
C
o
n
s
is

te
nt *

 Complete *
 W

e
ll D

o
c
u
m

e
n

ted * Easy to
 R

e
u
s
e
 *

 *
 E

valuate

d

*

R
T
S

S
 *

 Artifa
c
t

In Search of Butterflies: Exceedance Analysis
for Real-Time Systems under Transient Overload

Matteo Zini1 Filip Marković2 Daniel Casini1,3 Alessandro Biondi1,3 Björn B. Brandenburg2

1TeCIP Institute, Scuola Superiore Sant’Anna, Pisa, Italy
2Max Planck Institute for Software Systems, Kaiserslautern, Germany

3Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Pisa, Italy

Abstract—In theory, real-time systems are provisioned based
on provably sound worst-case execution times (WCETs), but in
practice often only empirically derived, unsound execution-time
estimates—i.e., nominal execution times (NETs)—are available
since WCETs are difficult to obtain on modern hardware.
NETs pose two significant challenges: First, since NETs may
be exceeded at runtime, any response-time bounds derived from
NETs are transitively unsound and may be violated. Second, even
a minuscule NET violation can result in large, nonlinear response-
time increases due to hard-to-predict, cascading scheduling
effects. To explore the risk NET exceedance poses to a system’s
temporal correctness, this paper provides the first general,
systematic, and explainable methodology for exceedance analysis.
The proposed approach supports fixed-priority (FP), earliest-
deadline first (EDF), and first-in first-out (FIFO) scheduling on a
uniprocessor or within a partitioned multiprocessor platform, and
the full spectrum of preemption models from fully preemptive
to fully non-preemptive workloads. Additionally, it produces
explainable evidence in the form of tunable example traces that
engineers can adjust to take system-specific expertise into account.
The proposed methodology is evaluated with synthetic task sets
and workloads based on an automotive benchmark, and in a case
study applied to parts of the WATERS’17 industrial challenge.

I. INTRODUCTION

The temporal correctness of a real-time system fundamentally
depends on the maximum resource requirements of the tasks
comprising the system. Traditionally, this aspect is captured
by the concept of a task’s worst-case execution time (WCET),
which is famously one of the key components of schedulability
analysis. Ideally, each task’s WCET should be upper-bounded
through sound static analysis [e.g., 38, 70], thereby ensuring
the system can meet its timing constraints under all conditions.

In practice, however, modern real-time systems are often
deployed on hardware and software stacks that are beyond
the reach of state-of-the-art WCET analysis. For instance,
real-time Linux variants, commonly deployed on temporally
unpredictable hardware, are used in time-sensitive applications
such as unmanned aerial vehicles (UAVs) [e.g., 24, 32, 48],
autonomous driving [e.g., 42, 43, 67], and spacecraft [52].

On such platforms, few viable options remain, with rigorous
testing and measurement-based approaches as the only practical
solutions applicable today. These methods, enhanced by the
integration of safety margins, yield execution-time “bounds”
that, while not provably sound, are deemed sufficiently reliable
in many application domains. In the following, we refer to
such estimated execution-time bounds as nominal execution

times (NETs). A typical use of NETs is as a proxy for
(unknown) WCET parameters in response-time analysis.

The resulting nominal response-time bounds (NRTs), com-
puted based on empirically approximated model parameters that
may be optimistic, are clearly not provably sound guarantees.
Nonetheless, NRTs are arguably better than nothing in practice
and thus commonly used [8, Q18 & Q23]. In fact, NRTs can
appear so reliable during testing that they may lull practitioners
into a false sense of safety, for the following reasons:

1) In many, or even most, real-world systems, not every task
operates under a strict deadline. Thus, minor response-
time increases beyond nominal bounds are tolerable and
may not even be logged or noticed for all tasks.

2) Critical time-sensitive tasks (i.e., those with strict dead-
lines) typically have some (static) slack [34], with NRTs
well below their actual deadlines, often so by a consider-
able margin. This slack provides a safety margin before
an NRT violation becomes a significant problem.

3) In most cases, the impact of NET exceedance is only
linear: a slight NET exceedance leads to only a propor-
tionally small increase in NRT. Therefore, considering
points (1) and (2), the effects of a few processor cycles
of exceedance “here or there” are usually negligible.

Consequently, it can be tempting to believe that NRTs
are generally “in the right ballpark” and that minor NET
fluctuations cause only negligible “response-time noise.” That
thinking, alas, is flawed and potentially dangerous: in patholog-
ical situations, even a minuscule NET exceedance can lead to
a much larger, nonlinear increase in the response time of some
task (not necessarily the one exceeding its NET) [20, 30].

If a deployed system encounters such a nonlinear increase,
its behavior can drastically and very suddenly diverge from its
“good” behavior observed during testing, resulting in massive
and likely unanticipated timing violations. For example, in
systems featuring even partial non-preemptive execution, NET
exceedance can trigger timing anomalies such as the self-
pushing phenomenon [18]. A single case of NET exceedance
can result in a domino effect, leading to progressively longer
response times that may cascade across multiple jobs.

Unfortunately, the pathological scenarios that result in
nonlinear increases are neither obvious nor unique and do
not follow a simple-to-predict pattern (as illustrated in Sec. II).
Furthermore, even if the first encountered nonlinearity is
tolerable, the next nonlinear step that pushes the system over

1

the proverbial edge (e.g., past a hard deadline) may lurk nearby.
Therefore, when working with NETs—which is to say, for a
vast number of systems in practice—it is essential to understand
the space of possible NET exceedance effects. In particular, it
is crucial to assess the following two questions.

1) How close is the system to its first nonlinear response-
time increase, i.e., is there a comfortably large engineering
margin before exceedance effects become hard to predict?

2) Are there additional nonlinearities “hiding” beyond the
first one, and what is their potential impact?

Neither question is easy to answer in general. Moreover,
brute-force search proves impractical due to the vast combina-
torial space of potential NET exceedance scenarios. Readers
familiar with classic sensitivity analysis (e.g., [49]) will
recognize a similarity in motivation, but as reviewed in Sec. IX,
existing sensitivity analyses cannot fully answer the above
questions due to differences in assumptions and approach.

This paper. We provide the first general, systematic, and
explainable methodology for exploring a given workload’s
space of nonlinear response-time increases. Our approach
applies to workloads on a uniprocessor or within a partitioned
multiprocessor platform. Foremost, it is general as it works
with the fixed-priority (FP), earliest-deadline first (EDF), and
first-in first-out (FIFO) scheduling policies. It also supports
the general limited-preemptive scheduling model [19] that
spans the full spectrum of task preemption from fully pre-
emptive to non-preemptive, thus covering most scheduling
approaches encountered in practice. Additionally, the proposed
methodology is systematic in that it uses a novel algorithm
that enumerates all nonlinear steps, thereby allowing the sparse
space of response-time nonlinearities to be explored without a
brute-force search. Last but not least, we propose a flexible trace
generator that, for any identified nonlinearity, produces concrete
example scenarios triggering the identified nonlinear response-
time increase. Such traces can be readily understood by
practitioners without a background in scheduling theory. Thus,
our method aligns with the growing demand for explainability
in real-time computing [e.g., 9, 12, 54]. Notably, the trace
generator provides intuitive tuning knobs that allow engineers
to incorporate application-specific knowledge (e.g., differences
in reliability attributed to each task’s NET). In summary:

• We generalize existing RTAs for FP, EDF, and FIFO
scheduling to explicitly account for the cumulative effects
of NET exceedance by any number of tasks (Sec. IV).

• We provide an algorithm for interactive exploration of the
space of response-time nonlinearities. (Sec. V).

• We state the problem of finding illustrative example traces
as an optimization problem, and propose configuration
parameters to integrate system-specific expertise (Sec. VI).

• We evaluate the exploration algorithm’s efficiency and the
trace generator’s capabilities with synthetic task sets and
workloads from an automotive benchmark [44] (Sec. VII).

• Finally, we report on a case study involving a workload
extracted from the WATERS’17 challenge [35] to illustrate
the practical utility of exceedance analysis (Sec. VIII).

TABLE I: Example Task Set

Task Priority Period Deadline NET (per segment)

τ1 3 50 ms 50 ms ⟨12 ms⟩
τ2 2 80 ms 80 ms ⟨30 ms⟩
τ3 1 200 ms 200 ms ⟨26 ms, 25 ms, 10 ms⟩

II. MOTIVATING EXAMPLE

The limited-preemptive task set given in Table I illustrates
the main problem and key concepts central to this paper. For
each of a task’s segments, a per-segment NET is given, e.g.,
the maximum execution time observed during testing. Tasks
τ1 and τ2 consist of one non-preemptive segment each with
NETs of 12 ms and 30 ms, respectively. Task τ3 comprises
three non-preemptive segments with NETs of 26 ms, 25 ms,
and 10 ms, respectively. Fig. 1 depicts three possible schedules
of the workload under limited-preemptive FP scheduling. Task
τ1 has the highest priority; τ3 the lowest.

Nominal execution. Fig. 1(a) shows a nominal scheduling
scenario, wherein all jobs exhibit execution costs matching
exactly their corresponding tasks’ NETs. Here, the NRT of
task τ3 is 157 ms. That is, a response-time analysis using
the parameters in Table I arrives at 157 ms as τ3’s claimed
response-time bound, as illustrated in Fig. 1(a).

Linear increase. Fig. 1(b) illustrates the effect of “benign”
NET exceedance. Here, the second job of τ1 exceeds its NET
by 1ms, thus executing in total for 12ms + 1ms. As the
NET was empirically derived, is not too surprising that it can
be exceeded once in a while by a small amount. Since τ1’s
execution delays the execution of τ3, τ1’s NET exceedance
affects τ3’s response time, which increases linearly (w.r.t. the
total amount of exceedance) to 158ms.

Now, if the first job of task τ2 were to simultaneously exceed
its NET by 1ms (for a total of 30ms+1ms), τ3 would suffer the
combined delay due to both overruns. However, the cumulative
effect would still be linear in the total exceedance: τ3’s response
time would increase to 159ms, exceeding its NRT by 2ms.
Even then there would still be 41ms of slack remaining before
τ3 misses its deadline (at time 200ms), which may seem like
a reassuring safety margin. However, it is not.

Nonlinear step. Fig. 1(c) illustrates the central issue addressed
in this paper: priority-based scheduling is subject to non-
linearities akin to the infamous Butterfly effect, wherein a
tiny change in initial conditions can result in catastrophically
different outcomes. Continuing the example, suppose that the
first segment of τ3 itself also exceeds its NET by 1ms, for a
total of 3ms of exceedance across all three tasks. Unlike in
the previous case, τ3’s response increases from the nominal
157ms to 202ms, resulting in a deadline miss. That is, going
from 2ms of total exceedance to 3ms consumes the entire
41ms of slack observed in the previous case.

The example demonstrates that real-time scheduling with
uncertain parameters (NETs) is subject to dangerous nonlinear-
ities that arise from complex interactions among multiple tasks.
In general, it is hard to predict where such nonlinearities lurk
in the “exceedance space” because they are sparse and do not

2

Fig. 1: Example execution traces of the periodic tasks given in Table I, illustrating the response time of τ3 in three cases:
(a) all jobs exhibit nominal execution times; (b) a job of τ1 exceeds its NET by 1 ms; and (c) a job of each task exceeds its
NET by 1 ms. Legend: ↑ arrival of a job, ↓ absolute deadline of a job, ↕ coinciding arrival and deadline.

0 5 10 15 20 25 30 35 40
150

200

250

300
3 11 39
e = 4 e = 11 e = 39

total exceedance e

re
sp

on
se

tim
e
R

3
(e
)

nonlinear increase

Fig. 2: Task τ3’s response time R3(e) vs. total exceedance e.

follow a simple pattern. Case in point, Fig. 2 charts the response
time of τ3 as a function of the total NET exceedance of all tasks.
While most NET exceedance increases have only linear impact,
a disproportionally large increase in τ3’s response time occurs
when total exceedance reaches 3ms, 11ms, or 39ms. These
are the scenarios engineers should pay special attention to.

Just relying on NRTs and simple slack metrics is clearly not
enough to characterize a system’s true resilience to NET over-
runs. However, the only existing alternative, classic sensitivity
analysis (Sec. IX), cannot identify the specific nonlinearity
scenarios in question, and does not support (partially) non-
preemptive workloads. There is thus a need for a systematic
and general approach to understanding how far away a system
is from any “surprises” (i.e., nonlinearities) in the exceedance
space. In this paper, we propose the first such method.

III. SYSTEM MODEL AND NOTATION

We assume a discrete time model and let ε ≜ 1 denote the
least indivisible time unit (e.g., one processor cycle).

We consider a set of n sporadic tasks τ = {τ1, ..., τn}. Task
τi’s NET is denoted by Ci. Formally, we make no assumption
on how Ci is derived nor on its relationship to τi’s true
WCET, which we assume to be unknown. In practice, Ci

is likely derived from the maximum observed execution time,
possibly with an additional safety margin, but engineers may
choose to set Ci to a value even somewhat below the observed
maximum (e.g., the 95th percentile of the observed execution-
time distribution in a soft real-time system), reflecting the
designer’s tolerance for risk and aversion to over-provisioning.

We denote the j-th activation (or job) of task τi as Ji,j ,
and denote its arrival time, execution time, and exceedance as
ai,j , ci,j , and ei,j = max(0, ci,j − Ci), respectively. We omit
the job index j and simply write Ji when the job index is

irrelevant or clear from context. Job arrivals are constrained
by the task’s arrival curve αi(∆), which bounds the number
of jobs of τi arriving in any interval of length ∆, such that
∀t ∈ N,∀∆ ∈ N, |{Ji,j : t ≤ ai,j < t +∆}| ≤ αi(∆). This
generalizes both the classic periodic and sporadic task models:
the arrival curve of a periodic task τi with maximum release
jitter ιi and period Ti is αi(∆) = ⌈(∆ + ιi)/Ti⌉ , and the
arrival curve of a sporadic task τi with minimum inter-arrival
time MITi is αi(∆) = ⌈∆/MITi⌉.

Task τi’s (nominal) request-bound function is RBFi(∆) ≜
αi(∆) · Ci. We assume the system is not running at full
utilization if all jobs execute according to their NETs (i.e.,
∃∆,

∑
τi∈τ RBFi(∆) < ∆), and thus it can eventually recover

from finite transient overruns (i.e., NET exceedances).
We assume the workload τ executes on a unit-speed

uniprocessor, or equivalently, on a processor that is part
of a partitioned multiprocessor system. Overheads such as
context-switching costs are not modeled explicitly but implicitly
accounted for as part of NETs and job execution times.

In this paper, we focus on the well-known FP, EDF, and
FIFO scheduling policies, which are work-conserving. In the
context of EDF, we let Di denote task τi’s relative deadline,
which determines a job Ji,j’s absolute deadline (and hence
job priority) as ai,j + Di. Under FP scheduling, πi denotes
the priority assigned to task τi, where πi > πh indicates that
τi has higher priority than τh. Under FIFO scheduling, jobs
are executed in the order of their arrival, without considering
task priority or deadline. A job’s arrival time can be seen as
its priority, with earlier arrivals having higher priority.

We consider four commonly encountered preemption mod-
els [19]. If tasks are fully preemptive, jobs can be interrupted
at any point during their execution; conversely, jobs of fully
non-preemptive tasks must run to completion once they have
started execution. As a middle ground, jobs of segmented
limited-preemptive tasks permit preemption only at specific
preemption points that form the boundaries between non-
preemptive segments. We let Ci,k denote the NET of τi’s
kth non-preemptive segment, and mi the number of non-
preemptive segments of τi. Finally, under the floating non-
preemptive model, jobs execute non-preemptive sections at a
priori unknown times, but for each task τi a bound γi on the
NET of any of its non-preemptive sections is given.

As summarized in Table II, all four preemption models can be

3

TABLE II: Considered Preemption Models

Preemption Model RCTi NPSi

Fully preemptive Ci ε
Fully non-preemptive ε Ci

Segmented non-preemptive Ci − (Ci,mi − ε) maxk{Ci,k}
Floating non-preemptive Ci γi

captured with two parameters: the run-to-completion threshold
RCTi bounds the amount of execution any job of task τi must
complete before it is guaranteed to finish execution without
further preemptions, and the longest non-preemptive section
NPSi bounds the maximum time for which a job of τi executes
non-preemptively. As is the case with Ci, these parameters are
nominal bounds that may be exceeded at runtime.

IV. EXCEEDANCE-AWARE RESPONSE-TIME ANALYSIS

To understand the effects of exceedance, we require a bound
on the response time of a task during an exceedance event (EE),
i.e., in an interval in which one or more jobs exceed their NETs.
More precisely, if the total exceedance of all jobs during an EE
is at most e time units, we seek to bound the maximum response
time Ri(e) for each τi ∈ τ , taking into account that the total
exceedance e may be spread arbitrarily across any combination
of jobs and tasks. For example, Fig. 2 shows R3(e).

A. Exceedance Events

An EE starts when any job exceeds its NET and lasts until
all transient effects caused by exceedance have fully dissipated.
EEs are inherently disjoint: if some job exceeds its NET while
the system is still recovering from the exceedance imposed by
an earlier job, then these two jobs are by definition part of
the same EE. We place restrictions on neither the maximum
number of exceeding jobs involved in an EE, nor its length. For
example, Fig. 1(b) shows an EE involving one job spanning
from t = 468 to t = 600, and Fig. 1(c) shows an EE involving
three jobs spanning from t = 812 to t = 1200 (not shown).

As the system is not running at full utilization (with regard to
NETs), in the worst case, an EE ends when the system becomes
idle. In practice, exceedance may dissipate sooner (i.e., cease
to alter the nominal schedule) if exceedance in one job happens
to be compensated for by another job under-running its NET.

Clearly, for e = 0 (i.e., without exceedance), the problem
of bounding Ri(e) reduces to a regular response-time analysis
(RTA). We hence build on existing RTAs, which we review next.

B. The Baseline RTAs

We build on a family of RTAs derived from Bozhko and
Brandenburg’s abstract RTA (aRTA) framework [16]. Both
aRTA and its concrete instantiations for the scheduling policies
and preemption models considered in this paper have been
formally verified [13, 16] within the Prosa project [4, 22] using
the Coq proof assistant [2]. In the following, we briefly review
the intuition underlying aRTA and refer the interested reader
to the original papers [13, 16] for a more formal derivation.

aRTA is based on the classic busy-window principle [50],
which builds upon two key concepts: quiet times and the busy

TABLE III: HEP(i) and B(i, A) for FP, EDF, and FIFO.

Policy HEP(i) B(i, A)

FP {τh ∈ τ | τh ̸= τi, πi ≤ πh} {τh ∈ τ |πi > πh}
EDF τ \ {τi} {τh ∈ τ |Dh > Di +A}
FIFO τ \ {τi} ∅

window. A time instant t is a quiet time with respect to a job
Ji if all jobs of priority higher than or equal to Ji released
prior to time t have completed by time t (i.e., there is no
carry-in work at time t) [16]. Then an interval [t1, t2) is Ji’s
busy window if and only if t1 is the only quiet time in [t1, t2),
t2 is a quiet time, and Ji is released in the interval. A job’s
busy window, if it exists, is unique and ensures that the job
is finished by the end of the window. A job may not have a
busy window if the system is permanently overloaded.

As a notational convention, we let τi denote the task under
analysis, Ji,j (or simply Ji) an arbitrary job of τi, and A the
relative arrival offset of Ji,j in its busy window (i.e., if [t1, t2)
is Ji,j ’s busy window, then A = ai,j − t1).

Additionally, to generalize over the considered scheduling
policies and preemption models, we let HEP(i) denote the
set of tasks other than τi that can potentially release higher-
or-equal-priority jobs with respect to τi, define HEP+(i) =
HEP(i)∪{τi}, and B(i, A) as the set of tasks that can release
jobs causing priority-inversion blocking to a job of τi released
with offset A. Table III gives concrete definitions of HEP(i)
and B(i, A) for the three considered scheduling policies.

Given these key definitions and a task under analysis τi for
which we seek to obtain a response-time bound, each of the
considered RTAs consists of the following steps: (i) obtain a
bound Li on the duration of the longest-possible busy window
of any job of τi, (ii) define a sparse search space Ai of relevant
relative arrival offsets, and (iii) solve a policy-specific response-
time recurrence for each A ∈ Ai to identify the final bound.

Regarding step (i), Table IV defines safe (but not necessarily
tight) upper bounds on Li for the considered policies [4]. (The
blocking bound Bi(0) is defined in Table V.) If no such Li can
be found (e.g., via fixed-point search), the system is potentially
overloaded and no finite response-time bound can be found.

The second step is to compute the set Ai of all arrival offsets
that must be considered to obtain a correct response-time bound.
In general, it is not obvious a priori which release offset A
results in the maximum response time. However, it has been
proven [16] that the arrival offset that generates the maximum
response time belongs to the set Ai ≜ {0} ∪ {0 < A < Li |
∃∆, IBFi(A−ε,∆) ̸= IBFi(A,∆)}, where IBFi(A,∆) is a
policy-specific interference bound function. More specifically,
IBFi(A,∆) upper-bounds the maximum total interference that
any job Ji of task τi can experience in any interval of length
∆, assuming Ji arrives A time units after the beginning of its
busy window. Table V defines IBFi(A,∆) for the considered
scheduling policies [4, 13, 16]. Simply checking each offset in
the search space Ai is sufficient to bound task τi’s maximum
response time. Note that Ai can be efficiently enumerated for
each of the considered policies by focusing only on the “steps”
of the underlying arrival curves [4, 54].

4

TABLE IV: Bounds on Li for FP, EDF [4] and FIFO [13].

Policy Li

FP min{L > 0 |L ≥ Bi(0) +
∑

h∈HEP+(i) RBFh(L)}
EDF min{L > 0 |L ≥

∑
τh∈τ RBFh(L)}

FIFO min{L > 0 |L ≥
∑

τh∈τ RBFh(L)}

Step (iii) is to find the following fixed point for each A ∈ Ai:

minFA
i >0{A+ FA

i = RCTi + IBFi(A,A+ FA
i)}. (1)

Intuitively, the term FA
i in Eq. (1) upper-bounds the response

time of the preemptive part of Ji (i.e., before reaching the
final non-preemptive part characterized by RCTi), under the
assumption that the job has the arrival offset A.

Lastly, suppose that a fixed-point solution FA
i is found

for each A ∈ Ai, and let Fi = maxA∈Ai{FA
i }. The overall

response-time bound is then Ri = Fi + (Ci − RCTi). If no
solution FA

i can be found for some A, or if no bound Li can
be found, then no response-time bound can be established and
Ri is undefined (i.e., the analysis procedure returns an error).

C. Augmenting RTAs for Exceedance Awareness

We now come to our first main contribution, which is the
integration of exceedance into the RTAs just summarized.
More precisely, we seek to upper-bound the response time
of a task under analysis τi during an EE in which arbitrary
jobs collectively exhibit a total exceedance of at most e time
units. Of course, we generally do not a priori know the total
exceedance e, but momentarily postpone the problem of finding
“interesting” values of e to consider and focus here solely on
the problem of bounding Ri(e) for any given, fixed e ≥ 0.

Recall that we focus on systems that have been designed to
be resilient to transient overloads by leaving a safety margin
with respect to nominal utilization (i.e., the system is not
fully utilized outside of EEs). Under this assumption, a finite
amount of exceedance e causes only transient overload and
not a potentially permanent, unrecoverable divergence from
nominal execution behavior. It is thus possible to provide
meaningful response-time guarantees during an EE.

To this end, it is necessary to: (1) derive an exceedance-
aware bound Li(e) on the maximum length of a busy window
during an EE; (2) augment the space of relevant arrival offsets
Ai(e); (3) for every A ∈ Ai(e), compute an exceedance-
aware, per-offset bound FA

i (e), considering that exceedance
can manifest in both higher- and lower-priority jobs; and
(4) find the exceedance-aware response-time bound Ri(e) =
Fi(e) + (Ci −RCTi), where Fi(e) ≜ maxA∈Ai

{FA
i (e)}. As

we will see shortly, steps (2) and (4) are straightforward, while
steps (1) and (3) require some further analysis.

1) Maximum busy-window length: Let us first consider
bounding Li(e) under EDF and FIFO, which in the case without
exceedance have simpler bounds than FP (recall Table IV).

Exceedance can generally occur in any task and any job, at
various times in a busy window. To simplify the analysis, we
can reinterpret a given schedule with exceedance as a schedule
without exceedance by introducing—purely as a modeling

construct—a hypothetical exceedance task τE . We then can
attribute to (hypothetical) jobs of τE any execution time that
goes beyond a (regular) job’s nominal execution-time bound.

To account for the effect of exceedance on the maximum
busy-window length, we can then treat the exceedance task τE
as a regular task when computing the bound, which hence must
satisfy L ≥ RBFE (L) +

∑
τh∈τ RBFh(L) for some L > 0.

Additionally, by initial assumption, all the (hypothetical) jobs of
task τE contributing to the busy window collectively consume
exactly e time units. Therefore, RBFE (L) = e. We thus arrive
at the following exceedance-aware bound on the maximum
busy-window length under EDF and FIFO:

Li(e) ≜ min{L > 0 |L ≥ e+
∑

τh∈τ RBFh(L)}.

Let us now turn to FP scheduling, where we must consider
that exceedance can occur both in jobs of lower priority and in
jobs of higher or equal priority with respect to Ji. Therefore,
we split the total exceedance in two parts ehep + elp = e, where
ehep accounts for exceedance in high-priority jobs, and likewise
elp for exceedance in lower-priority jobs.

The exceedance produced by lower-priority jobs elp is easy
to analyze since, in the worst case, it manifests completely
in the non-preemptive segment causing Ji to incur priority
inversion (at the beginning of its busy window [16]). We thus
account for it simply by including it in the blocking bound:
B′

i(A, elp) ≜ maxτh∈B(i,A){NPSh − ε}+ elp.
Considering ehep, we can again account for its effects by

introducing a hypothetical exceedance task τE that has higher
priority than any other task in the workload. Reasoning analo-
gously to the cases of EDF and FIFO, we conclude that the con-
tribution of equal-or-higher-priority tasks to the maximum busy-
window length L is bounded by ehep +

∑
h∈HEP+(i) RBFh(L).

Putting everything together, since B′
i(A, elp) = Bi(A) + elp,

we arrive at the following overall exceedance-aware bound on
the maximum busy-window length under FP scheduling:

Li(e)≜min{L>0 |L≥e+Bi(A) +
∑

τh∈HEP+(i)RBFh(L)}.

2) Exceedance-aware search space: The rationale underly-
ing the sparse search space [16], as sketched in Sec. IV-B, is
unaffected by NET exceedance. In fact, for reasons that will
shortly become clear, the search space can still be defined
in terms of IBFi as before. However, we must account
for potentially longer busy windows using the exceedance-
aware bound Li(e), which leads to the following definition
closely resembling the base case without exceedance: Ai(e) ≜
{0}∪{0 < A < Li(e) | ∃∆, IBFi(A−ε,∆) ̸= IBFi(A,∆)}.

3) Exceedance-aware offset analysis: Let us now consider
the problem of finding an exceedance-aware bound FA

i (e) on
the length of Ji’s preemptive part for a fixed arrival offset A.

First, any exceedance in the last non-preemptive segment
of Ji (i.e., the part of the job that runs to completion once
scheduled) has only a linear effect on its response time since, by
definition, Ji completes at the end of this segment. In contrast,
any exceedance in earlier segments of Ji, or in any preceding
jobs of the same or other tasks, can result in nonlinear effects.

5

TABLE V: Interference bound functions and blocking bounds for FP [16], EDF [4, 16], and FIFO [13].

Policy IBFi(A,∆) Bi(A)

FP RBFi(A+ ε)− Ci +Bi(A) +
∑

τh∈HEP(i) RBFh(∆) maxτh∈B(i,A){NPSh − ε}
EDF RBFi(A+ ε)− Ci +Bi(A) +

∑
τh ̸=τi

RBFh(min{A+ ε+Di −Dh,∆}) maxτh∈B(i,A){NPSh − ε}
FIFO

(∑
τh∈τ RBFh(A+ ε)

)
− Ci ∅

Therefore, we assume, without loss of generality, that any
exceedance manifests before the job under analysis reaches
its run-to-completion threshold (i.e., in the worst case, all
exceedance occurs before Ji’s final part begins).

With this premise, we can follow the same approach we
used to bound Li(e). Our goal is to derive an extended
IBFi

′(A,∆, e) that accounts for exceedance. Let us consider
FIFO scheduling first, as its definition of IBFi is the simplest
(recall Table V). Again attributing any exceedance to jobs of
a fictitious task τE and exploiting RBFE (∆) = e, we obtain
IBFi

′(A,∆, e) =
(
RBFE (∆) +

∑
τh∈τ RBFh(A+ ε)

)
−

Ci =
(
e+

∑
τh∈τ RBFh(A+ ε)

)
− Ci = IBFi(A,∆) + e.

Next, in the case of FP scheduling, we again split the
total exceedance in two parts ehep + elp = e. As before
when bounding Li(e), the worst-case contribution by lower-
priority jobs is accounted for by the exceedance-aware blocking
bound B′

i(A, e
lp) = Bi(A) + elp. Using the fictitious task

τE to model any higher-or-equal-priority exceedance ehep, we
obtain RBFi(A+ ε)− Ci + ehep +

∑
τh∈HEP(i) RBFh(∆) as

an upper bound on the contribution of equal-or-higher-priority
tasks to total interference (including any exceedance in the
job under analysis). Combining the two bounds, we arrive at
IBFi

′(A,∆, e) = RBFi(A + ε) − Ci + B′
i(A, elp) + ehep +∑

τh∈HEP(i) RBFh(∆) = RBFi(A + ε) − Ci + Bi(A) + e +∑
τh∈HEP(i) RBFh(∆) = IBFi(A,∆) + e.

For the sake of brevity, we omit the derivation of IBFi
′

under EDF scheduling, which proceeds largely identically to
the above FP case. Overall, we observe that IBFi

′(A,∆, e) =
IBFi(A,∆) + e under all considered scheduling policies.

From this, in analogy to Eq. (1), i.e., the base case without
exceedance, the bound FA

i (e) on the length of the preemptive
part of Ji can be obtained by solving the fixed point A +
FA
i (e) = RCTi + IBFi

′(A,A+ FA
i (e), e), which reduces to

min
FA

i (e)>0
{A+FA

i (e) = RCTi+IBFi(A,A+FA
i (e))+e}. (2)

4) Exceedance-aware response-time bound: Finally, wrap-
ping up as in the exceedance-free base version, we define

Fi(e) ≜ max{FA
i (e) |A ∈ Ai(e)},

which yields the final bound Ri(e) = Fi(e) + (Ci − RCTi).
If Li(e) or FA

i (e) for any A ∈ Ai(e) cannot be found, then
the initial assumption of the system not being fully utilized at
nominal levels is violated and Ri(e) is undefined.

V. FINDING NONLINEARITIES

We now return to the problem of finding values of e
corresponding to nonlinearities of Ri(e). It is inherent in
the nature of measured NETs that we cannot bound the

maximum possible e, as that would imply a WCET analysis.
Instead, engineers will examine EEs up to an application-
and context-specific exceedance safety margin, after which
EEs of even larger magnitude are deemed to be so unlikely
as to be of negligible significance (e.g., subsumed by the
domain-specific acceptable level of residual risk). Setting the
appropriate exceedance threshold is ultimately a judgement
call driven by business as well as safety objectives, informed
by engineering experience and domain expectations.

We thus seek to iterate over all such values of e that
correspond to nonlinearities in Ri(e), in increasing order, for as
long as engineers are interested in exploring EEs of increasing
magnitude. In particular, we do not assume that we are given
a maximum threshold for e up front. Instead, we support
a workflow in which engineers can ask for the next-largest
nonlinearity as often as necessary for their goals.

More precisely, the goal is to enumerate (an arbitrary prefix
of) a sequence of values ey that satisfy the following property:

ey ≜

{
0 if y = 0

min{e |Ri(e)−Ri(ey−1) > (e− ey−1)} if y ≥ 1

Search algorithm. As we demonstrate in Sec. VII, computing
ey with a brute-force search (i.e., simply computing Ri(e) for
every e ∈ {1, 2, 3, . . .}) is much too slow to be practical, due
to two reasons: first, the numerical magnitudes of typical task
parameters, which are commonly expressed at the granularity
of processor cycles or nanoseconds, are too large; and second,
nonlinearities are usually sparse in the exceedance domain (e.g.,
even using a coarse time unit, more than 90% of the exceedance
values shown in Fig. 2 cause only a linear increase).

We instead use an exponential search to quickly find intervals
containing at least one nonlinearity, and then a binary search
to identify individual nonlinearities. The resulting procedure
iterating over all nonlinearities is given in Algorithm 1.

The procedure has two parts: the first part (lines 6–17)
realizes the initial exponential search for an interval containing
one or more nonlinearities, and the second part (lines 19–
31) implements the binary search that identifies individual
nonlinearities. The algorithm uses two state variables, done
and unex . The former, done , strictly lower-bounds where the
next element of ey may be found and holds the corresponding
response-time bound. Its purpose is to keep track of the progress
made by the search so far and is hence initialized to the
exceedance-free base case (line 2). The latter state variable,
unex , is a stack of unexplored intervals containing at least one
nonlinearity. Initially, it is empty (line 3).

The search is parametrized by two heuristics that steer the
exponential search: step, which is the base step size taken by
the exponential search (in line 9), and retry limit , which is

6

Algorithm 1 RTA Nonlinearity Search
1: procedure NONLINEARITY ITERATOR(step , retry limit)
2: done ← (0, Ri(0)) ▷ init. progress marker
3: unex ← ∅ ▷ init. exploration stack
4: while true do
5: ▷ Part 1: exponential nonlinearity interval search
6: attempt ← 0
7: while unex = ∅ and attempt ≤ retry limit do
8: el, Rl ← done
9: er ← el + step · 2attempt ▷ exponential step

10: Rr ← Ri(e
r) ▷ compute RTA

11: if Rr −Rl > er − el then ▷ nonlinear step?
12: push ((el, Rl), (er, Rr)) onto unex
13: else
14: done ← (er, Rr) ▷ jump over linear space
15: attempt ← attempt + 1

16: if unex = ∅ then
17: return “none found” ▷ terminate search
18: ▷ Part 2: binary search for nonlinearity in interval
19: while true do
20: ((el, Rl), (er, Rr))← pop from unex
21: if el + ε = er then ▷ is it a singleton range?
22: yield nonlinearity er ▷ found one
23: done ← (er, Rr) ▷ mark progress
24: break ▷ continue in Line 4
25: else ▷ split interval in two
26: em ← el +

⌊
er−el

2

⌋
▷ find midpoint

27: Rm ← Ri(e
m) ▷ compute RTA

28: if Rr −Rm > er − em then ▷ nonlinear?
29: push ((em, Rm), (er, Rr)) onto unex

30: if Rm −Rl > em − el then ▷ nonlinear?
31: push ((el, Rl), (em, Rm)) onto unex

the maximum exponent used before giving up (lines 7 and 17).
We propose generally suitable defaults for these further below.

The exponential search is triggered whenever unex is empty
(line 7). It repeatedly checks an interval of length step ·2attempt

starting at done , where attempt is the number of unsuccessful
search steps in the current iteration. It terminates either when
a nonlinearity-containing interval is found (and pushed onto
unex , line 12) or when attempt reaches retry limit . Unsuc-
cessful attempts advance done (line 14). If all retry limit
attempts fail, the entire iteration procedure terminates (lines 16–
17), based on the idea that, for reasonable choices of step and
retry limit , there likely are no more nonlinearities to be found.

Once unex is nonempty, the binary search proceeds by
repeatedly splitting the top element of unex (lines 26–27)
and pushing one or both halves containing nonlinearities back
onto unex (lines 28–31). The splitting continues until the
top element is a singleton interval containing only one point
(line 21), which is then exactly the next element of ey (line 22).

Default heuristics. For Algorithm 1 to work well, it is essential
to pick default values for step and retry limit suitable for a
wide variety of workloads. We have found that the following
configuration works well (for the setup considered in Sec. VII).

For a periodic workload τ , we use step = max{Tj |τj ∈
HEP+(i)} · (1−

∑
τj∈HEP+(i) Cj/Tj), rounded to the nearest

integer. This parameter choice is important for scaling the step
size with the amount of available static slack. If the workload
has little slack at nominal utilization levels, it has only limited

ability to dissipate transient overload, so the exponential search
should be careful to initially take only relatively small steps.
Otherwise, the busy-window bound Li(e) (and hence the search
space Ai(e)) can quickly become quite large, thereby slowing
down the search. Multiplying by the maximum period of any
interfering task ensures that the heuristic works well irrespective
of the input’s time-unit granularity. Finally, for step as defined
above, we set retry limit = 14, which in our testing did not
exhibit any false positives (i.e., early termination).

VI. EXCEEDANCE ALLOCATION

For an engineer who is assessing a system’s robustness to
execution-time uncertainty, the basic information that a certain
amount of total exceedance e may cause a nonlinear increase
in the response time of a given task τi is rather abstract and
difficult to interpret by itself. Instead, it is much more helpful
and intuitive to examine example traces that explain how the
nonlinear increase could arise. However, generating useful
traces is challenging, for two reasons: First, to obtain a valid
trace, the total exceedance e must be divided among individual
jobs so the resulting busy window is long enough to contain
the release offset A that yields the maximum response time
Ri(e). Second, to obtain meaningful examples, exceedance
should be allocated to jobs in a plausible manner consistent
with the engineer’s system-specific expertise and knowledge.

To address both challenges, we formulate exceedance allo-
cation as an optimization problem. In the following, we first
present basic constraints that ensure trace validity, and then
add “tuning knobs” that allow engineers to steer the generated
traces towards more realistic and relevant scenarios.

A. Setup and Basic Validity Constraints

Given a fixed amount of total exceedance e, the task under
analysis τi, and the release offset A ∈ Ai(e) that yields the
maximum response time Ri(e), we use mixed-integer linear
programming (MILP) to allocate exceedance to all jobs that
feature in a busy window of length Li(e). In the following, we
assume that in the generated trace jobs are released as rapidly
as allowed by each task’s arrival curve and that every job
consumes its task’s full NET (plus any allocated exceedance).

Under these assumptions, we let QHP
h denote the number of

higher-or-equal-priority jobs of task τh that can delay τi’s job
released at time A (recall Eq. (2) and IBFi(A,∆) in Table V):

QHP
h ≜

qHP
h if τh ∈ HEP(i)
αh(A+ ε) if τh = τi
0 otherwise,

where, for FP, qHP
h = αh(A+FA

i (e)), for FIFO, qHP
h = αh(A+

ε), and for EDF, qHP
h = αh(min{A+ε+Di−Dh, A+FA

i (e)}).
Based on QHP

h , we introduce the main optimization variables:
∀τh ∈ τ , ∀ j ∈ {1, . . . ,QHP

h }, the higher-or-equal-priority
exceedance xHP

h,j is the amount of exceedance exhibited by
an interfering job Jh,j ; and ∀τh ∈ B(i, A), the lower-priority
exceedance xB

h is the amount of exceedance allocated to a job
of τh causing priority inversion (there is at most one such job).
The total exceedance must be distributed across these variables.

7

Constraint 1.
∑

τh∈τ

(
xB
h +

∑QHP
h

j=1 x
HP
h,j

)
= e

To control lower-priority exceedance, we introduce additional
binary indicator variables ∀τh ∈ B(i, A), sB

h ∈ {0, 1} such that,
if sB

h = 0, then xB
h = 0, and if xHP

h,j > 0 for any j, then sB
h = 0

(which both can easily be stated in linear form using standard
techniques). There is at most one blocking task.

Constraint 2.
∑

τh∈B(i,A) s
B
h ≤ 1

In the case of workloads with floating non-preemptive
sections, not all tasks may have non-preemptive sections. Thus,
if some task τh does not have any non-preemptive sections, then
sB
h is necessarily set to 0. Similarly, in the case of fully preemp-

tive tasks, sB
h = 0 for all tasks (equivalently, blocking-related

variables can simply be omitted for this preemption model).
We next address the problem that the busy window must

not end prematurely and that the final non-preemptive segment
of τi must not start executing until after all potentially
interfering higher-priority jobs have been released. In other
words, exceedance allocated to jobs that are released after τi
is guaranteed to run to completion would have no effect.

To express this constraint concisely, we use the well-known
minimum-distance function δh(n) ≜ min∆{αh(∆) ≥ n} [40],
a pseudo-inverse of the arrival curve αh that yields the shortest
interval in which n consecutive jobs of τh arrive. For j ≥ 1,
we let a∗h,j = δh(j)− ε denote Jh,j’s release offset in the busy
window. We further define Jh(j) ≜ {Jm,n| a∗m,n < a∗h,j , n ≤
QHP

m } to represent all jobs that are released strictly before a∗h,j .
Consider any interfering job Jh,j : we seek to express that

both the busy window has not ended and the final non-
preemptive segment of τi has not yet started when Jh,j is
released at time a∗h,j . This requires that the total processor
demand since the beginning of the busy window (including
any exceedance) has not yet been met, i.e., the total demand of
all higher-or-equal-priority jobs released in [0, a∗h,j) and any
lower-priority blocking must exceed the interval’s length a∗h,j .

The total demand (including any exceedance) of higher-
or-equal-priority jobs released prior to a∗h,j is given by∑

τk∈HEP+(i)

∑
Jk,l∈Jh(j) Ck+xHP

k,l. Additionally, the delay due
to lower-priority exceedance at the start of the busy window is
given by

∑
τk∈B(i,A) x

B
k . This is on top of the nominal blocking

bound Bi(A), which also must be accounted for. Finally, if
a∗h,j ≥ A, the final non-preemptive segment of τi is implicitly
included in the demand of tasks in HEP+(i), which we correct
by subtracting Ci−RCTi (i.e., the length of τi’s last segment).
Combining everything, we arrive at the following constraint.

Constraint 3. ∀τh ∈ HEP+(i),∀j ∈ {2, . . . ,QHP
h },(∑

τk
∈ HEP+(i)

∑
Jk,l∈Jh(j)Ck + xHP

k,l

)
+
(
Bi(A) +

∑
τk∈B(i,A) x

B
k

)
− LS ≥ a∗h,j + ε,

where LS = (Ci −RCTi) if a∗h,j ≥ A and LS = 0 otherwise.

The constraint does not apply for j = 1 because the first job
of each task in HEP+(i) is always part of the busy window.

There is an additional subtlety related to the task selected
to cause priority inversion (i.e., the task τh for which sB

h = 1,
if any). If this task’s longest non-preemptive section is not
maximal (i.e., NPSh < Bi(A)), then additional exceedance
(not accounted for by e) is required to “fill” the task’s blocking
margin, which is defined as bmh = Bi(A)− NPSh . That is,
the generated scenario actually requires not just e, but a total of
e+
∑

τh∈B(i,A) s
B
h ·bmh exceedance to take place (i.e., picking

a non-maximal non-preemptive section shifts the scenario in the
exceedance space by bmh time units). In situations where this
is undesirable, it can be avoided simply by forcing sB

h = 0 for
each τh ∈ B(i, A) with bmh > 0, which prevents non-maximal
non-preemptive sections from being chosen.

As we have not yet specified an objective function; the above
constraints can be reused for any desired optimization criteria.
In fact, the constraints can be trivially satisfied by allocating all
of e to (one of) the higher-or-equal-priority job(s) released at
the beginning of the busy window (time 0). However, depending
on a system’s characteristics, such a scenario—a single job
being responsible for all exceedance—may not be particularly
plausible or interesting, especially for large values of e. We
thus next introduce a configurable optimization objective to
steer the solver towards more relevant solutions.

B. Tailoring Traces to System-Specific Expertise
Trace generation is influenced by the following inputs, which

are intended to be “tunable knobs” for engineers to express
assumptions about their specific system under evaluation.

• NET trustworthiness Θh: for each task τh, Θh ∈ [0, 1]
indicates the engineer’s subjective level of trust in the
correctness of τh’s NET (0 meaning “not trusted at all”
and 1 meaning “highly trusted”). For example, the NET
of a recently developed task may be seen with suspicion.

• Exceedance balancer V: the value V ∈ [0, 1] indicates how
much the optimizer tries to balance the exceedance among
all tasks rather than attributing it to just a few of them
(the higher V, the lower the number of tasks involved).
For example, memory interference is likely to slow down
multiple tasks at the same time, but other sources of
execution-time uncertainty can have more localized effects.

• Maximum and minimum exceedance MAXh and minh:
For each task τh, MAXh ≥ 0 and minh ≥ 0 limit the
maximum and minimum exceedance that can be allocated
to each job of τh to MAXh ·Ch and minh ·Ch, respectively.
For example, MAXh can be set to zero if a task τh has
an enforcement mechanism that aborts overrunning jobs.

Some combinations of these parameters may produce optimiza-
tion problems with empty feasible regions. In this case, the
user should be warned and asked to change the configuration.

The impact of maximum and minimum exceedance is clear.

Constraint 4. ∀τh ∈ τ , minh · Ch ≤ xB
h ≤ MAXh · Ch; and

∀j ∈ {1, . . . ,QHP
h }, minh · Ch ≤ xHP

h,j ≤ MAXh · Ch.

The other parameters appear only in the objective function,
which requires additional elaboration. The overall goal is to:

minimize βΘ ·fTH + βV ·fEB + βs ·fBL.

8

The first two weighted parts express penalties related to the
tuning parameters: (1) a trustworthiness cost fTH and (2) an
exceedance-balancer cost fEB. Additionally, (3) a blocking
cost fBL guides which task causes priority inversion (if any).
The weights βΘ, βV, and βs can be chosen arbitrarily (e.g.,
βΘ +βV +βs = 1). We next explain each part in turn.

First, fTH considers the exceedance allocated to interfering
jobs, weighted by the NET trustworthiness parameters Θj .

fTH =
∑
τh∈τ

Θh

[QHP
h∑

j=1

(
1 +

xHP
h,j√
Ch

)2

+

(
1 +

xB
h√

NPSh

)2
]

The allocated exceedance is normalized w.r.t. each task’s
nominal bounds. The components of the sum are squared
to encourage exceedance to be distributed across multiple jobs
when possible (rather than concentrating exceedance in just
one job per task), and a constant 1 is added to ensure that the
cost grows monotonically with increasing exceedance. While
squaring the per-job variables xHP

h,j and xB
h technically moves

the optimization problem beyond the reach of MILP solvers, in
our experience it is sufficient and effective to use a piecewise-
linear approximation of the objective function.

Next, fEB = V ·
∑

τh∈τ s
B
h +

∑QHP
h

j=1 s
HP
h,j simply adds a

penalty proportional to the number of jobs exceeding nominal
bounds, weighted by the balancer setting V. Here, sHP

h,j is a
new binary indicator variable such that sHP

h,j = 1 iff xHP
h,j > 0.

Finally, fBL =
∑

τh∈B(i,A) s
B
h ·bmh adds a penalty if the

task τh selected to cause blocking is not (one of) the task(s)
with the maximal non-preemptive section length accounted for
by Bi(A). The rationale for this penalty is that such a task τh
requires extra exceedance to cover its blocking margin bmh,
which as already discussed complicates the picture.

As shown in Sec. VII, the proposed “tuning knobs” are effec-
tive in generating a wide variety of sample traces. Nonetheless,
it is worth noting that the objective function proposed in this
section is only one of many ways in which the optimizer can
be steered to produce traces with desired characteristics. As
such, it is easily possible to tweak or completely replace the
optimization criteria as desired in a given application context.

VII. EVALUATION

We evaluated Algorithm 1 in terms of its efficiency and the
trace generator’s ability to respect tuning parameters.
Workloads. We generated synthetic task sets using two
methods: (i) the Dirichlet-Rescale (DRS) algorithm [33] and
(ii) according to an automotive benchmark [44], which hereafter
we refer to as DRS and W15 workloads, respectively.

DRS workloads were generated by varying the total uti-
lization U ∈ {0.2, 0.3, . . . , 0.9, 0.95, 0.99} and the number of
tasks n ∈ {5, 10, . . . , 50}. For each combination of U and
n, 10 task sets were generated, for a total of 1000 task sets
for each of the four considered preemption models (recall
Table II). Given U and n, the DRS algorithm [33] was used to
generate a vector u1, . . . , un of nominal per-task utilizations
summing to U . The period Ti for each task τi was drawn
log-uniformly from 1ms to 1000ms and the NET derived as

Ci = ui · Ti. For limited-preemptive workloads, the number of
segments was drawn uniformly at random from {3, . . . , 15}.
The DRS algorithm was then used again to derive the NET of
each segment. For floating non-preemptive workloads, we drew
a fraction yi uniformly at random from [0.05, 0.15] and set
γi = yi ·min{Ci,median{Cj}j} to avoid excessive blocking.

W15 workloads were obtained by generating 100 task sets
for each n ∈ {5, 6, . . . , 40}, for a total of 3600 task sets,
drawing per-task utilizations and periods as specified by the
benchmark [44]. W15 workloads are fully preemptive.

Following the automotive challenge by Hamann et al. [35],
the basic time unit ε was set to 1 clock cycle assuming a
200 MHz processor (for both DRS and W15 workloads). Finally,
we used FP scheduling and assigned rate-monotonic priorities.
Nonlinearity search. We compared Algorithm 1 against a
brute-force baseline that identifies response-time nonlinearities
by computing Ri(e) for e ∈ {1, 2, 3, . . .}. The experiments
were run on an Intel Xeon Platinum 8180 CPU @ 2.50 GHz
with 56 physical cores and 112 hardware threads. The imple-
mentation is a sequential Python script; we ran one instance per
hardware thread to process multiple workloads in parallel. For
each generated workload, Algorithm 1 and the baseline were
each run for five minutes, counting the number of nonlinearities
found for all tasks. Figs. 3 and 4 show representative results.

Fig. 3(a) compares the maximum, mean, and minimum
number of nonlinearities found by the two approaches for 100
DRS task sets, each composed of 25 fully non-preemptive
tasks (and with varying total utilization). While the brute-force
baseline could find only at most 1 nonlinearity per task in
5 minutes, Algorithm 1 found, on average, more than 700
nonlinearities (with a maximum of 1418 and a minimum of
372). Similar trends can be observed under other configurations
in Fig. 3(b) and Fig. 3(c). Fig. 3(b) shows results for 100 DRS
task sets composed of a variable number of fully preemptive
tasks with total utilization U = 0.7. Finally, Fig. 3(c) shows
that the same trends arise for W15 workloads, too.

Whereas Fig. 3 shows the number of nonlinearities found
over time, Fig. 4 reports the total found after 5 minutes.
Fig. 4(a) reports the results for the floating non-preemptive
preemption model, grouped by n (with varying U). Algorithm 1
again clearly outperforms the brute-force baseline for every
tested task-set size. Under both approaches, the number of
nonlinearities found in 5 minutes decreases with increasing n.
This is because Fig. 4 reports the number of nonlinearities found
per task, so that more nonlinearities must be found in total for
larger n. Additionally, computing Ri(e) becomes slower with
increasing n. Fig. 4(b) reports results for limited-preemptive
tasks, aggregated by U (with varying n). For these workloads,
the brute-force baseline never found more than 13 nonlinearities
(for U = 0.99). Our analysis instead found, on average, more
than 600 nonlinearities, with a maximum of 6900 for U = 0.9.
Similar results were observed with W15 workloads.

Overall, our results show Algorithm 1 to be (i) necessary,
as a brute-force approach is clearly too slow in practice, and
(ii) practical, as it yields dozens to hundreds of nonlinearities
for realistically sized workloads in mere seconds.

9

0 100 200 300
0

500

1,000

1,500

time (s)

nu
m

be
r

of
no

nl
in

ea
ri

tie
s

fo
un

d (a) DRS workloads (n = 25, mixed U)

0 100 200 300
0

2,000

4,000

time (s)

(b) DRS workloads (U = 0.7, mixed n)

0 100 200 300
0

1,000

2,000

time (s)

(c) W15 workloads (U = 0.7)

min Algorithm 1 mean Algorithm 1 max Algorithm 1 min brute force mean brute force max brute force

Fig. 3: Nonlinearities found vs. runtime for (a) fully non-preemptive DRS, (b) fully-preemptive DRS, and (c) W15 task sets.

0 5 10 15 20 25 30 35 40 45 50
100

102

104

number of tasks

nu
m

be
r

of
no

nl
in

ea
ri

tie
s

fo
un

d (a) floating non-preemptive DRS task sets

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
100

102

104

total utilization

(b) limited preemptive DRS task sets

max Algorithm 1 mean Algorithm 1 min Algorithm 1 max brute force mean brute force min brute force

Fig. 4: Number of nonlinear steps found as a function of the number of tasks and total utilization of the task set.

0 0.5 1
0

0.5

1
·106

NET trustworthiness Θj

al
lo

ca
te

d
ex

ce
ed

an
ce

(a) fully preemptive DRS task sets

τ1 τ5 τ10

0 0.5 1
0

0.5

1
·106

NET trustworthiness Θj

(b) fully non-preemptive DRS task sets

τ1 τ5 τ10

0 0.5 1
0

20
40
60
80

100

exceedance balancer V%
jo

bs
w

ith
ex

ce
ed

an
ce

(c) varying V

PR NP LP FL

Fig. 5: Effects of tuning parameters. PR: preemptive; NP: non-preemptive; LP: limited preemptive; FL: floating non-preemptive.

Trace generation. We evaluated the trace generator (Sec. VI)
to assess the impact of the proposed “tuning knobs” on the
generated example traces. As a representative subset, we
focused on DRS task sets composed of 10 tasks (for a total of
100 task sets, 10 for each considered value of U). The MILP
was implemented with the Pyomo [21, 39] modeling framework
for Python and solved with Gurobi Optimizer (version 10.0.3).

As already mentioned in Sec. VI-B, we let Pyomo convert
the quadratic objective function into a piecewise-linear approxi-
mation by sampling the quadratic terms for 1000 evenly spaced
values of xHP

h,j and xB
h across [0, e], thus obtaining a MILP.

The weights βs, βV, and βΘ of the objective function
were selected as follows. We first simulated a trace in which
each interfering job is allocated an amount of exceedance
proportional to its NET. Then, using this distribution of
exceedance as a reference, we computed the three weights such
that βΘ +βs +βV = 1 and βΘ ·fTH = βs ·fBL = βV ·fEB. The
rationale behind this choice is to study a configuration of the
weights wherein all three components of the objective function

make an equal contribution to the overall cost to minimize.
We evaluated the impact of the NET trustworthiness param-

eter Θi by varying it from 0 to 1 in steps of 0.05, for one
task at a time, while allocating a fixed amount of exceedance
e = 106 clock cycles. The optimization problem was solved
for the job of the lowest-priority task with arrival offset A = 0.

Figs. 5(a) and (b) show results for respectively fully preemp-
tive and fully non-preemptive workloads. Each graph shows
three curves representing different tasks across the priority
spectrum for which the NET trustworthiness parameter is varied
(here, τ1 has the highest priority). In all cases, the desired
effect is observed: as a task’s trustworthiness increases, the
exceedance allocated to it diminishes. Notably, lower-priority
tasks attract more exceedance since fTH normalizes allocations
w.r.t. NETs and the DRS workload generator tends to produce
tasks the longer the period of a task, the higher its NET.

Next, we varied the balancer setting V from 0 to 1 in steps
of 0.05 to test its effect on the number of jobs with nonzero
exceedance. Fig. 5(c) reports the observed results for all four

10

considered preemption models (averaged across all tested task
sets). As expected, fewer jobs are allocated exceedance as
V increases. Whereas ≈ 60% of jobs exceed their NETs for
V = 0, less than 20% do so for V = 1.

Overall, the results in Fig. 5 confirm that the proposed config-
uration parameters effectively control the trace characteristics.

VIII. CASE STUDY

To explore the practical use of exceedance analysis, we
extracted a task set from the well-known WATERS’17 indus-
trial challenge [35], which models an automotive workload
provisioned on four cores clocked at 200MHz under partitioned
FP scheduling. We focus here on the periodic, implicit-deadline
workload on core 2 (see Table VI), which (in)famously is
unschedulable with the maximum execution costs specified by
the challenge, as the tasks’ total utilization exceeds one [58, 64].
In other words, in the challenge’s reference system, tasks are
provisioned based on NETs, and not on the basis of WCETs.

In the following, we therefore assume NETs at the 90% level,
which ensures schedulability. More precisely, by applying a
regular, exceedance-oblivious analysis assuming NETs equal
to 90% of the reported maxima [35], it can be shown that each
task’s resulting NRT is less than its period. However, such
NRTs are clearly not hard guarantees because (i) the system is
knowingly not provisioned on a worst-case basis and (ii) the
NETs in Table VI do not reflect cross-core memory contention,
which is specified separately in the WATERS’17 challenge.

It is thus fully expected that NET overruns will occasionally
occur at runtime, but it is far from obvious how susceptible
individual tasks are. Specifically, it is not clear how much of
a slowdown is necessary to induce a deadline miss in any of
the tasks, nor how quickly the system can recover afterwards.

Exceedance. To answer these questions, we applied Algo-
rithm 1 to the task set in Table VI and determined for each
task τi the least amount of exceedance e such that Ri(e) > Di.
While Table VI reports milliseconds for readability, the analysis
was carried out at the full precision of processor cycles.

The results are given in column e of Table VI. For example,
it takes at least ≈ 3.6ms of total exceedance for τ3 to miss a
deadline, which is slightly less than the total exceedance that τ5
can tolerate, but considerably more than τ1’s exceedance margin.
Without the analysis presented in Sec. IV-C, it would be difficult
to obtain these margins, which are an essential prerequisite for
further analysis of the system’s temporal robustness.

Slowdown. That said, the raw exceedance thresholds are
difficult to interpret and not directly comparable. We thus
applied the optimization framework from Sec. VI to translate
the total exceedance e into a necessary slowdown. Specifically,
we reused the setup and basic constraints from Sec. VI-A, and
then defined for each task τh a new variable xs

h and constraints
such that xs

h ≥ xB
h /Ch and xs

h ≥ xHP
h,j /Ch for each j ∈ QHP

h .
The variable xs

h represents the maximum slowdown among τh’s
jobs. The objective was then set to minimize maxτh∈τ x

s
h.

The obtained value, reported as minmaxxs
h in Table VI, is

the necessary slowdown required for a deadline miss to occur.

TABLE VI: Case Study Workload and Analysis Results

Task Period NET e minmaxxs
h L7(e)

τ1 2ms 0.364ms 1.636ms 450.06% 97.59ms
τ2 5ms 0.838ms 3.071ms 159.24% 99.39ms
τ3 20ms 9.421ms 3.591ms 21.89% 99.91ms
τ4 50ms 2.776ms 14.407ms 16.99% 399.06ms
τ5 100ms 8.476ms 3.929ms 4.09% 179.91ms
τ6 200ms 0.124ms 7.733ms 4.02% 279.91ms
τ7 1000ms 0.123ms 38.542ms 4.01% 1079.91ms

It paints a much clearer picture of the workload’s resilience.
For example, task τ3 misses a deadline only if some jobs in
the EE leading up to the deadline miss experience a slowdown
of at least 21.89% due to memory contention or any other
unusual runtime conditions. If there is less actual slowdown at
runtime, then τ3 is safe, i.e., the derived necessary slowdown
threshold is a direct measure of a task’s temporal safety margin.

The difference in resilience among the tasks is immediately
apparent. For example, the highest-priority task τ1, by virtue
of not suffering interference from any other task, would have
to experience a massive 450% slowdown before missing a
deadline. Conversely, tasks τ5, τ6, and τ7 are revealed to be
much more at risk. Since higher-priority interference leaves
them little slack, the necessary slowdown is a mere ≈ 4% for
each of them. For instance, τ5 can miss a deadline if the tasks
τ1 . . . , τ5 experience a maximum slowdown of only 4.09%
across an EE spanning 100ms (i.e., τ5’s period), which is
clearly not a big safety margin. Equipped with this information,
engineers can decide whether so little leeway is acceptable (e.g.,
if the tasks are not critical or time-sensitive) or if a redesign
is in order to give the lower-priority tasks more slack.

For example, one potential approach could be to buffer acti-
vations, i.e., allowing tasks to become temporarily backlogged
without “losing” input. For some tasks, this can be an effective
mitigation, while for others it is not: exceedance analysis reveals
that, if τ3 can buffer 3 activations (i.e., D3 = 4 · T3), then its
minimum slowdown threshold rises to a comfortable 114.07%,
but even assuming an extreme buffer of 6 activations, the
slowdown threshold of τ5 remains a meager 12.61%.

Recovery time. When deliberating the impact of lost activa-
tions, it can be helpful to consult the last column of Table VI,
which lists L7(e) for the value of e given in the same row.
Notably, L7(e)—a bound on the maximum busy-window length
of the lowest-priority task τ7—also limits the maximum length
of an EE with the stated total exceedance e.

For example, in a busy window in which τ5 just barely misses
a deadline (≥ 100ms after the start of the busy window), it
takes afterwards at most ≈ 80ms for the system to dissipate
the overload and reach a quiet time (i.e., for the EE to end),
assuming no further exceedance arises.

Conversely, with only minor changes to the optimization
problem, one can infer the minimum slowdown necessary for
transient overload to last longer than a given duration. For
example, it takes a slowdown of at least 14.16% for task τ4 to
suffer an EE of length L3(e) > 1000ms. As 14.16% is less
than τ4’s necessary slowdown for a deadline miss (16.99%), we
infer that τ4 would not yet miss a deadline despite the long EE.

11

IX. DISCUSSION AND RELATED WORK

The proposed exceedance analysis is a means of studying
a system’s temporal behavior under any amount of transient
overload (Secs. IV-C, V and VI), and can be used to infer
its safety margins, i.e., necessary conditions for undesired
behavior (Sec. VIII). It does not, however, provide a bound on
the maximum amount of total exceedance possible in any EE,
nor does it rule out permanent overload. Whether a system’s
temporal safety margins are sufficient is an engineering decision
that system designers must make on a case-by-case basis, and
permanent overload must be ruled out via other means. For
example, in the case of the workload studied in Sec. VIII, the
reported average execution times [35] are well below the NETs
given in Table VI, which precludes permanent overload.

The classic approach to dealing with WCET uncertainty is
sensitivity analysis, first developed by Lehoczky et al. [49] for
implicit-deadline tasks under rate-monotonic FP scheduling
and later extended to constrained deadlines and any FP policy
by Vestal [69], Punnekkat et al. [59], Yerraballi et al. [73],
and Bougueroua et al. [15]. Bini et al. [14] developed the
mathematically most elegant and efficient solution, which
simultaneously allows for uncertainty in periods. Their work
was later extended to the mixed-criticality setting by Dorin
et al. [27]. More recently, George and Hermant [31] and Zhang
et al. [74] provided sensitivity analysis for EDF. Chen et al.
[23] focused instead on strictly periodic tasks. In contrast to
this paper, none of the just-cited analyses supports limited-
preemptive or fully non-preemptive tasks, none allows for
arbitrary arrival curves, and none supports more than one
scheduling policy. Furthermore, none of the sensitivity analyses
for FP scheduling [14, 15, 27, 49, 59, 69, 73] supports arbitrary
deadlines, all of which underlines our method’s generality.

More significantly, a fundamental difference to exceedance
analysis is that sensitivity analysis yields a scaling factor
(or, depending on the specific method, an additive constant)
by which one or more WCET parameters can be increased
indefinitely while preserving schedulability. That is, sensitivity
analysis uses permanent overload as the limiting criterion
when maximizing tolerable WCET magnitudes. In contrast
to exceedance analysis, it thus cannot yield insights into
system behavior during transient episodes in which NETs
are temporarily exceeded by arbitrary amounts above longterm
sustainable levels. Sensitivity analysis also does not reveal
response-time nonlinearities before or after task deadlines.

Several authors [11, 28, 36, 37, 60, 61, 72] studied workload
models in which tasks are characterized by both an actual
WCET (applicable to all jobs) and a second, lower bound
that applies to a majority (but not all) of a task’s jobs, which
allows modeling (bounded) overload behavior. Stigge et al.’s
expressive digraph task model [66] can similarly be used
to represent tasks with “regular” and “unusual” computation
needs. Ultimately, such models still rely on trusted WCETs to
characterize the “unusual” demand, which we avoid here.

More closely related in spirit are techniques proposed by
Racu et al. [62, 63], who explore the effect of arbitrary system

model parameters on schedulability using binary search and
evolutionary algorithms, and by Kumar and Thiele [45], who
proposed a technique to find the settling time (longest interval
in which the deadlines are missed) and overshoot (maximum
number of jobs missing deadlines) after transient overload,
assuming the frequency and magnitude of transient overload
are bounded (and the bounds are trusted, akin to WCETs).
Both techniques [45, 63] support arbitrary arrival curves.

Exceedance analysis, like all the alternatives cited above,
is purely a design-time analysis that allows exploring “what-
if scenarios.” It does not have a runtime component itself,
but it can be readily combined with a wide range of classic
runtime mechanisms that prevent or contain overruns. This
includes RTOS budget enforcement [e.g., 29, 46, 51, 53, 56],
more sophisticated reservation schemes [e.g., 6, 17, 51, 65],
time-partitioning [e.g., 25, 41], and job abortion [e.g., 57].

If all NETs are precisely enforced, then exceedance analysis
is not necessary. Nonetheless, it remains useful and relevant
in hybrid setups with partial NET enforcement, including
reservations or budgets shared among multiple tasks [e.g.,
26, 47, 53, 56], real-time virtualization [e.g., 7, 10, 71], intra-
partition schedulers [e.g., 55, 68], job-abortion thresholds larger
than NETs, or if not all tasks are subject to enforcement (e.g.,
interrupt service routines, SCHED FIFO tasks in Linux, etc.).

Case in point, a recent survey of industrial practices reports
that the use of reservations is far from ubiquitous [8, Q19], that
measured NETs are pervasive [8, Q18], and that applications
are commonly allowed to run past deadline misses [8, Q17].
This is not surprising as many real-time systems continue to be
deployed on RTOSs (or RTOS standards) lacking reservations
such as FreeRTOS [3], ThreadX [5], or AUTOSAR Classic [1].

X. CONCLUSION

We have considered the problem of response-time analysis
in the absence of reliable WCET bounds. Our solution is
to explicitly account for transient overloads that can occur
when tasks temporarily exceed their nominal (i.e., assumed)
execution-time bounds. The resulting exceedance analysis—
which is applicable to the FP, EDF, and FIFO scheduling
policies, as well as to the full spectrum of preemption models—
provides a rigorous and systematic means for assessing a
system’s temporal safety margins (w.r.t. overruns at runtime).

To aid engineers in exploring the space of exceedance effects,
we have developed a fast search algorithm for enumerating
response-time nonlinearities. Additionally, we have proposed a
configurable trace generator that explains by means of example,
in a manner that does not require a background in scheduling
theory, how exceedance effects can affect response times. An
empirical evaluation has shown both the search algorithm and
the trace-generation method to be effective.

Future work should focus on exceedance analysis for other
commonly measured task parameters such as self-suspension
and critical-section lengths, release-jitter bounds, and generally
uncertain arrival curves. It will also be interesting to extend our
analysis to allow for processor-supply restrictions (e.g., within
shared reservations) and uncertain supply-bound functions.

12

ACKNOWLEDGEMENTS

We thank the reviewers for their insightful and constructive
feedback, which has helped to significantly improve the paper.

This project has received funding from the European
Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement
No 803111). This work has also been partially supported by
the European Union’s Horizon Europe framework programme
project NANCY under the grant agreement No. 101096456, and
the project SERICS (PE00000014) under the MUR National
Recovery and Resilience Plan funded by the European Union
– NextGenerationEU.

REFERENCES

[1] “AUTOSAR Classic Platform: AUTOSAR’s solution for em-
bedded systems with hard real-time and safety constraints,”
https://www.autosar.org/standards/classic-platform.

[2] “The Coq proof assistant, project web site,” https://coq.inria.fr.
[3] “FreeRTOS: Real-time operating system for microcontrollers

and small microprocessors,” https://freertos.org.
[4] “Prosa: The proven schedulability analysis repository,” http:

//prosa.mpi-sws.org.
[5] “Eclipse ThreadX: Open source RTOS certified for safety-critical

applications,” https://threadx.io.
[6] L. Abeni and G. Buttazzo, “Integrating multimedia applications

in hard real-time systems,” in Proceedings of the 19th IEEE
Real-Time Systems Symposium (RTSS), 1998.

[7] L. Abeni and D. Faggioli, “Using Xen and KVM as real-time
hypervisors,” Journal of Systems Architecture, 2020.

[8] B. Akesson, M. Nasri, G. Nelissen, S. Altmeyer, and R. I.
Davis, “An empirical survey-based study into industry practice
in real-time systems,” in Proceedings of the 41st IEEE Real-Time
Systems Symposium (RTSS), 2020.

[9] B. Andersson, “The case for explainability of real-time systems
and their analyses,” in Proceedings of the 1st International
Workshop on Explainability of Real-time Systems and their
Analysis (ERSA), 2022.

[10] A. Avanzini, P. Valente, D. Faggioli, and P. Gai, “Integrating
Linux and the real-time ERIKA OS through the Xen hypervisor,”
in Proceedings of the 10th IEEE International Symposium on
Industrial Embedded Systems (SIES), 2015.

[11] P. Balbastre, I. Ripoll, and A. Crespo, “Analysis of window-
constrained execution time systems,” Real-Time Systems, 2007.

[12] S. Baruah and P. Ekberg, “Towards efficient explainability of
schedulability properties in real-time systems,” in Proceedings of
the 35th Euromicro Conference on Real-Time Systems (ECRTS),
2023.

[13] K. Bedarkar, M. Vardishvili, S. Bozhko, M. Maida, and B. B.
Brandenburg, “From intuition to Coq: A case study in verified
response-time analysis of FIFO scheduling,” in Proceedings of
the 43rd IEEE Real-Time Systems Symposium (RTSS), 2022.

[14] E. Bini, M. Di Natale, and G. Buttazzo, “Sensitivity analysis
for fixed-priority real-time systems,” Real-Time Systems, 2008.

[15] L. Bougueroua, L. George, and S. Midonnet, “Temporal robust-
ness of real-time architectures specified by estimated WCETs,”
International Journal On Advances in Software, 2009.

[16] S. Bozhko and B. B. Brandenburg, “Abstract response-time
analysis: A formal foundation for the busy-window principle,”
in Proceedings of the 32nd Euromicro Conference on Real-Time
Systems (ECRTS), 2020.

[17] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson, “Dynamic
integrated scheduling of hard real-time, soft real-time, and non-
real-time processes,” in Proceedings of the 24th IEEE Real-Time
Systems Symposium (RTSS), 2003.

[18] R. J. Bril, J. J. Lukkien, and W. F. Verhaegh, “Worst-case
response time analysis of real-time tasks under fixed-priority
scheduling with deferred preemption,” Real-Time Systems, 2009.

[19] G. Buttazzo, M. Bertogna, and G. Yao, “Limited preemptive
scheduling for real-time systems. A survey,” IEEE Transactions
on Industrial Informatics, 2013.

[20] G. C. Buttazzo, “Rate monotonic vs. EDF: Judgment day,” Real-
Time Systems, 2005.

[21] M. L. Bynum, G. A. Hackebeil, W. E. Hart, C. D. Laird, B. L.
Nicholson, J. D. Siirola, J.-P. Watson, D. L. Woodruff et al.,
Pyomo-optimization modeling in Python, 2021.

[22] F. Cerqueira, F. Stutz, and B. B. Brandenburg, “Prosa: A case for
readable mechanized schedulability analysis,” in Proceedings of
the 28th Euromicro Conference on Real-Time Systems (ECRTS),
2016.

[23] J. Chen, C. Du, P. Han, and Y. Zhang, “Sensitivity analysis of
strictly periodic tasks in multi-core real-time systems,” IEEE
Access, 2019.

[24] J. Chen, Z. Feng, J.-Y. Wen, B. Liu, and L. Sha, “A container-
based DoS attack-resilient control framework for real-time UAV
systems,” in Proceedings of the 2019 Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2019.

[25] A. Crespo, I. Ripoll, and M. Masmano, “Partitioned embedded
architecture based on hypervisor: The XtratuM approach,”
in Proceedings of the 5th European Dependable Computing
Conference (EDCC), 2010.

[26] D. Dasari, M. Becker, D. Casini, and T. Blaß, “End-to-end
analysis of event chains under the QNX adaptive partitioning
scheduler,” in Proceedings of the 28th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS),
2022.

[27] F. Dorin, P. Richard, M. Richard, and J. Goossens, “Schedula-
bility and sensitivity analysis of multiple criticality tasks with
fixed-priorities,” Real-Time Systems, 2010.

[28] P. Fradet, M. Lesourd, J.-F. Monin, and S. Quinton, “A generic
Coq proof of typical worst-case analysis,” in Proceedings of the
39th IEEE Real-Time Systems Symposium (RTSS), 2018.

[29] P. K. Gadepalli, R. Gifford, L. Baier, M. Kelly, and G. Parmer,
“Temporal capabilities: Access control for time,” in Proceedings
of the 38th IEEE Real-Time Systems Symposium (RTSS), 2017.

[30] M. K. Gardner and J. W.-S. Liu, “Performance of algorithms
for scheduling real-time systems with overrun and overload,” in
Proceedings of the 11th Euromicro Conference on Real-Time
Systems (ECRTS), 1999.

[31] L. George and J.-F. Hermant, “Characterization of the space
of feasible worst-case execution times for earliest-deadline-first
scheduling,” Journal of Aerospace Computing, Information, and
Communication, 2009.

[32] W. Giernacki, P. Kozierski, J. Michalski, M. Retinger, R. Madon-
ski, and P. Campoy, “Bebop 2 quadrotor as a platform for
research and education in robotics and control engineering,” in
Proceedings of the 2020 International Conference on Unmanned
Aircraft Systems (ICUAS), 2020.

[33] D. Griffin, I. Bate, and R. I. Davis, “Generating utilization
vectors for the systematic evaluation of schedulability tests,” in
Proceedings of the 41st IEEE Real-Time Systems Symposium
(RTSS), 2020.

[34] Z. Guo, S. Vaidhun, A. Al Arafat, N. Guan, and K. Yang,
“Stealing static slack via WCRT and sporadic p-servers in
deadline-driven scheduling,” in Proceedings of the 44th IEEE
Real-Time Systems Symposium (RTSS), 2023.

[35] A. Hamann, D. Dasar, S. Kramer, M. Pressler, F. Wurst,
and D. Ziegenbein, “WATERS industrial challenge 2017,” in
Proceedings of the 8th International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems
(WATERS), 2017.

[36] Z. A. Hammadeh, S. Quinton, and R. Ernst, “Extending typical
worst-case analysis using response-time dependencies to bound
deadline misses,” in Proceedings of the 14th International
Conference on Embedded Software (EMSOFT), 2014.

[37] Z. A. Hammadeh, R. Ernst, S. Quinton, R. Henia, and L. Rioux,
“Bounding deadline misses in weakly-hard real-time systems
with task dependencies,” in Proceedings of the 2017 Design,

13

https://www.autosar.org/standards/classic-platform
https://coq.inria.fr
https://freertos.org
http://prosa. mpi-sws.org
http://prosa. mpi-sws.org
https://threadx.io

Automation & Test in Europe Conference & Exhibition (DATE),
2017.

[38] D. Hardy, B. Rouxel, and I. Puaut, “The Heptane static worst-
case execution time estimation tool,” in Proceedings of the 17th
International Workshop on Worst-Case Execution Time Analysis
(WCET), 2017.

[39] W. E. Hart, J.-P. Watson, and D. L. Woodruff, “Pyomo: Modeling
and solving mathematical programs in Python,” Mathematical
Programming Computation, 2011.

[40] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and
R. Ernst, “System level performance analysis–the SymTA/S
approach,” IEE Proceedings-Computers and Digital Techniques,
2005.

[41] P. Karachatzis, J. Ruh, and S. S. Craciunas, “An evaluation of
time-triggered scheduling in the Linux kernel,” in Proceedings
of the 31st International Conference on Real-Time Networks
and Systems (RTNS), 2023.

[42] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi,
Y. Kitsukawa, A. Monrroy, T. Ando, Y. Fujii, and T. Azumi, “Au-
toware on board: Enabling autonomous vehicles with embedded
systems,” in Proceedings of the 9th ACM/IEEE International
Conference on Cyber-Physical Systems (ICCPS), 2018.

[43] T. Kessler, J. Bernhard, M. Buechel, K. Esterle, P. Hart,
D. Malovetz, M. T. Le, F. Diehl, T. Brunner, and A. Knoll,
“Bridging the gap between open source software and vehicle
hardware for autonomous driving,” in Proceedings of the 30th
IEEE Intelligent Vehicles Symposium (IV), 2019.

[44] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world
automotive benchmarks for free,” in Proceedings of the 6th
International Workshop on Analysis Tools and Methodologies
for Embedded and Real-time Systems (WATERS), 2015.

[45] P. Kumar and L. Thiele, “Quantifying the effect of rare timing
events with settling-time and overshoot,” in Proceedings of the
33rd IEEE Real-Time Systems Symposium (RTSS), 2012.

[46] A. Lackorzyński, A. Warg, M. Völp, and H. Härtig, “Flattening
hierarchical scheduling,” in Proceedings of the 10th ACM
International Conference on Embedded Software (EMSOFT),
2012.

[47] C. Lee, R. Rajkumar, and C. Mercer, “Experiences with processor
reservation and dynamic QoS in real-time Mach,” in Proceedings
of Multimedia Japan, 1996.

[48] J. Lee, J. Wang, D. Crandall, S. Šabanović, and G. Fox, “Real-
time, cloud-based object detection for unmanned aerial vehicles,”
in Proceedings of the 1st IEEE International Conference on
Robotic Computing (IRC), 2017.

[49] J. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic schedul-
ing algorithm: exact characterization and average case behavior,”
in Proceedings of the 10th Real-Time Systems Symposium (RTSS),
1989.

[50] J. P. Lehoczky, “Fixed priority scheduling of periodic task sets
with arbitrary deadlines,” in Proceedings of the 11th Real-Time
Systems Symposium (RTSS), 1990.

[51] J. Lelli, C. Scordino, L. Abeni, and D. Faggioli, “Deadline
scheduling in the Linux kernel,” Software: Practice and Experi-
ence, 2016.

[52] H. Leppinen, “Current use of Linux in spacecraft flight software,”
IEEE Aerospace and Electronic Systems Magazine, 2017.

[53] A. Lyons, K. McLeod, H. Almatary, and G. Heiser, “Scheduling-
context capabilities: A principled, light-weight operating-system
mechanism for managing time,” in Proceedings of the 13th
EuroSys Conference, 2018.

[54] M. Maida, S. Bozhko, and B. B. Brandenburg, “Foundational
response-time analysis as explainable evidence of timeliness,”
in Proceedings of the 34th Euromicro Conference on Real-Time
Systems (ECRTS), 2022.

[55] J. Martins and S. Pinto, “Shedding light on static partitioning
hypervisors for Arm-based mixed-criticality systems,” in Pro-
ceedings of the 29th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2023.

[56] C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity

reserves: An abstraction for managing processor usage,” in
Proceedings of the 4th IEEE Workshop on Workstation Operating
Systems (WWOS-III), 1993.

[57] S. Natarajan, M. Nasri, D. Broman, B. B. Brandenburg, and
G. Nelissen, “From code to weakly hard constraints: A pragmatic
end-to-end toolchain for Timed C,” in Proceedings of the 40th
IEEE Real-Time Systems Symposium (RTSS), 2019.

[58] P. Pazzaglia, A. Biondi, and M. Di Natale, “Optimizing the
functional deployment on multicore platforms with logical
execution time,” in Proceedings of the 40th IEEE Real-Time
Systems Symposium (RTSS), 2019.

[59] S. Punnekkat, R. Davis, and A. Burns, “Sensitivity analysis
of real-time task sets,” in Advances in Computing Science —
ASIAN’97: Proceedings of the Third Asian Computing Science
Conference, 1997.

[60] S. Quinton, M. Hanke, and R. Ernst, “Formal analysis of sporadic
overload in real-time systems,” in Proceedings of the 2012
Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2012.

[61] S. Quinton, M. Negrean, and R. Ernst, “Formal analysis of
sporadic bursts in real-time systems,” in Proceedings of the 2013
Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2013.

[62] R. Racu, A. Hamann, and R. Ernst, “A formal approach to multi-
dimensional sensitivity analysis of embedded real-time systems,”
in Proceedings of the 18th Euromicro Conference on Real-Time
Systems (ECRTS), 2006.

[63] ——, “Sensitivity analysis of complex embedded real-time
systems,” Real-Time Systems, 2008.

[64] S. Ranjha, G. Nelissen, and M. Nasri, “Partial-order reduction
for schedule-abstraction-based response-time analyses of non-
preemptive tasks,” in Proceedings of the 28th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS),
2022.

[65] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic task scheduling
for hard-real-time systems,” Real-Time Systems, 1989.

[66] M. Stigge, P. Ekberg, N. Guan, and W. Yi, “The digraph real-
time task model,” in Proceedings of the 17th IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS),
2011.

[67] Tesla Motors, “Linux distribution for Tesla vehicles,” https:
//github.com/teslamotors/linux, 2024.

[68] M. Vanga, A. Bastoni, H. Theiling, and B. B. Brandenburg,
“Supporting low-latency, low-criticality tasks in a certified
mixed-criticality OS,” in Proceedings of the 25th International
Conference on Real-Time Networks and Systems (RTNS), 2017.

[69] S. Vestal, “Fixed-priority sensitivity analysis for linear compute
time models,” IEEE Transactions on Software Engineering, 1994.

[70] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra
et al., “The worst-case execution-time problem—overview of
methods and survey of tools,” ACM Transactions on Embedded
Computing Systems (TECS), 2008.

[71] S. Xi, J. Wilson, C. Lu, and C. Gill, “RT-Xen: Towards real-time
hypervisor scheduling in Xen,” in Proceedings of the 9th ACM
International Conference on Embedded Software (EMSOFT),
2011.

[72] W. Xu, Z. A. Hammadeh, A. Kröller, R. Ernst, and S. Quinton,
“Improved deadline miss models for real-time systems using typ-
ical worst-case analysis,” in Proceedings of the 27th Euromicro
Conference on Real-Time Systems (ECRTS), 2015.

[73] R. Yerraballi, R. Mukkamala, K. Maly, and H. Wahab, “Issues
in schedulability analysis of real-time systems,” in Proceedings
of the 7th Euromicro Workshop on Real-Time Systems (ECRTS),
1995.

[74] F. Zhang, A. Burns, and S. Baruah, “Sensitivity analysis for EDF
scheduled arbitrary deadline real-time systems,” in Proceedings
of the 16th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications (RTAS), 2010.

14

https://github.com/teslamotors/linux
https://github.com/teslamotors/linux

