A Fully Preemptive
Multiprocessor Semaphore Protocol for
Latency-Sensitive Real-Time Applications

ECRTS'13
July 12, 2013

- Max

Planck |
| Institute Bjorn B. Brandenburg

bbb@mpi-sws.org

4 for
Software Systems

mailto:bbb@mpi-sws.org
mailto:bbb@mpi-sws.org

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

A Rhetorical Question

On uniprocessors, why do we use

the priority inheritance protocol (PIP)
or the priority ceiling protocol (PCP)

Instead of simple non-preemptive sections?

AUTOSAR Non-Preemptive Critical Section:

SuspendAllInterrupts(..);
// critical section
ResumeAllInterrupts(..);

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

RT 101: Preemptive Synchronization Matters

uniprocessor, non-preemptive critical sections

release deadline
unrelated, latency-sensitive
high-priority task \
less time-critical g lower-priority
lower-priority tasks ical section (CS)

> tIme

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

RT 101: Preemptive Synchronization Matters

e

Deadline miss due to latency increase!

uniprocessor, non-preemptive crit.¢al sections

release deadline
unrelated, latency-sensitive
high-priority task \
less time-critical g lower-priority
lower-priority tasks ical section (CS)

/] > time
Long non-preemptive critical section. l

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

RT 101: Preemptive Synchronization Matters

uniprocessor, with PIP

release deadline
unrelated, latency-sensitive
high-priority task
less time-critical long lower-
lower-priority tasks priority CS

> tIme

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

RT 101: Preemptive Synchronization Matters

-

Latency-sensitive task
iIsolated from unrelated critical section!

uniprocessor, with PIP

release deadline

unrelated, latency-sensitive A l

high-priority task
long lower-
priority CS

f > time

Lower-priority critical section: fully preemptive execution.

less time-critical
lower-priority tasks

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

The Multiprocessor Case

What if we host the same workload on a multiprocessor?

partitioned multiprocessor scheduling

unrelated, latency-sensitive
high-priority task

less time-critical
lower-priority tasks
(on same core)

> tIme

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive realtime applications

No existing real-time semaphore protocol

for partitioned or clustered scheduling
iIsolates high-priority tasks from unrelated CSs.

partitioned multiprocessor scheduling

release deadline

unrelated, latency-sensitive
high-priority task

less time-critical
lower-priority tasks
(on same core)

ower-priority
| section (CS)

> tIme

MPCP, FMLP, FMLP+, OMLP, ...

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

This Paper

Independence preservation formalizes the idea that
“tasks should never be delayed by unrelated critical sections.”

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

This Paper

Independence preservation formalizes the idea that
“tasks should never be delayed by unrelated critical sections.”

Independence preservation Is
impossible without (limited) job migrations.

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

This Paper

Independence preservation formalizes the idea that
“tasks should never be delayed by unrelated critical sections.”

Independence preservation Is
impossible without (limited) job migrations.

First Independence-preserving semaphore protocol
for clustered/partitioned scheduling; the protocol also has
asymptotically optimal blocking bounds.

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Clustered JLFP Scheduling

Job-Level Fixed-Priority Scheduling (JLFP)
C ... number of processors per cluster

m ... number of processors (total)

partitioned scheduling clustered scheduling global scheduling
c=1 1=sc=m c=m

MPI-SWS Brandenburg

A fl,’,\l hl’ﬁﬂmn','l.\lﬁ MII’+I.I‘\I"A"Q('CAI" CQM"I‘\""\I’Q hl’f*f\f‘f\’ If\l" ’ﬂ#ﬁﬂﬂ\l_('ﬁn(’l."l.\lﬁ ran’_‘-;ma ﬂnn’;hn-,';r\nc

This talk: Partitioned Fixed-Priority (P-FP) Scheduling

ob-Level Fixed-Priority Scheduling (JLFP)
C ... number of processors per cluster

m ... number of processors (total)

partitioned scheduling clustered scheduling global scheduling
c=1 1=sc=m c=m

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Clustered JLFP Scheduling

Job-Level Fixed-Priority Scheduling (JLFP)
C ... number of processors per cluster

m ... number of processors (total)

partitioned scheduling clustered scheduling global scheduling

7

Task model: implicit-deadline sporadic tasks
(choice of deadline constraint irrelevant to results)

MPI-SWS

Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Real-Time Semaphore Protocols

Binary Semaphores
in POSIX

pthread mutex lock(..)
// critical section
pthread mutex unlock(..)

_ _/

A blocked task suspends
& yields the processor.

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Real-Time Semaphore Protocols

Binary Semaphores L .
in POSIX P”O”ty Inversion
pthread mutex_lock(..) AIOb should be
// critical section scheduled, but is not.
pthread mutex unlock(..)
A blocked task suspends PI-Blocking: increase in
& yields the processor. worst-case response time

due to priority inversions.

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Real-Time Semaphore Protocols

()

Binary Semaphores L .

. POSIX Priority Inversion
pthread mutex_ lock(..) A_/Ob should be
// critical section scheduled, but is not.
pthread mutex unlock(..)

- J

A blocked task suspends PI-Blocking: increase in
& yields the processor. worst-case response time
due to priority inversions.

Goal: bounded pi-blocking.

Bounded in terms of critical section lengths only!

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Real-Time Semaphore Protocols

()

Binary Semaphores L .

. POSIX Priority Inversion
pthread mutex_ lock(..) AIOb should be
// critical section scheduled, but is not.
pthread mutex unlock(..)

1\ J

A blocked task suspends PI-Blocking: increase in
& yields the processor. worst-case response time
due to priority inversions.

Assumptions
= Unnested critical sections.
= Suspension-oblivious schedulability analysis.

MPI-SWS Brandenburg

Part |

Avoiding Delays due to
Unrelated Critical Sections

A fully preemptive multiprocessor semaphore protocol for latency-sensitive realtime applications

Independence Preservation

(specific to s-oblivious analysis)

“lTasks should never be delayed by unrelated critical sections.”

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

MPI-SWS

Independence Preservation

(specific to s-oblivious analysis)

Let biq denote the maximum pi-blocking incurred by
task T;due to requests for resource q.

Let N;q denote the maximum number of times that any
job of T; accesses resource (.

Under an independence-preserving locking protocol,
If Ni,q = 0, then bi,q = 0.

“You only pay for what you use.”

Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Independence Preservation

(specific to s-oblivious analysis)

Let biq denote the maximum pi-blocking incurred by
task T;due to requests for resource q.

Let N;q denote the maximum number of times that any
job of T; accesses resource (.

Under an independence-preserving locking protocol,
If Ni,q = 0, then bi,q = 0.

Isolation useful for:

latency-sensitive workloads (if no delay can be tolerated) or
If low-priority tasks contain unknown or untrusted critical sections.

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive realtime applications

Real-Time Semaphore Protocols

real-time progress + queue
locking protocol mechanism structure

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Real-Time Semaphore Protocols

real-time progress + queue
locking protocol mechanism structure

//

Ensure that a lock holder is scheduled
(while waiting tasks incur pi-blocking).

How to order conflicting critical sections
(e.g., priority queue, FIFO queues).

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Real-Time Semaphore Protocols

real-time — progress + queue
locking protocol T mechanism structure
\Ll .
partitioned scheduling clustered scheduling global scheduling
priority boosting priority donation priority inheritance

MPI-SWS Brandenburg

Priority boosting and Priority Donation:
lock-holding jobs have higher priority than non-lock-holding jobs

- effectively non-preemptive = not independence preserving

real-time progress + queue
locking protocol mechanism structure

// \

partitioned scheduling clustered scheduling | global scheduling
priority boosting priority donation

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Real-Time Semaphore Protocols

real-time — progress + queue
locking protocol T mechanism structure
!

partitioned scheduling clustered scheduling | global scheduling
priority inheritance

-

Existing independence-preserving locking protocols:

Global PIP, Global FMLP, Global OMLP, ...

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Observation

Independence preservation + bounded priority inversion
requires intra-cluster job migrations.

partitioned scheduling clustered scheduling

MPI-SWS Brandenburg

A fully preeg

Intra-cluster: (temporarily) execute jobs on
processors/clusters they have not been assigned to.

Independence pres rvation + bounded priority inversion

requires | Intra-cluster 'ob migrations.

partitioned scheduling clustered scheduling

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Example: Job Migration is Necessary

three tasks, two cores, one resource, P-FP scheduling

QA
&’
o [s
@
9
@)
@, T

> time

MPI-SWS

Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Example: Job Migration is Necessary

three tasks, two cores, one resource, P-FP scheduling

Q\

&’

o [s

@,

e 4

@)

@, T ‘

> time

T> starts executing critical section...

MPI-SWS

Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Example: Job Migration is Necessary

three tasks, two cores, one resource, P-FP scheduling

s

Job of T Is released.

Q\
D
'® [E; What to do with in-progress critical section?
O

> time

MPI-SWS

Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive realtime applications

Case 1: priority boosting (=let T2 continue).

three tasks, two cores, one resource, P-FP scheduling

Q\

O

o I3

@,

T _ section
o

@)

@, T,

> time

MPI-SWS

Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive realtime applications

Case 1: priority boosting (=let T2 continue).

three tasks, two cores, one resource, P-FP scheduling

QA

O -

S T T | pi-blocked lS
O

_I section
|] l

> time

MPI-SWS

Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Case 1: priority boosting (=let T2 continue).

three tasks, two cores, one resource, P-FP scheduling

Q\

O -blocked

. T T | Pl : l S l "

O 3 ; .
O (A i

Benefit: 73 incurs only bounded pi-blocking, meets deadline.

_ 1. | [cal sestion
L

@)

O T

> time

MPI-SWS

Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Case 1: priority boosting (=let T2 continue).

three tasks, two cores, one resource, P-FP scheduling

QA

O -

S T T | pi-blocked lS
O

_I section
|] l

/ > time
Problem: T7 misses its deadline. '

MPI-SWS

Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Example: Job Migration is Necessary

three tasks, two cores, one resource, P-FP scheduling

s

Job of T Is released.

Q\
D
'® [E; What to do with in-progress critical section?
O

> time

MPI-SWS

Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive realtime applications

Case 2: independence preservation (= preempt To).

three tasks, two cores, one resource, P-FP scheduling

Q\

O

o I3

@,

_ Tzh
o

@)

@, T,

> time

MPI-SWS

Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Case 2: independence preservation (= preempt To).

three tasks, two cores, one resource, P-FP scheduling

[

D
@
O T |

/ > time
Independence preservation: T1 meets its deadline. '

MPI-SWS

Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive realtime applications

Case 2: independence preservation (= preempt To).

three tasks, two cores, one resource, P-FP scheduling

QA

O -

S T, T | pi-blocked Lls
O

e -

> time

MPI-SWS

Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Case 2: independence preservation (= preempt To).

three tasks, two cores, one resource, P-FP scheduling

QA
g T | pi-blocked IS
O P
)

[

Problem: 73 incurs “unbounded” pi-blocking, misses deadline!

> time

MPI-SWS

Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive realtime applications

Partitioned Scheduling with Migrations?

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Partitioned Scheduling with Migrations?

Partitioned By Necessity

E.g., SoC with heterogeneous
cores (ARM, PowerPC, x86, MIPS).

migrations infeasible
for lack of technical capability

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Partitioned Scheduling with Migrations?

Partitioned By Necessity

\/ W/ Y/

. E.g., SoC with heterogeneous
@ Q @ 9 N cores (ARM, PowerPC, x86, MIPS).

-

Shared Memor

migrations infeasible
for lack of technical capability

-> independence preservation and bounded priority inversion
iImpossible to achieve!

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Partitioned Scheduling with Migrations?

Partitioned By Necessity Partitioned By Choice

) w
\/

migrations infeasible migrations disallowed
for lack of technical capability but technically feasible

MPI-SWS Brandenburg

Occasional migrations not desirable, but possible!

(Focus of this work.)

Partitioned By Necessity Partitioned By Choice

W
\/

migrations infeasible migrations disallowed
for lack of technical capability but technically feasible

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Example: Job Migration is Necessary

three tasks, two cores, one resource, P-FP scheduling

s

Job of T Is released.

Q\
D
'® [E; What to do with in-progress critical section?
O

> time

MPI-SWS

Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

1) Ensure independence preservation (= preempt Ta).

three tasks, two cores, one resource, P-FP scheduling

[

D
@
O T |

/ > time
Independence preservation: T1 meets its deadline. '

MPI-SWS

Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

2) Ensure bounded pi-blocking (= schedule T2).

three tasks, two cores, one resource, P-FP scheduling

QA

O -

S T T | pi-blocked IS
O

tﬂ-

> time

Easy fix: migrate T2 when I3z suspends.

MPI-SWS

Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Temporarily move T3 to Core 2...

igration is Necessary

three ‘asks, two cores, one resource, P-FP scheduling

pi-blocked

{Cs

> time

Easy fix: migrate T2 when Iz suspends.

MPI-SWS

Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Example: Job Migration is Necessary

Benefit: 73 incurs only bounded pi-blocking, meets deadline.

/

pi-blocked

Is

MPI-SWS

Easy fix: migrate T2 when Iz suspends.

> time

Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive realtime applications

MPI-SWS

Theorem

Under non-global scheduling (c # m), it is impossible
for a semaphore protocol to simultaneously

(1) prevent unbounded pi-blocking,
(ii)) be independence-preserving, and
(iif)) avoid inter-cluster job migrations.

Pick any two...

Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

MPI-SWS

Combinations of Properties

Under non-global scheduling (¢ # m), it is impossible
for a semaphore protocol to simultaneously

(1) prevent unbounded pi-blocking,
(ii)) be independence-preserving, and
(iif) avoid inter-cluster job migrations.

(i) & (iii)
= MPCP, Part. FMLP, FMLP+, OMLP, ...

(1) & (rii)
= Applying PIP to partitioned scheduling (not sound!)

(1) & (i)

= no such protocol known!

Brandenburg

Part 2

Independence Preservation
+

Asymptotically Optimal
Pl-Blocking

A fully preemptive multiprocessor semaphore protocol for latency-sensitive realtime applications

High-Level Overview

real-time progress + queue
locking protocol mechanism structure

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

High-Level Overview

real-time progress + queue
locking protocol mechanism structure

T T T T

NS NS

Must be Must ensure
Independence-preserving. asymptotic optimality.

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

High-Level Overview

real-time progress + queue
locking protocol mechanism structure

T T T T

N7 NS

Must be Must ensure
Independence-preserving.

asymptotic optimality.
Adopt intuition from example:

when lock holder is preempted,
migrate to blocked task’s processor.

MPI-SWS branaenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive realtime applications

Migratory Priority Inheritance

classic priority inheritance
inherit priority of blocked jobs

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Migratory Priority Inheritance

classic priority inheritance
inherit priority of blocked jobs

=

“cluster inheritance”

inherit eligibility to execute
on assigned clusters
from blocked jobs

MPI-SWS Brandenburg

Jobs remain fully preemptive even in critical sections.

-> enables iIndependence preservation

~ L
classic priority inheritance
inherit priority of blocked jobs

=

“cluster inheritance”

inherit eligibility to execute
on assigned clusters
from blocked jobs

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive realtime applications

High-Level Overview

real-time progress + queue
locking protocol mechanism

vy structure
/ \‘w 4 T T

NS NS

Must be Must ensure
Independence-preserving. asymptotic optimality.

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

High-Level Overview

real-time

locking protocol mechanism

progress

Must be
Independence-preserving.

+

queue

structure 9

Must ensure
asymptotic optimality.

Resolve (most) contention within clusters:
use a multi-level queue.

MPI-SWS

Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

A 3-Level FIFO/FIFO/PRIO Queue

one 3-level queue for each resource

Cluster 1
shared Cluster 2
I resource
Cluster K

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

A 3-Level FIFO/FIFO/PRIO Queue

one 3-level queue for each resource

Cluster 1
priority

queue

shared Cluster 2

riorit
b resource PrioHty

queue

Cluster K -
‘QK queue

MPI-SWS Brandenburg 64

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

A 3-Level FIFO/FIFO/PRIO Queue

one 3-level queue for each resource

Cluster 1 / o
)) priority
< | FIFO Queue F- queue
b resource -
< | FIFO Queue F.

Cluster K / ot

priority
gqueue

< | FIFO Queue F!

Moueue

MPI-SWS Brandenburg 65

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

-

Bounded length: at most ¢ jobs (in each cluster).

(c = number of cores in cluster) S

Cluster 1

|< | FIFO Queue F-
Cluster 2
‘< | FIFO Queue F-

priority

shared

riorit
I resource priority

queue

priority
gqueue

MPI-SWS 66

A fully preemptive multiprocessor semaphore protocol for latencv-sensitive real-time applications

Priority queue used only if more than ¢ jobs contend.
A 3'Le‘ (c = number of cores in cluster)
I'iIc =-1CVvVel que \ - 1UI €Ec coUu =

A WA \A

Cluster

priorit
gueue

<

< | FIFO Qiu'eue €G

\ \‘ X
priority
gqueue

shared Cluster 2

I resource -
< | FIFO Queué

Cluster K

<

< | FIFO Queue F!

priority
gqueue

MPI-SWS Brandenburg 67

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

A 3-Level FIFO/FIFO/PRIO Queue

one 3-level queue for each resource

Cluster 1 /
)) priority
€4 | FIFO Queue FQs | queue
<« ’} Cluster 2 /
e FIFO Queu \< <a

priority
gqueue

< | FIFO Queue F!

_ C}[uster K K priority
< | FIFO Queue F_

queue

MPI-SWS Brandenburg 3

Global FIFO Queue resolves inter-cluster contention.

Bounded length: at most K = m / ¢ jobs (one per cluster).

(m = total number of cores, ¢ = number of cores per cluster)

Cluster 1
)) priority
= <_| FIFO Queue Fl queue
~

Cluster 2

<

| FIFO Queu ‘

) priority

< | FIFO Queue F!

K (3I(uster K

< | FIFO Queue Fg

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

The O(m) Independence-Preserving
Locking Protocol (OMIP)

The — | migratory priority + 3-level F/F/P
OMIP T inheritance queue
independence-preserving O(m) s-oblivious
pi-blocking

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

The O(m) Independence-Preserving
Locking Protocol (OMIP)

The — | migratory priority + 3-level F/F/P
OMIP T inheritance queue
iIndependence-preserving O(m) s-oblivious
pi-blocking

2(m) lower bound on s-oblivious pi-blocking (— & Anderson, 2010)

- The OMIP ensures asymptotically optimal s-oblivious pi-blocking.

MPI-SWS Brandenburg

Part 3

Evaluation .\

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Prototype Implementation

LITMuUsR?!

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

www.litmus-rt.org

3-level queues
= easy (reuse Linux wait queues)
= cheap compared to syscall

Migratory priority inheritance

= more tricky (need to avoid global locks)

= store bitmap of cores “offering” to
schedule lock holder in each lock

MPI-SWS Brandenburg

http://www.litmus-rt.org
http://www.litmus-rt.org

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Response Times Experiment

on an 8-core, 2-Ghz Xeon X7550 System
Core 1 Core 8

Setup

= 4 tasks on each core (one independent & latency-sensitive)
= one shared resource

= max. critical section length: ~1ms

MPI-SWS Brandenburg

One latency-sensitive,

iIndependent task with |m es Expe ri me ni'

period = 1ms.

hz Xeon X7550 System
\ Core 1 Core 8

OO

Ts
%/ - - @
Setup

= 4 tasks on each core (one independent & latency-sensitive)
= one shared resource
= max. critical section length: ~1ms

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Re SPQ _Three tasks (on each core) with
periods 25 ms, 100 ms, and 1000 ms.

on an ¢ Egch job of these tasks locks the resource once.

Setup

= 4 tasks on each core (one independent & latency-sensitive)
= one shared resource

= max. critical section length: ~1ms

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Response Times Experiment
on an 8-core, 2-Ghz Xeon X7550 System

Three Configurations
= No locks (unsound!)
Core 8 » no blocking (baseline)

= Clustered OMLF
» priority donation

= OMIP
» migratory priority inheritance

< T24 Experiment

b
= Measured response times with
sched trace
= 30-minute traces

MPI-SWS

= more than 45 million jobs

Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive realtime applications

Response Time CDF

100.00%
90.00%
80.00%
70.00%
60.00%

higher is better

50.00%

40.00%

P(response time < X)

30.00%

Fraction
response ti

20.00% -

10.00% - INncreasing res

0.00% -

0.2 0.3 0.4 0.5 0.6

response time (in ms)

0.7 0.8

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive realtime applications

Response Time CDF of 1-ms Tasks

P(response time < X)

100.00%

90.00%

80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
response time (in ms)

w==0OMIP CDF
w==0OMLP CDF

| o
-~ OMLP l
OMlP & «===NONE CDF
NONE
(overlapping)

MPI-SWS

Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive realtime applications

Response Time CDF of 1-ms Tasks

P(response time < X)

100.00%

90.00%

80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

With priority donation (or priority

boosting), ~20% of the jobs of the

1ms-tasks miss their deadline.

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
response time (in ms)

|

«==NONE CDF
w==0OMIP CDF
w==0OMLP CDF

MPI-SWS

Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive realtime applications

Response Time CDF of 1-ms Tasks

P(response time < X)

100.00%

90.00%

80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

«==NONE CDF

Response time distribution under OMIP | = ©MIPCDF

equivalent to case without locks. =—OMLP CDF

(OMIP & NONE curves overlap)

0.2 0.3 0.4 0.5 0.6

response time (in ms)

0.7 0.8 0.9 1

MPI-SWS

Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive realtime applications

Response Time CDF of 100-ms Tasks

100.00% f
90.00% /

80.00%

70.00%

60.00%
«==NONE CDF

50.00%
e==0OMIP CDF

40.00%
w==0MLP CDF

P(response time < X)

30.00%

20.00%

10.00%

0.00%
0 10 20 30 40 50 60 70 30 90 100

response time (in ms)

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaph g

P(response time < X)

NONE

100.00%
90.00%
80.00%
70.00%
60.00%
50.00%
40.00%
30.00%
20.00%
10.00%

0.00%

Respon

a __ 1 r_ __I_.:___ _

y-sensitive real-time applications

of 100-ms Tasks

«==NONE CDF

w==0OMIP CDF

w==0OMLP CDF

10

20

30

40 50 60 70 80 90 100
response time (in ms)

MPI-SWS

Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive realtime applications

Response Time CDF of 100-ms Tasks

P(response time < X)

100.00%

90.00%

80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

OMIP: blocking shifted to lower-
priority (= later-deadline) jobs.

10 20 30 40 50 60 70 80 90 100
response time (in ms)

«==NONE CDF
w==0OMIP CDF
w==0OMLP CDF

MPI-SWS

Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Analytical Blocking/Latency Tradeoff

Large-scale schedulability experiments
= Varied #tasks, #cores, #resources, max. critical section lengths, etc.

= >150,000,000 task sets
= 678 schedulability plots, available in online appendix

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Analytical Blocking/Latency Tradeoff

Large-scale schedulability experiments
= Varied #tasks, #cores, #resources, max. critical section lengths, etc.

= >150,000,000 task sets
= 678 schedulability plots, available in online appendix

In the presence of latency-sensitive tasks,
the OMIP is generally the only viable option.

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Analytical Blocking/Latency Tradeoff

Large-scale schedulability experiments
= Varied #tasks, #cores, #resources, max. critical section lengths, etc.

= >150,000,000 task sets
= 678 schedulability plots, available in online appendix

In the presence of latency-sensitive tasks,
the OMIP is generally the only viable option.

Without latency-sensitive tasks, the OMIP
does not offer substantial improvements.

MPI-SWS Brandenburg

Conclusion

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Summary

Independence preservation formalizes the idea that
“tasks should not be delayed by unrelated critical sections.”

Independence preservation Is
impossible without (limited) job migrations.

The OMIP is the first independence-preserving
semaphore protocol for clustered scheduling. It ensures

asymptotically optimal s-oblivious pi-blocking.

MPI-SWS Brandenburg

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

www.litmus-rt.org

SchedCAT

Schedulability test
Collection And Toolkit

WWW.MmpIi-Sws.org/~bbb/
projects/schedcat

Lol > - 4 . > .

y ---1 g : 3. :
] : . * 2 .

e = R TR e e A . g v et

http://www.litmus-rt.org
http://www.litmus-rt.org
http://www.mpi-sws.org/~bbb/projects/schedcat
http://www.mpi-sws.org/~bbb/projects/schedcat
http://www.mpi-sws.org/~bbb/projects/schedcat
http://www.mpi-sws.org/~bbb/projects/schedcat

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Design Inspirations

Migrate to Blocked Task’s CPU
= “Local helping” in TU Dresden’s Fiasco/L4
» Hohmuth & Peter (2001)

= Multiprocessor bandwidth inheritance (MBWI)
» Faggioli, Lipari, & Cucinotta (2010)

Queue Design
= Intra-cluster queues adopted from global OMLP
» — & Anderson (2010)

= Inter-cluster queues similar to clustered OMLP
» — & Anderson (2011)

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

What about overheads?

100.00%

90.00%

80.00%

< 70.00%
Vi

2 50.00%
c . 0

o

o |
& 40.00%
£ \

30.00%

]
€ 60.00%
=

20.00%

10.00% ,‘

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

response time (in ms)

«==NONE CDF
«==0OMIP CDF
OMLP CDF

time <X)

(response

o

100.00%

90.00%

80.00%

70.00%

60.00%

«==NONE CDF

50.00%

«==0OMIP CDF

40.00%

OMLP CDF

30.00%

20.00%

10.00%

0.00% =
0

10 20 30 40 50 60 70 80 90 100
response time (in ms)

Aren’t job migrations expensive?

= response time experiments reflect all overheads in real system

= |atency-sensitive tasks do not migrate, only lower-priority tasks do

= only working set of critical section migrates (likely small), not
entire task working set (likely much larger)

= the critical section would have been preempted anyway

MPI-SWS

Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive realtime applications

Blocking Analysis
“w < | FIFO Queue-

priority
gueue

m ... number of processors (total) c ... number of processors per cluster

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive realtime applications

Blocking Analysis

.) ‘) priority
1 FIFO Que < | FIFO Queue . queuc
at most at most
K-1=m/c-1 c-1
gueued jobs gueued jobs
m ... number of processors (total) c ... number of processors per cluster

MPI-SWS Brandenburg

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Blocking Analysis

priority
gueue

< < <

iy <[Fro Queltill) <[_Firo Queus FORY

NS NS

at most at most
K-1=m/c-1 c-1
gueued jobs gueued jobs
at most at most
m/c-1 (c-1) - (m/c)
blocking CS blocking CS
m ... number of processors (total) c ... number of processors per cluster

MPI-SWS Brandenburg

-ations

At most
mlc-1+(c-1)- (m/c)=m-1=0(m)
blocking critical sections.

priority
gueue

< +—

< | FIFO Queuef.

NS NS

1 K| FIFO Que

at most at most
K-1=m/c-1 c-1
gueued jobs gueued jobs
at most at most
m/c-1 (c-1) - (m/c)
blocking CS blocking CS
m ... numoer or processors (lota C ... number of processors per cluster

MPI-SWS Brandenburg

-ations

At most
mlc-1+(c-1)- (m/c)=m-1=0(m)
blocking critical sections.

priority
gueue

< <—

1 K| FIFO Queue <_|_FIFO Queue FQ |

NS NS

at most at most
K-1=m/c-1 c-1
queued jobs queued | jnder s-oblivious analysis:
at most O(m) critical sections
cause pi-blocking.
at most at mo
m/c-1 (c-1) - (m/c)
blocking CS blocking CS

m ... numoer or processors (lota C ... number of processors per cluster

MPI-SWS Brandenburg

