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Abstract—Proving hard real-time guarantees based on a clas-
sical analysis may significantly underutilize the processor in the
average case. Therefore, instead of considering a very rare worst-
case scenario, a probabilistic scheduling analysis determines the
probability of a deadline miss. Such an analysis assumes that task
execution times are given by a set of modes representing the range
of possible execution scenarios. Considering tasks with multiple
modes and different levels of assurances, in this case expressed
as different probabilities to miss deadlines, for different tasks
provides a natural link to mixed-criticality systems.

This work summarizes recent results in probabilistic real-time
scheduling and some potential problems that should be consid-
ered when linking these results to mixed-criticality systems. In
addition, possible connections between mixed-criticality systems
and probabilistic analysis are detailed. The goal of this work is to
start a discussion to determine whether such probabilistic results
may be interesting for mixed-criticality research.

I. INTRODUCTION

A classical, deterministic scheduling analysis for hard real-
time systems examines the question whether, given a set of
(recurrent) tasks, all task instances meet their deadline in all
circumstances. These analyses assume that jobs are always
executed according to their WCET. Proving timing guarantees
under these pessimistic assumptions may significantly under-
utilize the processor in the average case.

Considering this dilemma, the mixed-criticality approach
proposed by Vestal [13] in 2007 has started an active re-
search field within the real-time systems community (the
latest version of the survey by Burns and Davis [3] lists
660 related papers). In a mixed-criticality system, tasks have
multiple execution modes with different related execution-time
budgets. For instance, a dual-criticality system can be in high-
criticality or low-criticality mode and is comprised of two
kinds of tasks, high-criticality and low-criticality tasks. At
system start, the system is in low-criticality mode and timing
guarantees are provided for all tasks in the system. If one of
the high-criticality tasks overshoots its execution time budget,
the system switches to the high-criticality mode, where the
execution time budget of high-criticality tasks is increased
while no guarantees are provided for low-criticality tasks.

This mixed-criticality model, in its most basic form, has
received considerable criticism [10], [9], [14] since low-
criticality tasks are abandoned once the system switched to
high-criticality mode and no return to low-criticality mode was

considered. This resulted in research into more realistic mixed-
criticality models and graceful degradation of the service of
low-criticality tasks. Please see Section 6 in the survey by
Burns and Davis [3] for details.

As a result, mixed-criticality research more frequently con-
sidered systems where tasks may switch their execution be-
havior frequently instead of assuming a single mode switch. In
such a scenario, it seems natural to consider situations where
only a small subset of tasks exhibits larger execution times
for a limited time interval. Hence, performing a system mode
switch may be both costly and unnecessary. Furthermore, in
2020, an empirical survey by Akesson et al. [1] revealed that
62% of the responding real-time practioners work on systems
that include soft or firm real-time tasks and for 45% of the
systems even the most critical functions can endure occasional
deadline misses. Hence, an alternative approach to provide
guarantees in mixed-criticality systems may be to determine
how large the probability for a deadline miss actually is if
intervals in which larger execution times occur are short or
larger execution times are rare and to adjust runtime measures
accordingly. For example, a system mode switch might only
be performed if the probability that a deadline miss occurs in
a critical function exceeds a certain threshold.

The risk of deadline misses can be quantified in a prob-
abilistic schedulability analysis, usually considering either
the deadline miss rate (that is, the percentage of deadline
misses in the long run) or the worst-case deadline failure
probability (WCDFP) (i.e., an upper bound on the probability
of the first deadline miss in a busy window). A survey on
probabilistic schedulability in real-time systems community
has been provided by Davis and Cucu-Grosjean in 2019 [8].
We provide a summary on recent work in the area, point
out open research questions, and possible links to mixed-
criticality systems1. Our goal is to determine whether such
probabilistic results are potentially interesting for the mixed-
criticality research community.

1This submission is an extension of the one presented at the 15th Workshop
on Models and Algorithms for Planning and Scheduling (MAPSP) 2022,
which only focused on probabilistic scheduling but did not consider mixed-
criticality systems. The version submitted to MAPSP can be found at
https://mapsp2022.polito.it/Proceedings.pdf, page 143-145.



II. PROBABILISTIC ANALYSIS: BASICS AND PROBLEMS

We assume that a task’s execution time is described as a set
of possible modes, each defined by a pair of (i) its maximum
execution time in that mode and (ii) the related probability,
e.g., Ci

Pi
=

(
3
0.9

5
0.1

)
means that τi has an execution time of

at most 3 with probability 0.9 and an execution time 5 with
probability 0.1.

Assuming a given release pattern, the probability that jobs
miss their deadline under a given scheduling algorithm can be
calculated via job-level convolution. Figure 1 shows an exam-
ple of job-level convolution under static-priority scheduling.

The example considers 3 jobs, 2 of the higher-priority
task τ1 and 1 of task τ2. The goal is to determine the
probability that the job of τ2 misses its deadline. We start in
an initial state where the execution time is 0 with probability
1, that is, no job has yet been executed. Jobs are convolved
one by one with the current states by summing up the ETs
while multiplying the probabilities. This iteratively calculates
the probability that the job of τ2 meets its deadline at t = 8
or at t = 14, since all possible job-cost combinations are
considered.

However, one of the main problems in probabilistic analysis
can also be observed in Figure 1, namely, that the number of
states can be exponential in the number of jobs for a job-level
convolution. Therefore, it can only directly be applied if, on
the one hand, the number of jobs that must be considered is
small and, on the other hand, the number of release patterns
that must be considered is small as well. Otherwise, the
computational complexity is too high to be feasible in practice.
As a result, two important research questions are:

1) How can the number of release patterns that have to be
examined be reduced?

2) How can the deadline miss probability for one of these
scenarios be determined efficiently?

Especially in the context of mixed-criticality systems, these
calculations must also be applicable when the execution times
of jobs are not independent due to a mode switch.

In the following, we give a brief overview on the progress
on these fundamental research questions.

III. EFFICIENT APPROXIMATION OF MISS PROBABILITIES

One approach to speed up the calculation using job-
level convolution is reducing the number of states by re-
sampling [12]. Specifically, states are combined to reduce the
number of states as soon as the number of states exceeds
a configurable threshold. However, re-sampling also reduces
the precision of the calculation in a way that, in a non-
trivial manner, depends on the concrete re-sampling scheme.
Markovic et al. [11] introduced optimal re-sampling schemes
that minimize the precision loss. However, bounding the loss
remains an open problem. Markovic et al. [11] also detailed
how cyclic convolution can be used instead of direct convolu-
tion to improve the calculation efficiency.

Instead of considering all possible job-cost combinations at
the same time, the Monte-Carlo Response Time Analysis by

Bozhko et al. [2] analyzes job traces individually. In each iter-
ation, one specific trace (for instance, the one indicated with
brown arrows in Figure 1) is sampled. Specifically, in each
iteration, jobs are considered one by one, each time drawing
one of the possible execution times according to the related
probabilities. To estimate the deadline failure probability for
the job under analysis, the number of observed deadline misses
is counted and divided by the number of iterations, and then
combined with an estimate of the confidence interval at a
configurable level of assurance. The Monte-Carlo Response
Time Analysis is scalable to scenarios with a very large
number of jobs and is easily parallelizable. It allows to provide
estimates with a known precision interval, but may require an
infeasible number of samples when this interval must be too
small.

Another approach is to not consider the jobs in order of
arrival but to instead evaluate all relevant intervals individually.
For instance, for the example in Figure 1, first the deadline
failure probability for the interval [0,8] and then for the
interval [0,14] would be calculated. The main idea of this
approach is to make up for always starting from scratch by
speeding up the calculation for each interval. The task-level
convolution by von der Brüggen et al. [15] utilizes the fact
that, when a specific interval is considered, the workload
contributed by a specific task only depends on the number
of jobs in a specific mode, but not on their specific order.

Analytic bounds estimate the probability for each interval
individually as well. They, however, do not consider individual
job modes to determine the workload the jobs contributes.
Instead, the probability that the workload in a given interval is
larger than the interval length is estimated directly, using ana-
lytic bounds. The most prominent approach is the line of work
from Chen et al. [6], [4] utilizing Chernoff Bounds. While
results exploiting Hoeffding’s or Bernstein inequalities [15] are
preferable regarding runtime, Chernoff Bounds usually provide
a better tradeoff between runtime and precision. However,
Chernoff Bounds do not provide any precision guarantees.

IV. DETERMINING A WORST-CASE RELEASE PATTERNS

Similar to the idea of the classical critical instant, one
approach to reduce the analysis complexity is to determine
a certain scenario that always provides the worst case or an
upper bound on the deadline miss probability.

When considering the worst-case deadline failure prob-
ability under static-priority scheduling, Maxim and Cucu-
Grosjean [12] proposed such a scenario in 2013, and Chen and
Chen [4] provided an alternate proof in 2017. Unfortunately,
the depicted scenario, which is identical to the classical critical
instant, has been contradicted with a counterexample by Chen
et al. [5] in 2022. Chen et al. [5] also provided two over-
approximations for the worst-case release pattern, which can
be utilized to over-approximate the worst-case deadline failure
probability. The question whether there is one specific release
pattern that always results in a worst-case workload for any
interval under static-priority scheduling remains open.
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Fig. 1. A convolution example for two tasks under rate-monotonic scheduling.

Fortunately, the results discussed in the previous section are
still applicable, as they provide efficient calculation methods
for a given release pattern, but do not utilize any specific
property of the critical instant.

For earliest-deadline first scheduling, von der Brüggen et
al. [16] showed a worst-case scenario that upper-bounds the
worst-case deadline failure probability in 2021.

No approach that can analytically bound the deadline miss
rate is known under either static-priority scheduling or earliest-
deadline first scheduling, as the result by Chen et al. [7] for
static-priority scheduling is not applicable anymore due to the
recently provided counterexample [5].

V. JOB DEPENDENCIES

The previously discussed worst-case scenarios and calcula-
tion methods assume that the probabilities for job execution
times are probabilistically independent. Therefore, applying
them to mixed-criticality systems, where all, or at least some,
tasks jointly switch into high-criticality mode is not straight
forward. Nevertheless, von der Brüggen et al. [16] provided
an over-approximation that, under earliest deadline first, en-
ables dependencies in an restricted scenario. Specifically, they
assumed that the dependencies can be modelled as acyclic

task chains and that job modes depend on the modes of
predecessors in those chains. This scenario is similar to mixed-
criticality systems where some tasks triggers high-criticality
behavior in all tasks in the system. It thus may be applicable
to mixed-criticality systems. Alternatively, this approach may
allow to analyze scenarios where a subset of the tasks in the
system switch to high-criticality mode.

VI. POSSIBLE LINKS

In addition to the links already mentioned so far, there are
a number of possible connections between mixed-criticality
systems and probabilistic analysis of real-time systems. The
notion of different levels of assurance for high-criticality and
low-criticality tasks naturally can be interpreted as different
thresholds for acceptable residual risk of deadline misses.
Especially since high-criticality (or degraded-mode) behavior
is expected to be rare at runtime, if lower-criticality tasks
are seen as having a higher tolerance for occasional dead-
line misses, a probabilistic view would allow considerable
resources to be reclaimed.

For example, it might be interesting to explore whether it
is possible to extend the Monte Carlo approach by Bozhko
et al. [2] to a probabilistic mixed-criticality setup. If it is



possible to identify a small number of relevant job-arrival se-
quences that must be considered, it may be possible to sample
bounds on the deadline failure probability with a configurable,
criticality-specific level of confidence. In particular, it may
be possible to take mode changes into account simply by
sampling (also) schedules in which mode changes occur, so
that the final probability bounds reflect not only assurances
for high-criticality tasks, but also how low-criticality tasks
fare in the event of a mode change. In other words, a
probabilistic approach could provide low-criticality tasks with
much stronger guarantees than merely “best effort” in the event
that a higher-criticality mode is entered.

Probabilistic analyses could also exploit another opportunity
related to mode changes. A classic dual-criticality analysis
must address (at least) three scenarios: the system in sta-
ble low-criticality mode, the system in stable high-criticality
mode, and crucially, the system as it transitions from low-
to high-criticality. The latter case, the time of mode transi-
tion is the most challenging aspect from a scheduling point
of view, because increased high-criticality demand coincides
with the lingering effects of pre-mode-change low-criticality
interference, and hence typically represents the “assurance
bottleneck.” A probabilistic analysis could exploit that it is
unlikely that low-criticality tasks exhibit maximum resource
demand (and generate maximum interference) at precisely the
moment when a high-criticality task triggers a mode change
— at least if tasks of different criticalities are independent. A
more refined analysis down the line could then further extend
such an analysis to take into account possible dependencies
between high- and low-criticality tasks.

In a different direction, it would also be interesting to inject
the central notion of mixed-criticality systems into proba-
bilistic modeling. Specifically, the idea that high- and low-
criticality task parameters express different levels of assurance
can also be seen as different levels of confidence in the
correctness of specified mode probabilities. For example, when
characterizing the chance that a job enters an “exceptional
mode” associated with an increased execution cost (rather than
its cheaper “normal mode”), it is reasonable to expect that
a more risk-averse estimate would be obtained for a high-
criticality task than for a low-criticality task. Consequently,
it could be interesting to explore a different kind of what-if
analysis: what happens to high-criticality tasks if the proba-
bility distribution assumed for low-criticality tasks turns out
to be optimistic? This is akin to the classic mixed-criticality
question — what happens to high-criticality tasks if low-
assurance WCET estimates are optimistic — but comes with
a twist that makes it considerably more difficult: whereas it is
obvious when a low-assurance WCET estimate is exceeded,
it is generally much harder to pinpoint when a low-assurance
execution-time distribution is refuted by observations in prac-
tice. Thus, this line of exploration faces not only hard stochas-
tic analysis problems, but also open question concerning the
design of runtime mechanisms that would be appropriate for
probabilistic mixed-criticality systems.

VII. CONCLUSION

Probabilistic timing analysis may be an interesting approach
when considering mixed-criticality systems, as it may provide
argumentation to postpone or omit a mode switch if the
probability that a high-criticality task may miss a deadline is
sufficiently small. Furthermore, even if mode switches become
unavoidable, a probabilistic analysis may be able to recover
much pessimism at a specified degree of residual risk.

However, the field of probabilistic scheduling itself still
holds multiple open research questions, especially for es-
tablishing worst-case arrival patterns, when bounding the
deadline-miss rate, and when considering probabilistically
dependent jobs.

Therefore, extensions to mixed-criticality are not straight
forward and will require further advances in the field of
probabilistic scheduling. It thus seems interesting to start
a discussion on how such extensions could benefit mixed-
criticality research.
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