
An Exact Schedulability Test for
Non-Preemptive Self-Suspending

Real-Time Tasks

Björn Brandenburg

DATE’19

Beyazit Yalcinkaya Mitra Nasri

2

The paper in a nutshell

The paper provides the

first exact schedulability test
for the following open research problems:

non-preemptive tasks

limited-preemptive tasks

limited-preemptive segmented
self-suspending tasks

For tasks with bounded yet non-deterministic
• Execution time
• Suspension time
• Release jitter

Uniprocessor
fixed-priority scheduling of

Global multiprocessor
fixed-priority scheduling of

deadline

variation
Release jitter

Non-deterministic
release time

execution

variation variation

execution

variation

executionsuspensionsuspension

3

Segmented self-suspending task model

intensive
I/O accesses

hardware accelerators
(GPUs, co-processors, etc.)

computation offloading
(to the cloud, edge, etc.)

A rich model to express systems that use/have

Transmission

deadlinerelease

time

Execution on GPU

Network 1

GPU

CPU

Network 2

Transmission

Task

4

Why is analyzing self-suspending tasks hard?

Classic “worst-case release” scenarios
cannot be used for self-suspending tasks

The release pattern that causes
the worst-case interference

From Chen et al. 2018:

(a) Without suspension

0 3

Task 1
(high priority)

Task 2
(low priority) 5 87 14

13

10

(b) With suspension

0 3 5

10

7 14

Deadline miss

Task 1
(high priority)

Task 2
(low priority)

5

Why is analyzing self-suspending tasks hard?

Suspension-oblivious analysis is unsafe
(i.e., under limited-preemptive scheduling, treating suspension

segments as if they were execution segments is unsound)

From this paper:

(a) suspension oblivious

11

2

1

6

7

1

0 3
Task 3

Task 1

Task 2
9

63

11

2

1

4

7

1

0 3
Task 3

Task 1

Task 2
7

8

Deadline miss

(b) suspension aware

This counter example is valid for both periodic and sporadic limited-preemptive tasks.

6

Current challenges

Given the lack of an exact test, there is no
way to know how good or bad

the existing tests are

Prior work is focused on sufficient
(pessimistic) schedulability tests

Even without self-suspensions, there is
no exact analysis for global limited-

preemptive scheduling

Industry is rapidly moving towards
more complex execution models

(including self-suspending tasks)

State of the art on self-suspending
tasks is not advancing fast enough

7

Designing an exact test: where to start?

Schedulability analysis
problem in real-time systems

Reachability problem in
timed automata

Of course, we are not the first to observe this!

(Guan et al. 2007 and 2008, David et al. 2009, Sheng et al. 2010,
Cordovilla et al. 2011, David et al. 2011, Cicirelli et al. 2012, Gu et al. 2014, …)

Some of the existing analyses based on
timed automata use “stop watches”

(e.g., David et al 2009)

This makes the reachability problem undecidable
(in practice, these tests are only sufficient and very inaccurate)

Other analyses use models that allow for
impossible priority inversions and hence

are pessimistic (for periodic tasks)

Examples in the paper

Map to

8

Designing an exact test: high-level idea

Model Task, Scheduler, and the Event Synchronizer as timed automata.

Being initialized

ready

executing

Waited for too long
Deadline miss

Waited for too long

Didn’t complete by deadline

Segment’s
execution
completed

completed

Task
execution
completed

Next job must be
released

(simplified) task automaton:

dispatched

Suspended (when task is suspended

or is waiting to be released)

deadline

Release jitter

Non-deterministic execution execution

variation

executionsuspensionsuspension

9

Designing an exact test: high-level idea

More details in the paper

10
10 of 25

A Framework to Construct Customized
Harmonic Periods for RTS

Experiments

11
11

Evaluation

Questions:
• How much schedulability gain is achieved using our

exact analysis?

• How far does the analysis scale w.r.t.
• Number of tasks
• Number of processors
• Number of code segments
• Length of self-suspensions

Considered task models:
• Segmented self-suspending

limited-preemptive tasks

• Limited-preemptive tasks

• Non-preemptive tasks

suspensionexecution
example

execution
example

execution
example

12

Limited-preemptive tasks
Utilization=30%
10 tasks

0

0.2

0.4

0.6

0.8

1

1 4 7 10 13 16

sc
h

e
d

u
la

b
ili

ty
 r

at
io

segments

13

Limited-preemptive tasks

0

0.2

0.4

0.6

0.8

1

1 4 7 10 13 16

sc
h

e
d

u
la

b
ili

ty
 r

at
io

segments

The true schedulability increases with the
increase in the number of cores

Utilization=30%
10 tasks

14

Limited-preemptive tasks

0

20

40

60

1 4 7 10 13 16

ru
n

ti
m

e
 (

se
c)

segments

0

0.2

0.4

0.6

0.8

1

1 4 7 10 13 16

sc
h

e
d

u
la

b
ili

ty
 r

at
io

segments

Serrano’s test becomes very pessimistic
when there are multiple cores.

The true schedulability increases with the
increase in the number of cores, while

Serrano’s test shows the opposite!

2 cores

1 core

Utilization=30%
10 tasks

15
15

Non-preemptive scheduling
4 cores, 30% utilization

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

3 6 9 12 15 18 21 24 27 30

sc
h

ed
u

la
b

ili
ty

 r
at

io

number of tasks

16
16

Non-preemptive scheduling
4 cores, 30% utilization

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

3 6 9 12 15 18 21 24 27 30

sc
h

ed
u

la
b

ili
ty

 r
at

io

number of tasks

Here, Nasri et al.’s test is
as good as the exact one

Nasri et al.’s test explores the space of possible schedules efficiently (with the help of schedule abstraction
and effective path merging techniques).

M. Nasri, G. Nelissen, and B. B. Brandenburg, “A Response-Time Analysis for Non-Preemptive Job Sets under Global
Scheduling,” in ECRTS, 2018.

Nasri et al.’s test is 3 order
of magnitude faster!

17

Conclusions

This paper:

An extensible timed automata model in UPPAAL that provides the first exact schedulability tests for

non-preemptive tasks

limited-preemptive tasks

limited-preemptive segmented
self-suspending tasks

Uniprocessor fixed-priority scheduling of

Global multiprocessor fixed-priority scheduling of

In restricted settings, some of the existing tests are almost
as accurate as the exact test while being much faster

Exact tests can quantify the pessimism of the existing
sufficient (but faster) tests

There is a large gap between the accuracy of various sufficient
tests and the new exact baseline

18

Thank you

Questions

Beyazit Yalcinkaya, Mitra Nasri, Björn Brandenburg

19
19

Scalability w.r.t. the number of tasks and cores
(non-preemptive tasks)

0

1,000

2,000

3,000

4,000

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

ru
n

ti
m

e
(s

ec
)

Number of tasks

8 cores

4 cores
2 cores

1 core

This paper

0

0.5

1

1.5

2

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

ru
n

ti
m

e
(s

ec
)

Number of tasks

Nasri et al. 20188 cores

4 cores
2 cores

1 core

3 orders-of-magnitude difference!

Timeout limit was set to 1 hour.

