
Revision 3 February 12, 2015

Efficient Partitioning of Sporadic Real-Time Tasks
with Shared Resources and Spin Locks

Alexander Wieder Björn B. Brandenburg
Max Planck Institute for Software Systems (MPI-SWS)

Abstract—Partitioned fixed-priority scheduling is widely used
in embedded multiprocessor real-time systems due to its simplicity
and low runtime overheads. However, it fundamentally requires a
static mapping of tasks to processors to be determined. Optimal
task set partitioning is known to be NP-hard, and the situation
is further aggravated when limited resources (such as I/O ports,
co-processors, buffers, etc.) must be shared among the tasks. Parti-
tioning heuristics are much faster to compute, but may fail to find a
valid mapping even if one exists. In practice, such inefficiencies can
be addressed by over-provisioning processors (i.e., by using more
and faster processors than strictly required), albeit at the expense
of increased space, weight, and power (SWaP) requirements.

This work makes two contributions towards the efficient map-
ping of real-time tasks that share resources protected by spin locks.
First, an Integer Linear Programming (ILP) formulation of the
problem is presented, which, while computationally expensive, is
efficient in the sense that it will find a valid assignment if one exists,
thereby minimizing processor requirements. This ILP formulation
is the first optimal solution to the mapping problem in the presence
of spin locks. Second, a new resource-aware partitioning heuristic
is introduced, which, while not optimal, is efficient in the sense that
it easily scales to large problem instances. Notably, the proposed
heuristic is much simpler than prior approaches, parameter-free,
and shown to perform well for a wide range of workloads.

I. INTRODUCTION

Partitioned fixed-priority (P-FP) scheduling, under which
tasks are statically distributed across all processors and each
processor is individually scheduled by a local fixed-priority
scheduler, is the de facto standard in embedded multiprocessor
real-time systems today. For instance, P-FP scheduling is
mandated by the widely adopted AUTOSAR standard for auto-
motive systems [1], and also supported by virtually all POSIX-
compliant real-time OSs such as VxWorks, QNX, LynxOS, etc.

P-FP scheduling is attractive because it is well understood
and trivial to implement with low runtime overheads; however,
it also requires a valid partitioning to be provided, that is, a
static mapping of tasks to processors under which all tasks are
schedulable (i.e., guaranteed to satisfy all timing requirements).
Computing such a partitioning can be challenging. In fact, even
if tasks are independent, that is, if they do not share any resources
besides the processor, finding a valid assignment requires solving
a bin-packing-like problem [14], which is known to be NP-hard,
and for which heuristics are typically used (e.g., see [8, 14, 17]).

In practice, tasks often share limited resources such as I/O
devices, co-processors, or message buffers, which requires the
use of locks to serialize conflicting accesses. For example, the
AUTOSAR specification [1] mandates the availability of spin
locks for this purpose. Importantly, when using locks, tasks are

no longer fully independent as they may be subject to blocking,
which must be bounded and accounted for during schedulability
analysis. Crucially, as we review in Sec.III-B, the extent to which
tasks are subject to blocking depends on how resource-sharing
tasks are assigned to processors. Classic bin-packing heuristics,
however, do not consider blocking and thus are liable to expose
tasks to excessive blocking.

Such inadvertently wasteful task allocation can prevent
multicore platforms from being utilized efficiently, in the sense
that additional or faster processors may appear necessary, even
though, given a better partitioning, a simpler and cheaper
platform could have sufficed (we provide empirical evidence
supporting this observation in Sec. IV). In many embedded
application domains such as avionics, automotive systems, or
mobile systems, such a superfluous increase in space, weight,
and power (SWaP) requirements—and ultimately cost—can
render a product technologically or economically unviable. To
realize the full potential of embedded multicore platforms,
resource-aware partitioning approaches are needed.

In this work, we approach the problem of partitioning a set of
tasks that share resources protected by spin locks in two ways,
reflecting two interpretations of “efficient.” First, in Sec.V, we
present an exact approach that uses integer linear programming
(ILP) to assign each task a processor and a unique priority such
that all tasks are schedulable under the MSRP [18], a real-time
locking protocol for shared-memory systems based on spin locks
(reviewed in Sec.III-B). Our ILP-based approach is optimal in
that it yields a valid partitioning and priority assignment if one
exists (with regard to the underlying schedulability analysis of
the MSRP [18]). To the best of our knowledge, this is the first
partitioning method that is optimal in the presence of shared
resources protected by spin locks, which is made possible by
the novel approach of encoding the MSRP analysis [18] as ILP
constraints. Our ILP-based approach is efficient in the sense
that it prevents over-provisioning, but due to the NP-hardness of
the assignment problem, it also faces inherent scalability limits,
which we empirically evaluate in Sec.VII-A.

Second, in Sec. VI, we present a novel resource-aware
partitioning heuristic, called Greedy Slacker, that often produces
valid partitionings and priority assignments even in cases where
prior heuristics fail. Greedy Slacker greedily assigns tasks such
that the least slack (i.e., the difference between maximum
response time and deadline) among all tasks is maximized. This
approach is much simpler than prior resource-aware heuristics
(see Sec. II), yet our evaluation in Sec. VII-B shows that
it delivers equal-or-better schedulability in a wide range of

scenarios. While Greedy Slacker is not optimal, it is efficient in
the sense that it scales to large problem instances.

In this paper, we focus on spin locks (where blocked tasks
busy-wait) rather than on semaphores (where blocked tasks
suspend) due to the considerable practical relevance of spin locks
in the context of AUTOSAR [1], and because the partitioning
problem in the presence of spin locks, despite their widespread
use, has not been studied in prior work, which we review next.

II. RELATED WORK

Allocation problems similar to bin-packing [19] arise in a
vast range of settings; due to space constraints, we restrict our
focus to prior works most relevant to the partitioning of real-time
workloads onto multiprocessor platforms.

The partitioned scheduling of independent sporadic tasks is
by now a well-understood problem [6, 13]; Fisher provides
a comprehensive discussion [16]. To cope with the inherent
complexity of exact partitioning approaches, bin-packing heuris-
tics are commonly applied (e.g., see [8, 14, 16, 17]). In recent
work on near-optimal partitioning of independent tasks, Baruah
presented a polynomial-time approximation scheme [6] and
Chattopadhyay and Baruah showed how to leverage lookup
tables to enable fast, yet arbitrarily accurate partitioning [12].

As discussed in Sec. I, for task sets with shared resources,
generic bin-packing heuristics can be inefficient since they do
not take blocking due to resource requests into account. To
consider this additional blocking, Lakshmanan et al. presented a
partitioning heuristic tailored to the MPCP, a semaphore-based
multiprocessor real-time locking protocol [20]. This heuristic
organizes tasks sharing resources into groups in order to assign
them to the same processor. In subsequent work, Nemati et al.
presented BPA [23], another partitioning heuristic for the MPCP
following the same approach, which employs advanced cost
heuristics to more accurately identify group splits with low
overall blocking. These resource-aware partitioning heuristics,
which we discuss in more detail in Sec. III-C, are tailored to
produce a valid partitioning where generic bin-packing heuristics
fail. However, these resource-aware heuristics have not yet
been studied in the context of spin locks and are not directly
applicable (due to their protocol-specific nature). They also do
not necessarily always find a valid partitioning if one exists.

In contrast, exact partitioning approaches are optimal in
that they fail to produce a valid partitioning only if no such
partitioning exists. Exact ILP-based approaches for the partition-
ing of independent tasks under EDF and FP scheduling were
presented by Baruah [9] and Baruah and Bini [7]. Targeting
boolean satisfiability (SAT) instead of linear programming
as the underlying formalism, Metzner and Herde proposed
RTSAT [22], which first transforms an ILP-formulation (similar
to ours) to a SAT instance, and then employs a specialized
SAT solver. For task sets with precedence constraints, Zheng
et al. [28] presented an ILP formulation that explicitly considers
interference due to communication on a shared bus. Most closely
related to our work is an ILP formulation by Zeng and Di Natale
[27], who recently incorporated blocking due to local resource
sharing (i.e., due to resources accessed only on one processor).

In the context of multicore platforms, a common limitation of
all of the above-cited ILP formulations is that they either do not
consider shared resources at all, or only local shared resources.
In contrast, our objective is the efficient partitioning of task
sets with global shared resources (i.e., resources accessed on
multiple processors) that are protected by spin locks.

III. SYSTEM MODEL AND BACKGROUND

We begin by introducing the assumed task and system model,
review the MSRP, and summarize prior partitioning heuristics.

A. System Model

1) Task Model: We consider a task set τ consisting of n
tasks T1, . . . , Tn that each sporadically release a sequence of
jobs. The minimum separation of two consecutive job releases
of a task Ti is denoted by pi, and the maximum execution
requirement of each job is denoted by ei. Once the jth job of Ti
arrives at time ai,j , its execution requirement must be fulfilled
within di time units, where di denotes Ti’s relative deadline.
Deadlines are constrained, that is, di ≤ pi for each task Ti.
In our model, we allow jobs to incur release jitter to model
precedence constraints for tasks [26]. That is, after arrival of
Ti’s vth job at time ai,v, it may take up to ji time units before
the job is released and becomes available for execution.

2) Scheduling: We consider the use of partitioned task-level
fixed-priority scheduling, which is commonly used for embed-
ded industrial applications (e.g., it is mandated by AUTOSAR
[1]). Each task Ti is statically assigned a priority 1 ≤ πi ≤ n
that does not change during runtime and is also used by all jobs
released by Ti. Here, lower numerical values of πi correspond to
higher scheduling priorities. Further, each task Ti is statically
assigned to exactly one processor, denoted as P (Ti), on which
all jobs of Ti are executed. On each processor, among all
runnable jobs, i.e., jobs that are released but not yet complete
and not suspended, the job with highest (i.e., numerically lowest)
priority is executed. There are m identical processors in total.

3) Shared Resources: Each job of Ti in τ may issue requests
for one or more shared resources. We let nr denote the total
number of shared resources in the system, and let lq with 1 ≤
q ≤ nr denote the qth resource. For each lq, we denote the
maximum number of times a job of Ti may access lq with Ni,q ,
and let Li,q denote the maximum critical section length of any
such request (where Li,q = 0 if Ni,q = 0).

4) Overheads: In a real system, tasks are subject to overheads
such as context switch costs or the loss of cache affinity when
preempted. We assume that all non-negligible overheads have
already been factored into the relevant task parameters (i.e.,
mainly ei and each Li,q) using standard accounting techniques
(see [10, Chs. 3 and 7] for a detailed discussion). Next, we review
the real-time locking protocol that mediates resource access.

B. The Multiprocessor Stack Resource Policy

The Multiprocessor Stack Resource Policy (MSRP) [18]
is a shared-memory locking protocol that enables predictable
access to shared resources. The MSRP distinguishes global and
local resources: global resources are accessed from multiple
processors, whereas all tasks accessing a local resource must

2

reside on the same processor. For local resources, the MSRP
uses the classic uniprocessor Stack Resource Policy (SRP) [5].

The SRP, sometimes also called the immediate priority
ceiling protocol, is based on resource ceilings that are defined for
each resource lq as the highest priority of any task accessing lq:
Π(lq) = minTi

{πi|Ni,q > 0}. Further, a dynamic system ceil-
ing Π̂(t) is defined as the highest resource ceiling of any resource
lq in use at time t: Π̂(t) = minlq

{
{Π(lq)|lq locked at time t} ∪

{n+ 1}
}

. The key scheduling rule of the SRP is that a newly
released job of Ti may only start executing at time t if πi < Π̂(t),
which implies that all required resources are available.

For global resources, i.e., resources accessed from different
processors, the MSRP cannot use the uniprocessor SRP, which
relies on per-processor ceilings and does not generalize to mul-
tiprocessor systems. Instead, the MSRP uses non-preemptive
FIFO spin locks to coordinate access to global resources: to gain
access to a global resource lq, a job becomes non-preemptive
and starts spinning until it gains access to lq . Concurrent requests
by jobs on other processors to the same resource are served in
FIFO order. Once a job finishes its critical section, it becomes
preemptive again and normal scheduling resumes.

Non-preemptive spin locks are in widespread use. For
instance, the AUTOSAR 4.0 specification provides the
SuspendAllInterrupts() and GetSpinlock() APIs
to initiate non-preemptive execution and to acquire spin locks,
respectively. The MSRP can thus be realized in today’s systems.

Concurrent access to resources leads to blocking. Next, we
review Gai et al.’s analysis of blocking under the MSRP [18].

1) Blocking under the MSRP: Under the MSRP, jobs are
subject to three types of blocking: local blocking and non-
preemptive blocking, which cause priority inversions [11, 25],
and remote blocking, which results in spinning.

a) Local Blocking: A job of Ti may incur local blocking
if a job of a local lower-priority task Tj executes a request for a
local resource lq with Π(lq) ≤ πi. Under the SRP, Tj’s request
for lq causes the system ceiling Π̂(t) to be set to at least Π(lq).
If Ti releases a job while Tj is holding lq, Ti suspends since
Π̂(t) ≤ πi, and hence Ti’s job is blocked by Tj’s job. Each job
of Ti can be locally blocked at most once (upon release) for a
duration of at most βloci time units, where

βloci = max
Tj ,q
{Lj,q|Nj,q > 0 ∧Π(lq) ≤ πi < πj ∧ lq local}.

b) Remote Blocking: When using non-preemptive FIFO
spin locks, a job of Ti spins non-preemptively until it acquires a
requested global resource lq. This spin time is bounded by the
sum of maximum critical section lengths for lq from each other
processor, denoted as Si,q , where Si,q = 0 if Ni,q = 0, and

Si,q =
∑

1≤k≤m,k 6=P (Ti)

max{Lx,q|P (Tx) = k} if Ni,q > 0.

We let βremi denote an upper bound on the total remote blocking
incurred by any job of Ti, where βremi =

∑
q Ni,q · Si,q .

c) Non-Preemptive Blocking: A lower-priority job of Tj
spinning or executing non-preemptively can cause a job of Ti
to incur a priority inversion. The duration βNP

i of this non-
preemptive blocking is bounded by Tj’s worst-case spin time
and critical section length for a single request:

βNP
i = max

Tj ,q

{
Sj,q + Lj,q|P (Ti) = P (Tj)

∧ πi < πj ∧ lq is global
}
.

2) Schedulability Analysis: Response-time analysis [3] is
used to determine if a task Ti is schedulable. Under the MSRP,
Ti’s response time Ri satisfies the following recursion [18]:

Ri = ei + βremi + max
{
βNP
i , βloci

}
+

∑
Th,πh<πi∧P (Ti)=P (Th)

⌈
Ri + jh
ph

⌉
· (eh + βremh).

Given the response time Ri of a task Ti, its schedulability can
be determined by checking whether the conditionRi+ji ≤ di is
satisfied. Note that the response time of a task crucially depends
on the assignment of tasks to processors and its priority. For
the scope of this work, the priority assignment and the mapping
of tasks to processors is not assumed to be given and fixed,
but rather yet to be determined. Next, we review partitioning
heuristics commonly used to assign tasks to processors.

C. Partitioning Heuristics
Generic bin-packing heuristics are commonly used to map

tasks to processors. Bin-packing heuristics distribute a set of
different objects (tasks) of a given size (processor utilization) to
bins (processors), such that each object is assigned to exactly
one bin and the total size of all objects assigned to a bin does
not exceed the bin’s capacity (all tasks are schedulable).

1) Classic Bin-Packing Heuristics: Commonly used heuris-
tics include the first-fit, next-fit, best-fit and worst-fit heuristics
[19], which we describe in brief. All heuristics take a sequence
of objects as input and successively assign them to bins. The
first-fit heuristic iterates over all bins in the order they were
allocated, and assigns the current object to the first bin with
sufficient remaining capacity. If no such bin exists, it allocates
a new bin and assigns the current object to it. The next-fit is
simpler in that it only checks the last allocated bin and allocates
a new bin if the last allocated bin does not have sufficient
capacity to fit the current object. Both the first-fit and next-
fit heuristics report a failure if the maximum number of bins
is exceeded. The best-fit and worst-fit heuristics allocate the
maximum number of bins upfront and then assign each object to
a bin such that the remaining capacity in that bin is minimized or
maximized, respectively. If no bin with sufficient capacity exists,
they report a failure. The any-fit heuristic, which we denote as AF
in the following, subsumes all previously described bin-packing
heuristics in that it tries all of them (in the order worst-fit, best-
fit, first-fit, next-fit) and returns the first successfully computed
result. For all heuristics, we consider the input being processed
in order of decreasing size, which typically results in a lower
number of required bins [19].

2) Resource-Aware Partitioning Heuristics: Resource shar-
ing causes dependencies among tasks (i.e., βloci , βremi and
βNP
i) that are not considered by generic bin-packing heuristics.

Resource-aware partitioning heuristics account for these effects
and take the resource access patterns into account when mapping
tasks to processors. We outline the MPCP partitioning heuristic
[20] and the Blocking-Aware Partitioning Algorithm (BPA) [23].

3

Lakshmanan et al. proposed the MPCP partitioning heuristic
for the multiprocessor priority ceiling protocol (MPCP) [24],
a locking protocol for shared-memory multiprocessor systems.
Under the MPCP partitioning heuristic, tasks are assigned to
the same bundle if they share (possibly transitively) a common
set of resources. Bundles are then assigned to processors using
the best-fit heuristic. This leads to tasks accessing the same
resources being assigned to the same processor, if possible, to
avoid the need for inter-processor synchronization. Bundles that
do not fit on any processor are broken into multiple smaller ones,
such that one bundle fits as tightly as possible onto the processor
with the highest remaining capacity. Bundles are assigned and
broken (if necessary) until all tasks are assigned.

The BPA presented by Nemati et al. [23] is related to the
MPCP partitioning heuristic in that it groups together tasks
that access the same resource(s), and, if possible, assigns all
tasks belonging to a group to the same processor. Otherwise,
task groups are split and the respective tasks are assigned to
different processors. In this case, for each pair of tasks, the BPA
also takes into account the remote blocking (estimated based
on the resource access patterns of each task) that can be caused
when assigning two tasks to different processors. Since the BPA
is tailored to the MPCP, we adjusted the blocking estimation
functions specific to the MPCP to instead reflect the blocking
as incurred under the MSRP.

Although resource-aware heuristics can perform better than
resource-oblivious heuristics (e.g., see the experiments in [20,
23]), it is still unclear how they compare with exact approaches.
In particular, do resource-aware heuristics in practice already
yield results close to optimal, or is there still a significant margin
for improvement? As shown next, even resource-aware heuristics
may leave a considerable potential wasted.

IV. THE CASE FOR OPTIMAL PARTITIONING

Exact partitioning approaches for task sets with shared
resources can be computationally expensive due to the hardness
of the underlying bin-packing problem. This complexity raises
the question whether exact approaches can offer substantial
benefit over resource-aware heuristics. To answer this question,
we conducted an experiment to evaluate whether there exists a
potential that is left unused by heuristics but could be exploited
by an exact approach. To this end, we generated task sets for
which a valid partitioning was known to exist by construction,
and hence an exact partitioning approach would have found a
valid partitioning. Then we let resource-oblivious and resource-
aware heuristics partition the same task sets and checked
schedulability of the computed partitionings. Priorities were
assigned in a rate-monotonic fashion [21], and before assigning
a task to a processor (i.e., to determine whether a task “fits”) a
response-time schedulability test was applied to rule out choices
that render the task set unschedulable.

Fig.1 shows the fraction of schedulable task sets under each
partitioning heuristic depending on the number of tasks in the
system. The straight line at the top of the graph marks the
fraction of task sets that can be successfully partitioned by an
exact approach, that is, all task sets as only partitionable task
sets were considered in this experiment. As is apparent from

 0

 0.2

 0.4

 0.6

 0.8

 1

 16 18 20 22 24 26 28 30

sc
h
e
d
u
la

b
le

tasks

schedulable task sets
MPCP

BPA
AF

Fig. 1: Schedulability of task sets using m = 8 processors and
16 resources. Critical section lengths were randomly chosen from
[1us, 100us], task periods were randomly chosen from [3ms, 33ms],
and the average utilization per task was set to 0.1. See Sec.VII-B for
details on the task set generation procedure.

Fig.1, AF is able to produce valid partitionings for all task sets
consisting of up to 20 tasks. For larger task sets, AF is unable to
produce valid partitionings for a large fraction of the generated
task sets although valid partitionings exist and hence, an optimal
partitioning scheme would have found them. Both the MPCP
heuristic and BPA show surprisingly low schedulability, an effect
we revisit in Sec.VII-B.

While Fig. 1 shows results for specific parameter choices,
similar results can be obtained for many other configurations:
if blocking due to resource sharing constitutes a “bottleneck”
with respect to schedulability, then an ill-chosen task assignment
can render a partitioning invalid. Clearly, for task sets in which
blocking durations are not significant, resource-oblivious heuris-
tics may yield results comparable to resource-aware heuristics.
However, as demonstrated in Fig.1, if blocking is not negligible,
then there exists a significant potential to be exploited by an
exact approach. Next, we present such an approach based on a
novel ILP encoding of the partitioning problem.

V. ILP-BASED PROCESSOR AND PRIORITY ASSIGNMENT

In this section, we present our ILP formulation of the task set
partitioning and priority assignment problem in the presence of
MSRP-arbitrated shared resources. This approach is optimal
with regard to the MSRP analysis, that is, if a solution under
the MSRP analysis exists, a valid partitioning and priority
assignment will be found. Initially, the ILP formulation does not
specify an objective function. That is, we accept any solution
that satisfies all constraints of the ILP, which allows the objective
function to be used to optimize other criteria (such as the
required number of processors, see Sec.V-D below).

We consider the jitter ji, the deadline di, the cost ei, the period
pi, the maximum request length Li,q , and the maximum number
of requests Ni,q of each task Ti to be given task properties that
are constants (from an ILP point of view). Similarly, the number
of processors m and the number of tasks in the task set n are
considered constant. All other terms used in the ILP constraints
are variables unless specified otherwise. At the core of the ILP
formulation are four helper variables, which we define first.

• Ai,k: A binary decision variable that is set to 1 if and only
if Ti is assigned to processor k. Since each task must be

4

assigned to exactly one processor, we have

∀Ti :

m∑
k=1

Ai,k = 1. (C1)

• πi,p: A binary decision variable that is set to 1 if and only
if Ti is assigned the priority p. Since each task must be
assigned exactly one priority, we have

∀Ti :

n∑
p=1

πi,p = 1. (C2)

• Vx,i: A binary decision variable that is forced to 1 if Tx
and Ti are assigned to the same processor. If Tx and Ti are
assigned to the same processor k, then Ai,k = Ax,k = 1
holds for some k. The following constraint exploits this
property by forcing Vx,i to 1 in this case:

∀Tx : ∀Ti, Tx 6= Ti : ∀k, 1 ≤ k ≤ m :

Vx,i ≥ 1− (2−Ai,k −Ax,k). (C3)

• Xi,x: A binary decision variable that is set to 1 if and only if
Ti has a higher priority than Tx. We first specify constraints
to force Xi,x to 0 if Tx has a higher priority than Ti:

∀Tx : ∀Ti : ∀1 ≤ p ≤ n− 1 :

Xi,x ≤
n∑

j=p+1

πx,j + (1− πi,p). (C4)

Constraint C4 is based on the observation that if there exist
p1 and p2 such that πx,p1 = 1 ∧ πi,p2 = 1 ∧ p1 < p2,
then 1 − πi,p2 = 0 and also

∑n
j=p+1 πx,j = 0, and thus

Constraint C4 reduces to Xi,x ≤ 0 for p = p2. To ensure
that Xi,x is set to 1 if Tx has a lower priority than Ti, we
specify a constraint to enforce that for each pair of tasks Ti
and Tx either Xi,x or Xx,i is set to 1:

∀Tx : ∀Ti, Tx 6= Ti : Xi,x +Xx,i = 1. (C5)

The ILP formulation incorporates Gai et al.’s analysis of the
MSRP and enforces that under any valid ILP solution all tasks
are indeed schedulable. That is, for each task Ti, the sum of the
release jitter ji and the response time Ri (an ILP variable) must
not exceed the task’s deadline di, which yields:

∀Ti : ji +Ri ≤ di. (C6)

To constrain the response time Ri, we decompose it into the
following terms:
• ei: the execution cost;
• Bi: the arrival blocking that a job can incur if a local lower-

priority job is spinning or holding a resource;
• Si: the direct and transitive spin delay that a job can incur

due to itself and local higher-priority jobs busy-waiting for
a global resource; and

• Ii: the interference that a job can incur due to local higher-
priority jobs executing non-critical sections.

The response time of a task Ti is the sum of the above terms:

∀Ti : Ri = ei +Bi + Si + Ii. (C7)

Note that, although we specify all of these terms in our ILP
formulation through constraints, we often do not use tight
constraints on these terms, but rather upper or lower bounds
that are sufficient for our goal of finding a valid partitioning. For
instance, we impose only lower bounds on the spin time Si of a
task. As a consequence, if a solution to the ILP formulation,
and hence a valid partitioning of a task set, can be found,
this means that the task set under the partitioning implied by
the set of Ai,k and πi,p variables is schedulable; however, no
other conclusions can be derived from other ILP variables (e.g.,
about arrival blocking Bi or spin delay Si) as these variables
are not constrained to be accurate. Rather, they are merely
constrained to be “sufficiently large” to rule out unschedulable
partitionings. This exploits the observation that the ILP solver
has an “incentive” to minimize each Bi, Si, and Ii to satisfy
Constraints C6 and C7; it is therefore not necessary to specify
upper bounds for variables contributing to Bi, Si, or Ii. As
an analogy, in object-oriented terminology, the set of Ai,k and
πi,p variables represent the “public” interface to our ILP-based
partitioning approach, whereas all other variables should be
considered “private” and for ILP-internal use only.

Next, we specify constraints to model the interference Ii,
which reflects delays due to preemptions by higher-priority jobs
(modulo any spinning of such jobs, which is included in Si).

A. A Lower Bound on the Maximum Interference Ii

The maximum interference Ii of Ti is the maximum total
duration that a job of Ti cannot execute due to higher-priority
jobs executing on the same processor, not counting any time that
higher-priority jobs spend spinning. To constraint Ii, we first
define the integer variable Hi,x to denote the maximum number
of jobs of Tx that can preempt a single job of Ti. This allows us
to express the interference Ii as the sum of interference a job of
Ti may incur from each other task:

∀Ti : Ii =
∑

Tx,Tx6=Ti

Hi,x · ex. (C8)

In a schedulable partitioning, the number of interfering jobs
Hi,x has to be non-negative and cannot exceed d(di + jx)/pxe,
because Ri ≤ di and at most d(Ri + jx)/pxe jobs of Tx can
preempt a job of Ti [3]. This leads to the following constraint:

∀Tx, Tx 6= Ti : 0 ≤ Hi,x ≤
⌈
di + jx
px

⌉
(C9)

Further, Hi,x has to be set to at least (Ri + jx)/px for local
higher-priority tasks. For lower-priority and remote tasks, Hi,x

should be allowed to take the value of 0 as they do not interfere
with Ti. This is achieved with the following constraint:

∀Tx, Tx 6= Ti : (C10)

Hi,x ≥
Ri + jx
px

−
⌈
di + jx
px

⌉
(1− Vi,x)−

⌈
di + jx
px

⌉
Xi,x

Next, we formalize the contribution of busy-waiting for global
resources to a task’s response time.

5

B. A Lower Bound on the Maximum Spin Delay Si
The use of non-preemptive FIFO spin locks can cause

blocking that contributes to a task’s response time. This spin
time is determined by the mapping of tasks to processors and
the task parameters that characterize its resource access patterns,
that is, Li,q and Ni,q . The spin time Si models the total amount
of direct and transitive delay that a job of Ji incurs due to busy-
waiting carried out either by itself or any higher-priority job (by
which it was preempted). The total spin time Si can be broken
down by the remote processors on which the critical section is
executed that causes the spinning to occur. We let Si,k denote
the worst-case cumulative delay incurred by any job of Ti due
to critical sections on processor k. Then:

∀Ti : Si =

m∑
k=1

Si,k (C11)

The spin times Si,k can be further split into the delays due to
different resources. That is, we can express Si,k as the sum
of spin times Si,k,q that a job of Ti is delayed (directly or
transitively) due to requests originating on processor k for lq:

∀Ti : ∀k, 1 ≤ k ≤ m : Si,k =

nr∑
q=1

Si,k,q. (C12)

The spin time Si,k,q depends on the longest critical section
length of any request from processor k for lq and the number
of requests Ni,k that Ti’s job issues for lq. Additionally, Si,k,q
must incorporate delay through transitive spinning, that is, the
time local higher-priority jobs spend busy-waiting for lq while
Ti’s job is pending, which happens at most

∑
Th∈τ Hi,h ·Nh,q

times while a job of Ti pending. This is captured as follows:

∀Ti : ∀Tx, Tx 6= Ti : ∀q, 1 ≤ q ≤ nr : ∀k, 1 ≤ k ≤ m :

Si,k,q ≥ Lx,q ·

(
Ni,q +

∑
Th∈τ

Hi,h ·Nh,q

)
−M · (1−Ax,k)−M ·Ai,k (C13)

In Constraint C13 above, we use the constant M to denote
a numerically large constant “close to infinity.” Formally, the
constant M is chosen such that it dominates all other terms
appearing in the ILP: M = max

Tx,q
{Lx,q} · n ·max

Tx,q
{Nx,q}.

Note that specifying lower bounds on Si (rather than using
constraints to determine the exact values of Si) is sufficient for
our goal of finding a valid partitioning and priority assignment
because any partitioning that is deemed schedulable assuming
“too much” blocking is will still be schedulable if blocking is
reduced. Next, we consider arrival blocking, which tasks can
incur if lower-priority, co-located tasks access shared resources.

C. A Lower Bound on the Maximum Arrival Blocking Bi
A job of task Ti can incur arrival blocking when, upon its

release, a lower-priority job running on the same processor is
either executing non-preemptively or holding a local resource
with a priority ceiling of at least Ti’s priority. Similarly, the use
of non-preemptive FIFO spin locks for global resources can
cause a job of Ti to incur arrival blocking when a lower-priority

job issues a request to a global resource. In this case, the lower-
priority job non-preemptively spins until gaining access and then
executes the request without giving Ti’s job a chance to execute.

We first split the total arrival blocking Bi into the blocking
times Bi,q due requests from other tasks for each resource lq:

∀q, 1 ≤ q ≤ nr : Bi ≥ Bi,q. (C14)

We then further split the per-resource arrival blocking times into
blocking times due to requests for lq from each processor k:

∀lq : Bi,q =
∑
k

Bi,q,k. (C15)

To constrain these per-resource, per-processor arrival blocking
times for Ti, we first define a decision variable Zi,q that is set
to 1 if critical sections of other tasks accessing resource lq can
cause a job of Ti to incur arrival blocking. To consider arrival
blocking due to a local resource lq , we enforce that Zi,q is set to
1 if Ti can incur blocking due to a local lower-priority task Tx
accessing lq and Ti’s priority does not exceed lq’s ceiling:

∀q : ∀Tx, Nx,q > 0 ∧ Tx 6= Ti : ∀TH , NH,q > 0 : (C16)
Zi,q ≥ 1− (2− Vx,i − Vi,H)− (1−Xi,x)−Xi,H .

The latter three terms in the constraint disable it (i.e., let it
degenerate to Zi,q ≥ 0) if the tasks Ti, TH and Tx are not
assigned to the same processor, if Tx does not have a lower
priority than Ti, or if lq’s ceiling is lower than Ti’s priority,
respectively. If lq is a global resource, Ti can incur arrival
blocking due to a local lower-priority task Tx using lq. Further,
if lq is a global resource, there exists a remote task TH using lq .
The the below constraint forces Zi,q to 1 in this case:

∀q : ∀Tx, Nx,q > 0 ∧ Tx 6= Ti : ∀TH , NH,q > 0 :

Zi,q ≥ 1− (1− Vx,i)− VH,i − (1−Xi,x). (C17)

The decision variable Zi,q enables us to specify constraints for
Bi,q,k. If lq is a local resource, Bi,q,k has to be set to at least the
longest critical section length of any local lower-priority task for
lq, if requests for lq can cause Ti to incur arrival blocking (i.e.,
Zi,q = 1). This can be expressed with the following constraint:

∀Tx : ∀k, 1 ≤ k ≤ m : (C18)
Bi,q,k ≥Lx,q − Lx,q · (1−Ax,k)− Lx,q · (1− Zi,q)

− Lx,q · (1−Ai,k)− Lx,q ·Xx,i.

In case lq is a remote resource and requests for lq can cause Ti to
incur arrival blocking, Bi,q,k has to be set to at least the longest
critical section length of any request for lq from processor k:

∀Tx : ∀k, 1 ≤ k ≤ m : (C19)
Bi,q,k ≥Lx,q − Lx,q · (1−Ax,k)

− Lx,q · (1− Zi,q)− Lx,q ·Ai,k.

Note that these bounds on Bi,q,k constitute lower bounds on the
maximum duration of arrival blocking rather than specifying the
actual blocking incurred. To find a feasible solution, the ILP
solver has an “incentive” to lower each Bi,q,k as close to zero as
possible, and Constraints C18 and C19 force Bi,q,k to be large
enough to reflect the worst-case non-preemptive and local block-
ing as determined by the MSRP analysis (i.e., Constraints C18

6

and C19 ensure that Bi ≥ max{βNP
i , βloc

i }). Thus, for our goal
of determining a valid partitioning, constraining Bi from below
suffices to ensure the schedulability of a partitioning.

This concludes the derivation of our ILP formulation of
the partitioning problem with spin locks. The key property
of our approach is that it is optimal with regard to Gai
et al.’s analysis of the MSRP [18]: any partitioning implied
by a solution to Constraints C1–C19 also passes the MSRP
schedulability analysis reviewed in Sec. III-B, and conversely,
it can be shown that any task set and partitioning that pass the
MSRP schedulability analysis also satisfies Constraints C1–
C19. While a formal proof is omitted due to space constraints,
we note that this equivalence stems from Constraint C7 match-
ing the basic response-time recurrence, and the fact that, by
construction, Bi ≥ max{βNP

i , βloc
i } and Ii + Si ≥ βremi +∑

Th,πh<πi∧P (Ti)=P (Th)

⌈
Ri+jh
ph

⌉
· (eh + βremh). This ensures

that the ILP solution is never “optimistic” (i.e., unschedulable
under the MSRP analysis), while also ensuring that a schedu-
lable task set implies a valid ILP solution. Next, we outline
straight-forward extensions of our ILP formulation.

D. ILP Extensions
Our ILP formulation can be extended to incorporate system

constraints that commonly arise in practice, as we show next.
1) Precedence Constraints: Task precedence constraints

specify a partial temporal order among jobs that can be used
to express an output-input dependency among tasks (e.g., in a
“pipeline” processing flow, where jobs of one task produce an
output consumed by a job of second task, in which case the
second job cannot start executing before the first job completed).

In our ILP formulation, precedence constraints can be incor-
porated in a straightforward fashion. A common approach is to
encode precedence constraints as release jitter [3, 26], to model
that a job waiting for input cannot be scheduled. Since we allow
for release jitter in our model, precedence constraints can be
incorporated seamlessly into the presented ILP formulation. For
instance, to express that task Tx precedes task Ty, it suffices
to add the constraint jy ≥ Rx. In this case, the task jitter is
considered to be an ILP variable and not treated as a constant.

2) Locality Constraints: In practice, it may be necessary
to avoid co-locating certain tasks. For instance, it might be
desirable to enforce that replicated mission-critical tasks are not
located on the same processor for higher resilience in the face
of hardware faults. Such locality constraints can be incorporated
with additional constraints in an intuitive way. Recall that our
ILP formulation already uses a binary decision variable Vx,y that
is set to 1 if two tasks Tx and Ty are co-located. Forcing two
tasks to be assigned to different processors can be achieved by
simply adding the constraint Vx,y = 0.

3) Partial Specifications: Generalizing the locality con-
straints described previously, system designers might want
to enforce a certain priority assignment (e.g., because the
most critical task should run at highest priority) or processor
assignment (e.g., because some tasks rely on a functionality only
available on certain processors) for a subset of tasks. Another
use case for enforcing such partial specifications is the extension
of an existing application where new tasks and/or processors are

Algorithm 1 Greedy Slacker Partitioning Heuristic
1: for all tasks Tx order of decreasing density do
2: C ← ∅
3: for all processors p do
4: s← tryAssign(Tx, p)
5: if s ≥ 0 then
6: C ← C ∪ {(p, s)}
7: if |C| = ∅ then
8: return Failure
9: else

10: choose (p, b) from C such that b maximal
11: assign Tx to processor p

added, but the priority and/or processor assignment of (some)
existing tasks should remain unchanged. Similar to locality
constraints, these partial specifications can be incorporated in
our ILP formulation by adding constraints to enforce a particular
variable assignment. For instance, forcing a task Tx to be mapped
on a specific processor k and assigned a priority of y can be
achieved with the constraints Ax,k = 1 and πx,y = 1.

4) System Minimality: Our ILP approach can also be used to
minimize the number of processors required to host a given task
set. To that end, we set the m = n, such that a partitioning will
certainly be found if the task set is feasible at all. This allows
us to specify constraints to determine the highest processor
ID K that is in use (i.e., tasks are assigned to that partition):
∀Ti : ∀1 ≤ k ≤ n : K ≥ k ·Ai,k. The optimization objective
is then to minimize K, which yields a partitioning with the
smallest number of processors possible.

Note that these constraints make use of the variables we
already defined in our ILP formulation. More complex partial
specifications or requirements can be implemented by introduc-
ing additional variables to model application-specific properties.
Such application-specific extensions to our ILP formulation do
not require fundamental changes to our approach, but rather can
be realized by specifying additional ILP constraints. We thus
believe this to be a flexible technique well-suited to the realities
of embedded systems development and optimization in practice.

VI. A SIMPLE RESOURCE-AWARE HEURISTIC

Although the ILP-based approach yields optimal results
(with regard to Gai et al.’s underlying analysis of the MSRP
[18]), the inherent complexity of ILP-solving may render this
approach impractical for large task sets. As an alternative, we
present Greedy Slacker, a novel resource-aware heuristic for
priority assignment and partitioning. While not necessarily
finding partitions in all cases, on average, it results in higher
schedulability than the other heuristics considered in this work.

Our heuristic, given in Algs. 1 and 2, considers all tasks
in order of decreasing density. For each task, it determines
the processors to which it can be assigned while maintaining
schedulability of all previously assigned tasks (Alg. 1, line 5).
Among the possible processors to which a task can be as-
signed, the processor is chosen such that the minimum slack
min{pi −Ri|Ti ∈ U} of all tasks on that processor is maximal
(Alg. 1, line 10). To determine whether a task Ti can be assigned
to a specific processor, the function tryAssign, a modified
version of Audsley’s optimal priority assignment scheme [4],
is called. The function tryAssign tries to assign priorities

7

Algorithm 2 Function tryAssign
1: function TRYASSIGN(Tx, p)
2: temporarily assign Tx to processor p
3: U ← all tasks assigned to processor p
4: for priority π = |U | down to 1 do
5: C ← tasks in U schedulable with priority π
6: for c ∈ C do
7: if task on other proc. unschedulable with c on p then
8: remove c from C
9: if C = ∅ then

10: return −1
11: else
12: Tmax ← Ty ∈ C with longest period
13: assign priority π to Tmax

14: U ← U \ Tmax

15: s← min{pi − ri|Ti ∈ U}
16: return s

to all tasks assigned to a given processor, starting with the
lowest-possible priority. For each priority level, tryAssign
checks whether the tasks to which no priority was assigned
yet would remain schedulable under the current priority level
(Alg. 2, line 5). If so, it is further checked whether this priority
assignment would cause tasks assigned to other partitions to
become unschedulable (Alg. 2, line 8). Among all possible
assignments, the current priority level is assigned to the task with
the longest period (Alg. 2, line 12). The algorithm continues
until priorities are assigned to all tasks on the given processor,
or no candidate task can be found for a priority level. In the
latter case, Ti cannot be assigned to the given processor and the
function returns a value indicating failure (Alg. 2, line 10). The
function returns the minimal slack of all tasks assigned to the
current processor if a priority assignment could be determined
that ensures that all tasks are schedulable (Alg. 2, line 16).

Note that the presented heuristic does not include terms
specific to any locking protocol, nor does it rely on parameters
that need to be tuned for specific task sets. In fact, our heuristic
is oblivious to the choice of locking protocol and uses an
intriguingly simple greedy approach. This is possible because
our heuristic aims to maximize the minimal slack among all
tasks, which implicitly considers the impact of blocking due to
resource sharing. Next, we evaluate runtime characteristics of
our ILP-based partitioning scheme and the performance of our
heuristic in comparison with prior approaches.

VII. EVALUATION

In this section we explore the computational tractability of
our optimal ILP-based partitioning scheme. Further, we evaluate
the performance of the Greedy Slacker heuristic presented in
this work and present a comparison with other resource-aware
and generic bin-packing heuristics.

A. Runtime Characteristics of Optimal Partitioning
The performance of an optimal partitioning scheme in terms

of schedulability is given by its definition: for each task set that
can be partitioned such that all tasks are schedulable, an optimal
partitioning scheme will find such a partitioning. Optimal
partitioning approaches, however, are inherently complex which
raises the question of computational tractability. We evaluated
the proposed optimal ILP-based partitioning scheme in terms of

average runtime depending on two key task set characteristics:
total utilization and task set size. For solving the generated ILPs,
we used the CPLEX 12.4 [2] optimizer running on a server-class
machine equipped with 24 Intel Xeon X5650 cores with a speed
of 2.66 GHz and 48 GB main memory.

In the first experiment, we measured the runtime as the total
utilization of the input task sets increased. Increasing the total
utilization limits the options for a valid partitioning, and hence
the partitioning problem gets harder to solve. For our experiment,
we assumed a multicore platform with m = 4 processors and
evaluated task sets with 3 or 4 tasks per processor while varying
the total utilization parameter. For each utilization value, 100
sample task sets were considered. The task periods are chosen
at random from [10ms, 100ms] according to a log-uniform
distribution. Each task issues a requests for the single shared
resource with a probability of 0.2. In case the shared resource
is accessed, the critical section length is set to 100µs. The
results shown in Fig. 2a show that the runtime grows as the
total utilization increases and the partitioning problem becomes
harder to solve. Interestingly, the results exhibit a stepwise
increase in runtime each time the total utilization approaches
the next-largest integer. Further, the runtime grows rapidly as
the total utilization approaches m since the partitioning problem
becomes (much) harder with decreasing spare capacity.

In our second experiment, we evaluated the impact of task
set size on solving time. An increase in task set size leads
to a larger ILP size, and hence potentially to longer solving
times. To study this effect, we fixed the total task set utilization
to 2.0, 2.5 and 3.0, respectively, and varied the number of
tasks in the task set from 4 to 20. Task periods and resource
accesses where chosen as in the first experiment. The results
are shown in Fig. 2b and exhibit a clear increase in run time
as the task set is growing. Since the total utilization was kept
constant, we ruled out the effect studied in the first experiment
where growing utilization makes the partitioning problem harder
to solve, which is reflected in higher run times. Rather, we
attributed the observed effect to the growth in ILP size (in terms
of the number of both constraints and variables) and resource
contention, both of which increase with each additional task.

The results imply that the increase of total utilization and
task set size each independently cause a significant increase in
runtime of the ILP-based approach presented in Sec.V. However,
the results also demonstrate that, with today’s hardware, our
exact ILP-based partitioning approach is applicable to small and
moderate application instances (note that the runtimes reported
in Figs. 2a and 2b are in the range of a couple of seconds on
average). Even though run times may grow quickly for larger
applications, our ILP-based partitioning technique may still be
the preferred approach as it is only a one-time effort that may
well be worth the cost in the context of commercial development
cycles that can stretch many months or even years.

For settings where the computational complexity of the ILP-
based approach is prohibitive, we proposed the resource-aware
Greedy Slacker partitioning heuristics, which we evaluated with
schedulability experiments, as we discuss next.

8

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08

 0 0.5 1 1.5 2 2.5 3 3.5 4

a
v
e
ra

g
e
 r

u
n
ti

m
e
 [

s]

utilization

3 tasks per processor (12 total)
4 tasks per processor (16 total)

(a) Average runtimes while varying total utilization.

 0
 10
 20
 30
 40
 50
 60
 70
 80

 4 6 8 10 12 14 16 18 20

a
v
e
ra

g
e
 r

u
n
ti

m
e
 [

s]

tasks

utilization 2.0
utilization 2.5
utilization 3.0

(b) Average runtimes while varying task set size.
Fig. 2: The average runtime costs of solving the ILP for partitioning one task in seconds.

B. Partitioning Heuristic Evaluation
For the performance comparison of our Greedy Slacker with

other partitioning heuristics, we generated task sets with a broad
range of configurations. We considered systems with 8 and
16 processors and 1 to 32 resources shared among the tasks.
The task sets were generated using the approach presented
by Emberson et al. [15] with periods chosen according to a
log-uniform distribution from either [3ms, 33ms] (short) or
[10ms, 100ms] (moderate) . The average per-task utilization
was set to either 0.1, 0.2 or 0.3. For each configuration, we
choose a resource sharing factor (rsf) of either 0.1, 0.25, 0.5
or 0.75, which gives the fraction of tasks accessing a given
shared resource. For instance, for a task set consisting of n = 10
tasks, four shared resources and a sharing factor of 0.5, each
of the four resources is accessed by 5 = n · rsf tasks, which
are chosen independently for each resource. For each accessed
resource, only a single request is issued (i.e.,Ni,q) with a critical
section length chosen either from [1us, 15us] (short CSLs) or
[1us, 100us] (medium CSLs). For each data point we generated
and evaluated 100 sample data sets.

We compared schedulability under the Greedy Slacker heuris-
tic, the MPCP partitioning heuristic [20], BPA [23], and the
resource-oblivious any-fit heuristic (which tries the first-, best-,
next-, and worst-fit strategies, and returns the result of the first
to succeed). For any-fit, we considered the following variants:
• AF-util: plain any-fit heuristic in which the assignment

decisions of the underlying bin-packing heuristics are solely
based on task utilizations (assuming a bin size of one);

• AF-RTA: similar to AF-util, but an additional response-time
analysis is performed to rule out assignment decisions that
would render a task set unschedulable immediately; and

• AF-RTA-B: similar to AF-RTA, but the MSRP blocking
bounds are applied, so that the blocking effects due to
resource sharing are considered.

Out of the large number of configurations we evaluated, we
present the results for one exemplary configuration in Fig. 3a
to highlight typical trends. The results of this configuration
resembles trends observable in many of the configurations
considered. With a growing number of tasks in each task set, both
the contention for the shared resources and the total utilization
increases. Up to a task set size of n ≈ 50, AF-RTA-B is able
to successfully produce valid partitionings for all task sets, but
schedulability quickly drops for larger task sets. Surprisingly,
AF-RTA and AF-util exhibit virtually the same schedulability as
AF-RTA-B. This is due to the fact that the AF strategy applies
the worst-first heuristic first, which distributes tasks roughly

evenly among all cores. This benefits schedulability such that
response-time and blocking checks are superfluous for most
low-utilization task sets. In this particular scenario, the Greedy
Slacker heuristic is able to determine valid partitionings for all
task sets with up to 54 tasks, and overall Greedy Slacker achieves
the highest schedulability among the considered heuristics.

Surprisingly, both the MPCP heuristic and BPA led to
significantly lower schedulability than the AF. This effect was
unexpected since both the MPCP heuristic and BPA were
particularly designed for scenarios with resource sharing, while
AF is resource-oblivious. We found that the reason for this effect
lies in the way BPA and the MPCP heuristic partition task sets:
both of them compute a connected component consisting of tasks
that share resources (possibly transitively). For the configuration
considered, this connected component is likely to include a large
fraction of the task set. In this case, the MPCP heuristic and
BPA attempt to break up the connected component into smaller
chunks that can be fitted on a single processor such that the extent
of resource sharing between these chunks is small. However, in
the task sets we generated, requests to all resources are uniformly
distributed over all tasks, without exhibiting a particular structure
or locality among tasks and resources that could be exploited by
these heuristics. The BPA and MPCP heuristics thus frequently
failed to find an appropriate partitioning.

To study the performance of the MPCP heuristic and BPA
when the task set exhibits some structure in terms of requests
to shared resources, we generated task sets in which tasks are
combined into task groups. A task group can be considered as a
functional unit in a system composed of multiple tasks that share
resources among them. Notably, no resources are shared across
group boundaries, which results in multiple smaller connected
components (one for each task group) that can be assigned to
partitions without breaking them up into smaller chunks. Within
each task group, tasks share the same number of resources as
in the previous experiment. These resources are private to each
task group, that is, different task groups share disjoint sets of
resources. Fig.3b depicts the schedulability results for task sets
with the same configuration as above, but with tasks assigned
to 8 disjoint task groups. The results indicate that both the
MPCP heuristic and BPA can efficiently exploit this structure
and yield significantly higher schedulability results than before.
Further, Greedy Slacker and AF heuristics also exhibit higher
schedulability in Fig. 3b than in Fig. 3a, which indicates that
blocking is less of a bottleneck in this scenario.

Real applications are likely to exhibit some structure. How-
ever, tasks also often interact via resources shared across

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

sc
h
e
d

u
la

b
le

tasks

AF-util
AF-RTA

AF-RTA-B
MPCP

BPA
GS

(a) Schedulability of unstructured task sets.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

sc
h
e
d

u
la

b
le

tasks

AF-util
AF-RTA

AF-RTA-B
MPCP

BPA
GS

(b) Schedulability with 8 task groups.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

sc
h
e
d

u
la

b
le

tasks

AF-util
AF-RTA

AF-RTA-B
MPCP

BPA
GS

(c) Schedulability with 8 task groups and one
cross-group resource.

Fig. 3: Schedulability for m = 8, 4 shared resources, medium CSLs, moderate task periods, average task utilization 0.1, and rsf = 0.25.

group boundaries (e.g., AUTOSAR has the concept of a virtual
functional bus, which is shared by all tasks [1]). To study the
effects of cross-group resource sharing, we considered the same
task-group scenario as before with the difference that a single
resource is shared by all task groups. The results are shown in
Fig.3c. Introducing cross-group resource sharing again results in
a few, large connected components that the MPCP heuristic and
BPA fail to partition effectively. Notably, the Greedy Slacker
heuristic yields high schedulability results independently of the
structure that a task set may (or may not) exhibit, and does
not depend on any protocol-specific heuristics or parameters
(besides appropriate response-time analysis) The reported trends
can be observed over the full range of considered configurations,
which shows Greedy Slacker to be an attractive choice in a
variety of scenarios, especially if it cannot be guaranteed that
task sets will always exhibit a convenient structure.

VIII. CONCLUSION

In this work, we have considered the problem of partitioning
a set of sporadic real-time tasks that share resources protected
by spin locks onto a set of identical processors. Our work is
motivated by the common need to minimize SWaP requirements
and component costs to the extent possible. To this end, we
presented an ILP-based approach for task set partitioning and
priority assignment for shared-memory multiprocessor systems
with shared resources. In contrast to commonly used partitioning
heuristics, this approach yields optimal results (with regard to
the underlying schedulability analysis) and thereby avoids over-
provisioning, but is subject to high computational costs.

For cases where the cost of the ILP-based partitioning
approach cannot be afforded, we presented Greedy Slacker,
a novel resource-aware partitioning heuristic, which we have
demonstrated to perform well on average. Greedy slacker is
generic as it is neither tailored to a specific locking protocol
nor dependent on task-set-specific parameter tuning, and, due
to its simplicity, it is resilient in the sense that it is able to
exploit locality when existent without unreasonably degrading
in performance if faced with an unanticipated, ill-structured task
set composition, unlike the MPCP heuristic and BPA.

In future work, it would be interesting to simplify the proposed
ILP formulation to achieve higher scalability. Further, we aim to
apply the Greedy Slacker heuristic to other locking protocols and
scenarios such as uniform and heterogeneous multiprocessors.

REFERENCES

[1] “AUTOSAR release 4.0,” http://www.autosar.org, 2012.
[2] “IBM ILOG CPLEX 12.4,” http://www-01.ibm.com/software/

integration/optimization/cplex-optimization-studio/, 2011.

[3] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J. Wellings,
“Applying new scheduling theory to static priority pre-emptive
scheduling,” Software Engineering Journal, 1993.

[4] N. Audsley and Y. Dd, “Optimal priority assignment and feasibility
of static priority tasks with arbitrary start times,” 1991.

[5] T. P. Baker, “Stack-based scheduling of realtime processes,” Real-
Time Systems, vol. 3, no. 1, 1991.

[6] S. Baruah, “The partitioned EDF scheduling of sporadic task sys-
tems,” in Proc. RTSS, 2011.

[7] S. Baruah and E. Bini, “Partitioned scheduling of sporadic task
systems: An ILP based approach,” in Proc. DASIP, 2008.

[8] S. Baruah and N. Fisher, “The partitioned multiprocessor scheduling
of sporadic task systems,” in Proc. RTSS, 2005.

[9] S. K. Baruah, “Partitioning real-time tasks among heterogeneous
multiprocessors,” in Proc. ICPP, 2004.

[10] B. Brandenburg, “Scheduling and locking in multiprocessor real-
time operating systems,” Ph.D. dissertation, UNC Chapel Hill, 2011.

[11] B. Brandenburg and J. Anderson, “Optimality results for multipro-
cessor real-time locking,” in Proc. RTSS, 2010.

[12] B. Chattopadhyay and S. Baruah, “A lookup-table driven approach to
partitioned scheduling,” in Proc. RTAS, 2011.

[13] R. I. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Comput. Surv., 2011.

[14] S. K. Dhall and C. L. Liu, “On a real-time scheduling problem,”
Operations Research, 1978.

[15] P. Emberson, R. Stafford, and R. I. Davis, “Techniques for the
synthesis of multiprocessor tasksets,” in Proc. WATERS, 2010.

[16] N. Fisher, “The multiprocessor real-time scheduling of general task
systems,” Ph.D. dissertation, UNC Chapel Hill, 2007.

[17] N. Fisher and S. Baruah, “The Partitioned Scheduling of Sporadic
Tasks According to Static Priorities,” in Proc. ECRTS, 2006.

[18] P. Gai, G. Lipari, and M. D. Natale, “Minimizing memory utilization
of real-time task sets in single and multi-processor systems-on-a-
chip,” in Proc. RTSS, 2001.

[19] D. Johnson, “Near-optimal bin packing algorithms,” Ph.D. disserta-
tion, Massachusetts Institute of Technology, 1973.

[20] K. Lakshmanan, D. de Niz, and R. Rajkumar, “Coordinated task
scheduling, allocation and synchronization on multiprocessors,” in
Proc. RTSS, 2009.

[21] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming
in a hard real-time environment,” J. of the ACM, vol. 30, 1973.

[22] A. Metzner and C. Herde, “Rtsat– an optimal and efficient approach
to the task allocation problem in distributed architectures,” in Proc.
RTSS, 2006.

[23] F. Nemati, T. Nolte, and M. Behnam, “Partitioning real-time systems
on multiprocessors with shared resources,” in Proc. OPODIS, 2010.

[24] R. Rajkumar, “Real-time synchronization protocols for shared mem-
ory multiprocessors,” in Proc. ICDCS, 1990.

[25] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance protocols:
an approach to real-time synchronization,” IEEE Trans. Comput.,
vol. 39, no. 9, 1990.

[26] K. Tindell and J. Clark, “Holistic schedulability analysis for dis-
tributed hard real-time systems,” Microprocessing and Micropro-
gramming, 1994.

[27] H. Zeng and M. Di Natale, “An efficient formulation of the real-
time feasibility region for design optimization,” Computers, IEEE
Transactions on, vol. 62, no. 4, 2013.

[28] W. Zheng, Q. Zhu, M. D. Natale, and A. S. Vincentelli, “Definition of
task allocation and priority assignment in hard real-time distributed
systems,” in Proc. RTSS, 2007.

10

DOCUMENT REVISION HISTORY

Date Description

May 19, 2013 Conference manuscript
January 8, 2015 Replaced the term −Lx,q ·Ax,k in Constraint C18 with −Lx,q · (1−Ax,k) to

correct a copy&paste error.
February 12, 2015 Added the term −M ·Ai,k to Constraint C13, which is required to disable the

constraint if Tx and Ti are assigned to the same processor. We thank Alessandro
Biondi for bringing these oversights to our attention.

11

