
Björn B. Brandenburg
bbb@mpi-sws.org

ECRTS’14
July 9, 2014

The FMLP+

An Asymptotically Optimal Real-Time Locking
Protocol for Suspension-Aware Analysis

mailto:bbb@mpi-sws.org
mailto:bbb@mpi-sws.org

MPI-SWS

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Brandenburg

Suspension-Based Locking Protocols

2

Semaphores
in POSIX

pthread_mutex_lock(…)
// critical section
pthread_mutex_unlock(…)

semaphore:
a waiting task suspends,

makes processor
available to other tasks

MPI-SWS

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Brandenburg

Suspension-Based Locking Protocols

2

Semaphores
in POSIX

pthread_mutex_lock(…)
// critical section
pthread_mutex_unlock(…)

semaphore:
a waiting task suspends,

makes processor
available to other tasks

Priority Inversion Blocking
➡ Locks cause priority inversions
≈ extra delay due to lock contention

➡ Short: pi-blocking

MPI-SWS

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Brandenburg

Suspension-Based Locking Protocols

2

Semaphores
in POSIX

pthread_mutex_lock(…)
// critical section
pthread_mutex_unlock(…)

semaphore:
a waiting task suspends,

makes processor
available to other tasks

Priority Inversion Blocking
➡ Locks cause priority inversions
≈ extra delay due to lock contention

➡ Short: pi-blocking

Blocking Analysis
➡ For a specific task set, what is the

maximum duration of pi-blocking
incurred by each task?

MPI-SWS

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Brandenburg

Suspension-Based Locking Protocols

2

Semaphores
in POSIX

pthread_mutex_lock(…)
// critical section
pthread_mutex_unlock(…)

semaphore:
a waiting task suspends,

makes processor
available to other tasks

Priority Inversion Blocking
➡ Locks cause priority inversions
≈ extra delay due to lock contention

➡ Short: pi-blocking

Blocking Analysis
➡ For a specific task set, what is the

maximum duration of pi-blocking
incurred by each task?

Blocking Optimality
➡ In general, what is the maximum

duration of pi-blocking incurred by
any task in any task set?

MPI-SWS

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Brandenburg

Multiprocessor Real-Time Locking
Optimality Classes

3

[— & Anderson, 2010] Optimality Results for Multiprocessor Real-Time Locking, RTSS 2010.

Blocking Optimality
[— & Anderson, 2010]

suspension
oblivious

suspension
aware

How are suspensions analyzed?

Advantage

CPU demand is
over-approximated

CPU demand is
modeled accurately

simpler analysis potentially less
pessimistic

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Asymptotically Optimal Locking Protocols

4

JLFP
job-level fixed-priority

Suspension Oblivious
Any JLFP Scheduler

Suspension Aware
EDF w/ Implicit

Deadlines

Suspension Aware
Any JLFP Scheduler

Partitioned
(no migrations)

Global
(jobs migrate freely)

Clustered
(jobs migrate only among

subset of processors)

[Block et al., 2007]! A Flexible Real-Time Locking Protocol for Multiprocessors, RTCSA 2007.
[— & Anderson, 2010]" Optimality Results for Multiprocessor Real-Time Locking, RTSS 2010."
[— & Anderson, 2011]" Real-Time Resource-Sharing under Clustered Scheduling: Mutex, Reader-Writer, and k-Exclusion Locks, EMSOFT 2011.
[—, 2011]" Scheduling and Locking in Multiprocessor Real-Time Operating Systems, PhD thesis, UNC, 2011.
[Ward & Anderson, 2012]" Supporting Nested Locking in Multiprocessor Real-Time Systems, ECRTS 2012.
[—, 2013]" A Fully Preemptive Multiprocessor Semaphore Protocol for Latency-Sensitive Real-Time Applications, ECRTS 2013.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Asymptotically Optimal Locking Protocols

5

JLFP
job-level fixed-priority

Suspension Oblivious
Any JLFP Scheduler

Suspension Aware
EDF w/ Implicit

Deadlines

Suspension Aware
Any JLFP Scheduler

Partitioned
(no migrations)

Global
(jobs migrate freely)

Clustered
(jobs migrate only among

subset of processors)

P-OMLP
[— & Anderson, 2010]

G-OMLP
[— & Anderson, 2010]

OMIP
[—, 2013]

C-OMLP
[— & Anderson, 2011]

[Block et al., 2007]! A Flexible Real-Time Locking Protocol for Multiprocessors, RTCSA 2007.
[— & Anderson, 2010]" Optimality Results for Multiprocessor Real-Time Locking, RTSS 2010."
[— & Anderson, 2011]" Real-Time Resource-Sharing under Clustered Scheduling: Mutex, Reader-Writer, and k-Exclusion Locks, EMSOFT 2011.
[—, 2011]" Scheduling and Locking in Multiprocessor Real-Time Operating Systems, PhD thesis, UNC, 2011.
[Ward & Anderson, 2012]" Supporting Nested Locking in Multiprocessor Real-Time Systems, ECRTS 2012.
[—, 2013]" A Fully Preemptive Multiprocessor Semaphore Protocol for Latency-Sensitive Real-Time Applications, ECRTS 2013.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Asymptotically Optimal Locking Protocols

6

JLFP
job-level fixed-priority

Suspension Oblivious
Any JLFP Scheduler

Suspension Aware
EDF w/ Implicit

Deadlines

Suspension Aware
Any JLFP Scheduler

Partitioned
(no migrations)

Global
(jobs migrate freely)

Clustered
(jobs migrate only among

subset of processors)

P-OMLP
[— & Anderson, 2010]

SPFP (asymptotical tightness)
[— & Anderson, 2010]

P-FMLP+ (practical protocol)
[—, 2011]

SPFP (asymptotical tightness)
[— & Anderson, 2010]

P-FMLP+ (practical protocol)
[—, 2011]

G-OMLP
[— & Anderson, 2010]

OMIP
[—, 2013]

C-OMLP
[— & Anderson, 2011]

[Block et al., 2007]! A Flexible Real-Time Locking Protocol for Multiprocessors, RTCSA 2007.
[— & Anderson, 2010]" Optimality Results for Multiprocessor Real-Time Locking, RTSS 2010."
[— & Anderson, 2011]" Real-Time Resource-Sharing under Clustered Scheduling: Mutex, Reader-Writer, and k-Exclusion Locks, EMSOFT 2011.
[—, 2011]" Scheduling and Locking in Multiprocessor Real-Time Operating Systems, PhD thesis, UNC, 2011.
[Ward & Anderson, 2012]" Supporting Nested Locking in Multiprocessor Real-Time Systems, ECRTS 2012.
[—, 2013]" A Fully Preemptive Multiprocessor Semaphore Protocol for Latency-Sensitive Real-Time Applications, ECRTS 2013.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Asymptotically Optimal Locking Protocols

7

JLFP
job-level fixed-priority

Suspension Oblivious
Any JLFP Scheduler

Suspension Aware
EDF w/ Implicit

Deadlines

Suspension Aware
Any JLFP Scheduler

Partitioned
(no migrations)

Global
(jobs migrate freely)

Clustered
(jobs migrate only among

subset of processors)

P-OMLP
[— & Anderson, 2010]

SPFP (asymptotical tightness)
[— & Anderson, 2010]

P-FMLP+ (practical protocol)
[—, 2011]

SPFP (asymptotical tightness)
[— & Anderson, 2010]

P-FMLP+ (practical protocol)
[—, 2011]

G-OMLP
[— & Anderson, 2010]

FMLP
[Block et al., 2007]

OMIP
[—, 2013]

C-OMLP
[— & Anderson, 2011]

[Block et al., 2007]! A Flexible Real-Time Locking Protocol for Multiprocessors, RTCSA 2007.
[— & Anderson, 2010]" Optimality Results for Multiprocessor Real-Time Locking, RTSS 2010."
[— & Anderson, 2011]" Real-Time Resource-Sharing under Clustered Scheduling: Mutex, Reader-Writer, and k-Exclusion Locks, EMSOFT 2011.
[—, 2011]" Scheduling and Locking in Multiprocessor Real-Time Operating Systems, PhD thesis, UNC, 2011.
[Ward & Anderson, 2012]" Supporting Nested Locking in Multiprocessor Real-Time Systems, ECRTS 2012.
[—, 2013]" A Fully Preemptive Multiprocessor Semaphore Protocol for Latency-Sensitive Real-Time Applications, ECRTS 2013.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Asymptotically Optimal Locking Protocols

8

JLFP
job-level fixed-priority

Suspension Oblivious
Any JLFP Scheduler

Suspension Aware
EDF w/ Implicit

Deadlines

Suspension Aware
Any JLFP Scheduler

Partitioned
(no migrations)

Global
(jobs migrate freely)

Clustered
(jobs migrate only among

subset of processors)

P-OMLP
[— & Anderson, 2010]

SPFP (asymptotical tightness)
[— & Anderson, 2010]

P-FMLP+ (practical protocol)
[—, 2011]

SPFP (asymptotical tightness)
[— & Anderson, 2010]

P-FMLP+ (practical protocol)
[—, 2011]

G-OMLP
[— & Anderson, 2010]

FMLP
[Block et al., 2007]

OMIP
[—, 2013]

C-OMLP
[— & Anderson, 2011]

Support for nested critical sections added by RNLP.
[Ward & Anderson, 2012]

[Block et al., 2007]! A Flexible Real-Time Locking Protocol for Multiprocessors, RTCSA 2007.
[— & Anderson, 2010]" Optimality Results for Multiprocessor Real-Time Locking, RTSS 2010."
[— & Anderson, 2011]" Real-Time Resource-Sharing under Clustered Scheduling: Mutex, Reader-Writer, and k-Exclusion Locks, EMSOFT 2011.
[—, 2011]" Scheduling and Locking in Multiprocessor Real-Time Operating Systems, PhD thesis, UNC, 2011.
[Ward & Anderson, 2012]" Supporting Nested Locking in Multiprocessor Real-Time Systems, ECRTS 2012.
[—, 2013]" A Fully Preemptive Multiprocessor Semaphore Protocol for Latency-Sensitive Real-Time Applications, ECRTS 2013.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Asymptotically Optimal Locking Protocols

9

JLFP
job-level fixed-priority

Suspension Oblivious
Any JLFP Scheduler

Suspension Aware
Any JLFP Scheduler

Partitioned
(no migrations)

Global
(jobs migrate freely)

Clustered
(jobs migrate only among

subset of processors)

P-OMLP
[— & Anderson, 2010] This Work

The Generalized FMLP+

(FIFO Multiprocessor Locking Protocol)G-OMLP
[— & Anderson, 2010]

This Work
The Generalized FMLP+

(FIFO Multiprocessor Locking Protocol)

OMIP
[—, 2013]

C-OMLP
[— & Anderson, 2011]

This Work
The Generalized FMLP+

(FIFO Multiprocessor Locking Protocol)

[Block et al., 2007]! A Flexible Real-Time Locking Protocol for Multiprocessors, RTCSA 2007.
[— & Anderson, 2010]" Optimality Results for Multiprocessor Real-Time Locking, RTSS 2010."
[— & Anderson, 2011]" Real-Time Resource-Sharing under Clustered Scheduling: Mutex, Reader-Writer, and k-Exclusion Locks, EMSOFT 2011.
[—, 2011]" Scheduling and Locking in Multiprocessor Real-Time Operating Systems, PhD thesis, UNC, 2011.
[Ward & Anderson, 2012]" Supporting Nested Locking in Multiprocessor Real-Time Systems, ECRTS 2012.
[—, 2013]" A Fully Preemptive Multiprocessor Semaphore Protocol for Latency-Sensitive Real-Time Applications, ECRTS 2013.

+ RNLP [Ward & Anderson, 2012]

+ RNLP [Ward & Anderson, 2012]

+ RNLP [Ward & Anderson, 2012] + RNLP [Ward & Anderson, 2012] for nested critical sections

MPI-SWS

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Brandenburg

Remainder of This Talk

10

What is Suspension-Aware PI-Blocking?
➡ Assumptions & quick review

Finding a Suitable Progress Mechanism
➡ How to deal with lock-holder preemptions

Closing the Suspension-Aware Optimality Gap
➡ New progress mechanism:

restricted segment boosting
➡ Achieving asymptotic optimality with the

generalized FMLP+

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Assumptions
& Review

of Suspension-Aware
PI-Blocking

11

MPI-SWS

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Brandenburg

System Model

12

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

clustered scheduling
global scheduling

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
3

Q
2

Q
4

J1 J2 J3 J4

partitioned scheduling

Clustered Scheduling
➡ disjoint clusters of processors

‣ special cases: partitioned & global
➡ job-level fixed-priority policy (JLFP)

‣ e.g., EDF, static task priorities
➡ cluster size may be non-uniform

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

J1

J2

J3

J4

MPI-SWS

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Brandenburg

System Model

13

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

clustered scheduling
global scheduling

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
3

Q
2

Q
4

J1 J2 J3 J4

partitioned scheduling

Clustered Scheduling
➡ disjoint clusters of processors

‣ special cases: partitioned & global
➡ job-level fixed-priority policy (JLFP)

‣ e.g., EDF, static task priorities
➡ cluster size may be non-uniform

Sporadic Tasks
➡ arbitrary deadlines
➡ shared resources

‣ in the paper: also nested CSs
‣ in the talk: only unnested CSs

➡ locking-unrelated self-suspensions

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

J1

J2

J3

J4

MPI-SWS

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Brandenburg

Definition: S-Aware PI-Blocking

14

A job J assigned to a cluster with c CPUs
incurs s-aware pi-blocking at a time t iff

(1) J is not scheduled at time t, and

(2) fewer than c higher-priority jobs are scheduled.

Intuition
➡ Locking-related delays are not problematic iff

J would not have been scheduled anyway…

[— & Anderson, 2010] Optimality Results for Multiprocessor Real-Time Locking, RTSS 2010.

[— & Anderson, 2010]

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Maximum PI-Blocking

15

bi — bound on max. pi-blocking incurred by task Ti
max {bi} — maximum pi-blocking of any task in task set

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Maximum PI-Blocking

16

bi — bound on max. pi-blocking incurred by task Ti
max {bi} — maximum pi-blocking of any task in task set

[— & Anderson, 2010] Optimality Results for Multiprocessor Real-Time Locking, RTSS 2010.

There exist task sets such that under s-aware analysis

max {bi} = Ω(n)

under any suspension-based locking protocol.
[— & Anderson, 2010]

(assuming constant critical section lengths)

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Maximum PI-Blocking

17

bi — bound on max. pi-blocking incurred by task Ti
max {bi} — maximum pi-blocking of any task in task set

[— & Anderson, 2010] Optimality Results for Multiprocessor Real-Time Locking, RTSS 2010.

There exist task sets such that under s-aware analysis

max {bi} = Ω(n)

under any suspension-based locking protocol.
[— & Anderson, 2010]

➞ O(n) max. s-aware pi-blocking is asymptotically optimal.

(assuming constant critical section lengths)

MPI-SWS

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Brandenburg

Objective

18

Define a locking protocol such that

max {bi} = O(n)

for any task set under any clustered JLFP scheduler.

Need to define queue order
➡ FIFO works

Need to define progress mechanism
➡ To deal with risk of lock-holder preemption
➡ Ensure timely completion of critical sections
➡ Classic example: priority inheritance

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Finding a Suitable
Progress Mechanism

19

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Progress Mechanism Choices

20

JLFP
job-level fixed-priority

Suspension Oblivious
Any JLFP Scheduler

Suspension Aware
EDF w/ Implicit

Deadlines

Suspension Aware
Any JLFP Scheduler

Partitioned
(no migrations)

Global
(jobs migrate freely)

Clustered
(jobs migrate only among

subset of processors)

P-OMLP
[— & Anderson, 2010]

SPFP (asymptotical tightness)
[— & Anderson, 2010]

P-FMLP+ (practical protocol)
[—, 2011]

SPFP (asymptotical tightness)
[— & Anderson, 2010]

P-FMLP+ (practical protocol)
[—, 2011]

G-OMLP
[— & Anderson, 2010]

FMLP
[Block et al., 2007]

OMIP
[—, 2013]

C-OMLP
[— & Anderson, 2011]

[Block et al., 2007]! A Flexible Real-Time Locking Protocol for Multiprocessors, RTCSA 2007.
[— & Anderson, 2010]" Optimality Results for Multiprocessor Real-Time Locking, RTSS 2010."
[— & Anderson, 2011]" Real-Time Resource-Sharing under Clustered Scheduling: Mutex, Reader-Writer, and k-Exclusion Locks, EMSOFT 2011.
[—, 2011]" Scheduling and Locking in Multiprocessor Real-Time Operating Systems, PhD thesis, UNC, 2011.
[—, 2013]" A Fully Preemptive Multiprocessor Semaphore Protocol for Latency-Sensitive Real-Time Applications, ECRTS 2013.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Progress Mechanism Choices

21

JLFP
job-level fixed-priority

Suspension Oblivious
Any JLFP Scheduler

Suspension Aware
EDF w/ Implicit

Deadlines

Suspension Aware
Any JLFP Scheduler

Partitioned
(no migrations)

Global
(jobs migrate freely)

Clustered
(jobs migrate only among

subset of processors)

P-OMLP
[— & Anderson, 2010]

SPFP (asymptotical tightness)
[— & Anderson, 2010]

P-FMLP+ (practical protocol)
[—, 2011]

SPFP (asymptotical tightness)
[— & Anderson, 2010]

P-FMLP+ (practical protocol)
[—, 2011]

G-OMLP
[— & Anderson, 2010]

FMLP
[Block et al., 2007]

OMIP
[—, 2013]

C-OMLP
[— & Anderson, 2011]

[Block et al., 2007]! A Flexible Real-Time Locking Protocol for Multiprocessors, RTCSA 2007.
[— & Anderson, 2010]" Optimality Results for Multiprocessor Real-Time Locking, RTSS 2010."
[— & Anderson, 2011]" Real-Time Resource-Sharing under Clustered Scheduling: Mutex, Reader-Writer, and k-Exclusion Locks, EMSOFT 2011.
[—, 2011]" Scheduling and Locking in Multiprocessor Real-Time Operating Systems, PhD thesis, UNC, 2011.
[—, 2013]" A Fully Preemptive Multiprocessor Semaphore Protocol for Latency-Sensitive Real-Time Applications, ECRTS 2013.

(1) The classic choice: (variants of) priority inheritance.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Progress Mechanism Choices

22

JLFP
job-level fixed-priority

Suspension Oblivious
Any JLFP Scheduler

Suspension Aware
EDF w/ Implicit

Deadlines

Suspension Aware
Any JLFP Scheduler

Partitioned
(no migrations)

Global
(jobs migrate freely)

Clustered
(jobs migrate only among

subset of processors)

P-OMLP
[— & Anderson, 2010]

SPFP (asymptotical tightness)
[— & Anderson, 2010]

P-FMLP+ (practical protocol)
[—, 2011]

SPFP (asymptotical tightness)
[— & Anderson, 2010]

P-FMLP+ (practical protocol)
[—, 2011]

G-OMLP
[— & Anderson, 2010]

FMLP
[Block et al., 2007]

OMIP
[—, 2013]

C-OMLP
[— & Anderson, 2011]

[Block et al., 2007]! A Flexible Real-Time Locking Protocol for Multiprocessors, RTCSA 2007.
[— & Anderson, 2010]" Optimality Results for Multiprocessor Real-Time Locking, RTSS 2010."
[— & Anderson, 2011]" Real-Time Resource-Sharing under Clustered Scheduling: Mutex, Reader-Writer, and k-Exclusion Locks, EMSOFT 2011.
[—, 2011]" Scheduling and Locking in Multiprocessor Real-Time Operating Systems, PhD thesis, UNC, 2011.
[—, 2013]" A Fully Preemptive Multiprocessor Semaphore Protocol for Latency-Sensitive Real-Time Applications, ECRTS 2013.

(1) The classic choice: (variants of) priority inheritance.

(2) The partitioned & clustered choice: (variants of) priority boosting.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Sub-Optimality of Priority Inheritance

23

It is impossible to construct

an asymptotically optimal locking protocol
(w.r.t. s-aware analysis)

under global JLFP scheduling

based on priority inheritance.

(And hence also under clustered JLFP scheduling.)

[—, 2011]

[—, 2011]: Scheduling and Locking in Multiprocessor Real-Time Operating Systems, PhD thesis, University of North Carolina at Chapel Hill, 2011.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Sub-Optimality of Priority Inheritance

24

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4 Priority Inheritance Example Schedule
4 tasks on 2 processors

 global fixed-priority scheduling
Task priorities (high to low): T1 > T2 > T3 > T4

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Sub-Optimality of Priority Inheritance

25

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Sub-Optimality of Priority Inheritance

26

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

T4 : short period, long deadline (d4 > p4), shares lock with T2

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Sub-Optimality of Priority Inheritance

27

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

T4 : short period, long deadline (d4 > p4), shares lock with T2

T2 & T1: short period, implicit deadline (d{1,2} = p{1,2})

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Sub-Optimality of Priority Inheritance

28

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

T4 : short period, long deadline (d4 > p4), shares lock with T2

T2 & T1: short period, implicit deadline (d{1,2} = p{1,2})

T3 : long period, implicit deadline, “victim task”

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Independent Job Incurs Priority Inversion

29

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI

PI

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Independent Job Incurs Priority Inversion

30

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI

PI

T4 acquires lock first...

…but is preempted by arrival of higher-priority jobs.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Independent Job Incurs Priority Inversion

31

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI

PI

T4 acquires lock first...

…and T2 also requires the lock.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Independent Job Incurs Priority Inversion

32

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI

PI

Priority inheritance: T4 inherits from T2

➔ T3 is preempted, incurs s-aware pi-blocking

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Independent Job Incurs Priority Inversion

33

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI

PI

How often can this scenario repeat?

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

“Victim Task” Accumulates PI-Blocking

34

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI PI PI PI

PI PI PI PI

Ω(ϕ) pi-blocking is possible, where ϕ = {max response time} / {min period}

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

“Victim Task” Accumulates PI-Blocking

35

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI PI PI PI

PI PI PI PI

Ω(ϕ) pi-blocking is possible, where ϕ = {max response time} / {min period}

Bounded only by
the number of jobs released by T1, T2, and T4 while T3 is pending.

How many jobs? ➔ ϕ = {max response time} / {min period}

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Sub-Optimality of Priority Inheritance

36

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI PI PI PI

PI PI PI PI

Ω(ϕ) pi-blocking is possible, where ϕ = {max response time} / {min period}

ϕ is not bounded by the number of tasks n.

➔ not asymptotically optimal.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

What about Priority Boosting?

37

JLFP
job-level fixed-priority

Suspension Oblivious
Any JLFP Scheduler

Suspension Aware
EDF w/ Implicit

Deadlines

Suspension Aware
Any JLFP Scheduler

Partitioned
(no migrations)

Global
(jobs migrate freely)

Clustered
(jobs migrate only among

subset of processors)

P-OMLP
[— & Anderson, 2010]

SPFP (asymptotical tightness)
[— & Anderson, 2010]

P-FMLP+ (practical protocol)
[—, 2011]

SPFP (asymptotical tightness)
[— & Anderson, 2010]

P-FMLP+ (practical protocol)
[—, 2011]

G-OMLP
[— & Anderson, 2010]

FMLP
[Block et al., 2007]

OMIP
[—, 2013]

C-OMLP
[— & Anderson, 2011]

[Block et al., 2007]! A Flexible Real-Time Locking Protocol for Multiprocessors, RTCSA 2007.
[— & Anderson, 2010]" Optimality Results for Multiprocessor Real-Time Locking, RTSS 2010."
[— & Anderson, 2011]" Real-Time Resource-Sharing under Clustered Scheduling: Mutex, Reader-Writer, and k-Exclusion Locks, EMSOFT 2011.
[—, 2011]" Scheduling and Locking in Multiprocessor Real-Time Operating Systems, PhD thesis, UNC, 2011.
[—, 2013]" A Fully Preemptive Multiprocessor Semaphore Protocol for Latency-Sensitive Real-Time Applications, ECRTS 2013.

(1) The classic choice: (variants of) priority inheritance.

(2) The partitioned & clustered choice: (variants of) priority boosting.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

What about Priority Boosting?

37

JLFP
job-level fixed-priority

Suspension Oblivious
Any JLFP Scheduler

Suspension Aware
EDF w/ Implicit

Deadlines

Suspension Aware
Any JLFP Scheduler

Partitioned
(no migrations)

Global
(jobs migrate freely)

Clustered
(jobs migrate only among

subset of processors)

P-OMLP
[— & Anderson, 2010]

SPFP (asymptotical tightness)
[— & Anderson, 2010]

P-FMLP+ (practical protocol)
[—, 2011]

SPFP (asymptotical tightness)
[— & Anderson, 2010]

P-FMLP+ (practical protocol)
[—, 2011]

G-OMLP
[— & Anderson, 2010]

FMLP
[Block et al., 2007]

OMIP
[—, 2013]

C-OMLP
[— & Anderson, 2011]

[Block et al., 2007]! A Flexible Real-Time Locking Protocol for Multiprocessors, RTCSA 2007.
[— & Anderson, 2010]" Optimality Results for Multiprocessor Real-Time Locking, RTSS 2010."
[— & Anderson, 2011]" Real-Time Resource-Sharing under Clustered Scheduling: Mutex, Reader-Writer, and k-Exclusion Locks, EMSOFT 2011.
[—, 2011]" Scheduling and Locking in Multiprocessor Real-Time Operating Systems, PhD thesis, UNC, 2011.
[—, 2013]" A Fully Preemptive Multiprocessor Semaphore Protocol for Latency-Sensitive Real-Time Applications, ECRTS 2013.

(1) The classic choice: (variants of) priority inheritance.

(2) The partitioned & clustered choice: (variants of) priority boosting.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Sub-Optimality of Unrestricted Priority Boosting

38

It is impossible to construct

an asymptotically optimal locking protocol
(w.r.t. s-aware analysis)

under global JLFP scheduling

based on unrestricted priority boosting.

(And hence also under clustered JLFP scheduling.)

[—, 2011]

[—, 2011]: Scheduling and Locking in Multiprocessor Real-Time Operating Systems, PhD thesis, University of North Carolina at Chapel Hill, 2011.

lock-holding jobs always have higher
effective priority than non-lock-holding jobs

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Sub-Optimality of Unrestricted Priority Boosting

39

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4
Unrestricted Priority Boosting Example Schedule

[same task set & arrival sequence as before]
4 tasks on 2 processors

 global fixed-priority scheduling
Task priorities (high to low): T1 > T2 > T3 > T4

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Lock-Holding Jobs Cannot Be Preempted

40

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Lock-Holding Jobs Cannot Be Preempted

41

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

Priority Boosting
 T4 cannot be preempted

by newly released, non-resource-holding job…

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

PI-Blocking Shifted, not Avoided

42

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI

PI

Priority Boosting
 T4 cannot be preempted

by newly released, non-resource-holding job…

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

PI-Blocking Shifted, not Avoided

43

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI

PI

… but T3 is still preempted by T1.
➔ s-aware pi-blocking

Priority Boosting
 T4 cannot be preempted

by newly released, non-resource-holding job…

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

“Victim Task” Accumulates PI-Blocking

44

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI PI PI PI

PI PI PI PI

Ω(ϕ) pi-blocking is possible, where ϕ = {max response time} / {min period}

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Sub-Optimality of Unrestricted Priority Boosting

45

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI PI PI PI

PI PI PI PI

Ω(ϕ) pi-blocking is possible, where ϕ = {max response time} / {min period}

Also repeats ϕ = {max response time} / {min period} times…

➔ not asymptotically optimal.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Sub-Optimality of Unrestricted Priority Boosting

46

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI PI PI PI

PI PI PI PI

Ω(ϕ) pi-blocking is possible, where ϕ = {max response time} / {min period}

Remark: examples use single resource shared by only two tasks

➔ queue order irrelevant (FIFO-ordered, priority-ordered, etc.)
➔ cannot simplify problem with coarser-grained locking

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

We need something new…

47

JLFP
job-level fixed-priority

Suspension Oblivious
Any JLFP Scheduler

Suspension Aware
EDF w/ Implicit

Deadlines

Suspension Aware
Any JLFP Scheduler

Partitioned
(no migrations)

Global
(jobs migrate freely)

Clustered
(jobs migrate only among

subset of processors)

P-OMLP
[— & Anderson, 2010]

SPFP (asymptotical tightness)
[— & Anderson, 2010]

P-FMLP+ (practical protocol)
[—, 2011]

SPFP (asymptotical tightness)
[— & Anderson, 2010]

P-FMLP+ (practical protocol)
[—, 2011]

G-OMLP
[— & Anderson, 2010]

FMLP
[Block et al., 2007]

OMIP
[—, 2013]

C-OMLP
[— & Anderson, 2011]

[Block et al., 2007]! A Flexible Real-Time Locking Protocol for Multiprocessors, RTCSA 2007.
[— & Anderson, 2010]" Optimality Results for Multiprocessor Real-Time Locking, RTSS 2010."
[— & Anderson, 2011]" Real-Time Resource-Sharing under Clustered Scheduling: Mutex, Reader-Writer, and k-Exclusion Locks, EMSOFT 2011.
[—, 2011]" Scheduling and Locking in Multiprocessor Real-Time Operating Systems, PhD thesis, UNC, 2011.
[—, 2013]" A Fully Preemptive Multiprocessor Semaphore Protocol for Latency-Sensitive Real-Time Applications, ECRTS 2013.

(1) The classic choice: (variants of) priority inheritance.

(2) The partitioned & clustered choice: (variants of) priority boosting.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

We need something new…

47

JLFP
job-level fixed-priority

Suspension Oblivious
Any JLFP Scheduler

Suspension Aware
EDF w/ Implicit

Deadlines

Suspension Aware
Any JLFP Scheduler

Partitioned
(no migrations)

Global
(jobs migrate freely)

Clustered
(jobs migrate only among

subset of processors)

P-OMLP
[— & Anderson, 2010]

SPFP (asymptotical tightness)
[— & Anderson, 2010]

P-FMLP+ (practical protocol)
[—, 2011]

SPFP (asymptotical tightness)
[— & Anderson, 2010]

P-FMLP+ (practical protocol)
[—, 2011]

G-OMLP
[— & Anderson, 2010]

FMLP
[Block et al., 2007]

OMIP
[—, 2013]

C-OMLP
[— & Anderson, 2011]

[Block et al., 2007]! A Flexible Real-Time Locking Protocol for Multiprocessors, RTCSA 2007.
[— & Anderson, 2010]" Optimality Results for Multiprocessor Real-Time Locking, RTSS 2010."
[— & Anderson, 2011]" Real-Time Resource-Sharing under Clustered Scheduling: Mutex, Reader-Writer, and k-Exclusion Locks, EMSOFT 2011.
[—, 2011]" Scheduling and Locking in Multiprocessor Real-Time Operating Systems, PhD thesis, UNC, 2011.
[—, 2013]" A Fully Preemptive Multiprocessor Semaphore Protocol for Latency-Sensitive Real-Time Applications, ECRTS 2013.

(1) The classic choice: (variants of) priority inheritance.

(2) The partitioned & clustered choice: (variants of) priority boosting.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Observation: O(n) PI-Blocking Possible

48

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Observation: O(n) PI-Blocking Possible

49

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI

PI

This schedule: unrestricted priority boosting.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Observation: O(n) PI-Blocking Possible

50

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI

PI

This schedule: unrestricted priority boosting.

PI-blocking cannot be avoided, but it can be shifted to new jobs.
➔ prevent accumulation of pi-blocking in individual jobs.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Idea: Protect Existing Independent Jobs

51

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI

PI

Alternative possible schedule.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Idea: Protect Existing Independent Jobs

52

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI

PI

Alternative possible schedule.

T3 is not preempted while T4 holds a lock!

 Both T1 and T2 incur pi-blocking instead.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

O(n) PI-Blocking Per Job

53

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI PI PI PI

PI PI PI

Alternative possible schedule.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

O(n) PI-Blocking Per Job

54

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI PI PI PI

PI PI PI

Alternative possible schedule.

Each job incurs only a limited amount of pi-blocking.

➔ asymptotically optimal.

T3 “protected”: incurs no pi-blocking in this example.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

O(n) PI-Blocking Per Job

55

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI PI PI PI

PI PI PI

Alternative possible schedule.

This is actually a Generalized FMLP+ schedule.

Key question: how to specify that “T3 must be protected”?

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Closing the
S-Aware Asymptotic

Optimality Gap

56

MPI-SWS

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Brandenburg

Key Problem: Preemptions due to
Later-Started Critical Sections

57

On Uniprocessors
➡ a job is blocked only by critical sections that are already in

progress when the job is released / resumed.

MPI-SWS

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Brandenburg

Key Problem: Preemptions due to
Later-Started Critical Sections

58

On Uniprocessors
➡ a job is blocked only by critical sections that are already in

progress when the job is released / resumed.

On Multiprocessors
➡ Priority boosting example…

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI PI PI PI

PI PI PI PI

MPI-SWS

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Brandenburg

Key Problem: Preemptions due to
Later-Started Critical Sections

59

On Uniprocessors
➡ a job is blocked only by critical sections that are already in

progress when the job is released / resumed.

On Multiprocessors
➡ Priority boosting example…

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI PI PI PI

PI PI PI PI

Priority Boosting / Priority Inheritance Examples
T3 blocked due to ϕ requests issued after T3 started executing.

(➔ root cause: parallel scheduling of lower-priority jobs)

MPI-SWS

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Brandenburg

CSx

What if this is disallowed…?

60

time

Ji

released

CSb

cannot preempt may not preempt

CSa

may preempt (one per task)

critical sections

analyzed job

strawman rule: jobs cannot be preempted due to later-issued requests

➡ O(n) preemptions

MPI-SWS

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Brandenburg

CSx

What if this is disallowed…?

61

time

Ji

released

CSb

cannot preempt may not preempt

CSa

may preempt (one per task)

critical sections

analyzed job

strawman rule: jobs cannot be preempted due to later-issued requests

➡ O(n) preemptions

This is the desired effect, but the simple rule fails in corner cases.

MPI-SWS

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Brandenburg

Independent & Request Segments

62

independent segment request segment independent segment …
holding a lock or suspended ready & does not require a lock

a job at runtime:

Note: exact segments known only at runtime
➡ potentially complex, non-linear control flow determines which

resources are required and in which order
➡ approach not limited to linear, branch-free tasks

MPI-SWS

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Brandenburg

Independent & Request Segments

63

independent segment request segment independent segment …
holding a lock or suspended ready & does not require a lock

a job at runtime:

Note: exact segments known only at runtime
➡ potentially complex, non-linear control flow determines which

resources are required and in which order
➡ approach not limited to linear, branch-free tasks

Key Concept: Segment Start Time
Simply the start time of a job’s current segment.

MPI-SWS

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Brandenburg

A Lock Holder’s Co-Boosting Set

64

Key idea underlying the Generalized FMLP+

If a job is priority-boosted,
then certain other jobs must also be co-boosted.

MPI-SWS

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Brandenburg

If a job Jb holds a lock at time t, then its co-boosting set is
defined as:

A Lock Holder’s Co-Boosting Set

65

{ Jy executes an independent segment at time t and
Jy has higher priority than Jb and
Jy‘s current segment started before Jb’s segment. }|Jy

Intuition
➡ The set of jobs at risk of accumulating pi-blocking due to Jb.

(Note: in this talk, I’ll use “task” and “job” interchangeably.)

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Example: { T3 } is T4’s Co-Boosting Set

66

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI PI PI PI

PI PI PI

Generalized FMLP+ schedule.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Example: { T3 } is T4’s Co-Boosting Set

67

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI PI PI PI

PI PI PI

Generalized FMLP+ schedule.

{ T3 executes an independent segment at time t and
T3 has higher priority than T4 and
T3’s current segment started before T4’s segment. }|T3

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI PI PI PI

PI PI PI

Example: T3 is in T4’s Co-Boosting Set

68

Generalized FMLP+ schedule.

T1 and T2 execute independent segments at time t and
T1 and T2 have higher priority than T4 but
T1 and T2’s current segments did NOT start before T4’s segment.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Restricted Segment Boosting

69

In a cluster with c CPUs, at any point in time t, schedule the following jobs:

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Restricted Segment Boosting

70

In a cluster with c CPUs, at any point in time t, schedule the following jobs:

A Single Boosted Job Jb

The lock-holding ready job (if any) with the earliest segment start time.

(any ties broken arbitrarily but consistently)

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Restricted Segment Boosting

71

In a cluster with c CPUs, at any point in time t, schedule the following jobs:

A Single Boosted Job Jb

The lock-holding ready job (if any) with the earliest segment start time.

Up to c - 1 jobs from Jb‘s Co-Boosting Set
Select the (up to) c - 1 jobs with the earliest segment start times.

(any ties broken arbitrarily but consistently)

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Restricted Segment Boosting

72

In a cluster with c CPUs, at any point in time t, schedule the following jobs:

A Single Boosted Job Jb

The lock-holding ready job (if any) with the earliest segment start time.

Up to c - 1 jobs from Jb‘s Co-Boosting Set
Select the (up to) c - 1 jobs with the earliest segment start times.

If less than c jobs scheduled so far: any other ready jobs
Select the highest-priority ready jobs not yet scheduled (may hold locks).

(any ties broken arbitrarily but consistently)

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Restricted Segment Boosting at Time 1

73

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI PI PI PI

PI PI PI

Generalized FMLP+ schedule.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Restricted Segment Boosting Example

74

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI PI PI PI

PI PI PI

Generalized FMLP+ schedule.

(1) The lock-holding ready job (if any) with the earliest segment start time.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Restricted Segment Boosting Example

75

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI PI PI PI

PI PI PI

Generalized FMLP+ schedule.

(1) The lock-holding ready job (if any) with the earliest segment start time.

(2) Up to c - 1 = 1 jobs from T4’s co-boosting set = {T3}.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Restricted Segment Boosting Example

76

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI PI PI PI

PI PI PI

Generalized FMLP+ schedule.

(1) The lock-holding ready job (if any) with the earliest segment start time.

(2) Up to c - 1 = 1 jobs from T4’s co-boosting set = {T3}.

(3) If less than c = 2 jobs scheduled so far: any other ready jobs.
At time 1: no more CPUs available after steps 1 & 2.

MPI-SWS

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Brandenburg

The Generalized FIFO Multiprocessor Locking Protocol (FMLP+)

77

Restricted Segment Boosting + Per-Resource FIFO Queues

MPI-SWS

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Brandenburg

The Generalized FIFO Multiprocessor Locking Protocol (FMLP+)

77

Restricted Segment Boosting + Per-Resource FIFO Queues

S-Aware PI-Blocking per Segment
➡ …during request segment: O(n).

‣ Proof: rather straightforward ➞ see paper.
➡ …during independent segment: O(n).

‣ Proof: rather involved ➞ see paper.

MPI-SWS

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Brandenburg

The Generalized FIFO Multiprocessor Locking Protocol (FMLP+)

77

Restricted Segment Boosting + Per-Resource FIFO Queues

S-Aware PI-Blocking per Segment
➡ …during request segment: O(n).

‣ Proof: rather straightforward ➞ see paper.
➡ …during independent segment: O(n).

‣ Proof: rather involved ➞ see paper.

Number of segments
➡ Constant #requests and #self-suspensions per job
➞ constant number of segments.

MPI-SWS

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Brandenburg

The Generalized FIFO Multiprocessor Locking Protocol (FMLP+)

77

Restricted Segment Boosting + Per-Resource FIFO Queues

S-Aware PI-Blocking per Segment
➡ …during request segment: O(n).

‣ Proof: rather straightforward ➞ see paper.
➡ …during independent segment: O(n).

‣ Proof: rather involved ➞ see paper.

Number of segments
➡ Constant #requests and #self-suspensions per job
➞ constant number of segments.

Overall Max. S-Aware PI-Blocking
➡ O(n) under clustered JLFP scheduling.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Multiprocessor Real-Time Locking Optimality Results

78

JLFP
job-level fixed-priority

Suspension Oblivious
Any JLFP Scheduler

Suspension Aware
Any JLFP Scheduler

Partitioned
(no migrations)

Global
(jobs migrate freely)

Clustered
(jobs migrate only among

subset of processors)

P-OMLP
[— & Anderson, 2010]

The Generalized FMLP+

(restricted segment boosting)
G-OMLP

[— & Anderson, 2010]

The Generalized FMLP+

(restricted segment boosting)

OMIP
[—, 2013]

C-OMLP
[— & Anderson, 2011]

The Generalized FMLP+

(restricted segment boosting)

[Block et al., 2007]! A Flexible Real-Time Locking Protocol for Multiprocessors, RTCSA 2007.
[— & Anderson, 2010]" Optimality Results for Multiprocessor Real-Time Locking, RTSS 2010."
[— & Anderson, 2011]" Real-Time Resource-Sharing under Clustered Scheduling: Mutex, Reader-Writer, and k-Exclusion Locks, EMSOFT 2011.
[—, 2011]" Scheduling and Locking in Multiprocessor Real-Time Operating Systems, PhD thesis, UNC, 2011.
[Ward & Anderson, 2012]" Supporting Nested Locking in Multiprocessor Real-Time Systems, ECRTS 2012.
[—, 2013]" A Fully Preemptive Multiprocessor Semaphore Protocol for Latency-Sensitive Real-Time Applications, ECRTS 2013.

+ RNLP [Ward & Anderson, 2012]

+ RNLP [Ward & Anderson, 2012]

+ RNLP [Ward & Anderson, 2012] + RNLP [Ward & Anderson, 2012] for nested critical sections

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Multiprocessor Real-Time Locking Optimality Results

79

JLFP
job-level fixed-priority

Suspension Oblivious
Any JLFP Scheduler

Suspension Aware
Any JLFP Scheduler

Partitioned
(no migrations)

Global
(jobs migrate freely)

Clustered
(jobs migrate only among

subset of processors)

P-OMLP
[— & Anderson, 2010]

The Generalized FMLP+

(restricted segment boosting)
G-OMLP

[— & Anderson, 2010]

The Generalized FMLP+

(restricted segment boosting)

OMIP
[—, 2013]

C-OMLP
[— & Anderson, 2011]

The Generalized FMLP+

(restricted segment boosting)

[Block et al., 2007]! A Flexible Real-Time Locking Protocol for Multiprocessors, RTCSA 2007.
[— & Anderson, 2010]" Optimality Results for Multiprocessor Real-Time Locking, RTSS 2010."
[— & Anderson, 2011]" Real-Time Resource-Sharing under Clustered Scheduling: Mutex, Reader-Writer, and k-Exclusion Locks, EMSOFT 2011.
[—, 2011]" Scheduling and Locking in Multiprocessor Real-Time Operating Systems, PhD thesis, UNC, 2011.
[Ward & Anderson, 2012]" Supporting Nested Locking in Multiprocessor Real-Time Systems, ECRTS 2012.
[—, 2013]" A Fully Preemptive Multiprocessor Semaphore Protocol for Latency-Sensitive Real-Time Applications, ECRTS 2013.

+ RNLP [Ward & Anderson, 2012]

+ RNLP [Ward & Anderson, 2012]

+ RNLP [Ward & Anderson, 2012] + RNLP [Ward & Anderson, 2012] for nested critical sections

The Generalized FMLP+ based on Restricted Segment Boosting
closes the s-aware asymptotic optimality gap.

See paper & online appendix for large-scale empirical evaluation.
(Summary: the FMLP+ works well if the schedulability analysis is accurate enough.)

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Conclusion

80

MPI-SWS

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Brandenburg

Summary

81

The Generalized FMLP+

➡ priority boosting & inheritance unsuitable
➡ based instead on restricted segment boosting

‣ Key idea: co-boosting of independent jobs

In the Paper
➡ Empirical evaluation.
➡ How to integrate with locking-unrelated self-

suspensions…
‣ … also within critical sections.

➡ How to integrate with Ward & Anderson’s RNLP
[2012] for asymptotically optimal pi-blocking given
nested critical sections.

Online Appendix
➡ Fine-grained blocking analysis based on linear

programming framework [—, 2013].
➡ Complete evaluation results (5760 graphs).

[Ward & Anderson, 2012]" Supporting Nested Locking in Multiprocessor Real-Time Systems, ECRTS 2012.
[—, 2013]" Improved Analysis and Evaluation of Real-Time Semaphore Protocols for P-FP Scheduling, RTAS 2013.

The FMLP+: An Asymptotically Optimal Real-Time
Locking Protocol for Suspension-Aware Analysis

Björn B. Brandenburg
Max Planck Institute for Software Systems (MPI-SWS)

Abstract—Multiprocessor real-time locking protocols that are
asymptotically optimal under suspension-oblivious schedulability
analysis (where suspensions are pessimistically modeled as pro-
cessor demand) are known for partitioned, global, and clustered
job-level fixed priority (JLFP) scheduling. However, for the case
of more accurate suspension-aware schedulability analysis (where
suspensions are accounted for explicitly), asymptotically optimal
protocols are known only for partitioned JLFP scheduling. In this
paper, the gap is closed with the introduction of the first semaphore
protocol for suspension-aware analysis that is asymptotically opti-
mal under global and clustered JLFP scheduling. To this end, a
new progress mechanism that avoids repeated priority inversions
is developed and analyzed, based on the key observation that if
lock-holding, low-priority jobs are priority-boosted, then certain
other non-lock-holding, higher-priority jobs must be co-boosted.

I. INTRODUCTION

The purpose of suspension-based real-time locking protocols
is to limit priority inversions [22], which, intuitively, occur
when a high-priority task that should be scheduled is instead
delayed by a remote or lower-priority task. Such locking-related
delay, also called priority inversion blocking (pi-blocking), is
problematic because it can result in deadline misses. However,
some pi-blocking is unavoidable when using locks and thus must
be bounded and accounted for during schedulability analysis.

Clearly, an “optimal” locking protocol should minimize pi-
blocking to the extent possible. Formally, a locking protocol is
asymptotically optimal if it ensures that, for any task set, maxi-
mum pi-blocking is bounded within a constant factor of the pi-
blocking unavoidable in some task set [11]. Interestingly, there
exist two classes of schedulability analysis that yield different
lower bounds: under suspension-oblivious (s-oblivious) analysis,
⌦(m) pi-blocking is fundamental, whereas under suspension-
aware (s-aware) analysis, ⌦(n) pi-blocking is unavoidable in
the general case [7, 11], where m and n denote the number of
processors and tasks, respectively. As the names imply, the key
difference is that suspensions are accounted for explicitly under
s-aware analysis, whereas they are (pessimistically) modeled as
processor demand in the s-oblivious case. In principle, s-aware
schedulability analysis is preferable, but s-oblivious analysis is
easier to derive and permits simpler pi-blocking bounds.

And indeed, for the simpler s-oblivious case, asymptotically
optimal locking protocols are known for partitioned, global, and
clustered job-level fixed-priority1 (JLFP) scheduling [9, 11, 12].
In contrast, the s-aware case is analytically much more challeng-
ing and less understood: asymptotically optimal protocols are
known so far only for partitioned JLFP scheduling [7, 11]. The

1See Sec. II for definitions and a review of essential background.

general problem of optimal s-aware locking under global and
clustered JLFP scheduling, however, has remained unsolved.

A. Contributions

We answer this fundamental question by introducing the
generalized FIFO Multiprocessor Locking Protocol (FMLP+),
the first semaphore protocol for clustered scheduling that ensures
O(n) maximum s-aware pi-blocking under any JLFP policy.

While it was initially assumed [11] that a variant of Block
et al.’s Flexible Multiprocessor Locking Protocol (FMLP) [6]—
which uses O(n) FIFO queues together with priority inheri-
tance [22]—is asymptotically optimal under global scheduling,
we show in Sec. III that this holds only under some, but not
all global JLFP schedulers. In fact, we show that both priority
inheritance and (unrestricted) priority boosting [22], which are
the two mechanisms used in all prior locking protocols for s-
aware analysis to avoid unbounded pi-blocking, can give rise
to non-optimal ⌦(�) pi-blocking, where � is the ratio of the
longest and the shortest period (and not bounded by m or n).

To overcome this lower bound, we introduce in Sec. IV-A a
new progress mechanism called “restricted segment boosting,”
which boosts at most one carefully chosen lock-holding job in
each cluster while simultaneously “co-boosting” certain other,
non-lock-holding jobs to interfere with the underlying JLFP
schedule as little as possible. Together with simple FIFO queues,
this ensures O(n) maximum s-aware pi-blocking (within about
a factor of two of the lower bound, see Sec. IV-C). Notably, our
analysis permits non-uniform cluster sizes, allows each cluster
to use a different JLFP policy, supports self-suspensions within
critical sections (Sec. IV-F), and can be easily combined with
prior work [25] to support nested critical sections (Sec. IV-G).

Finally, while answering the s-aware blocking optimality
question in the general case is the main contribution of this
paper, Sec. V presents a schedulability study that shows the
FMLP+ to outperform s-oblivious approaches if the underlying
s-aware schedulability analysis is sufficiently accurate.

B. Related Work

On uniprocessors, the blocking optimality problem has long
been solved: both the classic Stack Resource Policy [3] and the
Priority Ceiling Protocol [22, 24] limit pi-blocking to at most
one (outermost) critical section, which is obviously optimal.

On multiprocessors, there are two major lock types: spin
locks, wherein blocked jobs busy-wait, and suspension-based
semaphores. Spin locks are well understood and it is not difficult
to see that non-preemptable FIFO spin locks, which ensure O(m)

MPI-SWS

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Brandenburg

Future Work & Open Questions

Apply this technique to reader-writer locks?
➡ Lower bounds on s-aware pi-blocking?

Apply this technique to k-exclusion locks?
➡ GPUs & other co-processors
➡ Lower bounds on s-aware pi-blocking?

Overheads of restricted segment boosting?
➡ Tracking segment start times is simple and cheap.
➡ But… additional preemptions?

82

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Multiprocessor Real-Time Locking Optimality Results

83

JLFP
job-level fixed-priority

Suspension Oblivious
Any JLFP Scheduler

Suspension Aware
Any JLFP Scheduler

Partitioned
(no migrations)

Global
(jobs migrate freely)

Clustered
(jobs migrate only among

subset of processors)

P-OMLP
[— & Anderson, 2010]

The Generalized FMLP+

(restricted segment boosting)
G-OMLP

[— & Anderson, 2010]

The Generalized FMLP+

(restricted segment boosting)

OMIP
[—, 2013]

C-OMLP
[— & Anderson, 2011]

The Generalized FMLP+

(restricted segment boosting)

[Block et al., 2007]! A Flexible Real-Time Locking Protocol for Multiprocessors, RTCSA 2007.
[— & Anderson, 2010]" Optimality Results for Multiprocessor Real-Time Locking, RTSS 2010."
[— & Anderson, 2011]" Real-Time Resource-Sharing under Clustered Scheduling: Mutex, Reader-Writer, and k-Exclusion Locks, EMSOFT 2011.
[—, 2011]" Scheduling and Locking in Multiprocessor Real-Time Operating Systems, PhD thesis, UNC, 2011.
[Ward & Anderson, 2012]" Supporting Nested Locking in Multiprocessor Real-Time Systems, ECRTS 2012.
[—, 2013]" A Fully Preemptive Multiprocessor Semaphore Protocol for Latency-Sensitive Real-Time Applications, ECRTS 2013.

+ RNLP [Ward & Anderson, 2012]

+ RNLP [Ward & Anderson, 2012]

+ RNLP [Ward & Anderson, 2012] + RNLP [Ward & Anderson, 2012] for nested critical sections

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Appendix

84

MPI-SWS

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Brandenburg

Multiprocessor Real-Time Locking
Optimality Classes

85

[— & Anderson, 2010] Optimality Results for Multiprocessor Real-Time Locking, RTSS 2010.

Blocking Optimality
[— & Anderson, 2010]

suspension
oblivious

suspension
aware

How are suspensions analyzed?

Lower bound on
maximum priority inversion blocking

maxi{bi}

CPU demand is
over-approximated

CPU demand is
modeled accurately

Ω(m)
m = #CPUs

Ω(n)
n = #tasks

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

S-Aware vs. S-Oblivious Analysis

86

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

S-Aware vs. S-Oblivious Analysis

87

task set s-oblivious
blocking analysis

s-oblivious
schedulability test

modified task set
with inflated WCETs

schedulable

not
schedulable

Suspension-oblivious (s-oblivious) Analysis

Motivation: reuse existing schedulability analyses
that assume independent, always ready tasks.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

S-Aware vs. S-Oblivious Analysis

88

task set s-oblivious
blocking analysis

s-oblivious
schedulability test

modified task set
with inflated WCETs

schedulable

not
schedulable

task set

s-aware
blocking analysis

s-aware
schedulability test

maximum

self-suspension lengths

schedulable

not
schedulable

Suspension-aware (s-aware) Analysis

Suspension-oblivious (s-oblivious) Analysis

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

S-Aware vs. S-Oblivious Analysis

89

task set s-oblivious
blocking analysis

s-oblivious
schedulability test

modified task set
with inflated WCETs

schedulable

not
schedulable

task set

s-aware
blocking analysis

s-aware
schedulability test

maximum

self-suspension lengths

schedulable

not
schedulable

Suspension-aware (s-aware) Analysis

Suspension-oblivious (s-oblivious) Analysis

Requires availability of a schedulability test
that accounts (reasonably accurately) for self-suspensions.

(…which can be tricky to derive)

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

S-Aware vs. S-Oblivious Analysis

90

task set s-oblivious
blocking analysis

s-oblivious
schedulability test

modified task set
with inflated WCETs

schedulable

not
schedulable

task set

s-aware
blocking analysis

s-aware
schedulability test

maximum

self-suspension lengths

schedulable

not
schedulable

Suspension-aware (s-aware) Analysis

Suspension-oblivious (s-oblivious) Analysis

Different notions of “processor demand”
➞ different definitions of “priority inversion”.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Restricted Segment Boosting at Time 16

91

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI PI PI PI

PI PI PI

Generalized FMLP+ schedule.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Restricted Segment Boosting at Time 16

92

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI PI PI PI

PI PI PI

Generalized FMLP+ schedule.

(1) The lock-holding ready job (if any) with the earliest segment start time.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Restricted Segment Boosting at Time 16

93

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI PI PI PI

PI PI PI

Generalized FMLP+ schedule.

(1) The lock-holding ready job (if any) with the earliest segment start time.

(2) Up to c - 1 = 1 jobs from T4’s co-boosting set = ∅.

MPI-SWS Brandenburg

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Restricted Segment Boosting at Time 16

94

scheduled critical section

Processor 1
job release

job completion
deadline

job suspended

Processor 2 PI priority inversion

20151050 time

T1

T2

T3

T4

PI PI PI PI

PI PI PI

Generalized FMLP+ schedule.

(1) The lock-holding ready job (if any) with the earliest segment start time.

(2) Up to c - 1 = 1 jobs from T4’s co-boosting set = ∅.

(3) If less than c = 2 jobs scheduled so far: any other ready jobs.
At time 16: one CPU available after steps 1 & 2

➞ schedule highest-priority task T1.

MPI-SWS

The FMLP+: An Asymptotically Optimal Real-Time Locking Protocol for Suspension-Aware Analysis

Brandenburg

Definition: Job Segments

95

independent segment request segment independent segment …
holding a lock or suspended ready & does not require a lock

a job at runtime:

Independent segment
➡ starts when a job is released or resumed,

or when it unlocks a resource
➡ ends when job completes, suspends, or requests a lock

Request segment
➡ starts when a job requests a lock
➡ ends when it unlocks the resource

