
Lightweight	Real-Time	
Synchronization	under	P-EDF

on	Symmetric	and	
Asymmetric	Multiprocessors

Alessandro	Biondi and	Björn B.	Brandenburg
MPI-SWS,	Kaiserslautern,	 Germany

Scuola Superiore Sant’Anna,	Pisa,	Italy

*† *

*

†



2

THIS	WORK

Revisit lightweight synchronization under P-EDF

1

2

Generic analysis framework for P-EDF to 
cope with synchronization delays.

Analysis with a state-of-the-art technique of 
lock-free synchronization and spin locks.

Large-scale experimental study that 
considers both symmetric and asymmetric
multiprocessors.

3



3

MOTIVATION

No analysis for lock-free synchronization
on multiprocessors published to date

New, much less pessimistic blocking 
analysis for spin locks recently proposed, 
but limited to P-FP

Synchronization in asymmetric
multiprocessors not studied so far



4

FINDINGS

• FIFO spin locks confirmed to perform best on 
symmetric multiprocessors

• Lock-free synchronization found to offer 
significant advantages on asymmetric
multiprocessors

With the new analysis



ESSENTIAL
BACKGROUND



6

WHY	P-EDF?
Partitioned EDF (P-EDF) is a pragmatically good 
choice for multiprocessor real-time systems:

Very accurate schedulability analysis;

Empirical good performance at high utilizations;

Low runtime overhead;

Good scalability (#cpus, #tasks);

Used as the basic mechanism for powerful 
semi-partitioned scheduling mechanisms 
(e.g., C=D splitting).

Today available in RTOSs (e.g., SCHED_DEADLINE in 
Linux and ERIKA Enterprise);



7

PURE	SCHEDULING	IS	NOT	ENOUGH!
• Real-word applications share resources 

(buffers, data structures,…).

• How to synchronize under P-EDF has received 
considerable attention in prior work

Non-preemptive FIFO spin locks perform best:
• Highly predictable;
• Lightweight (low runtime overhead);
• Analytically well-understood.

• Need for predictable and efficient 
synchronization mechanisms.



8

SPIN	LOCKS
• Tasks busy-wait by executing spin loop until 

access to the resource is granted

time

time

Synchronization delay strictly depends on the 
duration of conflicting critical sections

Task	1
Processor	#1

Task	2
Processor	#2

busy-wait



9

HETEROGENEOUS	PLATFORMS

1	GHz 1	GHz

100	
MHz

100	
MHz

100	
MHz

100	
MHz

FPGA	Fabric

GPU DSP

• Emerging in the embedded domain

Asymmetric
multiprocessor



10

ASYMMETRIC	MULTIPROCESSORS
• Locks in asymmetric multiprocessors: 

possible disadvantages

1	GHz 100	
MHz

time

time

Task	1
Fast Processor

Task	2
Slow Processor



ARE	LOCKS	THE	BEST CHOICE
(from	a	worst-case	perspective)	
FOR	ASYMMETRIC
MULTIPROCESSORS?

What about lock-free synchronization mechanisms?



12

LOCK-FREE	SYNCHRONIZATION

• Each task works on a local copy of (a part
of) the shared resource and tries to
perform an atomic commit to publicize its
changes.
• If the commit fails, the task retries.

do
{

<copy shared copy to local copy>
<modify local copy>

} while not(atomic_commit()) 

Commit	loop Typically implemented 
with Compare-and-Swap

Introduce	
retry	delay



13

LOCK-FREE	SYNCHRONIZATION

X
time

time

Task	1
Processor	#1

Task	2
Processor	#2

conflict

Retry delay

• Example: two tasks running on two processors 
and sharing a resource subject to lock-free 
synchronization



14

LOCK-FREE	SYNCHRONIZATION

Weak progress mechanism (unordered):
in the worst-case, every overlapping 
request conflicts

The delay is independent of the duration
of the conflicting commit loops

Allows decoupling time domains in asymmetric
multiprocessors

Tends to perform worse in the worst case compared to 
other mechanisms (e.g., FIFO-ordered locks)

X



15

LIMITATIONS	OF	THE	SoA

No up-to-date analysis of lock-free 
synchronization for multiprocessor systems 
in the published literature.?
Are spin locks the best choice even with today’s 
analysis techniques?

Only symmetric multiprocessors have been 
considered so far.
What about emerging platforms that include 
asymmetric multiprocessors?

New, significantly improved blocking analysis 
techniques proposed in recent years, but 
limited to P-FP.
P-EDF has regrettably fallen behind the SoA in terms of 
real-time synchronization support.



16

INFLATION-BASED	ANALYSIS

• Approach in previous works: inflation of 
task’s WCET with a coarse bound on the 
synchronization delay.

time

R1 R2 R1

WCET

Safe, but substantial pessimism

Task

time

R1 R2 R1

Inflated	WCET

Task



17

INFLATION-BASED	ANALYSIS
Example

time

time
R

Task	1
Processor	#1

Task	2
Processor	#2

short	period

large	period

Only one of these jobs can conflict
with the critical section of Task 2



INFLATION-FREE	
ANALYSIS	FOR	P-EDF
How to bound synchronization delay without
inflating task WCETs?



19

INFLATION-FREE	ANALYSIS

• Do not inflate tasks’s WCET but explicitly
account for synchronization delay

• Identify all the conflicting requests;
• Never count a critical section more than 

once as contribution to synchronization 
delay;
• Characterize the maximum

synchronization delay in every possible 
schedule.

Approach outline



20

THE	BLOCKING	SPACE
Increasing blocking

Actual worst-case 
blocking

Exact blocking 
region

Hard to characterize and error-prone



21

LP-BASED	ANALYSIS

Safe upper-bound on all not-
excluded scenarios, including 

the actual worst-case

Maximize LP

Constraints are enforced to exclude impossible 
scenarios (e.g., encoding protocol invariants)

Model contribution of requests for shared resources to 
synchronization delay as variables of a linear program



22

LP-BASED	ANALYSIS

By default, every conflicting 
request contributes to 
synchronization delay



23

LP-BASED	ANALYSIS

Safe upper-bound

Approximated region 
that includes the 
actual (unknown) 
worst-case scenario



24

LP-BASED	ANALYSIS

Other benefits of the approach

Compositionality
Every constraint can be proven 
independently

Extensibility
By “plugging in” new application-
specific constraints (e.g., a resource is 
accessed only every k jobs,…)

+



25

ANALYSIS	FRAMEWORK

• Processor-demand Criterion (Baruah ‘06)
+ Synchronization Delay (LP-based analysis)

t

dbf(t)

L*

• How to bound the maximum busy-period
length?

Depends on the 
actual task WCETs



26

ANALYSIS	FRAMEWORK

Fixed-point
iteration

For each processor…

Deadline miss?

Tentative max. busy-period length

Arrival Curve Sync. Delay
(LP-based analysis)+

Processor-
Demand 
Criterion

Sync. Delay
(LP-based analysis)+



27

LP-BASED	ANALYSIS

• We applied this approach to 4 synchronization 
mechanisms:
• Lock-free algorithms with preemptive

commit loops

• Lock-free algorithms with non-preemptive
commit loops

• Non-preemptive FIFO Spin Locks
• Preemptive FIFO Spin Locks



28

LP-BASED	ANALYSIS

Lock-free Algorithms
Retry delay composed of a number of events
(i.e., retries), modeled with integer variables of 
an Integer Linear Program (ILP).

Spin Locks
Spin delay composed of fractions of time, 
modeled with real variables of a 
Mixed-Integer Linear Program (MILP).

Different modeling strategies are required for lock-
free algorithms and spin locks because of their 
fundamental structural differences

X



EXPERIMENTAL	STUDY



30

QUESTIONS

• Are lock-free algorithms preferable (from a 
worst-case perspective) to spin locks on 
asymmetric multiprocessors?

• Are spin locks still preferable on symmetric
multiprocessors, even with up-to-date lock-
free analysis techniques?



31

OUR	STUDY

• Large-scale, based on synthetic workload
• Symmetric multiprocessors
• Asymmetric multiprocessors with two types, 

tested a wide range of relative speeds 
(from 1x to 10x)
• >3000 configurations have been tested to 

investigate the questions



32

ANSWERS

• Are lock-free algorithms preferable (from a 
worst-case perspective) to spin locks on 
asymmetric multiprocessors?

• Are spin locks still preferable on symmetric
multiprocessors, even with up-to-date lock-
free analysis techniques?

Yes, especially in the presence of low contention 
and high difference in relative processors speeds.

Yes, in all the tested scenarios and especially in 
the presence of high contention.



33

EEXPERIMENTAL	RESULTS

No	blocking NP	FIFO	spin	locks P	FIFO	spin	locks
NP	FIFO	spin	locks	(SoA)	 P	lock-free NP	lock-free

• Asymmetric multiprocessor: 2 fast and 2 slow
28 tasks, 4 resources

Scale factor of relative speeds

the higher
the better

= Speed fast processors

Speed slow processors



34

EEXPERIMENTAL	RESULTS

No	blocking NP	FIFO	spin	locks P	FIFO	spin	locks
NP	FIFO	spin	locks	(SoA)	 P	lock-free NP	lock-free

7x

• Asymmetric multiprocessor: 2 fast and 2 slow
28 tasks, 4 resources

Scale factor of relative speeds

3x

NP lock-free
Vs

NP FIFO spin locksNP FIFO spin locks
New analysis

Vs
Old analysis



35

EXPERIMENTAL	RESULTS
• Symmetric multiprocessor with 8 processors

No	blocking NP	FIFO	spin	locks P	FIFO	spin	locks
NP	FIFO	spin	locks	(SoA)	 P	lock-free NP	lock-free

Number of tasks

5x

NP FIFO spin locks
Vs

Lock-free



36

CONCLUSIONS
• We took a fresh look at lightweight synchronization 

under P-EDF
• Lock-free synchronization and FIFO spin locks 

analyzed with a state-of-the-art technique 
(inflation-free analysis)
• Experimental study considering both symmetric

and asymmetric multiprocessors

• FIFO spin locks perform best on symmetric
multiprocessors, even under P-EDF

• Lock-free synchronization offers significant 
advantages for asymmetric platforms

Take-away messages



37

FUTURE	WORK

• Synchronization mechanisms for 
semi-partitioned scheduling with C=D;
• Extension to other synchronization mechanisms 

(MrsP, SRP-based commit loops, wait-free,…);
• Investigation on the use of lock-free algorithms 

for component-based software design.



Thank you!
Alessandro Biondi 
alessandro.biondi@sssup.it


