Prosa: A Case for Readable Mechanized
Schedulability Analysis

Felipe Cerqueira, Felix Stutz, Bjérn B. Brandenburg

Max

tﬂ = @EC RTS

for
Software Systems

Prosa

Open-source foundation for formally
proven schedulability analysis

Jobs T Schedulability
Tests

| Response-time
Response time Bounds

Multiprocessor

Readable Formal Mechanized
Specification Proofs

This Talk

This Talk

Mechanized proofs provide an opportunity to avoid

the correctness pitfalls in real-time scheduling.

This Talk

Mechanized proofs provide an opportunity to avoid

the correctness pitfalls in real-time scheduling.

By focusing on readability and by maintaining the
established proof culture, mechanized proofs
can reach the community at large.

This Talk

Mechanized proofs provide an opportunity to avoid
the correctness pitfalls in real-time scheduling.

By focusing on readability and by maintaining the
established proof culture, mechanized proofs
can reach the community at large.

Thanks to mature proof assistants and libraries,
Prosa allows mechanizing recent and complex
schedulability analyses in reasonable time.

Outline of the Talk

Why mechanized proofs?

Challenges & Principles

A Taste of Prosa

Outline of the Talk

Why mechanized proofs?

Challenges & Principles

A Taste of Prosa
8

What do we mean
by mechanized?

RTS theory has been built
with pen-and-paper proofs

RTS theory has been built
with pen-and-paper proofs

Abstract view
of the system

Pen-and-paper
proofs

ST

1;
Schedulability
analysis

11

What is mechanized
schedulablility analysis?

©

. @
=5
specification
Pen-and-paper / What is the
proofs - N — difference?

Schedulability
analysis

12

What is mechanized
schedulablility analysis?

()

Abstract view
of the system

Formal
specification

Pen-and-paper & & We switch to a
proofs / - formal specification

> g st
Schedulability
analysis

13

What is mechanized
schedulablility analysis?

()

Abstract view
of the system N

Formal
specification

Biikaa
O

Mechanized v We prove theorems
proofs using a proof assistant

\ Y <

Schedulability
analysis

14

What is mechanized
schedulablility analysis?

()

Abstract view
of the system

Formal

Mechanized | specification The resulting
i schedulability analysis

proofs _
— Is formally verified
\ Mechanized F\@
-

Schedulability
analysis

Biikaa
O

15

Why mechanized proofs?

Why mechanized proofs?

rrect

ness)

Co

Trustworthy Safe
Extensions Composition

17

RTS have become more complex

tasks
: ring 1888 —c o _
m I mplexi \(/CL & "abl»@_‘_/_al‘@
AOd((are(;lcl)isrI:I)e v RASS \/U

o r@gour‘ces
[BROE
flexible " Elastic BWI SIRAP -~
Skip * S | |
Imprecise - | _ 'Xecl—cr/z‘@
P 3 — 7
SRP) | DvFs DFM -
Resource .~ pcp : z
sharing | pIp Resource
dic servers Reservat/on
,.,\\
aP" _SS Slack TBS CBS
PS Stealer ° .
periodic
[RTA PDC}
single . bt e
Jjob EDL ~ Exact
EDF ' Analysis
EDD i | |
55 73 86 90 95 98 2000 04 07 11 14 ‘year

Source: G. Buttazzo (Keynote @ RTSS’14) 18

RTS have become more complex

asks
) GCU”“U tas. pigraf _ple-rate
model complexity © OpGS Jariable=re
} (realism) ‘esoUICES Q_)
: ResS” BROE |
flexible o Elastic BWI SIRAP , |
Ip? ~ \Overrun P
. gne ; ;
SRP) |(DVFs DPM -

Resource .~ pcp . -
sharing | p|p Resource
o5 SERASK Reservatlon

10
AP SS Slack TBS CB
PS S IsE \\/c need complex models
periodic P
{RTA PDCJ to suppqrt real-world
single . 2 : requirements
job EDL | Exact | . .
EDF | - Analysis ' i
EDD s 5 5
55 73 86 90 95 98 2000 04 07 11 14 Year

Source: G. Buttazzo (Keynote @ RTSS'14)

19

This complexity comes with a price

Amalysing Real-Time Communications: Contreller Area Network (CAN)'

KW Tindeld”, M. Nansson A 1 Wellmgy
Dy oG s De of Comg S

e o 4 o
Uneversary of Upgeala. Swaden Univeruity of York. Daglend
Abstreet CAN s b Dt Sanganl o et o ey of
The o rvastng ot of somman whon setmorli - f— - L R Vormated @ o image:
el 22 Pravenis ong = teat Do A e o B M i
e wih A - b o - v h cab mwagy T el
s Gmas o e by Bt d oy b cmags b S wew A e et
Prow vt Abhaps Asrr A here some wert om e ::-' o Afvess wmonon

A The original analysis for CAN

NN ety e e W e el

omgerions wnd mah wgeen) Thn CAN sevage
B papvt e dron e vt owd & Naduing anelsee L A ——— [
W CAN aotunrd and Aon sy tww avunl moaio o (RIS S
AP @ e Ao e analyots cun by qrpled The o of B el o ooy & B s
et pent of CAN wobh mget W bt
1. Istrodection portemance Lae Do CAN 5 o ool dowt
Iromb aw Swn St het 4 A ey e PP b
O of B s Ve bues @ ong: MM cmmsnon. The emalier el of & CAN mowage
soul tme wyweem 10 e Srvriopmest of enely o twnd —r s o mime v O Bas 8P ol s By hiny
e Sming bebaviowr of the sy Mach sorl s o0 g of s ol s of & CAN
pouns han boen desaloping S anslyss for & e e M [e e @Y S mem g e) e
Sapaniing Sgerrtn ARows 0 fand PrRTEY PTANGNE e s wanaiis 4 VB i) . sy .
whoduing Tha wok han momly abiosed B o ol e s U Crmmaraly, snly f o s S o
haduling of - dared trvadime Dewtr 41 end 1wl o provessers s e ben e 4 T e
* paviosler Wlat-fessing ol pronty pee-amgere ofoct. e CAN ban now e & g AND g woh oach
s The worl skt (ot s gloms st D sdval wanon e w0 we e owipet of e gue. Thes Sebavionr &
Sehoring of e wtartae beteres On bt oo snd qny 15 senciee collasons cach vamee swm wed e o
~'-—'~.:=:m - v Dhamsets When wionce & Srecnd, sk son
pree aghesnione wey SmRghea, I)
ol 0 oot e bt anamieed & petniee e gt gt St By O Sa The wmesfer o
pronocol and mmplomenesnons Sem & sember of Sfevew 00 s part of B Ewrings = Vo Pormmtod o et
mamdansen The npets on Gia analysn. and B e N e ekl
how how wmal " o WM e e o rsee 1) e —
adce con Mave dramasc offacn e B woreome o and sown & Ainant Wt (0) Ben 4 B e 1
Sy pevhreans d newages D T I e e
The mab e Bun oo cuamine o S paper o cllod pney srinny mewage 5 e e, Becsese sesfion
Comivalier Avss Nevwork (CANS |1 B pamcnir w» W et gl Ses Be vy o we o——
"—-‘:"'W"v"'.:i’""":' e T S S ———
Bom ek, and e 300 cenaviior L LT ——————p—
ow how e Il comtelier N 4wy e el ol W (oh A Bammiag Be Sy of B mrage
A e g gt e ¢ (han e Phd g e The CAN muweage foomat commmns &7 S of prosscsd
el wlemasen e e, ORC S

[1] Davis, R. I., Burns, A., Bril, R. J., & Lukkien, J. J. “Controller Area Network (CAN) schedulability analysis: Refuted, revisited and
revised.” Real-Time Systems, 35(3), 239-272, 2007 . 20

Bugs are no longer an exception

Proofs have become so complicated
that they often contain bugs.

Tt Prasrs T g Aatven d b T Svdosa o2 b
Lot Maramipn

eyt b —
e o — | —— VoD —— . -

- P = m———————

. [By & i Bt -~
== —

S —— b -

—
- ——

i 8 prveers g e b e 4
. - P @ e (i ¢ -

AN b o M 1 e AND-goe.
™

)
|
|
A

:

!
H
i
i
1
i
i
|
i

A Yrhete & Yo

P —

S e e SWIRCE A
—

S Ve @ L . S

R

il
1
it

i
r
|

|
:
i

LA

|
i
i
pihd

I

»

i

e
(e

Analysis for safety-critical systems?

How to ensure that schedulability
analysis is actually correct?

22

Analysis for safety-critical systems?

How to ensure that schedulability
analysis is actually correct?

Mechanized
proofs

Opportunity: correctness is inherently guaranteed.

23

Why mechanized proofs?

Guaranteed Correctness

Safe
Composition

Trustworthy |
| Extensions |

24

Analyses sometimes need refining

Basic Analysis

In most analyses, practical details
are assumed to be negligible.

25

Analyses sometimes need refining

Task Dependence

Blocking Analysis

Overhead
Accounting

Basic Analysis

But when deploying actual systems,
we might need to refine the analysis.

20

Analyses sometimes need refining

Task Dependence

We call these extensions
(i.e., same results + tweaks)
G neighboring proofs.

Accounting

Blocking Analysis

Basic Analysis

But when deploying actual systems,
we might need to refine the analysis.

27

Example: incorporating release jitter

Basic RTA RTA with Jitter
RZ Tz%ez—k Z [T1+J-‘
Uniprocessor Ri e+ Z [f] €j Ti€hp,
i Ri=Ji+e +r

It has been known for more than 20 years how to
incorporate release jitter into uniprocessor RTA [3].

[3] Audsley, N., Burns A., Richardson, M., Tindell, K., and Wellings, A. “Applying new scheduling theory to static priority pre-emptive
scheduling,” Software Engineering Journal, vol. 8, no. 5, pp. 284-292, 1993. 28

Example: incorporating release jitter

Basic RTA RTA with Jitter

Ri Ty < €; T Z [ri+Jj—‘e-
. : : _ : ! v T. J
Unlprocessor RZ N €i _|_ Z [T]—| 63 T;€hp; J
T ERPs R, = J; +e; +r;
. 1 I;(R;)
Multiprocessor [EitRmi i Z T, T ???
T; €hp;

But this result has not been
proven for multiprocessor RTA.

29

Can we do the same for multiprocessors?

Basic RTA RTA with Jitter

R’L T, < €; + Z [ri+Jj—‘63
Uniprocessor Ri e+ Z [f] €j By B
TEhp R, = J; +e; +r;
1 I;(R;)
Multiprocessor [EitRmi i Z { JTj J"‘j 2?7
T; €hp; l
Just sum up

the max jitter?

30

The answer Is that we don’t know

Different system models have different assumptions.
What if changing the model breaks some existing proof?

31

Recent case: self-suspending tasks

Misuse of release jitter in the analysis caused
bugs in 12 papers related to self-suspensions!

Excerpt from [1]:

— Incorrect quantification of jitter for dynamic self-suspending task systems,
which was used in (3,4,37,58]. This misconception was unfortunately adopted
in [12, 14, 28, 36,40, 73,74, 76] to analyze the worst-case response time for
partitioned multiprocessor real-time locking protocols.

[1] J.-d. Chen, G. Nelissen, W.-H. Huang, M. Yang, B. Brandenburg, K. Bletsas, C. Liu, P. Richard, F. Ridouard, N.
Audsley, R. Rajkumar, and D. de Niz, "Many suspensions, many problems: A review of self-suspending tasks in
real-time systems,” Department of Computer Science, TU Dortmund, Tech. Rep. 854, 2016 32

How to derive safe extensions?

33

How to derive safe extensions?

Mechanized
proofs

Opportunity: neighboring proofs are conducted systematically.

We just need to refine the analysis and
let the proof assistant recheck the proofs.

it will always be detected.

It there is a bug, _
we know exactly what to fix.

34

Why mechanized proofs?

Guaranteed Correctness

Trustworthy

Extensions | Composition |

35

Sometimes we have to
combine different analyses

Even if each analysis is individually correct,
they should not be combined if assumptions mismatch.

Example:
Suspension-oblivious Suspension-aware
blocking bound blocking bound
.
compatible ¢
[
[

Suspension-oblivious Suspension-aware

schedulability analysis

schedulability analysis

36

How to avoid mismatching assumptions?

37

How to avoid mismatching assumptions?

Mechanized
proofs

Opportunity: mismatching assumptions
are automatically caught by the proof assistant.

We just need to avoid stating contradictory assumptions.
K»But this can also be mechanically verified!

38

NoO more correctness pitfalls

Guaranteed Correctness

N

Trustworthy Safe
Extensions Composition

Mechanized proofs provide an opportunity to avoid

the correctness pitfalls in real-time scheduling.

39

Outline of the Talk

Why mechanized proofs?

Challenges & Principles

A Taste of Prosa

40

Outline of the Talk

Why mechanized proofs?

Challenges & Principles

A Taste of Prosa

41

Verification has many challenges

42

Verification has many challenges

“Formal specifications are complex and full of symbols.”

43

Verification has many challenges

“Formal specifications are complex and full of symbols.”

“It might take many decades to verify all we know
about real-time scheduling.”

44

Verification has many challenges

“Formal specifications are complex and full of symbols.”

“It might take many decades to verify all we know
about real-time scheduling.”

“Knowledge about formal methods tends to
be restricted to few research groups.”

45

Verification has many challenges

“Formal specifications are complex and full of symbols.”

“It might take many decades to verify all we know
about real-time scheduling.”

“Knowledge about formal methods tends to
be restricted to few research groups.”

But there’s an opportunity to change...

46

Principles & Goals of Prosa

1. Readability is crucial

2. Some proofs are more important than others

3. We should maintain the proof culture

4. Community involvement

47

Principle 1: Readability is crucial

The specification should be accessible to researchers
with no previous experience with formal methods.

48

Principle 1: Readability is crucial

The specification should be accessible to researchers
with no previous experience with formal methods.

We favor:

Many lemmas, short proofs (few dozen lines)

Long, verbose names and few cryptic symbols

Heavy use of documentation

49

Complex notation harms readability

Duration Calculus [Yuhua and Chaochen, 1994]

Furthermore, if there exists a ready task which is not running, then no
processor should be idle. So let,

DN (true; Run(S))
SCHpm= AVies Viea-s(Urgt(i,i) ; [pj.rdy] A Run(S)))
AO(Run(S) A [Vigq-s pi-rdyl = §S=m)

50

Complex notation harms readability

Duration Calculus [Yuhua and Chaochen, 1994]

Furthermore, if there exists a ready task which is not running, then no
processor should be idle. So let,

PN (true; Run(S))
SCHp= AVies Viea-s(Urgt(j,i) ; [pj.rdy] A Run(5)))
AO(Run(S) A [Viea-spi-rdyl = S =m)

Prosa

(* A scheduler is work-conserving iff all processors
are busy (non-idle) whenever a job 1s backlogged. *)
Definition work conserving :=
V j V t,
backlogged job cost sched j t -
V cpu, 3 j other,
scheduled on sched j other cpu t.

51

Long names and few symbols

Definition work conserving :=
V j V t,
backlogged job cost sched j t —
V cpu, 3 j other,
scheduled on sched j other cpu t.

52

Long names and few symbols

Definition work conserving :=
vV j V t,
backlogged job cost sched j t —
V cpu, 3 j other,
scheduled on sched j other cpu t.

A scheduler is work-conserving iff...

53

Long names and few symbols

Definition work conserving :=
V j V t,
acklogged job cost sched j t —
cpu, 3 j other,
scheduled on sched j other cpu t.

A scha&duler is work-conserving iff...

...for every job 7 and time t...

o4

Long names and few symbols

Definition work conserving :=
vV j V t,
backlogged job cost sched 1 t —

vV ¢pu, 3 j other,
cheduled on sched j other cpu t.

A schedyler is work-conserving iff...
...for eXery job 7 and time t...

...1f job 7 is backlogged at time ¢, ...

95

Long names and few symbols

Definition work conserving :=
V j V t,
backlogged job cost sched j t —
V cpu, 3 j other,
cheduled on sched j other cpu t.

A schediler is work-conserving iff...
...for every job 7 and time ¢...
...1f job 7 1s backlogged at time ¢, ...

...then every processor cpu has a job j_other...

56

Long names and few symbols

Definition work conserving :=
V j V t,
backlogged job cost sched j t —
V cpu, 3 j other,
scheduled on sched] other cpu t.

A scheduler is work-conserving iff...
...for every job 7 and time t...
...1f job \ is backlogged at time ¢, ...
...then éxery processor cpu has a job j_other...

...that i1s scheduled on cpu at time ¢.

S/

Principle 2: Some proofs are

more important than others

o make progress, we should focus on practical results.

58

Principle 2: Some proofs are

more important than others

o make progress, we should focus on practical results.

We should formalize recent analyses and
move towards multiprocessor scheduling.

Critical results should be proven first.
E.g., proving analysis safety is more important
than termination, time complexity or optimality.

59

Principle 3: Maintain the proof culture

Jo ensure accessibility, we should reuse the established
proof style of the real-time systems community.

60

Principle 3: Maintain the proof culture

Jo ensure accessibility, we should reuse the established
proof style of the real-time systems community.

We avoid complex logics (e.g., temporal operators)
and advanced constructs from the proof assistant
(e.g., records, canonical structures, etc.).

We favor instead first-order logic, lists,
functions, basic arithmetic.

61

Unusual notation discourages adoption

EDF Optimality in PPTL [Zhang, 2014]

Lemma 6. If P; overflows at t = kT;j, there is no idle time unit in [(k — 1)T;, kT;].

That is,

m

Sch D (O"T‘(aci < (i) —> Qt(\/rj = 1)) (k—1DT; <t <KkT;.

j=1

Prosa — Definition of Instantaneous Service

Definition service at (t: time) :=
\sum (cpu < num cpus | scheduled on j cpu t) 1.

62

LaTeX-like operators improve readabillity

Instantaneous Service

Definition service at (t: time) :=
\sum (cpu < num cpus | scheduled on j cpu t) 1.

63

LaTeX-like operators improve readabillity

Instantaneous Service

Definition service at (t: time) :=
\sum (cpu < num cpus | scheduled on j cpu t) 1.

e

Sum over each processor...

64

LaTeX-like operators improve readabillity

Instantaneous Service

Definition service at (t: time) :=
\sum (cpu < num cpus | scheduled on j cpu t) 1.

Sum over each processor... ;

...where job j is scheduled...

65

LaTeX-like operators improve readabillity

Instantaneous Service

Definition service at (t: time) :=
\sum (cpu < num cpus | scheduled on j cpu t) 1.

Sum over each processor...

...where job j is scheduled...

...of 1 (i.e., a count).

66

Principle 4: Community involvement

Vision: shared repository of real-time scheduling concepts and proofs.

67

Principle 4: Community involvement

Vision: shared repository of real-time scheduling concepts and proofs.

We encourage participation by the community:

Specification
accepted by the
community

Mechanized Non-disputable
Proofs Results

formally proven PR
schedulability analysis

Check out our website: — -
prosa.mpi-sws.org —

I -

http://prosa.mpi-sws.org

Mechanized proofs can reach
the community at large

1. Readability is crucial

2. Some proofs are more important than others
3. We should maintain the proof culture

4. Community involvement

By focusing on readability and by maintaining the
established proof culture, mechanized proofs
can reach the community at large.

69

Outline of the Talk

Why mechanized proofs?

Challenges & Principles

A Taste of Prosa

70

Outline of the Talk

Why mechanized proofs?

Challenges & Principles

A Taste of Prosa

71

Prosa Is a collection of definitions,
assumptions and theorems

Definitions

Assumptions

Theorems

/2

Prosa covers many concepts
from real-time scheduling

Definitions

Library schedule: instantaneous service,
cumulative service,
job 1s pending, job is complete..

Library interference: +total interference,
per-task interference..

Library platform: work conservation,
priority enforcement..

Assumptions

Theorems

/3

Assumptions can be easily checked
(~10—15 In each analysis)

Definitions
Assumptions

Hypothesis H completed jobs dont execute:
completed jobs dont execute job cost sched.

Hypothesis H enforces FP policy:
enforces FP policy job cost job task sched higher priority.

Hypothesis H work conserving: work conserving Jjob cost sched.

Hypothesis H sequential jobs: sequential jobs sched.

Theorems

74

Assumptions can be easily checked
(~10—15 Iin each analysis)

Definitions
Assumptions

Hypothesis H completed jobs dont execute:
completed jobs dont execute job cost sched.

Theorems

75

Assumptions can be easily checked
(~10—15 Iin each analysis)

Definitions
Assumptions

Hypothesis H completed jobs dont execute:
completed jobs dont execute job cost sched.

In any given schedule and for any
given actual job execution costs, ...

Theorems

/6

Assumptions can be easily checked
(~10—15 Iin each analysis)

Definitions
Assumptions

Hypothesis H completed jobs dont execute:
completed jobs dont execute job cost sched.

In any given sdhedule and for any
given actual job\execution costs, ...

...Jobs do not execute after completion.

Theorems

77

Assumptions can be easily checked
(~10—15 Iin each analysis)

Definitions
Assumptions

Definition completed jobs dont execute :=
vV j V t,
service sched j t = job cost j.

Theorems

/8

Assumptions can be easily checked
(~10—15 Iin each analysis)

Definitions
Assumptions

Definition completed jobs dont execute :=

V 7V t
sservice sched j t = job cost j.

For every job 7 at any time ¢,

Theorems

79

Assumptions can be easily checked
(~10—15 Iin each analysis)

Definitions
Assumptions

Definition completed jobs dont execute :=
vV j V t,
service sched jJ t = job cost j.

For every job 7 at any time ¢, :

...the service received by j is no larger than its cost.
Theorems

80

Theorems are proven in small
steps using lemmas

Definitions

Assumptions

Theorems

Theorem workload bounded by W :
workload of tsk tl (tl + delta) = workload bound.

81

Theorems are proven in small
steps using lemmas

Definitions

Assumptions

Theorems

We upper-bound the workload of a task...

Theorem workload boundedj]by W :
workload of tsk tl (tl + delta) = workload bound.

82

Theorems are proven in small
steps using lemmas

Definitions

Assumptions
Theorems

Lemma workload bound many periods in between :
job arrival] lst - job arrival 7 fst t = num mid jobs.+1
‘ X (task period tsk).

We upper-bound the workload\of a task...

v

...based on the minimum distance between
its first and last jobs in the interval.

Theorem workload bounded by W :
workload of tsk tl (tl + delta) = workload bound.

83

Prosa covers many concepts
and is well-documented

D Response Deadline
Job priorities time bounds misses
Job arrival Interference Parallelism
constraints

Definition/Let Lemma/Theorem

Sporadic

Tasks

We use short, easy-to-understand definitions.

Specification Proofs Comments

1 comment for every 2 lines of spec!
84

What we have proven so far

(in ~8 person months)

85

What we have proven so far

(in ~8 person months)

e Sporadic Task Model

e Workload-based interference bounds for work-conserving and EDF schedulers

86

What we have proven so far

(in ~8 person months)

e Sporadic Task Model
e Workload-based interference bounds for work-conserving and EDF schedulers

e Definition and proofs of correctness and termination of Bertogna and Cirinei’s
RTA for FP scheduling

= Same for Bertogna and Cirinei’s RTA for EDF scheduling

37

What we have proven so far

(in ~8 person months)

e Sporadic Task Model
e Workload-based interference bounds for work-conserving and EDF schedulers

e Definition and proofs of correctness and termination of Bertogna and Cirinei’s
RTA for FP scheduling

= Same for Bertogna and Cirinei’s RTA for EDF scheduling

* Implementation of a work-conserving scheduler to test for contradictory
assumptions

88

What we have proven so far

(in ~8 person months)

e Sporadic Task Model
e Workload-based interference bounds for work-conserving and EDF schedulers

e Definition and proofs of correctness and termination of Bertogna and Cirinei’s
RTA for FP scheduling

= Same for Bertogna and Cirinei’s RTA for EDF scheduling

* Implementation of a work-conserving scheduler to test for contradictory
assumptions

e Extensions

= Same definitions and proofs for workloads with release jitter novel
results

= Same definitions and proofs for workloads with parallel jobs

89

What we have proven so far

(in ~8 person months)

Thanks to mature proof assistants and libraries,
Prosa allows mechanizing recent and complex
schedulability analyses in reasonable time.

90

Future Work

91

http://prosa.mpi-sws.org/apa

Future Work

1. Correct recently refuted proofs

a) APA-scheduling (done! see prosa.mpi-sws.org/apa)

b) Self-suspending tasks

92

http://prosa.mpi-sws.org/apa

Future Work

1. Correct recently refuted proofs

a) APA-scheduling (done! see prosa.mpi-sws.org/apa)

b) Self-suspending tasks

2. Verify practical results
a) Semi-partitioned scheduling (e.g. C=D)
b) Blocking analysis

c) Overhead accounting

93

http://prosa.mpi-sws.org/apa

Future Work

1. Correct recently refuted proofs

a) APA-scheduling (done! see prosa.mpi-sws.org/apa)

b) Self-suspending tasks

2. Verify practical results
a) Semi-partitioned scheduling (e.g. C=D)
b) Blocking analysis
c) Overhead accounting

3. Investigate how to integrate Prosa with analysis tools and
scheduler implementations

94

http://prosa.mpi-sws.org/apa

Disclaimer

95

Disclaimer

Not every proof has to be formalized.

96

Disclaimer

Not every proof has to be formalized.

Pen-and-paper proofs are still useful.

97

Disclaimer

Not every proof has to be formalized.

Pen-and-paper proofs are still useful.

We aim for readable specifications, but
writing formal proofs remains non-trivial.

98

formally proven
schedulability analysis P ROS

More info at prosa.mpi-sws.org

Mechanized proofs provide an opportunity to avoid

the correctness pitfalls in real-time scheduling.

By focusing on readability and by maintaining the
established proof culture, mechanized proofs
can reach the community at large.

Thanks to mature proof assistants and libraries,
Prosa allows mechanizing recent and complex
schedulability analyses in reasonable time.

http://prosa.mpi-sws.org

100

Backup slides

Generality of discrete time

Theorem 6 A sporadic arbitrary-deadline task system T is feasible with re-
spect to continuous schedules iff it is feasible with respect to discrete schedules.

Results about dense time could still be formalized
with Coq libraries for real numbers, e.g. Coquelicot.

[2] Bonifaci, V. and Marchetti-Spaccamela, A., “Feasibility analysis of sporadic real-time multiprocessor task systems,” in Proc. of the 18th
Annual European Symposium on Algorithms (ESA'10), 2010.

102

Working with Real Numbers

Coquelicot:
A User-Friendly Library of Real Analysis for Coqg

Formalization of limits, continuity, differentiability,
Riemann integrals, series, efc.

More info at coquelicot.saclay.inria.ir

103

http://coquelicot.saclay.inria.fr

Library: Probability Theory

Total/conditional probability, Bayes' theorem,
random variables and finite distributions

Lemma prob_decomp: forall A B,
\Pr_d[A] = \Pr_d[A :&: B] + \Pr_d[A :&: ~:B].

Moreira, D. Finite Probability Distributions in Coq (2012).

104

Related Work

Formalisms for schedulability analysis

Based on the Duration Calculus (DC) interval logic

e Proof of EDF optimality [Yuhua and Chaochen 1994]

— improved version [Zhan 2000]
e Schedulability condition of RM [Schuzhen et al. 1999]
o Simplified proofs and review [Xu and Zhan 2008]

106

Formalisms for schedulability analysis

Based on the Duration Calculus (DC) interval logic

e Proof of EDF optimality [Yuhua and Chaochen 1994]

— improved version [Zhan 2000]
e Schedulability condition of RM [Schuzhen et al. 1999]
o Simplified proofs and review [Xu and Zhan 2008]

+ Formalism reduces ambiguity

107

Formalisms for schedulability analysis

Based on the Duration Calculus (DC) interval logic

e Proof of EDF optimality [Yuhua and Chaochen 1994]

— improved version [Zhan 2000]
e Schedulability condition of RM [Schuzhen et al. 1999]
o Simplified proofs and review [Xu and Zhan 2008]

+ Formalism reduces ambiguity

- Complex logics and manual proofs
- Only uniprocessor scheduling

108

Earlier mechanized proofs

Proof of EDF optimality using Ngthm [Wilding 1998]

Analysis of the Priority Ceiling and Priority Inheritance Protocols
[Zhang et al. 1999] [Dutertre 1999] [Dutertre and Stavridou 2000]

Schedulability conditions based on task phase using Coq
[De Rauglaudre 2012]

Certified Computations of Network Calculus in Isabelle/HOL
[Mabille et al. 2013]

Implementation and proof of EDF optimality with Propositional
Projection Temporal Logic (PPTL) in Coq [Zhang et al. 2014]

109

Earlier mechanized proofs

Proof of EDF optimality using Ngthm [Wilding 1998]

Analysis of the Priority Ceiling and Priority Inheritance Protocols
[Zhang et al. 1999] [Dutertre 1999] [Dutertre and Stavridou 2000]

Schedulability conditions based on task phase using Coqg
[De Rauglaudre 2012]

Certified Computations of Network Calculus in Isabelle/HOL
[Mabille et al. 2013]

Implementation and proof of EDF optimality with Propositional
Projection Temporal Logic (PPTL) in Coq [Zhang et al. 2014]

+ Mechanically-checked

- No results about multiprocessors

110

Earlier mechanized proofs

Proof of EDF optimality using Ngthm [Wilding 1998]

Analysis of the Priority Ceiling and Priority Inheritance Protocols
[Zhang et al. 1999] [Dutertre 1999] [Dutertre and Stavridou 2000]

Schedulability conditions based on task phase using Coqg
[De Rauglaudre 2012]

Certified Computations of Network Calculus in Isabelle/HOL
[Mabille et al. 2013]

Implementation and proof of EDF optimality with Propositional
Projection Temporal Logic (PPTL) in Coq [Zhang et al. 2014]

+ Mechanically-checked

- No results about multiprocessors
- Not widely adopted by our community

111

Model checking and timed automata

e Analysis of uniprocessor FP scheduling using UPPAAL
[Fersman at al. 2006]

e Analysis of multiprocessor FP and EDF scheduling of periodic tasks
using UPPAAL and NuSMV
[Guan et al. 2007] [Guan et al. 2008] [Cordovilla et al. 2011]

* Analysis of sporadic tasks based on state exploration and
automata reachability [Baker and Cirinei 2007] [Geeraerts et al. 2012]
[Burmyakov et al. 2015] [Sun and Lipari 2015]

112

Model checking and timed automata

e Analysis of uniprocessor FP scheduling using UPPAAL
[Fersman at al. 2006]

e Analysis of multiprocessor FP and EDF scheduling of periodic tasks
using UPPAAL and NuSMV
[Guan et al. 2007] [Guan et al. 2008] [Cordovilla et al. 2011]

* Analysis of sporadic tasks based on state exploration and
automata reachability [Baker and Cirinei 2007] [Geeraerts et al. 2012]
[Burmyakov et al. 2015] [Sun and Lipari 2015]

+ Multiprocessor, exact schedulability analysis

113

Model checking and timed automata

e Analysis of uniprocessor FP scheduling using UPPAAL
[Fersman at al. 2006]

e Analysis of multiprocessor FP and EDF scheduling of periodic tasks
using UPPAAL and NuSMV

[Guan et al. 2007] [Guan et al. 2008] [Cordovilla et al. 2011]

Analysis of sporadic tasks based on state exploration and

automata reachability [Baker and Cirinei 2007] [Geeraerts et al. 2012]
Burmyakov et al. 2015] [Sun and Lipari 2015]

+ Multiprocessor, exact schedulability analysis
— - State explosion (= 10 tasks or 4 processors)

114

Avoiding contradictory assumptions

1. Implement a scheduler function S using the proof
assistant (take pending jobs, sort by priority, assign to
CPUs, ...).

2. Prove that scheduler S satisfies every requirement
of the analysis (work-conserving, enforces priority, etc.)
IN an assumption-free context.

3. Since S is an actual algorithm, it is impossible that
two contradictory assumptions are satisfied by S.

115

