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Reliability analysis of Networked Control Systems (NCS)

= multiple feedback control loops + distributed hosts
+ shared communication network

Electromagnetic Program-visible

Interference m s2+ A2 | mmm failures due to EMI

Transmission
faillures

@ Message
corruptions

@ Hangs and
Control loop1  Control loop 2 crashes




Safety-critical NCS must be fail-operational

..e., continue functioning despite EMI-induced failures

R Backup | | Backup Active replication is
. Stat often used because...

Passive changes

replication Log

A. NCSs are
time-sensitive

Request Redundant responses

Actm ' B. they contain high-

replication frequency control loops




Problem

What is a good active
replication scheme?

Constraints: size, weight,
power, and cost

Objective: meet the
dependabillity requirements

Opportunity: controller inherently
robust to occasional disturbances




Quantifying NCS resiliency to EMI-induced transient faults

... to provide engineers with an objective metric for comparing different active replication schemes

Bit-flips in host Crash & reboot Control loop iteration At least m iterations, out

memory buffers == > deviates from its —Pp Of any k consecutive loop
o | Message — failure-free execution iterations must be correct

Bit-flips during corruptions —

network —_— ~ (2) Probabilistic Analysis: (3) Reliability Analysis:

transmission Retransmissions Characterize how often a single Upper-bound the likelihood

_ | control loop iteration “fails” that the control system
(1) Fault Modeling: Transient faults “fails beyond recovery”

modeled using Poisson distribution,
empirically-derived peak EMI rates

This probability is upper-bounded by F, which

satisfies the lID property w.r.t. each iteration
(under submission)



Quantifying NCS resiliency to EMI-induced transient faults

... to provide engineers with an objective metric for comparing different active replication schemes

At least m iterations, out violation of the (m,k) constraint
of any k consecutive loop

iterations must be correct Given F, lower-bound
the Mean Time To Failure

(3) Reliability Analysis: (MTTF)
Upper-bound the likelihood
that the control system
“fails beyond recovery”




Given F, lower-bound the mean time to failure (MTTF)

I

eormunnnnnnnnnns QUtliNG sessnsnnnnnnnn,, Failure = Violation of the
(m,k) constraint:

n Discrete probability density function (dPDF)

g(n) = P( first (m,k) violation in the nth iteration ) At least m iterations, out

of any k consecutive loop

B3 rrobability density function (PDF) terations must be correct

f(t) = P( first (m,k) violation at time t )

B Mean time to failure (MTTF)

MTTF = E [ system lifetime | = / tf(t)dt
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_Lower-bounding dPDF (1/3)

g(n) = P( first (m,k) violation in the nt" iteration ) At least m iterations, out
of any k consecutive loop
E—1 )F(kmﬂ)(l _ pym- iterations must be correct

T

C1: Less than m correct iterations out of last k iterations

1] {2l 3] ] == -k [n-k] -k [n-ce2] = [o-3] -2 fr-1] o

C2: (m,k) constraints not violated any time before the nth iteration

Computatlonally P(C’Z) o 7 Requires evaluating all possible

kK —m

piey = (

combinations of failed and successful
challenging T iterations among the first n — 7 iterations.



Lower-bounding dPDF (2/3)
[1)12] 8] ] == -t -] -k ] kw2 o [-3] -2 -1 o

C2: (m,k) constraints not violated any time before the nth iteration

Computationally P(CZ) _ ? Requires evaluating all possible

_ combinations of failed and successful
challenging iterations among the first n — 1 iterations.

i modeled as

a-within-consecutive-b-out-of-c:F system

Sfakianakis et al. (1992) > Cc?ns.ists of ¢ (c = a) linearly ordered components,
> fails iff at least a (a < b) components fail among any b

consecutive components.

P(C2) >= Ruypolk —m +1, k, n—1)




Lower-bounding dPDF (3/3)

k—1

kK—m

P(C1) = ( )F(kmﬂ)(l _ p)ym-!

P(C2) >= Ropelk—m+1, k, n—1)

k—1

g(n) > g15(n) = (k i m) Fl=mt) (1 Py R (k1 ke 1)




Given F, lower-bound the mean time to failure (MTTF)

I

eormunnnnnnnnnns QUtliNG sessnsnnnnnnnn,, Failure = Violation of the
(m,k) constraint:

n Discrete probability density function (dPDF)

g(n) = P( first (m,k) violation in the nt" jteration ) At least m iterations, out

of any k consecutive loop

B} Probavility density function (PDF) terations must be correct

f(t) = P( first (m,k) violation at time t )

B Mean time to failure (MTTF)

MTTF = E [ system lifetime | = / tf(t)dt
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Probability

Lower-bounding PDF using dPDF lower bound
f(t) g.s(n)

g.s(n) lower-bounds the probability
of the first system failure any time
during the nt iteration

nth iteration

(n+1)st iteration
We cannot say
// anything about f(t)

0 (n-1)T nT (n +1)T



Lower-bounding PDF using dPDF lower bound
f(t) g.s(n)

grs(n) low g.Ls(n+1) lower-bounds the
of the firsl probability of the first system failure
dur| any time during the (n+17)st iteration |

(n+1)st iteration
We cannot say
anything about f{(t)

(n+1)T

Probability



Given F, lower-bound the mean time to failure (MTTF)

I

eormunnnnnnnnnns QUtliNG sessnsnnnnnnnn,, Failure = Violation of the
(m,k) constraint:

n Discrete probability density function (dPDF)

g(n) = P( first (m,k) violation in the nt" jteration ) At least m iterations, out

of any k consecutive loop

B3 rrobability density function (PDF) terations must be correct

f(t) = P( first (m,k) violation at time t )

B Mean time to failure (MTTF)

MTTF = E [ system lifetime | = / tf(t)dt
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Challenges

k—1
g(n) = grp(n) = ( >F(km+1)(1 — )" 'Rape(k —m+1, k, n—1)

v

Problem

> Complex definition

> Multiple sub-cases
> Recursive expressions




Challenges

——
# | Case Definition Type | Source
1| a=0 Ri(a,b,c) =0 Exact | -
2|a=1 Ry(a,b,c) = P§ Exact | - 1
3| a=2Ac<4b | Rs(a,b,c)= ZLC al (e~ ¢=1E=1) pi pe—i Exact | [12, §11.4.1] Ra,bc(]‘C — M + 17 ka n — 1)
(Egs. 11.9 and 11.10)
4 a=2Ac>4b | Ra(a,b,c) = Rs(a,b,b+t— 1)(Rs(a,b,b+ 3))" LB | [12, §11.4.1] (Eq. 11.16)
where t = (¢ — b+ 1)mod4 and u = | =2+ |
<
5|a>2Ac<2A Rs(a,b,c)z{l ) - Osexa Exact | [12, §9.1.1] .
a=b 1 - Pf—(c—k)PiPs a<c<2a (Egs. 9.2, 9.9, and 9.20)
6 | a>2Ac<2bA | Re(a,b,¢) =2, .., ()PPe" Exact | [12, §7.1.1] (Eq. 7.2) Problem
a#bAc<b
7] a>2Ac<2A [ Ri(a,b,0) = Tisg (°;°) PRPE*""M(d', 5, 25) Exact | [12, §11.4.1] (Eq. 11.14) > = =g
a#bAc>b | wheres=c—band o =a—j Complex definition
1 a >s
Ro(d',s,25) o =1 > Multiple sub-cases
and M(a',s,25) = { R3(a’,s,28) a' =2 ) _
Rs(d',s,25) o >2Aa =s > Recursive expressions
\R7(a’,s,28) a'>2ANa #s
8 [a>2Ac>20 | Rs(a,b,c) = Rola,b,b+t— 1)(Ry(a,b,b +3))° LB | [12, §11.4.1] (Eq. 11.16)
where ¢t = (c—b+1)mod4 and u = [%J,
(Rs(a,b,c) a=h o o o
nd Ry(a,6)= 4 Bolab.c) a#bAas<h Symbolic integration
| R7(a,b,c) a#bAa>b

pe indicates whether the reliability definition for that respective case is an exact value or a lower bound. n Ot a n O pti O n !




Numeric, but sound, method to lower-bound the MTTF

k—1

g(n) > gre(n) = (k )F(k_mH)Q — F)" ' Rape(k —m+1, k, n—1)
—m

V

“Computing gis(n) for a given < m, k, n, F > is easy
> m, k, F are constants for a given system

But what about n?
» n varies from 0 to OO




Compute gis(n) at L + 1 distinct points do, di, ..., dL

gLs(do)
gLs(di)
gLs(d2)

gLs(dL-1)
gLs(dL)

MTTF = / Ctx f(t)dt
4

S . starting
{splitting (0, oc) into a finite number of subintervals (0, dyT ]
(doT', d1 T, ..., (dp—1T, dpT], and (dpT. oc); and drop- with
ping the integrals for subintervals (0,dyT"| and (dpT, o0)

since we are interested in lower-bounding the MTTF}

>UZI/ £ x f(t) dt Paper

{since for all t € (d,T,d; 1T, t = d,T'}

D—-1 dia T
> (d T x / f(t)dt)

i =0 d; T
{splitting cach submtcr\f'l (d; T, d;+1 7 into multiple subin- -
ervals (4T, (d, + DT, (@i & DT, (di + DT, ... using the
(di1 = 1)T, (dis1)T, cach of length T} relation between

—1 diyi—di=1 (4. +5+1)T
Z ( ( S mm)) PDF and dPDF

di+y+1)T

{since [, 7" f(t)dt > gm(di + j+ 1) (from Eq. 2)}

D—1 4’_1..1—(.".—..
> Z (d.-'l'x ( Z 91,.'5(d(+j+1)))

1= 3=0

{since g, g(n) is decreasing with increasing n, for each integer
7 in the interval [0, d; 11 —d; — 1], gra(d;+7+1) > grr(d; +
d(+l —di — 1+ «l) — gl,!s(dﬁ-l}}

-1 disy—d;—1
> (d..'z‘x ( > g,,.e(dﬁl)))
r=U g=u

{simplifying the innermost summation }

D-1

- Z (d,’l' X gre(dis1) X (diqa _d‘)) =

1 =)
]




Choosing points do, di, ..., dL

4 ole=ss (m,k)=(3,10), }?F=1O_T, T=10 ms

T 3.0 |
© 2.5 Step size of 10y between |
- 7 Ol gue(n) points [10y+1, 10y+2] ]
o exponentially
< 1 .54 decreasing
E 1.0 di+1 - di = 10383
§ 0.5

0.Q5 0.5 1.0 1.5 2.0 2.5 3.0

lteration number (normal scale)  *&>°



Given F, lower-bound the mean time to failure (MTTF)

I

eormunnnnnnnnnns QUtliNG sessnsnnnnnnnn,, Failure = Violation of the
(m,k) constraint:

n Discrete probability density function (dPDF)

g(n) = P( first (m,k) violation in the nt" jteration ) At least m iterations, out

of any k consecutive loop

B3 rrobability density function (PDF) terations must be correct

f(t) = P( first (m,k) violation at time t )

B Mean time to failure (MTTF)

MTTF = E [ system lifetime | = / tf(t)dt
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Approximating MTTF using simulation

Biased-coin toss experiment

Each tnal

Repeat coin toss until the
(m,k) constraint is violated

Tails with probability F
> system iteration is incorrect

Heads with probability 71 - F
> system iteration is correct

MTTFsim = Average tosses per trial x control period

e ————




Comparing MTTF.g and MTTFsinm

MTTF increases when F decreased from 102 to 10-4

MTTF decreases when m/k increased from 3/5 to 98/100

MITF,

Stm | |

F=104

Time (ms)

103 |
10°% |

-—) )
(m, k) = (3, 5 (m, k) = (8, 10) (m, k) = (98, 100)



Time (ms)

Comparing MTTF.g and MTTFsinm

MTTFs is always less than MTTFsim |m 104 " @t cases, MITF.s and MT1Fsim are
, _%_ _ e from | roughly of the same orders of magnitude

BN MITTF, 4 MITTF,, |-
F =104

F=104

F=10~<

-

-—) )
(m, k) = (3, 5 (m, k) = (8, 10) (m, k) = (98, 100)




Comparing time to compute MTTF.s and MTTFsim

~

@@ Avg. time for a single simulation trial
@@ Avg. time to compute MITF; ,

o))

Ul

w b

Time (ms)
=

N T T S R S S
O.O.O.ooHoNocooo

MTTF.s can be computed

= O

significantly faster than MTTFsim
for low failure probabilities

N

W

102 1073 10* 10°°
Iteration failure probability F



Summary

Bit-flips in host Crash & reboot Control loop iteration At least m iterations, out
_> . . .

memory buffers == > deviates from its — of any k consecutive loop
o | Message — . failure-free execution iterations must be correct

Bit-flips during corruptions /

network — -~ (2) Probabilistic Analysis: (3) Reliability Analysis:

transmission Retransmissions Characterize how often a single  Upper-bound the likelihood

control loop iteration “fails” that the control system

(1) Fault Modeling: Transient faults
modeled using Poisson distribution,
empirically-derived peak EMI rates IR N

““ “fails beyond recovery”

|
IIIIIIII>

Given a bound F on the Safe lower bound on the

Iiteration failure probability, —) system MTTF for systems
also satisfying the lID property with (m, k) constraints



Thank you. Questions?



Backup

(m,kz)‘=(3l,10)', PE=IQ_7 , T=‘10 ms

-10 [
= iggg dLe(n) exponentially decreasing —————yp
— -82
O 1006 |
@ 10530 |
o 10154
O 10575 |
— %8-202 :

S -226
= 10550 |
S %8-274 :
10298 | *— g,5(n)

: gLe(n) decreasing

steeply

10° 165 16‘0 1615 1620 1625 1630 1635 1640 1645 1650 1655
lteration number (log scale)



