

Using Schedule-Abstraction Graphs for the Analysis of CAN Message Response Times

Mitra Nasri, **Arpan Gujarati**, and Björn B. Brandenburg *Max Planck Institute for Software Systems (MPI-SWS), Germany*

Controller Area Network (CAN) is widely used in real-time embedded systems

Message transmission over CAN is predictable

CAN's bitwise arbitration method —— Messages are transmitted in order of their priorities

This paper

Fine-grained timing analysis of CAN messages in presence of EMI-induced retransmissions

How?

^{*} Mitra Nasri and Bjorn B. Brandenburg. "An exact and sustainable analysis of non-preemptive scheduling." RTSS, 2017.

Example: CAN-based mobile robot

Periodic message streams

Priority order: $M_1 > M_2 > M_3 > M_4 > M_5 > M_6$

Consider the periodic message stream M_3 (4ms)

Consider the periodic message stream M_3 (4ms)

^{*} Robert I. Davis, Alan Burns, Reinder J. Bril, and Johan J. Lukkien. "Controller Area Network (CAN) schedulability analysis: Refuted, revisited and revised." Real-Time Systems 35, no. 3 (2007): 239-272.

Need for a fine-grained analysis with retransmissions | Major | Major

Analysis of weakly-hard real-time systems

→ (1, 3) system needs only one out of three consecutive deadlines to be satisfied

Offset assignment for improved schedulability

Case study at the end

Reliability analysis

→ is a function of individual message failure probabilities

Sampling jitter analysis

→ requires both best-case and worst-case response-time analysis

Background: Exact uniprocessor analysis

Exact worst-case response-time (WCRT) & best-case response-time (BCRT) of each job on a **uniprocessor** platform

Using schedule-abstraction graph analysis as a black-box

How to account for retransmissions?

Step 1: Suppose that all jobs are affected by up to f retransmissions

- → A safe bound on **f** can be determined based on the hyperperiod
- → For a probabilistic analysis, the analysis can be repeated for multiple values of **f**

How to account for retransmissions?

Step 2: Consider two sets of messages as input to the black-box

Messages that are successfully transmitted

Same parameters as the original set of CAN messages

Erroneous transmissions of up to f messages

Since any message can be affected by EMI:

- → Possible release times
 = Union of the possible release times of Msg₁, Msg₂, ... Msg_N
- → Transmission times similarly assigned
- → Priority = **Highest Priority**
- → Deadline = ∞ (irrelevant)

Safe response-time analysis with retransmissions

Example: CAN-based mobile robot

Objectives:

- → Fine-grained WCRT analysis of M₅
- → Offset-assignment to improve M₅'s maximum WCRT

Fine-grained WCRTs of M₅(12ms) in a synchronous release scenario

Fine-grained WCRTs of $M_5(12ms)$ in a synchronous release scenario

Improving WCRT profile of M₅(12ms) through offset assignment

WCRT profile of $M_5(12ms)$ for different values of f

Fine-grained analysis of CAN message response times with retransmissions

The analysis can estimate both exact BCRTs and upper bounds on the WCRTs

Future work: White-box analysis for exact WCRTs; probabilistic analysis

Model

Given a finite set of jobs $J = \{J_1, J_2, J_3, ...\}$ for a uniprocessor

- \rightarrow Each job $J_i = \{[r_i^{min}, r_i^{max}], [C_i^{min}, C_i^{max}], d_i, p_i\}$
 - → [r_imin, r_imax]: Release interval accounting for release jitter
 - → [C_imin, C_imax]: Execution time interval
 - → d_i: Deadline
 - → p_i: Priority

The analysis returns the exact BCRT and the WCRT for each job in J

For periodic tasks resulting in infinitely many jobs, analysing a finite sequence of jobs in the hyperperiod is sufficient

Example

Accounting for f retransmissions

We consider a new message set M' = M U Mf

- \rightarrow Mf = {M_{n+1}, ..., M_{n+f}} denotes the set of erroneous transmissions
- ⇒ Each erroneous message $M_{n+i} = \{[r^{min}, d^{max}], [C^{min} + \epsilon, C^{max} + \epsilon], \infty, 0\}$
 - ⇒ Since messages can be corrupted at any time, $r^{min} = min\{r_i^{min} \mid M_i \in M\}$ and $d^{max} = max\{d_i \mid M_i \in M\}$
 - ⇒ Since any message in M can be corrupted, $C^{min} = min\{C^{min} \mid M_i \in M\}$ and $C^{max} = max\{C^{max} \mid M_i \in M\}$
 - → c denotes the error frame transmission overhead
 - → To model corruption of the highest-priority message, $\mathbf{p_i} = \mathbf{0}$
 - → Since deadline of an erroneous message is irrelevant, $d_i = \infty$

Example (f = 2)

