A Fully Preemptive
Multiprocessor Semaphore Protocol for
Latency-Sensitive Real-Time Applications

ECRTS'13
July 12, 2013

- Max

Planck |
| Institute Bjorn B. Brandenburg

bbb@mpi-sws.org

4 for
Software Systems


mailto:bbb@mpi-sws.org
mailto:bbb@mpi-sws.org

A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

A Rhetorical Question

On uniprocessors, why do we use

the priority inheritance protocol (PIP)
or the priority ceiling protocol (PCP)

Instead of simple non-preemptive sections?

AUTOSAR Non-Preemptive Critical Section:

SuspendAllInterrupts(..);
// critical section
ResumeAllInterrupts(..);

MPI-SWS Brandenburg
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RT 101: Preemptive Synchronization Matters

uniprocessor, non-preemptive critical sections

release deadline
unrelated, latency-sensitive
high-priority task \
less time-critical g lower-priority
lower-priority tasks ical section (CS)

> tIme
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RT 101: Preemptive Synchronization Matters

e

Deadline miss due to latency increase!

uniprocessor, non-preemptive crit.¢al sections

release deadline
unrelated, latency-sensitive
high-priority task \
less time-critical g lower-priority
lower-priority tasks ical section (CS)

/] > time
Long non-preemptive critical section. l

MPI-SWS Brandenburg
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RT 101: Preemptive Synchronization Matters

uniprocessor, with PIP

release deadline
unrelated, latency-sensitive
high-priority task
less time-critical long lower-
lower-priority tasks priority CS

> tIme

MPI-SWS Brandenburg



A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

RT 101: Preemptive Synchronization Matters

-

Latency-sensitive task
iIsolated from unrelated critical section!

uniprocessor, with PIP

release deadline

unrelated, latency-sensitive A l

high-priority task
long lower-
priority CS

f > time

Lower-priority critical section: fully preemptive execution.

less time-critical
lower-priority tasks

MPI-SWS Brandenburg
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The Multiprocessor Case

What if we host the same workload on a multiprocessor?

partitioned multiprocessor scheduling

unrelated, latency-sensitive
high-priority task

less time-critical
lower-priority tasks
(on same core)

> tIme

MPI-SWS Brandenburg
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No existing real-time semaphore protocol

for partitioned or clustered scheduling
iIsolates high-priority tasks from unrelated CSs.

partitioned multiprocessor scheduling

release deadline

unrelated, latency-sensitive
high-priority task

less time-critical
lower-priority tasks
(on same core)

ower-priority
| section (CS)

> tIme

MPCP, FMLP, FMLP+, OMLP, ...

MPI-SWS Brandenburg
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This Paper

Independence preservation formalizes the idea that
“tasks should never be delayed by unrelated critical sections.”
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This Paper

Independence preservation formalizes the idea that
“tasks should never be delayed by unrelated critical sections.”

Independence preservation Is
impossible without (limited) job migrations.
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This Paper

Independence preservation formalizes the idea that
“tasks should never be delayed by unrelated critical sections.”

Independence preservation Is
impossible without (limited) job migrations.

First Independence-preserving semaphore protocol
for clustered/partitioned scheduling; the protocol also has
asymptotically optimal blocking bounds.

MPI-SWS Brandenburg
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Clustered JLFP Scheduling

Job-Level Fixed-Priority Scheduling (JLFP)
C ... number of processors per cluster

m ... number of processors (total)

partitioned scheduling clustered scheduling global scheduling
c=1 1=sc=m c=m

MPI-SWS Brandenburg
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This talk: Partitioned Fixed-Priority (P-FP) Scheduling

ob-Level Fixed-Priority Scheduling (JLFP)
C ... number of processors per cluster

m ... number of processors (total)

partitioned scheduling clustered scheduling global scheduling
c=1 1=sc=m c=m

MPI-SWS Brandenburg



A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Clustered JLFP Scheduling

Job-Level Fixed-Priority Scheduling (JLFP)
C ... number of processors per cluster

m ... number of processors (total)

partitioned scheduling clustered scheduling global scheduling

7

Task model: implicit-deadline sporadic tasks
(choice of deadline constraint irrelevant to results)

MPI-SWS

Brandenburg
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Real-Time Semaphore Protocols

Binary Semaphores
in POSIX

pthread mutex lock(..)
// critical section
pthread mutex unlock(..)

\_ _/

A blocked task suspends
& yields the processor.

MPI-SWS Brandenburg



A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Real-Time Semaphore Protocols

Binary Semaphores L .
in POSIX P”O”ty Inversion
pthread mutex_lock(..) AIOb should be
// critical section scheduled, but is not.
pthread mutex unlock(..)
A blocked task suspends PI-Blocking: increase in
& yields the processor. worst-case response time

due to priority inversions.

MPI-SWS Brandenburg
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Real-Time Semaphore Protocols

( )

Binary Semaphores L .

. POSIX Priority Inversion
pthread mutex_ lock(..) A_/Ob should be
// critical section scheduled, but is not.
pthread mutex unlock(..)

- J

A blocked task suspends PI-Blocking: increase in
& yields the processor. worst-case response time
due to priority inversions.

Goal: bounded pi-blocking.

Bounded in terms of critical section lengths only!

MPI-SWS Brandenburg
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Real-Time Semaphore Protocols

( )

Binary Semaphores L .

. POSIX Priority Inversion
pthread mutex_ lock(..) AIOb should be
// critical section scheduled, but is not.
pthread mutex unlock(..)

1\ J

A blocked task suspends PI-Blocking: increase in
& yields the processor. worst-case response time
due to priority inversions.

Assumptions
= Unnested critical sections.
= Suspension-oblivious schedulability analysis.

MPI-SWS Brandenburg



Part |

Avoiding Delays due to
Unrelated Critical Sections
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Independence Preservation

(specific to s-oblivious analysis)

“lTasks should never be delayed by unrelated critical sections.”

MPI-SWS Brandenburg



A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

MPI-SWS

Independence Preservation

(specific to s-oblivious analysis)

Let biq denote the maximum pi-blocking incurred by
task T;due to requests for resource q.

Let N;q denote the maximum number of times that any
job of T; accesses resource (.

Under an independence-preserving locking protocol,
If Ni,q = 0, then bi,q = 0.

“You only pay for what you use.”

Brandenburg




A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

Independence Preservation

(specific to s-oblivious analysis)

Let biq denote the maximum pi-blocking incurred by
task T;due to requests for resource q.

Let N;q denote the maximum number of times that any
job of T; accesses resource (.

Under an independence-preserving locking protocol,
If Ni,q = 0, then bi,q = 0.

Isolation useful for:

latency-sensitive workloads (if no delay can be tolerated) or
If low-priority tasks contain unknown or untrusted critical sections.

MPI-SWS Brandenburg
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Real-Time Semaphore Protocols

real-time progress + queue
locking protocol mechanism structure

MPI-SWS Brandenburg
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Real-Time Semaphore Protocols

real-time progress + queue
locking protocol mechanism structure

//

Ensure that a lock holder is scheduled
(while waiting tasks incur pi-blocking).

How to order conflicting critical sections
(e.g., priority queue, FIFO queues).

MPI-SWS Brandenburg
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Real-Time Semaphore Protocols

real-time — progress + queue
locking protocol T mechanism structure
\Ll .
partitioned scheduling clustered scheduling global scheduling
priority boosting priority donation priority inheritance

MPI-SWS Brandenburg



Priority boosting and Priority Donation:
lock-holding jobs have higher priority than non-lock-holding jobs

- effectively non-preemptive = not independence preserving

real-time progress + queue
locking protocol mechanism structure

// \

partitioned scheduling clustered scheduling | global scheduling
priority boosting priority donation

MPI-SWS Brandenburg
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Real-Time Semaphore Protocols

real-time — progress + queue
locking protocol T mechanism structure
!

partitioned scheduling clustered scheduling | global scheduling
priority inheritance

-

Existing independence-preserving locking protocols:

Global PIP, Global FMLP, Global OMLP, ...

MPI-SWS Brandenburg
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Observation

Independence preservation + bounded priority inversion
requires intra-cluster job migrations.

partitioned scheduling clustered scheduling

MPI-SWS Brandenburg



A fully preeg

Intra-cluster: (temporarily) execute jobs on
processors/clusters they have not been assigned to.

Independence pres rvation + bounded priority inversion

requires | Intra-cluster 'ob migrations.

partitioned scheduling clustered scheduling

MPI-SWS Brandenburg
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Example: Job Migration is Necessary

three tasks, two cores, one resource, P-FP scheduling

QA
&’
o [s
@
9
@)
@, T

> time

MPI-SWS

Brandenburg
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Example: Job Migration is Necessary

three tasks, two cores, one resource, P-FP scheduling

Q\

&’

o [s

@,

e 4

@)

@, T ‘

> time

T> starts executing critical section...

MPI-SWS

Brandenburg
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Example: Job Migration is Necessary

three tasks, two cores, one resource, P-FP scheduling

s

Job of T Is released.

Q\
D
'® [E; What to do with in-progress critical section?
O

> time

MPI-SWS

Brandenburg
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Case 1: priority boosting (=let T2 continue).

three tasks, two cores, one resource, P-FP scheduling

Q\

O

o I3

@,

T _ section
o

@)

@, T,

> time

MPI-SWS

Brandenburg
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Case 1: priority boosting (=let T2 continue).

three tasks, two cores, one resource, P-FP scheduling

QA

O -

S T T | pi-blocked lS
O

_I section
| ] l

> time

MPI-SWS

Brandenburg
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Case 1: priority boosting (=let T2 continue).

three tasks, two cores, one resource, P-FP scheduling

Q\

O -blocked

. T T | Pl : l S l "

O 3 ; .
O ( A i

Benefit: 73 incurs only bounded pi-blocking, meets deadline.

_ 1. | [cal sestion
L

@)

O T

> time

MPI-SWS

Brandenburg
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Case 1: priority boosting (=let T2 continue).

three tasks, two cores, one resource, P-FP scheduling

QA

O -

S T T | pi-blocked lS
O

_I section
| ] l

/ > time
Problem: T7 misses its deadline. '

MPI-SWS

Brandenburg
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Example: Job Migration is Necessary

three tasks, two cores, one resource, P-FP scheduling

s

Job of T Is released.

Q\
D
'® [E; What to do with in-progress critical section?
O

> time

MPI-SWS

Brandenburg



A fully preemptive multiprocessor semaphore protocol for latency-sensitive realtime applications

Case 2: independence preservation (= preempt To).

three tasks, two cores, one resource, P-FP scheduling

Q\

O

o I3

@,

_ Tzh
o

@)

@, T,

> time

MPI-SWS

Brandenburg
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Case 2: independence preservation (= preempt To).

three tasks, two cores, one resource, P-FP scheduling

[

D
@
O T |

/ > time
Independence preservation: T1 meets its deadline. '

MPI-SWS

Brandenburg
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Case 2: independence preservation (= preempt To).

three tasks, two cores, one resource, P-FP scheduling

QA

O -

S T, T | pi-blocked Lls
O

e -

> time

MPI-SWS

Brandenburg
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Case 2: independence preservation (= preempt To).

three tasks, two cores, one resource, P-FP scheduling

QA
g T | pi-blocked IS
O P
)

[

Problem: 73 incurs “unbounded” pi-blocking, misses deadline!

> time

MPI-SWS

Brandenburg
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Partitioned Scheduling with Migrations?

MPI-SWS Brandenburg
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Partitioned Scheduling with Migrations?

Partitioned By Necessity

E.g., SoC with heterogeneous
cores (ARM, PowerPC, x86, MIPS).

migrations infeasible
for lack of technical capability

MPI-SWS Brandenburg
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Partitioned Scheduling with Migrations?

Partitioned By Necessity

\/ W/ Y/

. E.g., SoC with heterogeneous
@ Q @ 9 N cores (ARM, PowerPC, x86, MIPS).

-

Shared Memor

migrations infeasible
for lack of technical capability

-> independence preservation and bounded priority inversion
iImpossible to achieve!

MPI-SWS Brandenburg
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Partitioned Scheduling with Migrations?

Partitioned By Necessity Partitioned By Choice

) w
\/

migrations infeasible migrations disallowed
for lack of technical capability but technically feasible

MPI-SWS Brandenburg



Occasional migrations not desirable, but possible!

(Focus of this work.)

Partitioned By Necessity Partitioned By Choice

W
\/

migrations infeasible migrations disallowed
for lack of technical capability but technically feasible

MPI-SWS Brandenburg
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Example: Job Migration is Necessary

three tasks, two cores, one resource, P-FP scheduling

s

Job of T Is released.

Q\
D
'® [E; What to do with in-progress critical section?
O

> time

MPI-SWS

Brandenburg



A fully preemptive multiprocessor semaphore protocol for latency-sensitive real-time applications

1) Ensure independence preservation (= preempt Ta).

three tasks, two cores, one resource, P-FP scheduling

[

D
@
O T |

/ > time
Independence preservation: T1 meets its deadline. '

MPI-SWS

Brandenburg
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2) Ensure bounded pi-blocking (= schedule T2).

three tasks, two cores, one resource, P-FP scheduling

QA

O -

S T T | pi-blocked IS
O

tﬂ-

> time

Easy fix: migrate T2 when I3z suspends.

MPI-SWS

Brandenburg
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Temporarily move T3 to Core 2...

igration is Necessary

three ‘asks, two cores, one resource, P-FP scheduling

pi-blocked

{Cs

> time

Easy fix: migrate T2 when Iz suspends.

MPI-SWS

Brandenburg
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Example: Job Migration is Necessary

Benefit: 73 incurs only bounded pi-blocking, meets deadline.

/

pi-blocked

Is

MPI-SWS

Easy fix: migrate T2 when Iz suspends.

> time

Brandenburg
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MPI-SWS

Theorem

Under non-global scheduling (c # m), it is impossible
for a semaphore protocol to simultaneously

(1) prevent unbounded pi-blocking,
(ii)) be independence-preserving, and
(iif)) avoid inter-cluster job migrations.

Pick any two...

Brandenburg
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MPI-SWS

Combinations of Properties

Under non-global scheduling (¢ # m), it is impossible
for a semaphore protocol to simultaneously

(1) prevent unbounded pi-blocking,
(ii)) be independence-preserving, and
(iif) avoid inter-cluster job migrations.

(i) & (iii)
= MPCP, Part. FMLP, FMLP+, OMLP, ...

(1) & (rii)
= Applying PIP to partitioned scheduling (not sound!)

(1) & (i)

= no such protocol known!

Brandenburg




Part 2

Independence Preservation
+

Asymptotically Optimal
Pl-Blocking



A fully preemptive multiprocessor semaphore protocol for latency-sensitive realtime applications

High-Level Overview

real-time progress + queue
locking protocol mechanism structure

MPI-SWS Brandenburg
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High-Level Overview

real-time progress + queue
locking protocol mechanism structure

T T T T

NS NS

Must be Must ensure
Independence-preserving. asymptotic optimality.

MPI-SWS Brandenburg
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High-Level Overview

real-time progress + queue
locking protocol mechanism structure

T T T T

N7 NS

Must be Must ensure
Independence-preserving.

asymptotic optimality.
Adopt intuition from example:

when lock holder is preempted,
migrate to blocked task’s processor.

MPI-SWS branaenburg
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Migratory Priority Inheritance

classic priority inheritance
inherit priority of blocked jobs

MPI-SWS Brandenburg
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Migratory Priority Inheritance

classic priority inheritance
inherit priority of blocked jobs

=

“cluster inheritance”

inherit eligibility to execute
on assigned clusters
from blocked jobs

MPI-SWS Brandenburg



Jobs remain fully preemptive even in critical sections.

-> enables iIndependence preservation

~ L
classic priority inheritance
inherit priority of blocked jobs

=

“cluster inheritance”

inherit eligibility to execute
on assigned clusters
from blocked jobs

MPI-SWS Brandenburg
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High-Level Overview

real-time progress + queue
locking protocol mechanism

vy structure
/ \‘w 4 T T

NS NS

Must be Must ensure
Independence-preserving. asymptotic optimality.

MPI-SWS Brandenburg
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High-Level Overview

real-time

locking protocol mechanism

progress

Must be
Independence-preserving.

+

queue

structure 9

Must ensure
asymptotic optimality.

Resolve (most) contention within clusters:
use a multi-level queue.

MPI-SWS

Brandenburg
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A 3-Level FIFO/FIFO/PRIO Queue

one 3-level queue for each resource

Cluster 1
shared Cluster 2
I resource
Cluster K

MPI-SWS Brandenburg
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A 3-Level FIFO/FIFO/PRIO Queue

one 3-level queue for each resource

Cluster 1
priority

queue

shared Cluster 2

riorit
b resource PrioHty

queue

Cluster K -
‘QK queue

MPI-SWS Brandenburg 64
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A 3-Level FIFO/FIFO/PRIO Queue

one 3-level queue for each resource

Cluster 1 / o
) ) priority
< | FIFO Queue F- queue
b resource -
< | FIFO Queue F.

Cluster K / ot

priority
gqueue

< | FIFO Queue F!

Moueue

MPI-SWS Brandenburg 65
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-

Bounded length: at most ¢ jobs (in each cluster).

(c = number of cores in cluster) S

Cluster 1

|< | FIFO Queue F-
Cluster 2
‘< | FIFO Queue F-

priority

shared

riorit
I resource priority

queue

priority
gqueue

MPI-SWS 66
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Priority queue used only if more than ¢ jobs contend.
A 3'Le‘ (c = number of cores in cluster)
I'iIc =-1CVvVel que \ - 1UI €Ec coUu =

A WA \A

Cluster

priorit
gueue

<

< | FIFO Qiu'eue €G

\ \‘ X
priority
gqueue

shared Cluster 2

I resource -
< | FIFO Queué

Cluster K

<

< | FIFO Queue F!

priority
gqueue

MPI-SWS Brandenburg 67
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A 3-Level FIFO/FIFO/PRIO Queue

one 3-level queue for each resource

Cluster 1 /
) ) priority
€4 | FIFO Queue FQs | queue
<« ’} Cluster 2 /
e FIFO Queu \< <a

priority
gqueue

< | FIFO Queue F!

\_ C}[uster K K priority
< | FIFO Queue F_

queue

MPI-SWS Brandenburg 3



Global FIFO Queue resolves inter-cluster contention.

Bounded length: at most K = m / ¢ jobs (one per cluster).

(m = total number of cores, ¢ = number of cores per cluster)

Cluster 1
) ) priority
= <_| FIFO Queue Fl queue
~

Cluster 2

<

| FIFO Queu ‘

) priority

< | FIFO Queue F!

K (3I(uster K

< | FIFO Queue Fg

MPI-SWS Brandenburg
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The O(m) Independence-Preserving
Locking Protocol (OMIP)

The — | migratory priority + 3-level F/F/P
OMIP T inheritance queue
independence-preserving O(m) s-oblivious
pi-blocking

MPI-SWS Brandenburg
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The O(m) Independence-Preserving
Locking Protocol (OMIP)

The — | migratory priority + 3-level F/F/P
OMIP T inheritance queue
iIndependence-preserving O(m) s-oblivious
pi-blocking

2(m) lower bound on s-oblivious pi-blocking (— & Anderson, 2010)

- The OMIP ensures asymptotically optimal s-oblivious pi-blocking.

MPI-SWS Brandenburg



Part 3

Evaluation .\
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Prototype Implementation

LITMuUsR?!

Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

www.litmus-rt.org

3-level queues
= easy (reuse Linux wait queues)
= cheap compared to syscall

Migratory priority inheritance

= more tricky (need to avoid global locks)

= store bitmap of cores “offering” to
schedule lock holder in each lock

MPI-SWS Brandenburg
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Response Times Experiment

on an 8-core, 2-Ghz Xeon X7550 System
Core 1 Core 8

Setup

= 4 tasks on each core (one independent & latency-sensitive)
= one shared resource

= max. critical section length: ~1ms

MPI-SWS Brandenburg



One latency-sensitive,

iIndependent task with |m es Expe ri me ni'

period = 1ms.

hz Xeon X7550 System
\ Core 1 Core 8

OO

Ts
%/ - - @
Setup

= 4 tasks on each core (one independent & latency-sensitive)
= one shared resource
= max. critical section length: ~1ms

MPI-SWS Brandenburg
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Re SPQ _Three tasks (on each core) with
periods 25 ms, 100 ms, and 1000 ms.

on an ¢ Egch job of these tasks locks the resource once.

Setup

= 4 tasks on each core (one independent & latency-sensitive)
= one shared resource

= max. critical section length: ~1ms

MPI-SWS Brandenburg
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Response Times Experiment
on an 8-core, 2-Ghz Xeon X7550 System

Three Configurations
= No locks (unsound!)
Core 8 » no blocking (baseline)

= Clustered OMLF
» priority donation

= OMIP
» migratory priority inheritance

< T24 Experiment

b
= Measured response times with
sched trace
= 30-minute traces

MPI-SWS

= more than 45 million jobs

Brandenburg
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Response Time CDF

100.00%
90.00%
80.00%
70.00%
60.00%

higher is better

50.00%

40.00%

P(response time < X)

30.00%

Fraction
response ti

20.00% -

10.00% - INncreasing res

0.00% -

0.2 0.3 0.4 0.5 0.6

response time (in ms)

0.7 0.8

MPI-SWS Brandenburg
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Response Time CDF of 1-ms Tasks

P(response time < X)

100.00%

90.00%

80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
response time (in ms)

w==0OMIP CDF
w==0OMLP CDF

| o
-~ OMLP l
OMlP & «===NONE CDF
NONE
(overlapping)

MPI-SWS
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Response Time CDF of 1-ms Tasks
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Response Time CDF of 1-ms Tasks
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Response Time CDF of 100-ms Tasks
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Response Time CDF of 100-ms Tasks
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OMIP: blocking shifted to lower-
priority (= later-deadline) jobs.
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Analytical Blocking/Latency Tradeoff

Large-scale schedulability experiments
= Varied #tasks, #cores, #resources, max. critical section lengths, etc.

= >150,000,000 task sets
= 678 schedulability plots, available in online appendix
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Analytical Blocking/Latency Tradeoff

Large-scale schedulability experiments
= Varied #tasks, #cores, #resources, max. critical section lengths, etc.

= >150,000,000 task sets
= 678 schedulability plots, available in online appendix

In the presence of latency-sensitive tasks,
the OMIP is generally the only viable option.

Without latency-sensitive tasks, the OMIP
does not offer substantial improvements.
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Summary

Independence preservation formalizes the idea that
“tasks should not be delayed by unrelated critical sections.”

Independence preservation Is
impossible without (limited) job migrations.

The OMIP is the first independence-preserving
semaphore protocol for clustered scheduling. It ensures

asymptotically optimal s-oblivious pi-blocking.

MPI-SWS Brandenburg






Linux Testbed for Multiprocessor Scheduling in Real-Time Systems

www.litmus-rt.org

SchedCAT

Schedulability test
Collection And Toolkit

WWW.MmpIi-Sws.org/~bbb/
projects/schedcat
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Design Inspirations

Migrate to Blocked Task’s CPU
= “Local helping” in TU Dresden’s Fiasco/L4
» Hohmuth & Peter (2001)

= Multiprocessor bandwidth inheritance (MBWI)
» Faggioli, Lipari, & Cucinotta (2010)

Queue Design
= Intra-cluster queues adopted from global OMLP
» — & Anderson (2010)

= Inter-cluster queues similar to clustered OMLP
» — & Anderson (2011)

MPI-SWS Brandenburg
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What about overheads?
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Aren’t job migrations expensive?

= response time experiments reflect all overheads in real system

= |atency-sensitive tasks do not migrate, only lower-priority tasks do

= only working set of critical section migrates (likely small), not
entire task working set (likely much larger)

= the critical section would have been preempted anyway

MPI-SWS

Brandenburg
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Blocking Analysis
“w < | FIFO Queue-

priority
gueue

m ... number of processors (total) c ... number of processors per cluster

MPI-SWS Brandenburg



A fully preemptive multiprocessor semaphore protocol for latency-sensitive realtime applications

Blocking Analysis

. ) ‘ ) priority
1 FIFO Que < | FIFO Queue . queuc
at most at most
K-1=m/c-1 c-1
gueued jobs gueued jobs
m ... number of processors (total) c ... number of processors per cluster
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Blocking Analysis

priority
gueue

< < <

iy <[ Fro Queltill) <[_Firo Queus FORY

NS NS

at most at most
K-1=m/c-1 c-1
gueued jobs gueued jobs
at most at most
m/c-1 (c-1) - (m/c)
blocking CS blocking CS
m ... number of processors (total) c ... number of processors per cluster
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-ations

At most
mlc-1+(c-1)- (m/c)=m-1=0(m)
blocking critical sections.

priority
gueue

< +—

< | FIFO Queuef.

NS NS

1 K| FIFO Que

at most at most
K-1=m/c-1 c-1
gueued jobs gueued jobs
at most at most
m/c-1 (c-1) - (m/c)
blocking CS blocking CS
m ... numoer or processors (lota C ... number of processors per cluster
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-ations

At most
mlc-1+(c-1)- (m/c)=m-1=0(m)
blocking critical sections.

priority
gueue

< <—

1 K| FIFO Queue <_|_FIFO Queue FQ |

NS NS

at most at most
K-1=m/c-1 c-1
queued jobs queued | jnder s-oblivious analysis:
at most O(m) critical sections
cause pi-blocking.
at most at mo
m/c-1 (c-1) - (m/c)
blocking CS blocking CS

m ... numoer or processors (lota C ... number of processors per cluster
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