Lightweight Real-Time
Synchronization under P-EDF
on Symmetric and
Asymmetric Multiprocessors

Alessandro Biondi 'and Bjorn B. Brandenburg*
*MPI-SWS, Kaiserslautern, Germany
YScuola Superiore Sant’Anna, Pisa, Italy

:
é}«}é\‘ oo X
ol -,
W &
» Max
Planck
Institute *
etis

Software Systems Real-Time Systems Laboratory

THIS WORK

Revisit lightweight synchronization under P-EDF

o Generic analysis framework for P-EDF to
cope with synchronization delays.

e Analysis with a state-of-the-art technique of
lock-free synchronization and spin locks.

Large-scale experimental study that
e considers both symmetric and asymmetric
multiprocessors.

MOTIVATION

No analysis for lock-free synchronization
on multiprocessors published to date

New, much less pessimistic blocking
analysis for spin locks recently proposed,
but limited to P-FP

Synchronization in asymmetric
multiprocessors not studied so far

FINDINGS

With the new analysis

* FIFO spin locks confirmedto perform best on
symmetric mulfiprocessors

* Lock-free synchronization found to offer

significant advantages on asymmetric
Mmultiprocessors

ESSENTIAL
BACKGROUND

WHY P-EDF?

Partitioned EDF (P-EDF) is a pragmatically good
choice for multiprocessor real-time systems:

Q Very accurate schedulability analysis;
Empirical good performance at high utilizations;
Low runtime overhead;

Good scalability (#cpus, #tasks);

Used as the basic mechanism for powerful
semi-partitioned scheduling mechanisms

(e.g., C=D splitting).

Today available in RTOSs (e.g., SCHED_DEADLINE in
Linux and ERIKA Enterprise);

PURE SCHEDULING IS NOT ENOUGH!

* Real-word applications share resources
(buffers, data structures,...).

* Need for predictable and efficient
synchronization mechanisms.

 How to synchronize under P-EDF has received
considerable attention in prior work

Non-preemptive FIFO spin locks perform best:
- Highly predictable;

 Lightweight (low runtime overhead);
* Analytically well-understood.

SPIN LOCKS

» Tasks busy-wait by executing spin loop unfil
access to the resource is granted

-
N v
NeX &

Task 1
Processor #1
. busy-wait | time

8
N\

00\
Task 2
Processor #2
time

Synchronization delay strictly depends on the
duration of conflicting critical sections

1
1
1
1
1 1 (\’b
! !
:
|

HETEROGENEOUS PLATFORMS

 Emerging in the embedded domain

N~

ASYMMETRIC MULTIPROCESSORS

» Locks in asymmetric mulfiprocessors:
possible disadvantages

Task 1
Fast Processor

Task 2
Slow Processor

ARE LOCKS THE BEST CHOICE

(from a worst-case perspective)

FOR ASYMMETRIC
MULTIPROCESSORS?

What about lock-free synchronization mechanisms?e

LOCK-FREE SYNCHRONIZATION

« Each task works on a local copy of (a part
of) the shared resource and ftries to
perform an atomic commit to publicize its
changes.

e If the commit fails, the task retries.
" do

Typically implemented
{ with Compare-and-Swap

Introduce i <copy shared copy to lgf€al copy>
retry delay‘: <modify local copy>

Commit loop

|} while not (atomic commit ())

LOCK-FREE SYNCHRONIZATION

« Example: two tasks running on two processors
and sharing a resource subject to lock-free
synchronization

Task 1
Processor #1

Task 2
Processor #2

LOCK-FREE SYNCHRONIZATION

The delay is independent of the duration

of the conflicting commit loops

Allows decoupling time domains in asymmetric
multiprocessors

Weak progress mechanism (unordered):
In the worst-case, every overlapping
request conflicts

Tends to perform worse in the worst case compared to
other mechanisms (e.g., FIFO-ordered locks)

LIMITATIONS OF THE SoA

Only symmetric mulfiprocessors have been

{. -} considered so far.

0000 What about emerging platforms that include
asymmetric multiprocessorse

No up-to-date analysis of lock-free

synchronization for multiprocessor systems

? inthe published literature.

- Are spin locks the best choice even with tfoday’s
analysis techniquese

New, significantly improved blocking analysis
techniques proposed in recent years, but

limited to P-FP.

P-EDF has regrettably fallen behind the SoOA in terms of
real-time synchronization support.

INFLATION-BASED ANALYSIS

« Approach in previous works: inflation of
task’s WCET with a coarse bound on the
synchronization delay.

Inflated WCET

Safe, but substantial pessimism

INFLATION-BASED ANALYSIS

Example

short period
- >

Task 1
Processor #1

__

Task 2
Processor #2

large period time
T L Tt T T . R >

Only one of these jobs can conflict
with the crifical section of Task 2

INFLATION-FREE
ANALYSIS FOR P-EDF

How to bound synchronization delay without
inflating task WCETs?

INFLATION-FREE ANALYSIS

* Do not inflate tasks’'s WCET but explicitly
account for synchronization delay

Approach outline

* ldentify all the conflicting requests;

* Never count a crifical section more than
once as contribution to synchronization
delay;

« Characterize the maximum
synchronization delay in every possible
schedule.

THE BLOCKING SPACE

Actual worst-case
blocking

e ———
- ~
S~

e ———
- =~

- —-—

-
-

e m———————T

S~ ——————

-
~~a =

~—— "

LP-BASED ANALYSIS

Model conftribution of requests for shared resources 1o

synchronization delay as variables of a linear program

Constraints are enforced 1o exclude impossible
scendrios (e.g., encoding protocol invariants)

Maximize LP

Safe upper-bound on all not-
excluded scenarios, including

the actual worst-case

LP-BASED ANALYSIS

~———
~~

- .~
- -~
-

- ==~
- ~-.

.

e ———
- ~
- ~

e ———
- -~

By default, every conflicting
request contributes to
synchronization delay

~—— "

~.
~
~ -
DL TSN iy

LP-BASED ANALYSIS

Approximated region
that includes the
actual (unknown)
WOrst-case scenario

~~

—-—
-

-
-

=~

- -~

-

——————
S~

- -~

-
S
~

~
N~~~ ——

LP-BASED ANALYSIS

Other benefits of the approach

Compositionality
Every constraint can be proven
independently

Extensibility

By “plugging in” new application-
specific consiraints (e.g., a resource is
accessed only every k jobs,...)

ANALYSIS FRAMEWORK

« Processor-demand Criterion (Baruah ‘06)
+ Synchronization Delay (LP-based analysis)

 How to bound the maximum busy-period
lengthe

>

dbf(t)

\,O"\g‘(

Depends on the
actual task WCETs

ANALYSIS FRAMEWORK

For each processor...

Sync. Delay
(LP-based analysis)

Arrival Curve | +

Fixed-point

teration Tentative max. busy-period length

Processor-
Demand
Criterion

Sync. Delay
(LP-based analysis)

Deadline misse

LP-BASED ANALYSIS

* We applied this approach to 4 synchronization
mechanisms:

* Lock-free algorithms with preemptive
commit loops

* Lock-free algorithms with non-preemptive
commit loops

 Non-preemptive FIFO Spin Locks

* Preemptive FIFO Spin Locks

LP-BASED ANALYSIS

Different modeling strategies are required for lock-
free algorithms and spin locks because of their

fundamental structural differences

Lock-free Algorithms

X Retry delay composed of a number of events
(I.e., refries), modeled with infeger variables of

an Infeger Linear Program (ILP).

Spin Locks

Spin delay composed of fractions of time,
V\V/\/ modeled with real variables of a
Mixed-Integer Linear Program (MILP).

EXPERIMENTAL STUDY

QUESTIONS

* Are lock-free algorithms preferable (from a
worst-case perspective) to spin locks on
asymmetric multiprocessorse

« Are spin locks still preferable on symmetric
multiprocessors, even with up-to-date lock-
free analysis techniquese

OUR STUDY

» Large-scale, based on synthetic workload
« Symmetric multiprocessors

« Asymmetric multiprocessors with two types,
tested a wide range of relative speeds
(from 1x to 10x)

« >3000 configurations have been tested to
investigate the questions

ANSWERS

« Are lock-free algorithms preferable (from @
worst-case perspective) to spin locks on
asymmetric multiprocessorse

Yes, especially in the presence of low contention
and high difference in relative processors speeds.

» Are spin locks still preferable on symmetric
multiprocessors, even with up-to-date lock-
free analysis techniquese

Yes, in all the tested scenarios and especially in
the presence of high contention.

EEXPERIMENTAL RESULTS

o Asymmetric multiprocessor: 2 fast and 2 slow
28 tasks, 4 resources

]. | | | | | | | |
o
S 0.8 F=<> 7
< \ \
St N ¢
>
. Ry~ O N
the higher = 0.6 \
the better §'= N
s 0.4 N
- \
2 T
Q — =<
S 0.2 S
1 | 1 | -T2 ==

0 —
1 2 3 4 5 6 7 &8 9 10

Scale factor of relative speeds

Speed fast processors
B Speed slow processors

P FIFO spin locks
NP lock-free

No blocking

EEXPERIMENTAL RESULTS

« Asymmeftric multiprocessor: 2 fast and 2 slow
28 tasks, 4 resources

NP lock-free
1 T Vs
NP FIFO spin Iocks NP FIFO spin locks
New analysis
Vs
Old analysis '
0.4 |
<
Q
S 0.2
O | | | | | L T ==
1 2 3 4 5 6 7 8 9 10
Scale factor of relative speeds
No blocking —&— NP FIFO spinlocks ~——4—— P FIFO spin locks

— — — NP FIFO spin locks (S0A) —4— P lock-free —>¢— NP lock-free

EXPERIMENTAL RESULTS

» Symmetric multiprocessor with 8 processors

—

e
N &~ O
| | |

Schedulability ratio

Vs

v v *— v -

Numlber of tasks

NP FIFO spin locks

Lock-free

0 "4
10 20 30 40 50 60 70 80

No blocking

— — — NP FIFO spin locks (SoA)

—@— NP FIFO spin locks
—&4o— P lock-free

———— P FIFO spin locks

—>¢— NP lock-free

CONCLUSIONS

 We took a fresh look at lightweight synchronization
under P-EDF

» Lock-free synchronization and FIFO spin locks
analyzed with a state-of-the-art technique
(inflation-free analysis)

« Experimental study considering both symmetric
and asymmetric multiprocessors

Take-away messages

FIFO spin locks perform best on symmetric
multiprocessors, even under P-EDF

Lock-free synchronization offers significant
advantages for asymmetric platforms

FUTURE WORK

» Synchronization mechanisms for
semi-partitioned scheduling with C=D;

» Extension to other synchronization mechanisms
(MrsP, SRP-based commit loops, wait-free,...);

 Investigation on the use of lock-free algorithms
for component-based software design.

Thank you!

Alessandro Biondi
alessandro.biondi@sssup.if

