
Björn B. Brandenburg
bbb@mpi-sws.org

ECRTS’13
July 12, 2013

A Fully Preemptive
Multiprocessor Semaphore Protocol for
Latency-Sensitive Real-Time Applications

mailto:bbb@mpi-sws.org
mailto:bbb@mpi-sws.org

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

A Rhetorical Question

2

On uniprocessors, why do we use
the priority inheritance protocol (PIP)
or the priority ceiling protocol (PCP)

instead of simple non-preemptive sections?

AUTOSAR Non-Preemptive Critical Section:
SuspendAllInterrupts(…);
// critical section
ResumeAllInterrupts(…);

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

uniprocessor, non-preemptive critical sections

3

long lower-priority
critical section (CS)

release deadline

time

unrelated, latency-sensitive
high-priority task

less time-critical
lower-priority tasks

RT 101: Preemptive Synchronization Matters

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

uniprocessor, non-preemptive critical sections

4

long lower-priority
critical section (CS)

release deadline

time

unrelated, latency-sensitive
high-priority task

less time-critical
lower-priority tasks

Deadline miss due to latency increase!

RT 101: Preemptive Synchronization Matters

Long non-preemptive critical section.

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

long lower-
priority CS

5

uniprocessor, with PIP

release deadline

time

unrelated, latency-sensitive
high-priority task

less time-critical
lower-priority tasks

RT 101: Preemptive Synchronization Matters

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

long lower-
priority CS

6

uniprocessor, with PIP

release deadline

time

unrelated, latency-sensitive
high-priority task

less time-critical
lower-priority tasks

Latency-sensitive task
isolated from unrelated critical section!

Lower-priority critical section: fully preemptive execution.

RT 101: Preemptive Synchronization Matters

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

partitioned multiprocessor scheduling

7

time

unrelated, latency-sensitive
high-priority task

less time-critical
lower-priority tasks

(on same core)

What if we host the same workload on a multiprocessor?

The Multiprocessor Case

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

partitioned multiprocessor scheduling

The Multiprocessor Case

8

release deadline

time

unrelated, latency-sensitive
high-priority task

No existing real-time semaphore protocol
for partitioned or clustered scheduling

isolates high-priority tasks from unrelated CSs.

less time-critical
lower-priority tasks

(on same core)

MPCP, FMLP, FMLP+, OMLP, …

long lower-priority
critical section (CS)

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

This Paper

9

Independence preservation formalizes the idea that
“tasks should never be delayed by unrelated critical sections.”

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

This Paper

10

Independence preservation is
impossible without (limited) job migrations.

Independence preservation formalizes the idea that
“tasks should never be delayed by unrelated critical sections.”

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

This Paper

11

Independence preservation formalizes the idea that
“tasks should never be delayed by unrelated critical sections.”

Independence preservation is
impossible without (limited) job migrations.

First independence-preserving semaphore protocol
for clustered/partitioned scheduling; the protocol also has

asymptotically optimal blocking bounds.

MPI-SWS

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Brandenburg

Clustered JLFP Scheduling

12

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

J1

J2

J3

J4

global scheduling
Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
3

Q
2

Q
4

J1 J2 J3 J4

partitioned scheduling

c … number of processors per cluster
m … number of processors (total)

c = 1 c = m
clustered scheduling

 1 ≤ c ≤ m

Job-Level Fixed-Priority Scheduling (JLFP)

MPI-SWS

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Brandenburg

Clustered JLFP Scheduling

13

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

J1

J2

J3

J4

global scheduling
Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
3

Q
2

Q
4

J1 J2 J3 J4

partitioned scheduling

c … number of processors per cluster
m … number of processors (total)

c = 1 c = m
clustered scheduling

 1 ≤ c ≤ m

Job-Level Fixed-Priority Scheduling (JLFP)

This talk: Partitioned Fixed-Priority (P-FP) Scheduling

MPI-SWS

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Brandenburg

Clustered JLFP Scheduling

14

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

J1

J2

J3

J4

global scheduling
Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
3

Q
2

Q
4

J1 J2 J3 J4

partitioned scheduling

c … number of processors per cluster
m … number of processors (total)

c = 1 c = m
clustered scheduling

 1 ≤ c ≤ m

Job-Level Fixed-Priority Scheduling (JLFP)

Task model: implicit-deadline sporadic tasks
(choice of deadline constraint irrelevant to results)

MPI-SWS

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Brandenburg

Real-Time Semaphore Protocols

15

Binary Semaphores
in POSIX

pthread_mutex_lock(…)
// critical section
pthread_mutex_unlock(…)

A blocked task suspends
& yields the processor.

MPI-SWS

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Brandenburg

Real-Time Semaphore Protocols

16

Binary Semaphores
in POSIX

pthread_mutex_lock(…)
// critical section
pthread_mutex_unlock(…)

A blocked task suspends
& yields the processor.

Priority Inversion

A job should be
scheduled, but is not.

PI-Blocking: increase in
worst-case response time
due to priority inversions.

MPI-SWS

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Brandenburg

Real-Time Semaphore Protocols

17

Binary Semaphores
in POSIX

pthread_mutex_lock(…)
// critical section
pthread_mutex_unlock(…)

A blocked task suspends
& yields the processor.

Priority Inversion

A job should be
scheduled, but is not.

PI-Blocking: increase in
worst-case response time
due to priority inversions.

Goal: bounded pi-blocking.

Bounded in terms of critical section lengths only!

MPI-SWS

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Brandenburg

Real-Time Semaphore Protocols

Assumptions
➡ Unnested critical sections.
➡ Suspension-oblivious schedulability analysis.

18

Priority Inversion

A job should be
scheduled, but is not.

PI-Blocking: increase in
worst-case response time
due to priority inversions.

A blocked task suspends
& yields the processor.

Binary Semaphores
in POSIX

pthread_mutex_lock(…)
// critical section
pthread_mutex_unlock(…)

Part 1

Avoiding Delays due to
Unrelated Critical Sections

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Independence Preservation

20

(specific to s-oblivious analysis)

“Tasks should never be delayed by unrelated critical sections.”

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Independence Preservation

21

(specific to s-oblivious analysis)

Let bi,q denote the maximum pi-blocking incurred by
task Ti due to requests for resource q.

Let Ni,q denote the maximum number of times that any
job of Ti accesses resource q.

Under an independence-preserving locking protocol,
if Ni,q = 0, then bi,q = 0.

“You only pay for what you use.”

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Let bi,q denote the maximum pi-blocking incurred by
task Ti due to requests for resource q.

Let Ni,q denote the maximum number of times that any
job of Ti accesses resource q.

Under an independence-preserving locking protocol,
if Ni,q = 0, then bi,q = 0.

Independence Preservation

22

(specific to s-oblivious analysis)

“You only pay for what you use.”

Isolation useful for:
latency-sensitive workloads (if no delay can be tolerated) or

 if low-priority tasks contain unknown or untrusted critical sections.

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Real-Time Semaphore Protocols

23

real-time
locking protocol

queue
structure

progress
mechanism= +

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Real-Time Semaphore Protocols

24

real-time
locking protocol = queue

structure
progress

mechanism +

Ensure that a lock holder is scheduled
(while waiting tasks incur pi-blocking).

How to order conflicting critical sections
(e.g., priority queue, FIFO queues).

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Real-Time Semaphore Protocols

25

real-time
locking protocol = queue

structure+

global scheduling
priority inheritance

partitioned scheduling
priority boosting

clustered scheduling
priority donation

progress
mechanism

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Real-Time Semaphore Protocols

26

real-time
locking protocol = queue

structure+

global scheduling
priority inheritance

partitioned scheduling
priority boosting

clustered scheduling
priority donation

progress
mechanism

Priority boosting and Priority Donation:
lock-holding jobs have higher priority than non-lock-holding jobs

➔ effectively non-preemptive ➔ not independence preserving

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Real-Time Semaphore Protocols

27

real-time
locking protocol = queue

structure+

global scheduling
priority inheritance

partitioned scheduling
priority boosting

clustered scheduling
priority donation

Existing independence-preserving locking protocols:

 Global PIP, Global FMLP, Global OMLP, …

progress
mechanism

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Observation

28

Independence preservation + bounded priority inversion
requires intra-cluster job migrations.

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
3

Q
2

Q
4

J1 J2 J3 J4

partitioned scheduling clustered scheduling

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Observation

29

Independence preservation + bounded priority inversion
requires intra-cluster job migrations.

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
2

J1

J2

J3

J4

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3

Q
1

Q
3

Q
2

Q
4

J1 J2 J3 J4

partitioned scheduling clustered scheduling

Intra-cluster: (temporarily) execute jobs on
processors/clusters they have not been assigned to.

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Example: Job Migration is Necessary

30

time

T1

T3

T2

three tasks, two cores, one resource, P-FP scheduling

C
or

e
1

C
or

e
2

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Example: Job Migration is Necessary

31

time

T1

T3

T2

three tasks, two cores, one resource, P-FP scheduling

C
or

e
1

C
or

e
2

T2 starts executing critical section…

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Example: Job Migration is Necessary

32

time

T1

T3

T2

three tasks, two cores, one resource, P-FP scheduling

C
or

e
1

C
or

e
2 Job of T1 is released.

What to do with in-progress critical section?

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Example: Job Migration is Necessary

33

time

T1

T3

T2

three tasks, two cores, one resource, P-FP scheduling

C
or

e
1

C
or

e
2

critical section

Case 1: priority boosting (=let T2 continue).

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Example: Job Migration is Necessary

34

time

T1

T3

T2

three tasks, two cores, one resource, P-FP scheduling

C
or

e
1

C
or

e
2

critical section

CSpi-blocked

Case 1: priority boosting (=let T2 continue).

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Example: Job Migration is Necessary

35

time

T1

T3

T2

three tasks, two cores, one resource, P-FP scheduling

C
or

e
1

C
or

e
2

Case 1: priority boosting (=let T2 continue).

CSpi-blocked

Benefit: T3 incurs only bounded pi-blocking, meets deadline.

critical section

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Example: Job Migration is Necessary

36

time

T1

T3

T2

three tasks, two cores, one resource, P-FP scheduling

C
or

e
1

C
or

e
2

Case 1: priority boosting (=let T2 continue).

CSpi-blocked

critical section

Problem: T1 misses its deadline.

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Example: Job Migration is Necessary

37

time

T1

T3

T2

three tasks, two cores, one resource, P-FP scheduling

C
or

e
1

C
or

e
2 Job of T1 is released.

What to do with in-progress critical section?

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Example: Job Migration is Necessary

38

time

T1

T3

T2

three tasks, two cores, one resource, P-FP scheduling

C
or

e
1

C
or

e
2

Case 2: independence preservation (= preempt T2).

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Example: Job Migration is Necessary

39

time

T1

T3

T2

three tasks, two cores, one resource, P-FP scheduling

C
or

e
1

C
or

e
2

Case 2: independence preservation (= preempt T2).

Independence preservation: T1 meets its deadline.

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Example: Job Migration is Necessary

40

time

T1

T3

T2

three tasks, two cores, one resource, P-FP scheduling

C
or

e
1

C
or

e
2

Case 2: independence preservation (= preempt T2).

CSpi-blocked

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Example: Job Migration is Necessary

41

time

T1

T3

T2

three tasks, two cores, one resource, P-FP scheduling

C
or

e
1

C
or

e
2

Case 2: independence preservation (= preempt T2).

CSpi-blocked

Problem: T3 incurs “unbounded” pi-blocking, misses deadline!

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Partitioned Scheduling with Migrations?

42

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Partitioned Scheduling with Migrations?

43

Partitioned By Necessity

migrations infeasible
for lack of technical capability

Core 1

Local
Memory

Shared Memory

Local
Memory

Local
Memory

Local
Memory

Core 2 Core 3 Core
4

Q
1

Q
3

Q
2

Q
4

J1 J2 J3 J4

E.g., SoC with heterogeneous
cores (ARM, PowerPC, x86, MIPS).

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Partitioned Scheduling with Migrations?

44

Partitioned By Necessity

migrations infeasible
for lack of technical capability

Core 1

Local
Memory

Shared Memory

Local
Memory

Local
Memory

Local
Memory

Core 2 Core 3 Core
4

Q
1

Q
3

Q
2

Q
4

J1 J2 J3 J4

➔ independence preservation and bounded priority inversion
impossible to achieve!

E.g., SoC with heterogeneous
cores (ARM, PowerPC, x86, MIPS).

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Partitioned Scheduling with Migrations?

45

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3
Q
1

Q
3

Q
2

Q
4

J1 J2 J3 J4

migrations disallowed
but technically feasible

Partitioned By ChoicePartitioned By Necessity

migrations infeasible
for lack of technical capability

Core 1

Local
Memory

Shared Memory

Local
Memory

Local
Memory

Local
Memory

Core 2 Core 3 Core
4

Q
1

Q
3

Q
2

Q
4

J1 J2 J3 J4

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Partitioned Scheduling with Migrations?

46

Main Memory

L2
Cache

L2
Cache

Core 1 Core 2 Core 4Core 3
Q
1

Q
3

Q
2

Q
4

J1 J2 J3 J4

migrations disallowed
but technically feasible

Partitioned By ChoicePartitioned By Necessity

migrations infeasible
for lack of technical capability

Core 1

Local
Memory

Shared Memory

Local
Memory

Local
Memory

Local
Memory

Core 2 Core 3 Core
4

Q
1

Q
3

Q
2

Q
4

J1 J2 J3 J4

Occasional migrations not desirable, but possible!
(Focus of this work.)

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Example: Job Migration is Necessary

47

time

T1

T3

T2

three tasks, two cores, one resource, P-FP scheduling

C
or

e
1

C
or

e
2 Job of T1 is released.

What to do with in-progress critical section?

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Example: Job Migration is Necessary

48

time

T1

T3

T2

three tasks, two cores, one resource, P-FP scheduling

C
or

e
1

C
or

e
2

1) Ensure independence preservation (= preempt T2).

Independence preservation: T1 meets its deadline.

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Example: Job Migration is Necessary

49

time

T1

T3

T2

three tasks, two cores, one resource, P-FP scheduling

C
or

e
1

C
or

e
2

Easy fix: migrate T2 when T3 suspends.

CSpi-blocked

2) Ensure bounded pi-blocking (= schedule T2).

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Example: Job Migration is Necessary

50

time

T1

T3

T2

three tasks, two cores, one resource, P-FP scheduling

C
or

e
1

C
or

e
2

Easy fix: migrate T2 when T3 suspends.

CSpi-blocked

Temporarily move T3 to Core 2…

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Example: Job Migration is Necessary

51

time

T1

T3

T2

three tasks, two cores, one resource, P-FP scheduling

C
or

e
1

C
or

e
2

Easy fix: migrate T2 when T3 suspends.

CSpi-blocked

Benefit: T3 incurs only bounded pi-blocking, meets deadline.

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Theorem

52

Under non-global scheduling (c ≠ m), it is impossible
for a semaphore protocol to simultaneously

(i) prevent unbounded pi-blocking,
(ii) be independence-preserving, and
(iii) avoid inter-cluster job migrations.

Pick any two…

MPI-SWS

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Brandenburg

Combinations of Properties

53

(i) & (iii)
➡ MPCP, Part. FMLP, FMLP+, OMLP, …

(ii) & (iii)
➡ Applying PIP to partitioned scheduling (not sound!)

(i) & (ii)
➡ no such protocol known!

Under non-global scheduling (c ≠ m), it is impossible
for a semaphore protocol to simultaneously

(i) prevent unbounded pi-blocking,
(ii) be independence-preserving, and
(iii) avoid inter-cluster job migrations.

Part 2

Independence Preservation
+

Asymptotically Optimal
PI-Blocking

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

High-Level Overview

55

real-time
locking protocol = queue

structure
progress

mechanism +

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

High-Level Overview

56

real-time
locking protocol = queue

structure
progress

mechanism +

Must be
independence-preserving.

Must ensure
asymptotic optimality.

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

High-Level Overview

57

real-time
locking protocol = queue

structure
progress

mechanism +

Must be
independence-preserving.

Must ensure
asymptotic optimality.

Adopt intuition from example:
when lock holder is preempted,

migrate to blocked task’s processor.

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Migratory Priority Inheritance

58

classic priority inheritance
inherit priority of blocked jobs

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Migratory Priority Inheritance

59

classic priority inheritance
inherit priority of blocked jobs

“cluster inheritance”
inherit eligibility to execute

on assigned clusters
from blocked jobs

+

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Migratory Priority Inheritance

60

classic priority inheritance
inherit priority of blocked jobs

“cluster inheritance”
inherit eligibility to execute

on assigned clusters
from blocked jobs

+

Jobs remain fully preemptive even in critical sections.
➔ enables independence preservation

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

High-Level Overview

61

real-time
locking protocol = queue

structure
progress

mechanism +

Must be
independence-preserving.

Must ensure
asymptotic optimality.

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

High-Level Overview

62

real-time
locking protocol = queue

structure
progress

mechanism +

Must be
independence-preserving.

Must ensure
asymptotic optimality.

Resolve (most) contention within clusters:
use a multi-level queue.

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

A 3-Level FIFO/FIFO/PRIO Queue

63

one 3-level queue for each resource

…

Cluster 1

Cluster 2

Cluster K

shared
resource

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

A 3-Level FIFO/FIFO/PRIO Queue

64

one 3-level queue for each resource

…

Cluster 1

Cluster 2

Cluster K

PQ1
priority
queue

PQ2
priority
queue

PQK
priority
queue

shared
resource

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

A 3-Level FIFO/FIFO/PRIO Queue

65

one 3-level queue for each resource

…

Cluster 1

Cluster 2

FIFO Queue FQ1

FIFO Queue FQ2

Cluster K

FIFO Queue FQK

PQ1
priority
queue

PQ2
priority
queue

PQK
priority
queue

shared
resource

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

A 3-Level FIFO/FIFO/PRIO Queue

66

one 3-level queue for each resource

…

Cluster 1

Cluster 2

FIFO Queue FQ1

FIFO Queue FQ2

Cluster K

FIFO Queue FQK

PQ1
priority
queue

PQ2
priority
queue

PQK
priority
queue

shared
resource

Bounded length: at most c jobs (in each cluster).
(c = number of cores in cluster)

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

A 3-Level FIFO/FIFO/PRIO Queue

67

one 3-level queue for each resource

…

Cluster 1

Cluster 2

FIFO Queue FQ1

FIFO Queue FQ2

Cluster K

FIFO Queue FQK

PQ1
priority
queue

PQ2
priority
queue

PQK
priority
queue

shared
resource

Priority queue used only if more than c jobs contend.
(c = number of cores in cluster)

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

A 3-Level FIFO/FIFO/PRIO Queue

68

one 3-level queue for each resource

…

Cluster 1

Cluster 2

FIFO Queue FQ1

FIFO Queue FQ2

Cluster K

FIFO Queue FQK

PQ1
priority
queue

PQ2
priority
queue

PQK
priority
queue

FIFO Queue GQ

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

A 3-Level FIFO/FIFO/PRIO Queue

69

one 3-level queue for each resource

…

Cluster 1

Cluster 2

FIFO Queue FQ1

FIFO Queue FQ2

Cluster K

FIFO Queue FQK

PQ1
priority
queue

PQ2
priority
queue

PQK
priority
queue

FIFO Queue GQ

Global FIFO Queue resolves inter-cluster contention.

Bounded length: at most K = m / c jobs (one per cluster).

(m = total number of cores, c = number of cores per cluster)

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

The O(m) Independence-Preserving
Locking Protocol (OMIP)

70

The
OMIP = 3-level F/F/P

queue
migratory priority

inheritance +

independence-preserving O(m) s-oblivious
pi-blocking

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

The O(m) Independence-Preserving
Locking Protocol (OMIP)

71

The
OMIP = 3-level F/F/P

queue
migratory priority

inheritance +

independence-preserving O(m) s-oblivious
pi-blocking

 Ω(m) lower bound on s-oblivious pi-blocking (— & Anderson, 2010)

➔ The OMIP ensures asymptotically optimal s-oblivious pi-blocking.

Part 3

Evaluation

MPI-SWS

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Brandenburg

Prototype Implementation

73

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

www.litmus-rt.org

3-level queues
➡ easy (reuse Linux wait queues)
➡ cheap compared to syscall

Migratory priority inheritance
➡ more tricky (need to avoid global locks)
➡ store bitmap of cores “offering” to

schedule lock holder in each lock

http://www.litmus-rt.org
http://www.litmus-rt.org

MPI-SWS

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Brandenburg

Response Times Experiment

Setup
➡ 4 tasks on each core (one independent & latency-sensitive)
➡ one shared resource
➡ max. critical section length: ~1ms

74

on an 8-core, 2-Ghz Xeon X7550 System

…
T1

Core 1 Core 8

T8

T9

T17

T25

T16

T24

T32

MPI-SWS

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Brandenburg

Response Times Experiment

Setup
➡ 4 tasks on each core (one independent & latency-sensitive)
➡ one shared resource
➡ max. critical section length: ~1ms

75

on an 8-core, 2-Ghz Xeon X7550 System

…
T1

Core 1 Core 8

T8

T9

T17

T25

T16

T24

T32

One latency-sensitive,
independent task with

period = 1ms.

MPI-SWS

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Brandenburg

Response Times Experiment

Setup
➡ 4 tasks on each core (one independent & latency-sensitive)
➡ one shared resource
➡ max. critical section length: ~1ms

76

on an 8-core, 2-Ghz Xeon X7550 System

…
T1

Core 1 Core 8

T8

T9

T17

T25

T16

T24

T32

Three tasks (on each core) with
periods 25 ms, 100 ms, and 1000 ms.

Each job of these tasks locks the resource once.

MPI-SWS

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Brandenburg

Response Times Experiment

Three Configurations
➡ No locks (unsound!)
‣ no blocking (baseline)

➡ Clustered OMLP
‣ priority donation

➡ OMIP
‣migratory priority inheritance

Experiment
➡ Measured response times with
sched_trace

➡ 30-minute traces
➡ more than 45 million jobs

77

on an 8-core, 2-Ghz Xeon X7550 System

…
T1

Core 1 Core 8

T8

T9

T17

T25

T16

T24

T32

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Response Time CDF

78

0.00%$

10.00%$

20.00%$

30.00%$

40.00%$

50.00%$

60.00%$

70.00%$

80.00%$

90.00%$

100.00%$

0$ 0.1$ 0.2$ 0.3$ 0.4$ 0.5$ 0.6$ 0.7$ 0.8$ 0.9$ 1$

P(
re
sp
on

se
)*
m
e)
)≤
)X
))

response)*me)(in)ms)))

NONECDF

OMIPCDF

OMLPCDF

Fr
ac

tio
n

of
 jo

bs
 w

ith

re
sp

on
se

 ti
m

e
at

 m
os

t X

higher is better

increasing response time

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Response Time CDF of 1-ms Tasks

79

0.00%$

10.00%$

20.00%$

30.00%$

40.00%$

50.00%$

60.00%$

70.00%$

80.00%$

90.00%$

100.00%$

0$ 0.1$ 0.2$ 0.3$ 0.4$ 0.5$ 0.6$ 0.7$ 0.8$ 0.9$ 1$

P(
re
sp
on

se
)*
m
e)
)≤
)X
))

response)*me)(in)ms)))

NONECDF

OMIPCDF

OMLPCDF

OMLP
OMIP &
NONE

(overlapping)

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Response Time CDF of 1-ms Tasks

80

0.00%$

10.00%$

20.00%$

30.00%$

40.00%$

50.00%$

60.00%$

70.00%$

80.00%$

90.00%$

100.00%$

0$ 0.1$ 0.2$ 0.3$ 0.4$ 0.5$ 0.6$ 0.7$ 0.8$ 0.9$ 1$

P(
re
sp
on

se
)*
m
e)
)≤
)X
))

response)*me)(in)ms)))

NONECDF

OMIPCDF

OMLPCDF

With priority donation (or priority
boosting), ~20% of the jobs of the

1ms-tasks miss their deadline.

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Response Time CDF of 1-ms Tasks

81

0.00%$

10.00%$

20.00%$

30.00%$

40.00%$

50.00%$

60.00%$

70.00%$

80.00%$

90.00%$

100.00%$

0$ 0.1$ 0.2$ 0.3$ 0.4$ 0.5$ 0.6$ 0.7$ 0.8$ 0.9$ 1$

P(
re
sp
on

se
)*
m
e)
)≤
)X
))

response)*me)(in)ms)))

NONECDF

OMIPCDF

OMLPCDF
Response time distribution under OMIP

equivalent to case without locks.

(OMIP & NONE curves overlap)

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Response Time CDF of 100-ms Tasks

82

0.00%$

10.00%$

20.00%$

30.00%$

40.00%$

50.00%$

60.00%$

70.00%$

80.00%$

90.00%$

100.00%$

0$ 10$ 20$ 30$ 40$ 50$ 60$ 70$ 80$ 90$ 100$

P(
re
sp
on

se
)*
m
e)
)≤
)X
))

response)*me)(in)ms))

NONECDF

OMIPCDF

OMLPCDF

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Response Time CDF of 100-ms Tasks

83

0.00%$

10.00%$

20.00%$

30.00%$

40.00%$

50.00%$

60.00%$

70.00%$

80.00%$

90.00%$

100.00%$

0$ 10$ 20$ 30$ 40$ 50$ 60$ 70$ 80$ 90$ 100$

P(
re
sp
on

se
)*
m
e)
)≤
)X
))

response)*me)(in)ms))

NONECDF

OMIPCDF

OMLPCDF

OMIP

NONE
OMLP

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Response Time CDF of 100-ms Tasks

84

0.00%$

10.00%$

20.00%$

30.00%$

40.00%$

50.00%$

60.00%$

70.00%$

80.00%$

90.00%$

100.00%$

0$ 10$ 20$ 30$ 40$ 50$ 60$ 70$ 80$ 90$ 100$

P(
re
sp
on

se
)*
m
e)
)≤
)X
))

response)*me)(in)ms))

NONECDF

OMIPCDF

OMLPCDF
OMIP: blocking shifted to lower-

priority (= later-deadline) jobs.

MPI-SWS

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Brandenburg

Analytical Blocking/Latency Tradeoff

85

Large-scale schedulability experiments
➡ Varied #tasks, #cores, #resources, max. critical section lengths, etc.
➡ >150,000,000 task sets
➡ 678 schedulability plots, available in online appendix

MPI-SWS

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Brandenburg

Analytical Blocking/Latency Tradeoff

86

Large-scale schedulability experiments
➡ Varied #tasks, #cores, #resources, max. critical section lengths, etc.
➡ >150,000,000 task sets
➡ 678 schedulability plots, available in online appendix

In the presence of latency-sensitive tasks,
the OMIP is generally the only viable option.

MPI-SWS

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Brandenburg

Analytical Blocking/Latency Tradeoff

87

Large-scale schedulability experiments
➡ Varied #tasks, #cores, #resources, max. critical section lengths, etc.
➡ >150,000,000 task sets
➡ 678 schedulability plots, available in online appendix

In the presence of latency-sensitive tasks,
the OMIP is generally the only viable option.

Without latency-sensitive tasks, the OMIP
does not offer substantial improvements.

Conclusion

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Summary

89

Independence preservation formalizes the idea that
“tasks should not be delayed by unrelated critical sections.”

Independence preservation is
impossible without (limited) job migrations.

The OMIP is the first independence-preserving
semaphore protocol for clustered scheduling. It ensures

asymptotically optimal s-oblivious pi-blocking.

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Future Work

90

Suspension-Aware Analysis

Nesting Budget
Overruns

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Thanks!

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

www.litmus-rt.org

SchedCAT
Schedulability test

Collection And Toolkit
www.mpi-sws.org/~bbb/

projects/schedcat

http://www.litmus-rt.org
http://www.litmus-rt.org
http://www.mpi-sws.org/~bbb/projects/schedcat
http://www.mpi-sws.org/~bbb/projects/schedcat
http://www.mpi-sws.org/~bbb/projects/schedcat
http://www.mpi-sws.org/~bbb/projects/schedcat

Appendix

MPI-SWS

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Brandenburg

Design Inspirations

93

Migrate to Blocked Task’s CPU
➡ “Local helping” in TU Dresden’s Fiasco/L4
‣Hohmuth & Peter (2001)

➡ Multiprocessor bandwidth inheritance (MBWI)
‣Faggioli, Lipari, & Cucinotta (2010)

Queue Design
➡ Intra-cluster queues adopted from global OMLP
‣— & Anderson (2010)

➡ Inter-cluster queues similar to clustered OMLP
‣— & Anderson (2011)

MPI-SWS

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Brandenburg

What about overheads?

Aren’t job migrations expensive?
➡ response time experiments reflect all overheads in real system
➡ latency-sensitive tasks do not migrate, only lower-priority tasks do
➡ only working set of critical section migrates (likely small), not

entire task working set (likely much larger)
➡ the critical section would have been preempted anyway

94

0.00%$

10.00%$

20.00%$

30.00%$

40.00%$

50.00%$

60.00%$

70.00%$

80.00%$

90.00%$

100.00%$

0$ 10$ 20$ 30$ 40$ 50$ 60$ 70$ 80$ 90$ 100$

P(
re
sp
on

se
)*
m
e)
)≤
)X
))

response)*me)(in)ms))

NONECDF

OMIPCDF

OMLPCDF

0.00%$

10.00%$

20.00%$

30.00%$

40.00%$

50.00%$

60.00%$

70.00%$

80.00%$

90.00%$

100.00%$

0$ 0.1$ 0.2$ 0.3$ 0.4$ 0.5$ 0.6$ 0.7$ 0.8$ 0.9$ 1$

P(
re
sp
on

se
)*
m
e)
)≤
)X
))

response)*me)(in)ms)))

NONECDF

OMIPCDF

OMLPCDF

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Blocking Analysis

95

FIFO Queue FQ
PQ priority

queueFIFO Queue GQ

c … number of processors per clusterm … number of processors (total)

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Blocking Analysis

96

FIFO Queue FQ
PQ priority

queueFIFO Queue GQ

c … number of processors per clusterm … number of processors (total)

at most
K - 1 = m / c - 1

queued jobs

at most
c - 1

queued jobs

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Blocking Analysis

97

FIFO Queue FQ
PQ priority

queueFIFO Queue GQ

c … number of processors per clusterm … number of processors (total)

at most
K - 1 = m / c - 1

queued jobs

at most
c - 1

queued jobs

at most
m / c - 1

blocking CS

at most
(c - 1) · (m / c)

blocking CS

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Blocking Analysis

98

FIFO Queue FQ
PQ priority

queueFIFO Queue GQ

c … number of processors per clusterm … number of processors (total)

at most
K - 1 = m / c - 1

queued jobs

at most
c - 1

queued jobs

at most
m / c - 1

blocking CS

at most
(c - 1) · (m / c)

blocking CS

At most
m / c - 1 + (c - 1) · (m / c) = m - 1 = O(m)

blocking critical sections.

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Blocking Analysis

99

FIFO Queue FQ
PQ priority

queueFIFO Queue GQ

c … number of processors per clusterm … number of processors (total)

at most
K - 1 = m / c - 1

queued jobs

at most
c - 1

queued jobs

at most
m / c - 1

blocking CS

at most
(c - 1) · (m / c)

blocking CS

At most
m / c - 1 + (c - 1) · (m / c) = m - 1 = O(m)

blocking critical sections.

Under s-oblivious analysis:
at most O(m) critical sections

cause pi-blocking.

