Multiprocessor Real-Time Scheduling with Hierarchical Processor Affinities

Vincenzo Bonifaci
IASI–CNR

Björn Brandenburg
MPI-SWS

Gianlorenzo D'Angelo
Gran Sasso Science Institute

Alberto Marchetti-Spaccamela
Sapienza Università di Roma
This Paper

Setting

- Real-time scheduling with **restricted processor affinities**
 - *each task may run only on certain processors*
This Paper

Setting

• Real-time scheduling with restricted processor affinities → each task may run only on certain processors

Contributions

• Identify hierarchical (or laminar) affinities → as a special case of great practical relevance

• Non-obvious online scheduling algorithm → with improved runtime complexity

• Performance characterization:
 1. speed-up bounds for clustered and bi-level affinities
 2. prototype implementation in LITMUS$^\text{RT}$ and overhead evaluation on 24-core Xeon multicore platform
Background
Processor Affinity

• interface to **restrict the set of processors** on which a task may be scheduled

• widely available in multiprocessor (real-time) OSs

<table>
<thead>
<tr>
<th>OS</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux</td>
<td><code>sched_setaffinity()</code></td>
</tr>
<tr>
<td>FreeBSD</td>
<td><code>cpuset_setaffinity()</code></td>
</tr>
<tr>
<td>Windows</td>
<td><code>SetThreadAffinityMask()</code></td>
</tr>
<tr>
<td>QNX</td>
<td><code>ThreadCtl(_NTO_TCTL_RUNMASK)</code></td>
</tr>
<tr>
<td>VxWorks</td>
<td><code>taskCpuAffinitySet()</code></td>
</tr>
</tbody>
</table>
Arbitrary Processor Affinity (APA) Scheduling (Gujarati et al., 2013)

- first analysis of processor affinity in real-time systems

- the usual sporadic task model: C_i, D_i, T_i

- set of (identical) processors Π_1, \ldots, Π_m

- plus an arbitrary per-task affinity set

$$\alpha_i \subseteq \{ \Pi_1, \ldots, \Pi_m \}$$
Strong vs. Weak APA Scheduling (Gujarati et al., 2014)

weak APA invariant

a job is backlogged only if all processors in its affinity execute jobs of equal or higher priority

- Linux, QNX, etc.
- easier to implement

strong APA invariant

weak invariant + no way to “re-arrange” higher-priority jobs to free up a core for a backlogged job

- better schedulability
- this paper
Arbitrary Affinities: Difficult Scheduling Problem

- difficult to analyze
- difficult to schedule at runtime
Basic Operations

Job Arrival: preemption necessary?

- for **each core** in affinity, check if new job can be placed
- **weak APA:** only by preemption lower-priority tasks
- **strong APA:** also by *shifting* higher-priority tasks to other cores

\[O(m^2) \]

\(n \)…number of tasks \(m \)…number of cores
Basic Operations

Job Arrival: preemption necessary?

- for each core in affinity, check if new job can be placed
- weak APA: only by preempting lower-priority tasks
- strong APA: also by **shifting** higher-priority tasks to other cores

\[\mathcal{O}(m^2) \]

Job Departure: schedule backlogged job?

- for each backlogged job, check if freed processor can be used
- weak APA: only if freed processor is in affinity set
- strong APA: also by **shifting** higher-priority tasks to other cores

\[\mathcal{O}(nm) \]

\(n \)...number of tasks \hspace{1cm} m \)...number of cores
Prior Strong APA Scheduling Results

<table>
<thead>
<tr>
<th></th>
<th>Strong APA (Gujarati et al., 2014)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job arrival cost</td>
<td>$O(m^2)$</td>
</tr>
<tr>
<td>Job departure cost</td>
<td>$O(nm)$</td>
</tr>
<tr>
<td>Speed-up bound</td>
<td>—</td>
</tr>
<tr>
<td>Implemented in OS?</td>
<td>—</td>
</tr>
<tr>
<td>Schedulability test</td>
<td>sufficient</td>
</tr>
</tbody>
</table>

- n...number of tasks
- m...number of cores

Difficult to improve the general case. (combinatorial structure)

But what if we rule out pathological combinations?
Hierarchical Processor Affinities (HPA)
Arbitrary Processor Affinities?

Why do users typically restrict processor affinities?
Arbitrary Processor Affinities?

Why do users typically restrict processor affinities?

- **cache affinity**: e.g., stay on same core / pair of cores / socket to maintain L1 / L2 / L3 affinity, respectively
Arbitrary Processor Affinities?

Why do users typically restrict processor affinities?

- **cache affinity**: e.g., stay on same core / pair of cores / socket to maintain L1 / L2 / L3 affinity, respectively

- **interrupt throughput**: e.g., execute network-facing daemon on same core that processes network interrupts
Arbitrary Processor Affinities?

Why do users typically restrict processor affinities?

- **cache affinity**: e.g., stay on same core / pair of cores / socket to maintain L1 / L2 / L3 affinity, respectively

- **interrupt throughput**: e.g., execute network-facing daemon on same core that processes network interrupts

- **interrupt isolation**: e.g., execute only on half of cores that do not handle device interrupts
Arbitrary Processor Affinities?

Why do users typically restrict processor affinities?

- **cache affinity**: e.g., stay on same core / pair of cores / socket to maintain L1 / L2 / L3 affinity, respectively

- **interrupt throughput**: e.g., execute network-facing daemon on same core that processes network interrupts

- **interrupt isolation**: e.g., execute only on half of cores that do not handle device interrupts

- **security isolation**: e.g., avoid micro-architectural timing channels by forcing sensitive and less trusted tasks to run on separate cores
Arbitrary Processor Affinities?

Why do users typically restrict processor affinities?

- **cache affinity**: e.g., stay on same core / pair of cores / socket to maintain L1 / L2 / L3 affinity, respectively

- **interrupt throughput**: e.g., execute network-facing daemon on same core that processes network interrupts

- **interrupt isolation**: e.g., execute only on half of cores that do not handle device interrupts

- **security isolation**: e.g., avoid micro-architectural timing channels by forcing sensitive and less trusted tasks to run on separate cores

All resulting affinities naturally exhibit structure. They are not completely arbitrary!
Natural Affinity Structure

• **Goal: isolation**
 → system sliced into differently sized "compartments"
 → affinities do not overlap (complete exclusion)

• **Goal: cache affinity**
 → affinities reflect memory hierarchy
 → smaller affinities part of larger affinities (full inclusion)

• **Goal: sequencing of tasks (partial partitioning)**
 → singleton affinities

• **Goal: average-case response-time improvements**
 → global (or at least very large) affinities
Hierarchical (or Laminar) Processor Affinities (HPA)

• **Laminar family** of affinity sets (*tree-like structure*)

• For any two jobs, either:

\[
\alpha_i \subseteq \alpha_j \quad \text{or} \quad \alpha_j \subseteq \alpha_i \quad \text{or} \quad \alpha_j \cap \alpha_i = \emptyset
\]
Example HPA Inclusion Tree

- **all cores** (global affinity)
- **two sockets** (e.g., shared L3)
- **half of socket** (e.g., shared L2)
Overview of Results

<table>
<thead>
<tr>
<th></th>
<th>Strong APA (Gujarati et al., 2014)</th>
<th>Strong HPA (this paper)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job arrival cost</td>
<td>$O(m^2)$</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>Job departure cost</td>
<td>$O(nm)$</td>
<td>$O(\log n + m^2)$</td>
</tr>
<tr>
<td>Speed-up bound</td>
<td>—</td>
<td>2.415 (bi-level + EDF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.562 (clustered + EDF)</td>
</tr>
<tr>
<td>Implemented in OS?</td>
<td>—</td>
<td>LITMUS$^\text{RT}$</td>
</tr>
<tr>
<td>Schedulability test</td>
<td>sufficient</td>
<td>—</td>
</tr>
</tbody>
</table>

n...number of tasks
m...number of cores
An Efficient Strong HPA Scheduler
Insight: Separate Job Selection from Job Placement

- **Job selection** (or admission): determine the set of jobs that should receive processor service
 - at most m, but subject to affinity constraints.

- **Job placement**: map set of selected jobs to processors, while respecting
 - all affinity constraints and
 - the strong APA invariant.
Algorithms in Paper

• Algorithms 1 & 2: *conceptual* scheduling algorithm → proof of *strong APA invariant*, but bad complexity

• Algorithms 3–5: *runtime* scheduling algorithm → same schedule, but better complexity

• Algorithm 6: *locality-aware* assignment algorithm → avoids some migrations, but worse complexity → better suited for kernel-level implementation
Algorithms in Paper

- Algorithms 1 & 2: **conceptual** scheduling algorithm → proof of *strong APA invariant*, but bad complexity
- Algorithms 3–5: **runtime** scheduling algorithm → same schedule, but better complexity
- Algorithm 6: **locality-aware** assignment algorithm → avoids some migrations, but worse complexity
 → better suited for kernel-level implementation
Insight: Maintain State for each Distinct Affinity Set

- **don’t** have per-processor run-queues (Linux, etc.)
- **don’t** have just a single run queue
- **instead**, associate state with each distinct affinity (affinity tree node)
For each distinct affinity

• **doubly linked list** of scheduled jobs
 ➔ $O(1)$ Insert, Remove
 ➔ $O(n)$ FindMax

• **strict Fibonacci heap** of backlogged jobs
 ➔ $O(1)$ Insert, FindMax
 ➔ $O(\log n)$ Remove
Job Arrival Step 1: Find Beta

first “full” affinity on path to root (or root)

\[\beta \]

affinity of arriving job

\[\alpha_i \]
full: \#scheduled jobs (list) = \#processors in affinity

first “full” affinity on path to root (or root)

\[\beta \]

affinity of arriving job

\[\alpha_i \]
Job Arrival Step 2: Walk Up the Tree and Insert into Lists

first “full” affinity on path to root (or root)

\[\beta \]

affinity of arriving job

\[\alpha_i \]
Job Arrival Step 2: Walk Up the Tree and Insert into Lists

- First “full” affinity on path to root (or root)
- β
- Affinity of arriving job α_i

(unconditionally) **insert new job into list of scheduled jobs in each affinity on path to root**
Job Arrival Step 3: Find Lowest-Priority Job in Beta Affinity’s List

first “full” affinity on path to root (or root)

\(\beta \)

affinity of arriving job

\(\alpha_i \)
3: Find Lowest-priority Affinity’s List

Search list of “scheduled” jobs to find lowest-priority job

first “full” affinity on path to root (or root)

\[\alpha_i \]

affinity of arriving job

\[\beta \]
Job Arrival Step 4: Clean Up
Lists along Path to Root

\[\prod_1 \prod_2 \prod_3 \prod_4 \prod_5 \prod_6 \prod_7 \prod_8 \prod_9 \prod_{10} \prod_{11} \prod_{12} \]

affinity of lowest-priority job

\[\alpha_r \]

affinity of lowest-priority job
Job Arrival Step 4: Clean Up
Lists along Path to Root

\[\text{remove from list} \ \text{in each affinity on path to root, thereby ensuring that } \# \text{scheduled} \leq \# \text{cores} \]
Job Arrival Step 5: Add to Heap of Backlogged Jobs

\[\Pi_1 \Pi_2 \Pi_3 \Pi_4 \Pi_5 \Pi_6 \Pi_7 \Pi_8 \Pi_9 \Pi_{10} \Pi_{11} \Pi_{12} \]

\(\alpha_r \)

affinity of lowest-priority job
Job Arrival Step 5: Add to Heap of Backlogged Jobs

add to heap of backlogged jobs (only in own affinity)

affinity of lowest-priority job

add to heap of backlogged jobs (only in own affinity)
Complexity of Job Selection upon Arrival: $O(m)$

m...number of cores
Complexity of Job Selection upon Arrival: $O(m)$

1. Find beta affinity, first “full” affinity: $O(\text{height of tree}) = O(m)$

m...number of cores
Complexity of Job Selection upon Arrival: $O(m)$

1. Find beta affinity, first “full” affinity: $O(\text{height of tree}) = O(m)$

2. Walk up the tree and insert new job into doubly-linked lists: $O(\text{height of tree}) = O(m)$

m...number of cores
Complexity of Job Selection upon Arrival: $O(m)$

1. Find beta affinity, first “full” affinity: $O(\text{height of tree}) = O(m)$

2. Walk up the tree and insert new job into doubly-linked lists: $O(\text{height of tree}) = O(m)$

3. Find lowest-priority job in beta affinity’s list of scheduled jobs: $O(\text{length of list}) = O(\text{size of affinity}) = O(m)$

m...number of cores
Complexity of Job Selection upon Arrival: $O(m)$

1. Find beta affinity, first “full” affinity: $O(\text{height of tree}) = O(m)$

2. Walk up the tree and insert new job into doubly-linked lists: $O(\text{height of tree}) = O(m)$

3. Find lowest-priority job in beta affinity’s list of scheduled jobs: $O(\text{length of list}) = O(\text{size of affinity}) = O(m)$

4. Walk up the tree and remove lowest-priority job from doubly-linked lists: $O(\text{height of tree}) = O(m)$

m...number of cores
Complexity of Job Selection upon Arrival: $O(m)$

1. Find beta affinity, first "full" affinity: $O(\text{height of tree}) = O(m)$

2. Walk up the tree and insert new job into doubly-linked lists: $O(\text{height of tree}) = O(m)$

3. Find lowest-priority job in beta affinity’s list of scheduled jobs: $O(\text{length of list}) = O(\text{size of affinity}) = O(m)$

4. Walk up the tree and remove lowest-priority job from doubly-linked lists: $O(\text{height of tree}) = O(m)$

5. Add to strict Fibonacci heap of backlogged jobs: $O(1)$
Job Arrival Part 2: Placing the Set of Selected Jobs: $O(m)$
Job Arrival Part 2: Placing the Set of Selected Jobs: $O(m)$

1. Make a list for each leaf node in the affinity tree, containing the free processors in the affinity: $O(m)$
Job Arrival Part 2: Placing the Set of Selected Jobs: $O(m)$

1. Make a list for each leaf node in the affinity tree, containing the free processors in the affinity: $O(m)$

2. Copy the list of scheduled jobs from the root node: $O(m)$
Job Arrival Part 2: Placing the Set of Selected Jobs: $O(m)$

1. Make a list for each leaf node in the affinity tree, containing the free processors in the affinity: $O(m)$

2. copy the list of scheduled jobs from the root node: $O(m)$

3. sort the list of jobs by increasing affinity level (= decreasing distance to root node): $O(m) —$ counting sort
Job Arrival Part 2: Placing the Set of Selected Jobs: $O(m)$

1. Make a list for each leaf node in the affinity tree, containing the free processors in the affinity: $O(m)$

2. copy the list of scheduled jobs from the root node: $O(m)$

3. sort the list of jobs by increasing affinity level (= decreasing distance to root node): $O(m) —$ counting sort

4. for each job (bottom-up):
 - assign to first core in job affinity’s free processor list and remove core from list: $O(m)$
 - when moving up a level, concatenate the processor lists of all child nodes and assign to parent node: $O(number \ of \ distinct \ affinities) = O(m)$
Insight: Reuse Job Arrival Procedure for "Cleanup" After Job Departure
Insight: Reuse Job Arrival Procedure for "Cleanup" After Job Departure

- **Problem**: restoring the strong APA invariant after a job departure is not trivial.

- The **next job to be scheduled** could come from **any** of the affinity nodes in the tree.
Insight: Reuse Job Arrival Procedure for "Cleanup" After Job Departure

- **Problem**: restoring the strong APA invariant after a job departure is not trivial.

- The **next job to be scheduled** could come from **any** of the affinity nodes in the tree.

- **Solution**: *simulate* a job **arrival** of the **highest-priority backlogged** job for each distinct affinity

→ $O(\log n + m^2)$
Insight: Reuse Job Arrival Procedure for "Cleanup" After Job Departure

- **Problem**: restoring the strong APA invariant after a job departure is not trivial.

- The **next job to be scheduled** could come from **any** of the affinity nodes in the tree.

- **Solution**: *simulate* a job **arrival** of the **highest-priority backlogged** job for each distinct affinity

 → $O(\log n + m^2)$

 - remove from strict Fibonacci heap
 - run $O(m)$ arrival procedure for each of $O(m)$ distinct affinities
Speed-Up Bounds
Speed-up bound X for algorithm A

If a task set is schedulable under any policy on m unit-speed processors, then it is also schedulable under A with m processors of speed X.

- quantifiable relation to system optimality
- a way to structure the space of non-optimal algorithms
- the lower the speed-up bound, the better
First Speed-Up Results for Real-Time Scheduling with Affinity Restrictions

Considered special cases:

• job priorities determined with **EDF**

and either

• **bi-level** affinities or

• **clustered** affinities.
Bi-Level Affinities

- each task is assigned either
 - a **global** affinity (can use all cores) or
 - a **singleton** affinity (can use only one specific core)
Bi-Level Affinities

- each task is assigned either
 - a **global** affinity (can use all cores) or
 - a **singleton** affinity (can use only one specific core)

HPA-EDF + Bi-Level Affinities

required speed-up s: $s < 2.415$
Bi-Level Affinities

- each task is assigned either
 - a **global** affinity (can use all cores) or
 - a **singleton** affinity (can use only one specific core)

Context

speed-up bound of global EDF is **2**

HPA-EDF + Bi-Level Affinities

required speed-up \(s < 2.415 \)
Clustered Affinities

• each task is assigned either
 • a global affinity (can use all cores) or
 • a clustered affinity (can use only subset of cores)

• all clusters are mutually disjoint
Clustered Affinities

- each task is assigned either
 - a \textit{global} affinity (can use all cores) or
 - a \textit{clustered} affinity (can use only subset of cores)
- all \textit{clusters} are mutually disjoint

\textbf{HPA-EDF + Clustered Affinities}

required speed-up \(s \): \(s < 3.562 \)
Implementation in

LITMUS RT

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

www.litmus-rt.org
• real-time extension of the Linux kernel (currently, Linux 4.1)

• continuously maintained since 2006

• makes it easier to implement and evaluate (multiprocessor) real-time resource management policies on real hardware

• relevant highlights: built-in global migration support and overhead tracing infrastructure
Evaluation Questions

• Can you actually run the proposed HPA scheduler **in a real OS kernel**?

• What **practical tweaks** are required?

• Isn't this algorithm prohibitively expensive in terms of **actual runtime overheads**?
Baseline

- **HPA-FP** (HPA + fixed priority) implemented on top of Cerqueira et al.’s *message-passing-based global scheduler* [RTAS’14].

- **Basic idea**
 - one *designated scheduling processor* (**DSP**)
 - **DSP** makes *all* scheduling decisions (for all cores)
 - *application processors* send job state changes via messages
 - simple **dispatcher** enacts scheduling decisions on app procs.
Baseline

- **HPA-FP** (HPA + fixed priority) implemented on top of Cerqueira et al.'s message-passing-based global scheduler [RTAS’14].

- **Basic idea**
 - one designated scheduling processor (**DSP**)
 - **DSP** makes all scheduling decisions (for all cores)
 - application processors send job state changes via messages
 - simple **dispatcher** enacts scheduling decisions on app procs.

- **Features**
 - no locking of scheduler state
 - no cache-line bouncing
 - better scalability [max. overheads]
Practical Tweaks
Practical Tweaks

• **Affinity tree** is explicitly stored in kernel and **dynamically extended** as tasks are admitted
Practical Tweaks

- **Affinity tree** is explicitly stored in kernel and *dynamically extended* as tasks are admitted.

- Message-passing-based design removes the need to synchronize tree traversals (big plus!).
Practical Tweaks

- **Affinity tree** is explicitly stored in kernel and **dynamically extended** as tasks are admitted.

- Message-passing-based design removes the need to synchronize tree traversals (big plus!).

- **Strict Fibonacci heaps** are complicated & slow
 → use standard **priority bitmap + linked lists**
 → **effectively O(1)** for fixed #priorities
Practical Tweaks

- **Affinity tree** is explicitly stored in kernel and **dynamically extended** as tasks are admitted.

- Message-passing-based design removes the need to synchronize tree traversals (big plus!).

- **Strict Fibonacci heaps** are complicated & slow
 - use standard priority bitmap + linked lists
 - **effectively O(1)** for fixed #priorities

- **Locality-aware task mapping** to avoid needless migrations (Algorithm 6)
 - implemented with sets (=bit operations)
 - **effectively O(1)** for fixed, small #cores
Platform & Workloads

Platform
• Xeon E7 8857, two sockets, 12 cores each ($m = 24$)
• private L_1 and L_2 (32 KiB and 256 KiB, resp.)
• shared L_3 (30 MiB) per socket

Workload
• 75%/85% utilization
• execution costs: Emberson et al. (2010)
• log-uniform periods 1ms to 1000ms
• $2m$ to $10m$ tasks (48 to 240)
• three affinity levels: global, socket, partitioned
• rate-monotonic priorities
Experiments

- 150 task sets per scheduler
- 60 seconds per task set
- traced scheduler overheads with Feather-Trace
- 34 GiB trace data
- extracted 700,000,000 valid samples
Results Overview

- substantially increased costs (~1.5x to ~3.5x), but still in a feasible range (a few microseconds)
Evaluation Questions

• Can you actually run the proposed HPA scheduler in a real OS kernel?

• What practical tweaks are required?

• Isn't this algorithm prohibitively expensive in terms of actual runtime overheads?
Evaluation Questions

• Can you actually run the proposed HPA scheduler in a real OS kernel?
 ➔ Yes!

• What practical tweaks are required?

• Isn't this algorithm prohibitively expensive in terms of actual runtime overheads?
Evaluation Questions

• Can you actually run the proposed HPA scheduler in a real OS kernel?
 \[\Rightarrow \text{Yes!} \]

• What practical tweaks are required?
 \[\Rightarrow \text{locality-aware assignment and simpler queues} \]

• Isn't this algorithm prohibitively expensive in terms of actual runtime overheads?
Evaluation Questions

• Can you actually run the proposed HPA scheduler in a real OS kernel?
 → Yes!

• What practical tweaks are required?
 → locality-aware assignment and simpler queues

• Isn't this algorithm prohibitively expensive in terms of actual runtime overheads?
 → more costly, but not prohibitively so
Concluding Remarks
Summary
Hierarchical processor affinities are an important special case.
Hierarchical processor affinities are an important special case.

The laminar affinity structure allows for a much more efficient online scheduler.
Hierarchical processor affinities are an important special case.

The laminar affinity structure allows for a much more efficient online scheduler.

First speed-up result for real-time scheduling with restricted processor affinities.
Summary

Hierarchical processor affinities are an important special case.

The laminar affinity structure allows for a much more efficient online scheduler.

first speed-up result for real-time scheduling with restricted processor affinities

first implementation of a strong APA scheduler in a real OS kernel
Some Open Questions

• A more efficient weak HPA scheduler?

• Speed-up bounds for more general cases?

• More accurate schedulability tests for strong and weak HPA scheduling?

• Is there some interesting class of affinities between arbitrary and hierarchical?

APA > ?PA > HPA
• New release 2016.1
 ➔ framework for proper reservation-based scheduling

• A new tutorial: Getting Started with LITMUSRT
 ➔ http://www.litmus-rt.org/tutor16/

• Detailed artifact evaluation instructions
 ➔ how to run our HPA scheduler
 ➔ how to collect and process data
Appendix
Job Departure Step 1: Remove from Lists

\(\alpha_r \)

affinity of departing job
Job Departure Step 1: Remove from Lists

remove from list in each affinity on path to root

\(\alpha_r \) affinity of departing job
Job Departure Step 2: Find Max in each Affinity

\[\Pi_1 \Pi_2 \Pi_3 \Pi_4 \Pi_5 \Pi_6 \Pi_7 \Pi_8 \Pi_9 \Pi_{10} \Pi_{11} \Pi_{12} \]
Job Departure Step 2: Find Max in each Affinity

Find highest-priority backlogged job in each distinct affinity (Fibonacci Heap)
Job Departure Step 3: Simulate Arrivals

find highest-priority backlogged job in each distinct affinity (Fibonacci Heap)
Job Departure Step 3: Simulate Arrivals

run arrival procedure for each such job (in any order)

[but don’t modify backlogged heap]

find highest-priority backlogged job in each distinct affinity (Fibonacci Heap)
Job Departure Step 4: Remove from Backlogged Heap
Job Departure Step 4: Remove from Backlogged Heap

at most one job will effectively be added to list of scheduled jobs
Job Departure Step 4: Remove from Backlogged Heap

- at most **one job** will effectively be **added to list of scheduled jobs**
- **remove** this job from the heap of **backlogged jobs**
Complexity of Job Departure: $O(\log n + m^2)$

n...number of tasks
m...number of cores
Complexity of Job Departure: $O(\log n + m^2)$

1. Walk up the tree and remove departing job from lists: $O(\text{height of tree}) = O(m)$

n...number of tasks

m...number of cores
Complexity of Job Departure: $O(\log n + m^2)$

1. Walk up the tree and remove departing job from lists: $O(\text{height of tree}) = O(m)$

2. Find highest-priority backlogged job in each affinity: $O(\#\text{distinct affinities}) = O(m)$

n...number of tasks

m...number of cores
Complexity of Job Departure: \(O(\log n + m^2)\)

1. Walk up the tree and remove departing job from lists: \(O(\text{height of tree}) = O(m)\)

2. Find highest-priority backlogged job in each affinity: \(O(\#\text{distinct affinities}) = O(m)\)

3. Simulate arrivals: \(O(\#\text{distinct affinities} \times m) = O(m^2)\)

\(n\ldots\text{number of tasks}\)

\(m\ldots\text{number of cores}\)
Complexity of Job Departure: $O(\log n + m^2)$

1. Walk up the tree and remove departing job from lists: $O($height of tree$) = O(m)$

2. Find highest-priority backlogged job in each affinity: $O($#distinct affinities$) = O(m)$

3. Simulate arrivals: $O($#distinct affinities x m) = $O(m^2)$

4. Remove from backlogged: $O(\log n)$

n…number of tasks

m…number of cores