
Prosa: A Case for Readable Mechanized
Schedulability Analysis

Felipe Cerqueira, Felix Stutz, Björn B. Brandenburg

1

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

Prosa

Open-source foundation for formally 
proven schedulability analysis

Readable Formal  
Specification

Jobs

Response time

Multiprocessor

…

Mechanized 
Proofs

Response-time  
Bounds

…

Schedulability 
Tests

2

This Talk

3

This Talk

4

Mechanized proofs provide an opportunity to avoid  
the correctness pitfalls in real-time scheduling.

This Talk

5

Mechanized proofs provide an opportunity to avoid  
the correctness pitfalls in real-time scheduling.

By focusing on readability and by maintaining the
established proof culture, mechanized proofs 

can reach the community at large.

This Talk

6

By focusing on readability and by maintaining the
established proof culture, mechanized proofs 

can reach the community at large.

Mechanized proofs provide an opportunity to avoid  
the correctness pitfalls in real-time scheduling.

Thanks to mature proof assistants and libraries,  
Prosa allows mechanizing recent and complex 

schedulability analyses in reasonable time.

Outline of the Talk

7

Why mechanized proofs?

Challenges & Principles

A Taste of Prosa

Outline of the Talk

8

Why mechanized proofs?

Challenges & Principles

A Taste of Prosa

What do we mean  
by mechanized?

9

RTS theory has been built 
with pen-and-paper proofs

10

RTS theory has been built 
with pen-and-paper proofs

11

Pen-and-paper 
proofs

Semi-formal  
specification

Abstract view  
of the system

Schedulability  
analysis

X ei
Ti

 1

What is mechanized 
schedulability analysis?

Pen-and-paper 
proofs

Semi-formal  
specification

Abstract view  
of the system

Schedulability  
analysis

X ei
Ti

 1

12

What is the  
difference?

What is mechanized 
schedulability analysis?

13

Pen-and-paper 
proofs

Abstract view  
of the system

Schedulability  
analysis

X ei
Ti

 1

Formal  
specification

We switch to a  
formal specification

What is mechanized 
schedulability analysis?

Abstract view  
of the system

Schedulability  
analysis

X ei
Ti

 1

14

Formal  
specification

We prove theorems 
using a proof assistant

Mechanized 
proofs

What is mechanized 
schedulability analysis?

Abstract view  
of the system

15

Formal  
specification The resulting  

schedulability analysis 
is formally verified

Mechanized 
proofs

Mechanized 
Schedulability  

analysis

Why mechanized proofs?

16

Why mechanized proofs?

17

Guaranteed Correctness

Trustworthy  
Extensions

Safe  
Composition

55 73 86 95 98 year

model complexity
(realism)

90

single
job

EDD

EDL
EDF

RM EDF

periodic

RTA PDC

Exact
Analysis

SRP

PIP
PCP Resource

sharing

2000 07 11 04 14

DAGs%
Digraf%

BROE%
BWI% SIRAP%

Overrun%
Elas8c%

Skip%
Imprecise%
flexible

CBS
PS

DS
SS TBS Slack

Stealer

Resource
Reservation

DPM DVFS

Some major achievements

15"

RTS have become more complex

Source: G. Buttazzo (Keynote @ RTSS’14) 18

55 73 86 95 98 year

model complexity
(realism)

90

single
job

EDD

EDL
EDF

RM EDF

periodic

RTA PDC

Exact
Analysis

SRP

PIP
PCP Resource

sharing

2000 07 11 04 14

DAGs%
Digraf%

BROE%
BWI% SIRAP%

Overrun%
Elas8c%

Skip%
Imprecise%
flexible

CBS
PS

DS
SS TBS Slack

Stealer

Resource
Reservation

DPM DVFS

Some major achievements

15"

RTS have become more complex

Source: G. Buttazzo (Keynote @ RTSS’14)

We need complex models
to support real-world  

requirements

19

This complexity comes with a price

The original analysis for CAN  
had a bug that remained  

undetected from 1994 to 2006 [1].

[1] Davis, R. I., Burns, A., Bril, R. J., & Lukkien, J. J. “Controller Area Network (CAN) schedulability analysis: Refuted, revisited and
revised.” Real-Time Systems, 35(3), 239-272, 2007. 20 20

our paper

Proofs have become so complicated  
that they often contain bugs.

Bugs are no longer an exception

21

Analysis for safety-critical systems?

22

How to ensure that schedulability  
analysis is actually correct?

Analysis for safety-critical systems?

How to ensure that schedulability  
analysis is actually correct?

Mechanized 
proofs

Opportunity: correctness is inherently guaranteed.
23

Why mechanized proofs?

24

Trustworthy  
Extensions

Safe  
Composition

Guaranteed Correctness

Analyses sometimes need refining

In most analyses, practical details 
are assumed to be negligible.

Basic Analysis

25

Analyses sometimes need refining

Overhead
Accounting

Blocking Analysis

Task Dependence

But when deploying actual systems, 
we might need to refine the analysis.

Basic Analysis

26

Analyses sometimes need refining

Overhead
Accounting

Blocking Analysis

Task Dependence

But when deploying actual systems, 
we might need to refine the analysis.

Basic Analysis

27

We call these extensions 
(i.e., same results + tweaks) 

neighboring proofs.}

Example: incorporating release jitter

Ri = Ji + ei + ri

ri ei +
X

⌧j2hpi

⇠
ri + Jj
Tj

⇡
ejRi ei +

X

⌧j2hpi

⇠
Ri

Tj

⇡
ej

Basic RTA RTA with Jitter

Uniprocessor

Multiprocessor ???

Ri = Ji + ei + ri

ri ei +
X

⌧j2hpi

⇠
ri + Jj
Tj

⇡
ejRi ei +

X

⌧j2hpi

⇠
Ri

Tj

⇡
ej

Ri ei +
X

⌧j2hpi

⇠
Ij(Ri)

Tj

⇡
ej

It has been known for more than 20 years how to  
incorporate release jitter into uniprocessor RTA [3].

[3] Audsley, N., Burns A., Richardson, M., Tindell, K., and Wellings, A. “Applying new scheduling theory to static priority pre-emptive
scheduling,” Software Engineering Journal, vol. 8, no. 5, pp. 284-292, 1993. 28

Example: incorporating release jitter

Basic RTA RTA with Jitter

Uniprocessor

Multiprocessor ???

Ri = Ji + ei + ri

ri ei +
X

⌧j2hpi

⇠
ri + Jj
Tj

⇡
ejRi ei +

X

⌧j2hpi

⇠
Ri

Tj

⇡
ej

But this result has not been  
proven for multiprocessor RTA.

29

Ri ei +
1

m
·
X

⌧j2hpi

�
Ij(Ri)

Tj

⌫
rj

Can we do the same for multiprocessors?

Basic RTA RTA with Jitter

Uniprocessor

Multiprocessor ???

Ri = Ji + ei + ri

ri ei +
X

⌧j2hpi

⇠
ri + Jj
Tj

⇡
ejRi ei +

X

⌧j2hpi

⇠
Ri

Tj

⇡
ej

Just sum up  
the max jitter?

30

Ri ei +
1

m
·
X

⌧j2hpi

�
Ij(Ri)

Tj

⌫
rj

The answer is that we don’t know

Different system models have different assumptions.
What if changing the model breaks some existing proof?

31

Recent case: self-suspending tasks

Misuse of release jitter in the analysis caused  
bugs in 12 papers related to self-suspensions!

[1] J.-J. Chen, G. Nelissen, W.-H. Huang, M. Yang, B. Brandenburg, K. Bletsas, C. Liu, P. Richard, F. Ridouard, N.
Audsley, R. Rajkumar, and D. de Niz, “Many suspensions, many problems: A review of self-suspending tasks in
real-time systems,” Department of Computer Science, TU Dortmund, Tech. Rep. 854, 2016

Excerpt from [1]:

32

How to derive safe extensions?

33

How to derive safe extensions?

34

If there is a bug,
it will always be detected.
we know exactly what to fix.

We just need to refine the analysis and  
let the proof assistant recheck the proofs.

{

Mechanized 
proofs

Opportunity: neighboring proofs are conducted systematically.

Why mechanized proofs?

35

Trustworthy  
Extensions

Safe  
Composition

Guaranteed Correctness

incompatible!compatible

Sometimes we have to  
combine different analyses

Even if each analysis is individually correct, 
they should not be combined if assumptions mismatch.

Example:

Suspension-oblivious  
schedulability analysis 

Suspension-aware  
schedulability analysis 

Suspension-aware  
blocking bound

Suspension-oblivious  
blocking bound

36

How to avoid mismatching assumptions?

37

How to avoid mismatching assumptions?

We just need to avoid stating contradictory assumptions.
But this can also be mechanically verified!

38

Mechanized 
proofs

Opportunity: mismatching assumptions 
are automatically caught by the proof assistant.

39

Trustworthy  
Extensions

Safe  
Composition

Guaranteed Correctness

Mechanized proofs provide an opportunity to avoid  
the correctness pitfalls in real-time scheduling.

No more correctness pitfalls

Outline of the Talk

40

Why mechanized proofs?

Challenges & Principles

A Taste of Prosa

Outline of the Talk

41

Why mechanized proofs?

Challenges & Principles

A Taste of Prosa

Verification has many challenges

42

Verification has many challenges

43

“Formal specifications are complex and full of symbols.”

Verification has many challenges

44

“It might take many decades to verify all we know  
about real-time scheduling.”

“Formal specifications are complex and full of symbols.”

Verification has many challenges

45

“Knowledge about formal methods tends to  
be restricted to few research groups.”

“Formal specifications are complex and full of symbols.”

“It might take many decades to verify all we know  
about real-time scheduling.”

Verification has many challenges

46

But there’s an opportunity to change…

“Formal specifications are complex and full of symbols.”

“It might take many decades to verify all we know  
about real-time scheduling.”

“Knowledge about formal methods tends to  
be restricted to few research groups.”

Principles & Goals of Prosa

1. Readability is crucial

2. Some proofs are more important than others

3. We should maintain the proof culture

4. Community involvement

47

Principle 1: Readability is crucial

The specification should be accessible to researchers  
with no previous experience with formal methods.

48

Many lemmas, short proofs (few dozen lines)

Principle 1: Readability is crucial

We favor:

Long, verbose names and few cryptic symbols

Heavy use of documentation

The specification should be accessible to researchers  
with no previous experience with formal methods.

49

Complex notation harms readability

Prosa

Duration Calculus [Yuhua and Chaochen, 1994]

50

Complex notation harms readability

Prosa

51

(* A scheduler is work-conserving iff all processors  
 are busy (non-idle) whenever a job is backlogged. *)  
Definition work_conserving :=  
 ∀ j ∀ t,  
 backlogged job_cost sched j t !  
 ∀ cpu, ∃ j_other,  
 scheduled_on sched j_other cpu t.

Duration Calculus [Yuhua and Chaochen, 1994]

Long names and few symbols

52

(* A scheduler is work-conserving iff all processors  
 are busy (non-idle) whenever a job is backlogged. *)  
Definition work_conserving :=  
 ∀ j ∀ t,  
 backlogged job_cost sched j t → 
 ∀ cpu, ∃ j_other,  
 scheduled_on sched j_other cpu t.

(* A scheduler is work-conserving iff all processors  
 are busy (non-idle) whenever a job is backlogged. *)  
Definition work_conserving :=  
 ∀ j ∀ t,  
 backlogged job_cost sched j t → 
 ∀ cpu, ∃ j_other,  
 scheduled_on sched j_other cpu t.

Long names and few symbols

A scheduler is work-conserving i↵...

53

(* A scheduler is work-conserving iff all processors  
 are busy (non-idle) whenever a job is backlogged. *)  
Definition work_conserving :=  
 ∀ j ∀ t,  
 backlogged job_cost sched j t → 
 ∀ cpu, ∃ j_other,  
 scheduled_on sched j_other cpu t.

Long names and few symbols

A scheduler is work-conserving i↵...

...for every job j and time t...

54

(* A scheduler is work-conserving iff all processors  
 are busy (non-idle) whenever a job is backlogged. *)  
Definition work_conserving :=  
 ∀ j ∀ t,  
 backlogged job_cost sched j t → 
 ∀ cpu, ∃ j_other,  
 scheduled_on sched j_other cpu t.

Long names and few symbols

A scheduler is work-conserving i↵...

...for every job j and time t...

...if job j is backlogged at time t, ...

55

(* A scheduler is work-conserving iff all processors  
 are busy (non-idle) whenever a job is backlogged. *)  
Definition work_conserving :=  
 ∀ j ∀ t,  
 backlogged job_cost sched j t → 
 ∀ cpu, ∃ j_other,  
 scheduled_on sched j_other cpu t.

Long names and few symbols

A scheduler is work-conserving i↵...

...for every job j and time t...

...if job j is backlogged at time t, ...

...then every processor cpu has a job j other...

56

(* A scheduler is work-conserving iff all processors  
 are busy (non-idle) whenever a job is backlogged. *)  
Definition work_conserving :=  
 ∀ j ∀ t,  
 backlogged job_cost sched j t → 
 ∀ cpu, ∃ j_other,  
 scheduled_on sched j_other cpu t.

Long names and few symbols

A scheduler is work-conserving i↵...

...for every job j and time t...

...that is scheduled on cpu at time t.

...if job j is backlogged at time t, ...

...then every processor cpu has a job j other...

57

Principle 2: Some proofs are  
more important than others

To make progress, we should focus on practical results.

58

Principle 2: Some proofs are  
more important than others

To make progress, we should focus on practical results.

We should formalize recent analyses and 
move towards multiprocessor scheduling.

Critical results should be proven first. 
E.g., proving analysis safety is more important 
than termination, time complexity or optimality.

59

Principle 3: Maintain the proof culture

To ensure accessibility, we should reuse the established  
proof style of the real-time systems community.

60

Principle 3: Maintain the proof culture

To ensure accessibility, we should reuse the established  
proof style of the real-time systems community.

We avoid complex logics (e.g., temporal operators) 
and advanced constructs from the proof assistant 

(e.g., records, canonical structures, etc.).

We favor instead first-order logic, lists, 
functions, basic arithmetic.

61

Unusual notation discourages adoption

EDF Optimality in PPTL [Zhang, 2014]

62

Prosa — Definition of Instantaneous Service

Definition service_at (t: time) :=  
 \sum_(cpu < num_cpus | scheduled_on j cpu t) 1.

63

Definition service_at (t: time) :=  
 \sum_(cpu < num_cpus | scheduled_on j cpu t) 1.

Instantaneous Service

LaTeX-like operators improve readability

64

Definition service_at (t: time) :=  
 \sum_(cpu < num_cpus | scheduled_on j cpu t) 1.

Sum over each processor...

Instantaneous Service

LaTeX-like operators improve readability

LaTeX-like operators improve readability

65

Definition service_at (t: time) :=  
 \sum_(cpu < num_cpus | scheduled_on j cpu t) 1.

Sum over each processor...

...where job j is scheduled...

Instantaneous Service

66

Definition service_at (t: time) :=  
 \sum_(cpu < num_cpus | scheduled_on j cpu t) 1.

Sum over each processor...

...where job j is scheduled...

...of 1 (i.e., a count).

Instantaneous Service

LaTeX-like operators improve readability

Principle 4: Community involvement

Vision: shared repository of real-time scheduling concepts and proofs.

67

Principle 4: Community involvement

Vision: shared repository of real-time scheduling concepts and proofs.

We encourage participation by the community:

Specification 
accepted by the  

community
Mechanized 

Proofs
Non-disputable  

Results+ =

68

Check out our website: 
prosa.mpi-sws.org

http://prosa.mpi-sws.org

Mechanized proofs can reach  
the community at large

1. Readability is crucial
2. Some proofs are more important than others
3. We should maintain the proof culture
4. Community involvement

69

By focusing on readability and by maintaining the
established proof culture, mechanized proofs 

can reach the community at large.

Outline of the Talk

70

Why mechanized proofs?

Challenges & Principles

A Taste of Prosa

Outline of the Talk

71

Why mechanized proofs?

Challenges & Principles

A Taste of Prosa

Prosa is a collection of definitions,
assumptions and theorems

72

Assumptions
Theorems

Definitions

Prosa covers many concepts  
from real-time scheduling

73

Assumptions
Theorems

Definitions
Library schedule: instantaneous service,  

cumulative service,
job is pending, job is complete…

Library interference: total interference,  
per-task interference…

Library platform: work conservation,  
priority enforcement…

Assumptions can be easily checked  
(~10–15 in each analysis)

74

Assumptions

Theorems

Definitions

[…]

Assumptions can be easily checked  
(~10–15 in each analysis)

75

Assumptions

Theorems

Definitions

Assumptions can be easily checked  
(~10–15 in each analysis)

76

Assumptions

Theorems

Definitions

given actual job execution costs, ...

In any given schedule and for any

Assumptions can be easily checked  
(~10–15 in each analysis)

77

Assumptions

Theorems

Definitions

...jobs do not execute after completion.

Definition completed_jobs_dont_execute :=  
 ∀ j ∀ t,  
 service sched j t ≤ job_cost j.

given actual job execution costs, ...

In any given schedule and for any

Assumptions can be easily checked  
(~10–15 in each analysis)

78

Assumptions

Theorems

Definitions

Definition completed_jobs_dont_execute :=  
 ∀ j ∀ t,  
 service sched j t ≤ job_cost j.

Assumptions can be easily checked  
(~10–15 in each analysis)

79

Assumptions

Theorems

Definitions

Definition completed_jobs_dont_execute :=  
 ∀ j ∀ t,  
 service sched j t ≤ job_cost j.

For every job j at any time t,

Assumptions can be easily checked  
(~10–15 in each analysis)

80

Assumptions

Theorems

Definitions

Definition completed_jobs_dont_execute :=  
 ∀ j ∀ t,  
 service sched j t ≤ job_cost j.

For every job j at any time t,

...the service received by j is no larger than its cost.

Theorems are proven in small  
steps using lemmas

81

Assumptions
Theorems

Definitions

Theorem workload_bounded_by_W :  
 workload_of tsk t1 (t1 + delta) ≤ workload_bound.

Theorems are proven in small  
steps using lemmas

82

Assumptions
Theorems

Definitions

Theorem workload_bounded_by_W :  
 workload_of tsk t1 (t1 + delta) ≤ workload_bound.

We upper-bound the workload of a task...

Theorems are proven in small  
steps using lemmas

83

Assumptions
Theorems

Definitions

Theorem workload_bounded_by_W :  
 workload_of tsk t1 (t1 + delta) ≤ workload_bound.

Lemma workload_bound_many_periods_in_between :  
 job_arrival j_lst - job_arrival j_fst t ≥ num_mid_jobs.+1
 × (task_period tsk).

We upper-bound the workload of a task...

its first and last jobs in the interval.

...based on the minimum distance between

Prosa covers many concepts 
and is well-documented

Sporadic 
Tasks

Job priorities

Job arrival 
constraints

Response 
time bounds

Interference

Deadline 
misses

Parallelism

84

Specification Proofs Comments
Lines 6661 17104 3442

1 comment for every 2 lines of spec!

Definition/Let Lemma/Theorem
Total 714 699

We use short, easy-to-understand definitions.

What we have proven so far

• Basic Model

• Workload-based interference bounds for work-conserving schedulers (~600 LOC)
and EDF schedulers (~890 LOC)

• Definition and proofs of correctness and termination of Bertogna and Cirinei’s
RTA for FP scheduling (~1050 LOC)

➡ Same for Bertogna and Cirinei’s RTA for EDF scheduling (~1320 LOC)

• Implementation of a work-conserving scheduler to test for contradictory
assumptions (~560 LOC)

• Extensions

➡ Same definitions and proofs for workloads with release jitter (~5620 LOC)

➡ Same definitions and proofs for workloads with parallel jobs (~3030 LOC)

(in ~8 person months)

85

What we have proven so far

• Sporadic Task Model

• Workload-based interference bounds for work-conserving and EDF schedulers

• Definition and proofs of correctness and termination of Bertogna and Cirinei’s
RTA for FP scheduling

➡ Same for Bertogna and Cirinei’s RTA for EDF scheduling

• Implementation of a work-conserving scheduler to test for contradictory
assumptions

• Extensions

➡ Same definitions and proofs for workloads with release jitter

➡ Same definitions and proofs for workloads with parallel jobs

(in ~8 person months)

86

What we have proven so far

• Sporadic Task Model

• Workload-based interference bounds for work-conserving and EDF schedulers

• Definition and proofs of correctness and termination of Bertogna and Cirinei’s
RTA for FP scheduling

➡ Same for Bertogna and Cirinei’s RTA for EDF scheduling

• Implementation of a work-conserving scheduler to test for contradictory
assumptions

• Extensions

➡ Same definitions and proofs for workloads with release jitter

➡ Same definitions and proofs for workloads with parallel jobs

(in ~8 person months)

87

What we have proven so far

• Sporadic Task Model

• Workload-based interference bounds for work-conserving and EDF schedulers

• Definition and proofs of correctness and termination of Bertogna and Cirinei’s
RTA for FP scheduling

➡ Same for Bertogna and Cirinei’s RTA for EDF scheduling

• Implementation of a work-conserving scheduler to test for contradictory
assumptions

• Extensions

➡ Same definitions and proofs for workloads with release jitter

➡ Same definitions and proofs for workloads with parallel jobs

(in ~8 person months)

88

What we have proven so far

• Sporadic Task Model

• Workload-based interference bounds for work-conserving and EDF schedulers

• Definition and proofs of correctness and termination of Bertogna and Cirinei’s
RTA for FP scheduling

➡ Same for Bertogna and Cirinei’s RTA for EDF scheduling

• Implementation of a work-conserving scheduler to test for contradictory
assumptions

• Extensions

➡ Same definitions and proofs for workloads with release jitter

➡ Same definitions and proofs for workloads with parallel jobs

(in ~8 person months)

89

} novel 
results

What we have proven so far

• Sporadic Task Model

• Workload-based interference bounds for work-conserving and EDF schedulers

• Definition and proofs of correctness and termination of Bertogna and Cirinei’s
RTA for FP scheduling

➡ Same for Bertogna and Cirinei’s RTA for EDF scheduling

• Implementation of a work-conserving scheduler to test for contradictory
assumptions

• Extensions

➡ Same definitions and proofs for workloads with release jitter

➡ Same definitions and proofs for workloads with parallel jobs

(in ~8 person months)

90

Thanks to mature proof assistants and libraries,  
Prosa allows mechanizing recent and complex 

schedulability analyses in reasonable time.

Future Work
1. Correct recently refuted proofs

a) APA scheduling
b) Self-suspending tasks

2. Verify practical results
a) Semi-partitioned scheduling (e.g. C=D)
b) Blocking analysis
c) Overhead accounting

3. Investigate how to integrate Prosa with analysis tools and
scheduler implementations

(done! see prosa.mpi-sws.org/apa)

91

http://prosa.mpi-sws.org/apa

Future Work
1. Correct recently refuted proofs

a) APA scheduling
b) Self-suspending tasks

2. Verify practical results
a) Semi-partitioned scheduling (e.g. C=D)
b) Blocking analysis
c) Overhead accounting

3. Investigate how to integrate Prosa with analysis tools and
scheduler implementations

(done! see prosa.mpi-sws.org/apa)

92

http://prosa.mpi-sws.org/apa

Future Work
1. Correct recently refuted proofs

a) APA scheduling
b) Self-suspending tasks

2. Verify practical results
a) Semi-partitioned scheduling (e.g. C=D)
b) Blocking analysis
c) Overhead accounting

3. Investigate how to integrate Prosa with analysis tools and
scheduler implementations

(done! see prosa.mpi-sws.org/apa)

93

http://prosa.mpi-sws.org/apa

Future Work
1. Correct recently refuted proofs

a) APA scheduling
b) Self-suspending tasks

2. Verify practical results
a) Semi-partitioned scheduling (e.g. C=D)
b) Blocking analysis
c) Overhead accounting

3. Investigate how to integrate Prosa with analysis tools and
scheduler implementations

(done! see prosa.mpi-sws.org/apa)

94

http://prosa.mpi-sws.org/apa

Disclaimer

95

Disclaimer

96

Not every proof has to be formalized.

Disclaimer

97

Not every proof has to be formalized.

Pen-and-paper proofs are still useful.

Disclaimer

98

Not every proof has to be formalized.

Pen-and-paper proofs are still useful.

We aim for readable specifications, but  
writing formal proofs remains non-trivial.

By focusing on readability and by maintaining the
established proof culture, mechanized proofs 

can reach the community at large.

Mechanized proofs provide an opportunity to avoid  
the correctness pitfalls in real-time scheduling.

Thanks to mature proof assistants and libraries,  
Prosa allows mechanizing recent and complex 

schedulability analyses in reasonable time.

More info at prosa.mpi-sws.org

http://prosa.mpi-sws.org

100

Backup slides

101

Generality of discrete time

[2] Bonifaci, V. and Marchetti-Spaccamela, A., “Feasibility analysis of sporadic real-time multiprocessor task systems,” in Proc. of the 18th
Annual European Symposium on Algorithms (ESA’10), 2010.

Results about dense time could still be formalized  
with Coq libraries for real numbers, e.g. Coquelicot.

102

Working with Real Numbers

More info at coquelicot.saclay.inria.fr

Coquelicot:

Formalization of limits, continuity, differentiability, 
Riemann integrals, series, etc.

A User-Friendly Library of Real Analysis for Coq

103

http://coquelicot.saclay.inria.fr

Library: Probability Theory

104

Moreira, D. Finite Probability Distributions in Coq (2012).

Total/conditional probability, Bayes' theorem, 
random variables and finite distributions

Related Work

105

Formalisms for schedulability analysis

• Proof of EDF optimality [Yuhua and Chaochen 1994]  
 — improved version [Zhan 2000]

• Schedulability condition of RM [Schuzhen et al. 1999]
• Simplified proofs and review [Xu and Zhan 2008]

Based on the Duration Calculus (DC) interval logic

106

Formalisms for schedulability analysis

Based on the Duration Calculus (DC) interval logic

• Proof of EDF optimality [Yuhua and Chaochen 1994]  
 — improved version [Zhan 2000]

• Schedulability condition of RM [Schuzhen et al. 1999]
• Simplified proofs and review [Xu and Zhan 2008]

+ Formalism reduces ambiguity

107

Formalisms for schedulability analysis

Based on the Duration Calculus (DC) interval logic

• Proof of EDF optimality [Yuhua and Chaochen 1994]  
 — improved version [Zhan 2000]

• Schedulability condition of RM [Schuzhen et al. 1999]
• Simplified proofs and review [Xu and Zhan 2008]

+ Formalism reduces ambiguity
- Complex logics and manual proofs
- Only uniprocessor scheduling

108

Earlier mechanized proofs
• Proof of EDF optimality using Nqthm [Wilding 1998]
• Analysis of the Priority Ceiling and Priority Inheritance Protocols 

[Zhang et al. 1999] [Dutertre 1999] [Dutertre and Stavridou 2000]

• Schedulability conditions based on task phase using Coq  
[De Rauglaudre 2012]

• Certified Computations of Network Calculus in Isabelle/HOL  
[Mabille et al. 2013]

• Implementation and proof of EDF optimality with Propositional
Projection Temporal Logic (PPTL) in Coq [Zhang et al. 2014]

109

Earlier mechanized proofs
• Proof of EDF optimality using Nqthm [Wilding 1998]
• Analysis of the Priority Ceiling and Priority Inheritance Protocols 

[Zhang et al. 1999] [Dutertre 1999] [Dutertre and Stavridou 2000]

• Schedulability conditions based on task phase using Coq  
[De Rauglaudre 2012]

• Certified Computations of Network Calculus in Isabelle/HOL  
[Mabille et al. 2013]

• Implementation and proof of EDF optimality with Propositional
Projection Temporal Logic (PPTL) in Coq [Zhang et al. 2014]

+ Mechanically-checked
- No results about multiprocessors

110

Earlier mechanized proofs
• Proof of EDF optimality using Nqthm [Wilding 1998]
• Analysis of the Priority Ceiling and Priority Inheritance Protocols 

[Zhang et al. 1999] [Dutertre 1999] [Dutertre and Stavridou 2000]

• Schedulability conditions based on task phase using Coq  
[De Rauglaudre 2012]

• Certified Computations of Network Calculus in Isabelle/HOL  
[Mabille et al. 2013]

• Implementation and proof of EDF optimality with Propositional
Projection Temporal Logic (PPTL) in Coq [Zhang et al. 2014]

+ Mechanically-checked
- No results about multiprocessors

111
- Not widely adopted by our community

Model checking and timed automata
• Analysis of uniprocessor FP scheduling using UPPAAL  

[Fersman at al. 2006]

• Analysis of multiprocessor FP and EDF scheduling of periodic tasks  
using UPPAAL and NuSMV 
[Guan et al. 2007] [Guan et al. 2008] [Cordovilla et al. 2011]

• Analysis of sporadic tasks based on state exploration and  
automata reachability [Baker and Cirinei 2007] [Geeraerts et al. 2012]  
[Burmyakov et al. 2015] [Sun and Lipari 2015]

112

Model checking and timed automata

+ Multiprocessor, exact schedulability analysis

• Analysis of uniprocessor FP scheduling using UPPAAL  
[Fersman at al. 2006]

• Analysis of multiprocessor FP and EDF scheduling of periodic tasks  
using UPPAAL and NuSMV 
[Guan et al. 2007] [Guan et al. 2008] [Cordovilla et al. 2011]

• Analysis of sporadic tasks based on state exploration and  
automata reachability [Baker and Cirinei 2007] [Geeraerts et al. 2012]  
[Burmyakov et al. 2015] [Sun and Lipari 2015]

113

Model checking and timed automata

+ Multiprocessor, exact schedulability analysis
- State explosion (≤ 10 tasks or 4 processors)

• Analysis of uniprocessor FP scheduling using UPPAAL  
[Fersman at al. 2006]

• Analysis of multiprocessor FP and EDF scheduling of periodic tasks  
using UPPAAL and NuSMV 
[Guan et al. 2007] [Guan et al. 2008] [Cordovilla et al. 2011]

• Analysis of sporadic tasks based on state exploration and  
automata reachability [Baker and Cirinei 2007] [Geeraerts et al. 2012]  
[Burmyakov et al. 2015] [Sun and Lipari 2015]

114

Avoiding contradictory assumptions

1. Implement a scheduler function S using the proof
assistant (take pending jobs, sort by priority, assign to
CPUs, …).

2. Prove that scheduler S satisfies every requirement
of the analysis (work-conserving, enforces priority, etc.)
in an assumption-free context.

3. Since S is an actual algorithm, it is impossible that 
two contradictory assumptions are satisfied by S.

115

