi-level affinities
2. prototype implementation in LITMUSRT and overhead

evaluation on 24-core Xeon multicore platform

Setting
• Real-time scheduling with restricted processor affinities  
➔ each task may run only on certain processors

Contributions

Background

Processor Affinity
• interface to restrict the set of processors on

which a task may be scheduled

• widely available in multiprocessor (real-time) OSs

Linux: sched_setaffinity()
FreeBSD: cpuset_setaffinity()
Windows: SetThreadAffinityMask()
QNX: ThreadCtl(_NTO_TCTL_RUNMASK)
VxWorks: taskCpuAffinitySet()

Arbitrary Processor Affinity (APA)
Scheduling (Gujarati et al., 2013)
• first analysis of processor affinity in real-time

systems

• the usual sporadic task model: Ci, Di, Ti

• set of (identical) processors !1…!m

• plus an arbitrary per-task affinity set

↵i ✓ {⇧1, . . . ,⇧m}

Strong vs. Weak APA Scheduling
(Gujarati et al., 2014)

• Linux, QNX, etc.

• easier to implement

strong APA invariant

weak invariant + no way to
“re-arrange" higher-

priority jobs to free up a
core for a backlogged job

weak APA invariant

a job is backlogged only if
all processors in its affinity
execute jobs of equal or

higher priority

• better schedulability

• this paper

Arbitrary Affinities: Difficult
Scheduling Problem

• difficult to analyze • difficult to schedule at runtime

Core
1

Core
2

Core
3

Core
4

Core
5

Core
6

arbitrary processor affinities

Basic Operations
Job Arrival: preemption necessary?

• for each core in affinity, check if new job can be placed
• weak APA: only by preempting lower-priority tasks
• strong APA: also by shifting higher-priority tasks to other cores

→ O(m2)

n…number of tasks m…number of cores

Basic Operations
Job Arrival: preemption necessary?

• for each core in affinity, check if new job can be placed
• weak APA: only by preempting lower-priority tasks
• strong APA: also by shifting higher-priority tasks to other cores

Job Departure: schedule backlogged job?
• for each backlogged job, check if freed processor can be used
• weak APA: only if freed processor is in affinity set
• strong APA: also by shifting higher-priority tasks to other cores

→ O(m2)

n…number of tasks m…number of cores
→ O(nm)

Prior Strong APA
Scheduling Results

Strong APA
(Gujarati et al., 2014)

Job arrival cost O(m2)

Job departure cost O(nm)

Speed-up bound —

Implemented in OS? —

Schedulability test sufficient

Difficult to improve
the general case.

(combinatorial
structure)

But what if we rule
out pathological
combinations?

n…number of tasks m…number of cores

Hierarchical
Processor Affinities (HPA)

Arbitrary Processor Affinities?
Why do users typically restrict processor affinities?

Arbitrary Processor Affinities?

• cache affinity: e.g., stay on same core / pair of cores / socket to
maintain L1 / L2 / L3 affinity, respectively

Why do users typically restrict processor affinities?

Arbitrary Processor Affinities?

• cache affinity: e.g., stay on same core / pair of cores / socket to
maintain L1 / L2 / L3 affinity, respectively

• interrupt throughput: e.g., execute network-facing daemon on
same core that processes network interrupts

Why do users typically restrict processor affinities?

Arbitrary Processor Affinities?

• cache affinity: e.g., stay on same core / pair of cores / socket to
maintain L1 / L2 / L3 affinity, respectively

• interrupt throughput: e.g., execute network-facing daemon on
same core that processes network interrupts

• interrupt isolation: e.g., execute only on half of cores that do not
handle device interrupts

Why do users typically restrict processor affinities?

Arbitrary Processor Affinities?

• cache affinity: e.g., stay on same core / pair of cores / socket to
maintain L1 / L2 / L3 affinity, respectively

• interrupt throughput: e.g., execute network-facing daemon on
same core that processes network interrupts

• interrupt isolation: e.g., execute only on half of cores that do not
handle device interrupts

• security isolation: e.g., avoid micro-architectural timing channels
by forcing sensitive and less trusted tasks to run on separate cores

Why do users typically restrict processor affinities?

Arbitrary Processor Affinities?

• cache affinity: e.g., stay on same core / pair of cores / socket to
maintain L1 / L2 / L3 affinity, respectively

• interrupt throughput: e.g., execute network-facing daemon on
same core that processes network interrupts

• interrupt isolation: e.g., execute only on half of cores that do not
handle device interrupts

• security isolation: e.g., avoid micro-architectural timing channels
by forcing sensitive and less trusted tasks to run on separate cores

Why do users typically restrict processor affinities?

All resulting affinities naturally exhibit structure.
They are not completely arbitrary!

Natural Affinity Structure
• Goal: isolation  
➔ system sliced into differently sized "compartments" 
➔ affinities do not overlap (complete exclusion)

• Goal: cache affinity  
➔ affinities reflect memory hierarchy  
➔ smaller affinities part of larger affinities (full inclusion)

• Goal: sequencing of tasks (partial partitioning)  
➔ singleton affinities

• Goal: average-case response-time improvements  
➔ global (or at least very large) affinities

Hierarchical (or Laminar)
Processor Affinities (HPA)

• Laminar family of affinity sets (tree-like structure)

• For any two jobs i and j, either:

↵i ✓ ↵j ↵j ✓ ↵i ↵j \ ↵i = ;or or

Example HPA Inclusion Tree

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

all cores
(global affinity)

two sockets
(e.g., shared L3)

half of socket
(e.g., shared L2)

Overview of Results
Strong APA

(Gujarati et al., 2014)
Strong HPA
(this paper)

Job arrival cost O(m2) O(m)

Job departure cost O(nm) O(log n + m2)

Speed-up bound — 2.415 (bi-level + EDF)
3.562 (clustered + EDF)

Implemented in OS? — LITMUSRT

Schedulability test sufficient —
[prior APA test applies]

n…number of tasks m…number of cores

An Efficient Strong
HPA Scheduler

Insight: Separate Job
Selection from Job Placement
• Job selection (or admission): determine the set of

jobs that should receive processor service

• at most m, but subject to affinity constraints.

• Job placement: map set of selected jobs to
processors, while respecting

• all affinity constraints and

• the strong APA invariant.

Algorithms in Paper
• Algorithms 1 & 2: conceptual scheduling algorithm  
➔ proof of strong APA invariant, but bad complexity

• Algorithms 3–5: runtime scheduling algorithm  
➔ same schedule, but better complexity

• Algorithm 6: locality-aware assignment algorithm  
➔ avoids some migrations, but worse complexity  
➔ better suited for kernel-level implementation

Algorithms in Paper
• Algorithms 1 & 2: conceptual scheduling algorithm  
➔ proof of strong APA invariant, but bad complexity

• Algorithms 3–5: runtime scheduling algorithm  
➔ same schedule, but better complexity

• Algorithm 6: locality-aware assignment algorithm  
➔ avoids some migrations, but worse complexity  
➔ better suited for kernel-level implementation

[this talk]

Insight: Maintain State for
each Distinct Affinity Set

• don’t have per-
processor run-
queues (Linux, etc.)

• don’t have just a
single run queue

• instead, associate
state with each
distinct affinity 
(affinity tree node) Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

Data Structures
For each distinct affinity

• doubly linked list of
scheduled jobs 
➔ O(1) Insert, Remove  
➔ O(n) FindMax

• strict Fibonacci heap
of backlogged jobs  
➔ O(1) Insert, FindMax  
➔ O(log n) Remove Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

Job Arrival Step 1: Find Beta

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

�

↵i
affinity of arriving job

first “full” affinity on path to root (or root)

Job Arrival Step 1: Find Beta

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

�

↵i
affinity of arriving job

first “full” affinity on path to root (or root)

full: #scheduled jobs (list) = #processors in affinity

Job Arrival Step 2: Walk Up
the Tree and Insert into Lists

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

�

↵i
affinity of arriving job

first “full” affinity on path to root (or root)

Job Arrival Step 2: Walk Up
the Tree and Insert into Lists

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

�

↵i
affinity of arriving job

first “full” affinity on path to root (or root)

(unconditionally) insert new job
into list of scheduled jobs in

each affinity on path to root

Job Arrival Step 3: Find Lowest-
Priority Job in Beta Affinity’s List

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

�

↵i
affinity of arriving job

first “full” affinity on path to root (or root)

Job Arrival Step 3: Find Lowest-
Priority Job in Beta Affinity’s List

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

�

↵i
affinity of arriving job

first “full” affinity on path to root (or root)

Search list of “scheduled” jobs
to find lowest-priority job

Job Arrival Step 4: Clean Up
Lists along Path to Root

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

affinity of lowest-priority job
↵r

Job Arrival Step 4: Clean Up
Lists along Path to Root

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

affinity of lowest-priority job
↵r

remove from list in each affinity
on path to root, thereby ensuring

that #scheduled ≤ #cores

Job Arrival Step 5: Add to
Heap of Backlogged Jobs

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

affinity of lowest-priority job
↵r

Job Arrival Step 5: Add to
Heap of Backlogged Jobs

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

affinity of lowest-priority job
↵r

add to heap of backlogged
jobs (only in own affinity)

Complexity of Job Selection
upon Arrival: O(m)

m…number of cores

Complexity of Job Selection
upon Arrival: O(m)

1. Find beta affinity, first “full” affinity: O(height of tree) =
O(m)

m…number of cores

Complexity of Job Selection
upon Arrival: O(m)

1. Find beta affinity, first “full” affinity: O(height of tree) =
O(m)

2. Walk up the tree and insert new job into doubly-linked
lists: O(height of tree) = O(m)

m…number of cores

Complexity of Job Selection
upon Arrival: O(m)

1. Find beta affinity, first “full” affinity: O(height of tree) =
O(m)

2. Walk up the tree and insert new job into doubly-linked
lists: O(height of tree) = O(m)

3. Find lowest-priority job in beta affinity’s list of scheduled
jobs: O(length of list) = O(size of affinity) = O(m)

m…number of cores

Complexity of Job Selection
upon Arrival: O(m)

1. Find beta affinity, first “full” affinity: O(height of tree) =
O(m)

2. Walk up the tree and insert new job into doubly-linked
lists: O(height of tree) = O(m)

3. Find lowest-priority job in beta affinity’s list of scheduled
jobs: O(length of list) = O(size of affinity) = O(m)

4. Walk up the tree and remove lowest-priority job from
doubly-linked lists: O(height of tree) = O(m)

m…number of cores

Complexity of Job Selection
upon Arrival: O(m)

1. Find beta affinity, first “full” affinity: O(height of tree) =
O(m)

2. Walk up the tree and insert new job into doubly-linked
lists: O(height of tree) = O(m)

3. Find lowest-priority job in beta affinity’s list of scheduled
jobs: O(length of list) = O(size of affinity) = O(m)

4. Walk up the tree and remove lowest-priority job from
doubly-linked lists: O(height of tree) = O(m)

5. Add to strict Fibonacci heap of backlogged jobs: O(1)

m…number of cores

Job Arrival Part 2: Placing the
Set of Selected Jobs: O(m)

Job Arrival Part 2: Placing the
Set of Selected Jobs: O(m)

1. Make a list for each leaf node in the affinity tree, containing the
free processors in the affinity: O(m)

Job Arrival Part 2: Placing the
Set of Selected Jobs: O(m)

1. Make a list for each leaf node in the affinity tree, containing the
free processors in the affinity: O(m)

2. copy the list of scheduled jobs from the root node: O(m)

Job Arrival Part 2: Placing the
Set of Selected Jobs: O(m)

1. Make a list for each leaf node in the affinity tree, containing the
free processors in the affinity: O(m)

2. copy the list of scheduled jobs from the root node: O(m)

3. sort the list of jobs by increasing affinity level 
(= decreasing distance to root node): O(m) — counting sort

Job Arrival Part 2: Placing the
Set of Selected Jobs: O(m)

1. Make a list for each leaf node in the affinity tree, containing the
free processors in the affinity: O(m)

2. copy the list of scheduled jobs from the root node: O(m)

3. sort the list of jobs by increasing affinity level 
(= decreasing distance to root node): O(m) — counting sort

4. for each job (bottom-up):
• assign to first core in job affinity’s free processor list and remove

core from list: O(m)
• when moving up a level, concatenate the processor lists of all

child nodes and assign to parent node: O(number of distinct
affinities) = O(m)

Insight: Reuse Job Arrival Procedure
for "Cleanup" After Job Departure

Insight: Reuse Job Arrival Procedure
for "Cleanup" After Job Departure

• Problem: restoring the strong APA invariant after a job
departure is not trivial.

• The next job to be scheduled could come from
any of the affinity nodes in the tree.

Insight: Reuse Job Arrival Procedure
for "Cleanup" After Job Departure

• Problem: restoring the strong APA invariant after a job
departure is not trivial.

• The next job to be scheduled could come from
any of the affinity nodes in the tree.

• Solution: simulate a job arrival of the highest-
priority backlogged job for each distinct affinity

➔ O(log n + m2)

Insight: Reuse Job Arrival Procedure
for "Cleanup" After Job Departure

• Problem: restoring the strong APA invariant after a job
departure is not trivial.

• The next job to be scheduled could come from
any of the affinity nodes in the tree.

• Solution: simulate a job arrival of the highest-
priority backlogged job for each distinct affinity

➔ O(log n + m2)

remove from strict
Fibonacci heap

run O(m) arrival
procedure for each of
O(m) distinct affinities

Speed-Up Bounds

• quantifiable relation to system optimality

• a way to structure the space of non-optimal algorithms

• the lower the speed-up bound, the better

Speed-up bound X for algorithm A
If a task set is schedulable under any policy on m
unit-speed processors, then it is also schedulable
under A with m processors of speed X.

First Speed-Up Results for Real-Time
Scheduling with Affinity Restrictions

Considered special cases:

• job priorities determined with EDF

and either

• bi-level affinities or

• clustered affinities.

Bi-Level Affinities
• each task is assigned either

• a global affinity (can use all cores) or

• a singleton affinity (can use only one specific
core)

Bi-Level Affinities
• each task is assigned either

• a global affinity (can use all cores) or

• a singleton affinity (can use only one specific
core)

HPA-EDF + Bi-Level Affinities
required speed-up s: s < 2.415

Bi-Level Affinities
• each task is assigned either

• a global affinity (can use all cores) or

• a singleton affinity (can use only one specific
core)

HPA-EDF + Bi-Level Affinities
required speed-up s: s < 2.415

Context
speed-up bound 
of global EDF is 2

Clustered Affinities
• each task is assigned either

• a global affinity (can use all cores) or

• a clustered affinity (can use only subset of cores)

• all clusters are mutually disjoint

Clustered Affinities
• each task is assigned either

• a global affinity (can use all cores) or

• a clustered affinity (can use only subset of cores)

• all clusters are mutually disjoint

HPA-EDF + Clustered Affinities
required speed-up s: s < 3.562

Implementation in

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

www.litmus-rt.org

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

http://www.litmus-rt.org

• real-time extension of the Linux kernel 
(currently, Linux 4.1)

• continuously maintained since 2006

• makes it easy easier to implement and
evaluate (multiprocessor) real-time resource
management policies on real hardware

• relevant highlights: built-in global migration
support and overhead tracing
infrastructure

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

[2006–2011]

[2011–]

Evaluation Questions

• Can you actually run the proposed HPA scheduler
in a real OS kernel?

• What practical tweaks are required?

• Isn't this algorithm prohibitively expensive in terms
of actual runtime overheads?

Baseline
• HPA-FP (HPA + fixed priority) implemented on top of Cerqueira

et al.’s message-passing-based global scheduler [RTAS’14].

• Basic idea 
➔ one designated scheduling processor (DSP) 
➔ DSP makes all scheduling decisions (for all cores) 
➔ application processors send job state changes via messages 
➔ simple dispatcher enacts scheduling decisions on app procs.

DSP APP

APP APP

job assignment

job departure

Baseline
• HPA-FP (HPA + fixed priority) implemented on top of Cerqueira

et al.’s message-passing-based global scheduler [RTAS’14].

• Basic idea 
➔ one designated scheduling processor (DSP) 
➔ DSP makes all scheduling decisions (for all cores) 
➔ application processors send job state changes via messages 
➔ simple dispatcher enacts scheduling decisions on app procs.

DSP APP

APP APP

job assignment

job departure

+ no locking of
scheduler state

+ no cache-line
bouncing

+ better scalability
[max. overheads]

Practical Tweaks

Practical Tweaks
• Affinity tree is explicitly stored in kernel and dynamically

extended as tasks are admitted

Practical Tweaks
• Affinity tree is explicitly stored in kernel and dynamically

extended as tasks are admitted

• Message-passing-based design removes the need to
synchronize tree traversals (big plus!).

Practical Tweaks
• Affinity tree is explicitly stored in kernel and dynamically

extended as tasks are admitted

• Message-passing-based design removes the need to
synchronize tree traversals (big plus!).

• Strict Fibonacci heaps are complicated & slow 
➔ use standard priority bitmap + linked lists  
➔ effectively O(1) for fixed #priorities

Practical Tweaks
• Affinity tree is explicitly stored in kernel and dynamically

extended as tasks are admitted

• Message-passing-based design removes the need to
synchronize tree traversals (big plus!).

• Strict Fibonacci heaps are complicated & slow 
➔ use standard priority bitmap + linked lists  
➔ effectively O(1) for fixed #priorities

• Locality-aware task mapping to avoid needless migrations
(Algorithm 6) 
➔ implemented with sets (=bit operations) 
➔ effectively O(1) for fixed, small #cores

Platform & Workloads
Platform
• Xeon E7 8857, two sockets, 12 cores each (m = 24)
• private L1 and L2 (32 KiB and 256 KiB, resp.)
• shared L3 (30 MiB) per socket
Workload
• 75%/85% utilization
• execution costs: Emberson et al. (2010)
• log-uniform periods 1ms to 1000ms
• 2m to 10m tasks (48 to 240)
• three affinity levels: global, socket, partitioned
• rate-monotonic priorities

Experiments
• 150 task sets per scheduler

• 60 seconds per task set

• traced scheduler  
overheads with 
Feather-Trace

• 34 GiB trace data

• extracted 700,000,000 valid samples

Results Overview
• substantially increased costs (~1.5x to ~3.5x), but

still in a feasible range (a few microseconds)

0

2

4

6

8

10

12

14

99.9th perc. 99th perc. 95th perc. median average

1.801.23

4.16

7.37

12.92

2.75
3.41

6.99
8.32

10.62

1.431.09

3.13

4.89

8.51

0.820.98
1.97

4.63
5.79

Global DSP
Global DISPATCHER
APA DSP
APA DISPATCHER

�3

m
ic

ro
se

co
nd

s

Evaluation Questions
• Can you actually run the proposed HPA scheduler

in a real OS kernel?

• What practical tweaks are required?

• Isn't this algorithm prohibitively expensive in terms
of actual runtime overheads?

Evaluation Questions
• Can you actually run the proposed HPA scheduler

in a real OS kernel?

• What practical tweaks are required?

• Isn't this algorithm prohibitively expensive in terms
of actual runtime overheads?

➔ Yes!

Evaluation Questions
• Can you actually run the proposed HPA scheduler

in a real OS kernel?

• What practical tweaks are required?

• Isn't this algorithm prohibitively expensive in terms
of actual runtime overheads?

➔ Yes!

➔ locality-aware assignment and simpler queues

Evaluation Questions
• Can you actually run the proposed HPA scheduler

in a real OS kernel?

• What practical tweaks are required?

• Isn't this algorithm prohibitively expensive in terms
of actual runtime overheads?

➔ Yes!

➔ locality-aware assignment and simpler queues

➔ more costly, but not prohibitively so

Concluding Remarks

Summary

Summary
Hierarchical processor affinities are an important special case.

Summary
Hierarchical processor affinities are an important special case.

The laminar affinity structure allows for a much more
efficient online scheduler.

Summary
Hierarchical processor affinities are an important special case.

The laminar affinity structure allows for a much more
efficient online scheduler.

first speed-up result for real-
time scheduling with restricted

processor affinities

Summary
Hierarchical processor affinities are an important special case.

The laminar affinity structure allows for a much more
efficient online scheduler.

first speed-up result for real-
time scheduling with restricted

processor affinities

first implementation of a
strong APA scheduler in a real

OS kernel

Some Open Questions
• A more efficient weak HPA scheduler?

• Speed-up bounds for more general cases?

• More accurate schedulability tests for strong and
weak HPA scheduling?

• Is there some interesting class of affinities
between arbitrary and hierarchical?

APA > ?PA > HPA

• New release 2016.1  
➔ framework for proper reservation-based scheduling

• A new tutorial: Getting Started with LITMUSRT 
➔ http://www.litmus-rt.org/tutor16/

• Detailed artifact evaluation instructions 
➔ how to run our HPA scheduler  
➔ how to collect and process data  
➔ https://www.mpi-sws.org/~bbb/papers/ae/ecrts16/laminar-apa.html

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

http://www.litmus-rt.org/tutor16/
https://www.mpi-sws.org/~bbb/papers/ae/ecrts16/laminar-apa.html

Appendix

Job Departure Step 1:
Remove from Lists

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

affinity of departing job
↵r

Job Departure Step 1:
Remove from Lists

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

affinity of departing job
↵r

remove from list in each
affinity on path to root

Job Departure Step 2: 
Find Max in each Affinity

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

J1 J2 J3 J4

J5 J6

J7

Job Departure Step 2: 
Find Max in each Affinity

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

find highest-priority
backlogged job in each

distinct affinity
(Fibonacci Heap)

J1 J2 J3 J4

J5 J6

J7

Job Departure Step 3: 
Simulate Arrivals

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

find highest-priority
backlogged job in each

distinct affinity
(Fibonacci Heap)

J1 J2 J3 J4

J5 J6

J7

Job Departure Step 3: 
Simulate Arrivals

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

find highest-priority
backlogged job in each

distinct affinity
(Fibonacci Heap)

J1 J2 J3 J4

J5 J6

J7
run arrival procedure for

each such job (in any order)
[but don’t modify

backlogged heap]

Job Departure Step 4:  
Remove from Backlogged Heap

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

J5

Job Departure Step 4:  
Remove from Backlogged Heap

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

J5

at most one job will
effectively be added to list

of scheduled jobs

Job Departure Step 4:  
Remove from Backlogged Heap

Π1 Π2 Π3 Π4 Π5 Π6 Π7 Π8 Π9 Π10 Π11 Π12

J5

at most one job will
effectively be added to list

of scheduled jobs

remove this job from the
heap of backlogged jobs

Complexity of Job
Departure: O(log n + m2)

n…number of tasks m…number of cores

Complexity of Job
Departure: O(log n + m2)

1. Walk up the tree and remove departing job from
lists: O(height of tree) = O(m)

n…number of tasks m…number of cores

Complexity of Job
Departure: O(log n + m2)

1. Walk up the tree and remove departing job from
lists: O(height of tree) = O(m)

2. Find highest-priority backlogged job in each
affinity: O(#distinct affinities) = O(m)

n…number of tasks m…number of cores

Complexity of Job
Departure: O(log n + m2)

1. Walk up the tree and remove departing job from
lists: O(height of tree) = O(m)

2. Find highest-priority backlogged job in each
affinity: O(#distinct affinities) = O(m)

3. Simulate arrivals: O(#distinct affinities x m) =
O(m2)

n…number of tasks m…number of cores

Complexity of Job
Departure: O(log n + m2)

1. Walk up the tree and remove departing job from
lists: O(height of tree) = O(m)

2. Find highest-priority backlogged job in each
affinity: O(#distinct affinities) = O(m)

3. Simulate arrivals: O(#distinct affinities x m) =
O(m2)

4. Remove from backlogged: O(log n)

n…number of tasks m…number of cores

