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Abstract—Real-time tasks often exhibit correlated execution-
time distributions due to common factors such as shared caches,
resources, and inputs. Yet state-of-the-art probabilistic analysis
still overlooks the impact of correlation, a gap that has been
highlighted as a major open problem in the field.

This paper responds to the open problem with the first
correlation-aware analysis (CAA) of periodic tasks with stochastic
execution times. The proposed analysis, which derives response-
time distributions to infer upper bounds on deadline-failure
probabilities, applies to a novel task model that incorporates
information about both intra- and inter-task dependencies.

In addition, the paper shows how to statistically infer the
two model parameters using confidence intervals obtained via
nonparametric bootstrapping. Notably, the inference method
described is distribution-agnostic, meaning that it does not assume
any particular probability distribution a priori, thereby eliminating
a major risk of misclassifying the ground-truth execution behavior.

By design, CAA dominates state-of-the-art correlation-tolerant
analysis (CTA). The significantly better accuracy of CAA is demon-
strated via experiments with synthetically generated workloads,
while a case study based on the WATERS’17 industrial challenge
provides a proof-of-concept of the statistical inference method.

I. INTRODUCTION

A major challenge in the analysis of modern real-time
systems is that many state-of-the-art methods, including worst-
case execution time (WCET) analysis, prove ineffective when
applied to complex software and hardware stacks. This is
mainly due to unpredictable components and effects such
as hardware accelerators [50], thermal noise [35], extrinsic
nondeterminism in network communication protocols [30], and
complex hardware and software stacks designed with developer
productivity and code reuse as the primary goals, as opposed to
performance predictability [52]. New approaches to analyze and
mitigate the timing uncertainties inherent in modern real-time
systems are thus urgently needed. In this context, probabilistic
analysis has emerged as the most promising direction [16].

The two overarching (and often conflicting) goals in prob-
abilistic analysis for real-time systems are soundness and
accuracy. On the one hand, to ensure soundness, an analysis
must not underestimate the probability of adverse events (e.g., a
missed deadline). On the other hand, if the estimated probability
of failure is much greater than a system’s actual, ground-truth
risk of failure, the analysis’s excessive pessimism will result
in overallocation of resources, reduced system efficiency, and
ultimately increased costs and environmental impact.

A key and still largely unresolved issue at the core of the
tension between analytical soundness and accuracy is the chal-
lenge of correlated execution times [16]. While it has long been

recognized that ignoring potential correlations among execution-
time distributions (i.e., incorrectly assuming that all tasks are
independent) can lead to optimistic (i.e., unsound) results [54],
it is only recently that research has developed techniques that
address the issue in a provably sound manner [5, 46].

The conventional method for circumventing correlation
issues uses the notion of a task’s probabilistic worst-case
execution time (pWCET) [2, 5, 16]. This approach assumes that
each task’s pWCET distribution includes sufficient padding to
account for and mask any potentially harmful dependencies on
the behavior of other tasks. Although correctly padded pWCETs
in principle allow the use of independence-assuming analysis
methods, it has recently been observed that even just defining
the concept of a pWCET is not trivial [5], let alone determining
the correct amount of padding. In addition, even correctly
padded pWCETs can be a challenge to use properly [12].

Recently, correlation-tolerant analysis (CTA) [46] has
emerged as a more direct solution to the challenge of ana-
lyzing dependent tasks without resorting to false independence
assumptions or relying on pWCET-based models. Notably,
CTA accommodates arbitrary dependencies among tasks while
requiring only upper bounds on the expectation and standard
deviation of otherwise unknown execution-time distributions.

However, while both CTA and the careful use of padded
pWCETs can ensure soundness in the presence of correlated
execution times [5, 46], neither is ideal when it comes to
accuracy. As we illustrate with an example in Sec. II, CTA,
and even more so analyses built on the pWCET abstraction,
can suffer from significant inherent pessimism because they
only tolerate or mask correlation, rather than treating it as a
first-order feature of the task model being analyzed.

Thus, recent advances [5, 46] notwithstanding, the problems
of (i) statistically inferring dependencies among execution times
and (ii) using this data in sound analysis remain largely open.
As Davis and Cucu-Grosjean [16] highlight in their list of open
issues and key challenges in probabilistic analysis:

• “How to handle issues relating to dependences between
the execution times of jobs of (i) the same task, and (ii)
jobs of different tasks? The impact of these dependences
may vary based on how strong they are.” [16]

• “Appropriate statistical studies are needed to investigate
the types of dependences and their impact on probabilistic
schedulability analysis. Analyses are needed that can
address dependencies.” [16]

We propose the first solutions to both problems in this paper.
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Fig. 1: Ground-truth execution scenarios of three jobs with correlated execution times.

Contribution: We propose a correlation-aware analysis (CAA)
that estimates the response-time distribution of a given task
to derive an upper bound on its deadline-failure probability
(Sec. VI). CAA employs a stochastic periodic task model with
parameters that capture intra-task and inter-task correlations,
providing insight into execution-time dependence both within
and between tasks (as illustrated in Sec. II). The statistical
inference of these parameters (Sec. VII) uses a distribution-
agnostic method based on nonparametric bootstrapping, which
does not presuppose any specific probability distribution. A
comparison of CAA and CTA using synthetically generated
workloads confirms a substantial improvement in analysis
accuracy (Sec. VIII). Finally, as a proof-of-concept of the
proposed statistical inference method, we report on a case
study that evaluated its impact on analysis accuracy (Sec. IX).

II. MOTIVATING EXAMPLE

We begin with an example that illustrates the importance
of inferring and accounting for execution-time correlations.
Fig. 1 shows eight possible schedules of two periodic tasks
τ1 and τ2 with periods 5 and 10, respectively, executing on a
uniprocessor under a preemptive scheduling algorithm. Task
τ1 has higher priority; both tasks release a job at time 0.
Ground truth. Suppose there are 8 possible ground-truth
execution scenarios (A–H) in the first 10 time units, as shown
in Fig. 1. Each scenario shows two intra-dependent jobs of
τ1, denoted J1,1 and J1,2 and one inter-dependent job of τ2,
denoted J2,1. For simplicity, we assume the scenarios with the
depicted related probabilities periodically repeat every 10 time
units and that unfinished jobs are aborted at their deadlines.
Hence, considering these 8 execution scenarios is sufficient to
determine the ground-truth deadline-failure probability (DFP)
of τ2, which is DFP2 = 0.04 = 0.02 + 0.01 + 0.01 (i.e.,
outcomes D, G and H in Fig. 1). Furthermore, we can infer the
following marginal execution-time distributions from Fig. 1:

• for J1,1 the execution time (ET) is 2 with probability (Pr)
0.54 and 3 with Pr 0.46;

• for J1,2 the ET is 2 with Pr 0.51 and 3 with Pr 0.49;
• for J2,1 the ET is 1 with Pr 0.95 and 6 with Pr 0.05.

Assuming independence. It would be convenient to simply ig-
nore any potential correlations and apply efficient independence-
assuming methods such as convolution [44] or analytical
bounds [11, 45, 56] directly to the marginal execution-time
distributions. Alas, this risks underestimating the DFP.

For example, let us determine the cumulative execution time
of the jobs based on their marginal execution-time distributions

while falsely assuming independence. Aggregating scenarios
with a total execution demand exceeding 10, we obtain:

• 11 = 2+3+6, with probability 0.01323 = 0.54·0.49·0.05;
• 11 = 3+2+6, with probability 0.01173 = 0.46·0.51·0.05;
• 12 = 3+3+6, with probability 0.01127 = 0.46·0.49·0.05.

Thus, in total, we obtain a DFP estimate of only 0.03623 =
0.01323+0.01173+0.01127, which incorrectly under-estimates
the ground-truth failure risk of DFP2 = 0.04.

Clearly, assuming independence in systems exhibiting depen-
dent behavior is not an option, as has long been known [54].

Prior work: over-approximation with pWCET. As already
discussed in Sec. I, the main idea underlying pWCET-based
approaches is to pad execution-time distributions with suf-
ficient pessimism such that efficient independence-assuming
methods [e.g., 11, 44, 45, 56] can be applied.

Returning to the example in Fig. 1, we used a Python Jupyter
notebook from prior work [47] to compute the least pessimistic
pWCET distributions possible that comply with Bozhko et al.’s
recent rigorous pWCET definition [5]. Due to space constraints,
we omit a detailed discussion on the pWCET derivation, and
report the finally computed DFP estimate of 0.873313 > 0.04.

The pessimistic nature of the pWCET is intrinsic to its defini-
tion, as it hides dependencies by introducing pessimism through
redistribution, i.e., by increasing the likelihood of longer
execution times. The reported DFP estimate thus represents
the optimal outcome for any pWCET-based analysis method
(applied to this workload), before factoring in any additional
method-specific pessimism (which can be considerable).

Prior work: tolerating correlation with CTA. Recall that
CTA [46] requires, for each task, bounds on the expected
value and standard deviation of the ground-truth execution-
time distribution of any of its jobs. With this information,
CTA bounds DFP directly, i.e., without using the pWCET
abstraction, such that the derived bound is sound irrespective
of any potential correlations.

In our example, the tightest possible bounds for τ1 are its
exact execution-time expectation ê1 = 2.49 = 2 ·0.51+3 ·0.49
and standard deviation ŝ1 = 0.5. Similarly, for τ2, ê2 = 1.25 =
1 · 0.95 + 6 · 0.05 and ŝ2 = 1.09. Given these inputs, CTA
yields a DFP estimate of 0.235 ≈ (2·ŝ1+ŝ2)

2

(2·ŝ1+ŝ2)
2+(D2−(2·ê1+ê2))

2

for task τ2. Although this result is considerably tighter than
what any pWCET analysis can achieve, CTA still significantly
overestimates the ground-truth DFP. This is because it only
implicitly tolerates correlation through standard deviation
bounds (e.g., ŝ1 and ŝ2), rather than accounting for it explicitly.
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This paper: analyzing correlation with CAA. We propose
a novel analysis inspired by CTA that uses explicit bounds
on the correlation between job executions. Specifically, our
approach leverages bounds on covariance, which measures
how job-execution-time distributions vary together.

Returning to the example in Fig. 1, the observed covariance
among the three jobs is as follows:

• c1 = −0.1754 covariance between J1,1 and J1,2,
• c2 = −0.015 covariance between J1,1 and J2,1, and
• c3 = 0.0275 covariance between J1,2 and J2,1.

CAA uses the maximum observed covariance among jobs within
the same task (intra-task covariance) and between jobs of
different tasks (inter-task covariance), which in our case is

• υ̂1,1 = c1 = −0.1754, and
• υ̂1,2 = max(c2, c3) = max(−0.015, 0.0275) = 0.0275.

Using these two values in addition to expectation (ê1 and ê2)
and standard deviation (ŝ1 and ŝ2) bounds, CAA derives a
DFP bound that is twice as tight compared to CTA (0.235) as
DFP2 ≤ Υ̂/

(
Υ̂ + (D2 − (2 · ê1 + ê2))

2
)

≈ 0.1, where

Υ̂ = 2 · ŝ21 + ŝ22 + 2 · (υ̂1,1 + 2 · υ̂1,2). In the rest of the paper,
we prove the soundness of this bound (Theorem 6) and describe
a distribution-agnostic statistical method for inferring all the
bounds used above (Sec. VII).

III. PROBABILITY THEORY BACKGROUND

We briefly review the probability theory concepts used in
this paper and introduce our notation. We consider a probability
space (Ω,F ,P), where Ω is the set of all possible outcomes,
F ⊆ 2Ω is the event space, and P : F → [0, 1] is a probability
function. Let R denote the set of real numbers and R ≜
R ∪ {±∞} the extended set of real numbers.
Def. 1 (Random variable). A random variable X on the prob-
ability space (Ω,F ,P) is a measurable function X : Ω → R
such that {ω ∈ Ω : X(ω) = x} ∈ F for all x ∈ R.

We use P[ω ∈ Ω |X(ω) = x] to denote the probability of
random variable X taking the value x, or briefly, P[X = x].
We define the following functions on random variables.
Def. 2 (Expected value). The expected value E[X] ∈ R of a
random variable X is a measure of the central tendency (i.e.,
average value) of the possible outcomes of X

E[X] ≜
∫
ω∈Ω

X(ω) dP

The expectation operator E[·] acts linearly on sums of random
variables, a property known as linearity of expectation.

Fact 1 (Linearity of expectation [e.g., 25, p. 40]). If X and Y
are two (possibly dependent) random variables such that E[X]
and E[Y ] are finite, then

∀a, b ∈ R, E[a ·X + b · Y ] = a · E[X] + b · E[Y ].

Def. 3 (Covariance). The covariance of two random variables
X and Y , denoted by Cov[X,Y ], is a measure of the degree
to which X and Y fluctuate together.

Cov[X,Y ] ≜ E[(X − E[X]) · (Y − E[Y ])]

Intuitively, when Cov[X,Y ] > 0, increases in X are
generally associated with increases in Y . Conversely, when
Cov[X,Y ] < 0, increases in X are generally associated with
decreases in Y . Note that Cov[X,Y ] = Cov[Y,X].
Def. 4 (Variance). The variance of a random variable X ,
denoted by V[X], is a measure of the dispersion (or spread)
of the possible outcomes of X .

V[X] ≜ Cov[X,X]

In the following, we write V[X] < ∞ and E[X] < ∞ to
denote that a random variable X has finite variance and mean.
Def. 5 (Standard deviation). The standard deviation (SD) of a
random variable X , denoted σ[X], is given by

σ[X] ≜
√

V[X].

We often rely on Bienaymé’s identity when calculating the
variance of a sum of random variables.

Fact 2 (Bienaymé’s identity [e.g., 31, Eq. 5.2]). Consider n
possibly dependent random variables X1, X2, . . . , Xn such that
Cov[Xi, Xj ] < ∞ for 1 ≤ i ≤ j ≤ n, then

V

[
n∑

i=1

Xi

]
=

n∑
i,j=1

Cov[Xi, Xj ].

We also use the following covariance bound.

Fact 3 (Covariance bounds [e.g., 27, Inequality 1]). Let X and
Y be possibly dependent random variables such that V[X] < ∞
and V[Y ] < ∞, then covariance is bounded by

−
√

V[X] · V[Y ] ≤ Cov[X,Y ] ≤
√
V[X] · V[Y ].

Furthermore, Cantelli’s inequality upper-bounds the proba-
bility of a random variable deviating from its mean.

Theorem 1 (Cantelli’s inequality [6]). For an arbitrary random
variable X such that V[X] < ∞, E[X] < ∞, and any t > E[X],

P[X ≥ t] ≤ V[X]

V[X] + (t− E[X])2
.

Cantelli’s bound remains valid if used with upper bounds
on V[X] and E[X], which prior work observed as follows.

Fact 4 ([46, Lemma 1]). Let f(e, v) = v
v+(t−e)2 . If e1≤e2<t

and 0 ≤ v1 ≤ v2, then f(e1, v1) ≤ f(e2, v2).
A key mathematical building block underlying CTA [46] is

the following theorem, which restates Cantelli’s inequality for
sums of random variables with suitable upper bounds on the
sums of their expectations and standard deviations.

Theorem 2 (Correlation-tolerant inequality [46, Corollary 2]).
Let X1, . . . , Xn be n possibly dependent random variables
such that Cov[Xi, Xj ] < ∞ for all i, j ∈ {1, . . . , n},
with upper bounds ê ≥

∑n
i=1 E[Xi] and ŝ ≥

∑n
i=1 σ[Xi].

Then, for any t > ê,

P

[
n∑

i=1

Xi ≥ t

]
≤ ŝ 2

ŝ 2 + (t− ê)
2 .
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Compared to the original Corollary 2 in [46], our restated The-
orem 2 slightly generalizes the required upper bounds ê and ŝ.

Remarkably, Theorem 2 provides an upper bound on
P[
∑n

i=1 Xi ≥ t] robust to arbitrary and unknown dependencies
among the variables X1, . . . , Xn. However, the bound can be
significantly improved if covariance information is available,
as discussed in Sec. II. We therefore next derive an analogue
to Theorem 2 that explicitly incorporates covariance bounds.

IV. CORRELATION-AWARE INEQUALITY

As before in Theorem 2, suppose we are given n random
variables X1, . . . , Xn and that an upper bound ê on the sum
of their expectations is known. However, rather than a bound ŝ
on the sum of their n (individual) standard deviations, suppose
we have a bound ĉ on the sum of their n2 pairwise covariances.
It is then possible to simply replace ŝ 2 with ĉ in Theorem 2.

Theorem 3 (Correlation-aware inequality). Let X1, . . . , Xn

be n possibly dependent random variables with covariance
Cov[Xi, Xj ] < ∞ for all i, j ∈ {1, . . . , n}. If ê ≥

∑n
i=1 E[Xi]

and ĉ ≥
∑n

i,j=1 Cov[Xi, Xj ], then, for any t > ê,

P

[
n∑

i=1

Xi ≥ t

]
≤ ĉ

ĉ+ (t− ê)
2 .

Proof. P

[
n∑

i=1

Xi ≥ t

]
(i)

≤
V[
∑n

i=1 Xi]

V[
∑n

i=1 Xi] + (t− E[
∑n

i=1 Xi])2

(ii)
=

V[
∑n

i=1 Xi]

V[
∑n

i=1 Xi] + (t−
∑n

i=1 E[Xi])2

(iii)
=

∑n
i,j=1 Cov[Xi, Xj ]∑n

i,j=1 Cov[Xi, Xj ] + (t−
∑n

i=1 E[Xi])2

(iv)

≤ ĉ

ĉ+ (t− ê)
2

Step (i) follows from Theorem 1 for X =
∑n

i=1 Xi. Steps (ii)
and (iii) follow from Facts 1 and 2, respectively. Finally,
Step (iv) follows from Fact 4 applied with the antecedents
ê and ĉ. The prerequisites of Fact 4 are met since any random
variable’s variance is necessarily non-negative and, by Fact 2,∑n

i,j=1 Cov[Xi, Xj ] = V[
∑n

i=1 Xi] ≥ 0.

While Theorem 3 closely resembles Theorem 2, the superfi-
cial similarity is misleading: the bound ĉ used in Theorem 3
can be much smaller than the term ŝ 2 used in Theorem 2,
resulting in a substantial accuracy advantage. Theorem 3 is the
foundation for the probabilistic analysis developed in Sec. VI.
In preparation, we next define the underlying system model, its
ground-truth stochastic behavior, and recall parts of CTA [46].

V. GROUND-TRUTH SYSTEM MODEL AND CTA

We consider a set τ ≜ {τ1, τ2, . . . , τn} of n periodic tasks
running on a uniprocessor or within a partitioned multiprocessor
platform under fixed-priority preemptive scheduling. Tasks are
indexed by decreasing priority; τ1 holds the highest priority,
and each task has a unique priority level.

TABLE I: Overview of Notation

Symbol Explanation

τ The task set.
τi The task from τ with index i.
Ti Period of τi.
Di Relative deadline of τi.

αi(∆) Upper bound on no. of τi arrivals within ∆ time units.

Ω Sample space of system evolutions.
ω ∈ Ω A sample (particular system evolution) from Ω.
Ji,j The j-th job of τi after system startup.
ai,j Arrival time of Ji,j .
di,j Absolute deadline of Ji,j .

Ci,j(ω) Execution time of Ji,j in ω (specific to each ω ∈ Ω).

Ri,j(ω) Response time of Ji,j in evolution ω.
DFP i The ground-truth DFP of τi.

f̂(·) An upper bound on the given function f(·).

Each task τi has a period Ti that defines the difference
in time between any two consecutive job releases and a
constrained relative deadline Di ≤ Ti. We use αi(∆) ≜

⌈
∆
Ti

⌉
to bound the number of jobs of τi released within any ∆-long
time interval. We assume discrete time, modeled with the set
N of natural numbers (e.g., representing processor cycles).

We let Ji,j denote the j-th job of task τi after system startup,
where j ∈ N. We indicate by ai,j the arrival time of Ji,j (or,
interchangeably, its release time), which is the same across all
system evolutions. The absolute deadline of job Ji,j is di,j =
ai,j +Di. When a job misses its deadline, it is immediately
cut off from service (i.e., aborted and discarded).

All model parameters defined so far are constants. In contrast,
job execution times are modeled as potentially dependent
random variables. Recall from Sec. III that Ω represents the
set of all possible outcomes (i.e., system evolutions), with each
ω ∈ Ω representing a single evolution. For each ω ∈ Ω, Ci,j(ω)
is the execution-time requirement of Ji,j in evolution ω, i.e.,
the amount of processor service Ji,j must receive to finish. We
make no assumptions on the distribution of any Ci,j , nor do
we require all of a task’s jobs to follow the same distribution.

Finally, in a system evolution ω ∈ Ω in which a job
Ji,j is not aborted, we let Ri,j(ω) denote Ji,j’s ground-truth
response time, i.e., the time between Ji,j’s release at ai,j and
its completion time. If Ji,j is aborted in ω, then by definition
Ri,j(ω) ≜ Di + 1. Table I summarizes our notation.

A. Bounding the Ground-Truth Deadline-Failure Probability

Our ultimate goal is to safely characterize the ground-truth
response-time distribution Ri,j of any job of a given task τi.
This in turn will provide us with an upper bound on the task’s
ground-truth deadline-failure probability, as defined below.

DFP i ≜ maxj∈N P[Ri,j > Di]

In our analysis, we build on definitions and lemmas originally
developed in the context of CTA [46]. We briefly recall the
elements that we reuse in the following and refer interested
readers to Marković et al. [46] for a detailed derivation.
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In the interval from the release until the completion or
abortion of an arbitrary job Ji,j , jobs of higher-priority tasks
and Ji,j itself are continuosly executed at all times. Thus, given
a duration ∆ ∈ (0, Di], we can assess whether the response
time Ri,j exceeds ∆ by accumulating the execution time of all
higher-or-equal priority jobs that can possibly execute in the
interval [ai,j , ai,j +∆). Since every incomplete job is aborted
when reaching its deadline, the set

Λi,j(∆) ≜ { Ck,ℓ : 1 ≤ k ≤ i, ak,ℓ ∈ [m(i, j, k), ai,j+∆) } ,

where m(i, j, k) ≜ max (0, ai,j−Dk + 1), captures all relevant
execution-time random variables. From Λi,j(∆), we obtain a
parametric upper bound R̂i,j(∆) on total demand [46, Eq. 4].

R̂i,j(∆) ≜
∑

Ck,ℓ∈Λi,j(∆) Ck,ℓ (1)

The significance of R̂i,j(∆) is that it is at least as likely to
exceed any ∆ as the ground-truth response time is to exceed Di.

Fact 5 ([46, Lemma 6]). For all τi ∈ τ , j ∈ N, ∆ ∈ (0, Di],

P[Ri,j > Di] ≤ P
[
R̂i,j(∆) > ∆

]
.

Fact 5 yields the following upper bound on task τi’s DFP.

Theorem 4 ([46, Theorem 3]). For all τi ∈ τ ,

DFP i ≤ max
j∈N

min
∆∈(0,Di]

{
P
[
R̂i,j(∆) > ∆

]}
.

Theorem 4 is the starting point of our analysis. In preparation,
we note two useful properties of Λi,j(∆). For notational brevity,
we define λi,j,k(∆) ≜ { Ck,ℓ : ℓ ∈ N } ∩Λi,j(∆) to denote the
subset of random variables corresponding to task τk in Λi,j(∆).

Lemma 1. For τh, τi ∈ τ , h < i, j ∈ N and ∆ ∈ (0, Di],

|λi,j,h(∆)| ≤ αh(∆) + 1.

Proof. The LHS of the inequality counts the number of random
variables in Λi,j(∆) corresponding to jobs of a given higher-
priority task τh. Recall that Λi,j(∆) includes a random variable
for each job of τh released in an interval with a length of at
most ∆ + Dh − 1. There are at most αh(∆ + Dh − 1) =⌈
∆+Dh−1

Th

⌉
≤
⌈

∆
Th

⌉
+
⌈
Dh−1
Th

⌉
= αh(∆) + 1 such jobs.

Lemma 2. For τi ∈ τ , j ∈ N, and ∆ ∈ (0, Di], |λi,j,i(∆)| = 1.

Proof. Exactly one job of task τi contributes a random variable
to Λi,j(∆) since Λi,j(∆) includes random variables for all jobs
of τi released during [max (0, ai,j−Di + 1) , ai,j +∆), and as
Di ≤ Ti, there is only one such job (Ji,j itself).

B. Review of Correlation-Tolerant Analysis

Since we will later compare our analysis with CTA [46], we
will briefly review how it applies to periodic tasks. Crucially,
CTA requires two bounds êk and ŝk to be given for each task τk.
Analysis Input 1. êk is an upper bound on the mean execution
time of any job of τk: ∀j ∈ N, êk ≥ E[Ck,j ].
Analysis Input 2. ŝk is an upper bound on the standard devia-
tion of the execution time of any τk’s job: ∀j ∈ N, ŝk ≥ σ[Ck,j ].

Taking into account Lemmas 1 and 2, CTA uses the following
cumulative bounds to account for each job in Λi,j(∆).

Ê(i,∆) ≜ êi +
∑i−1

h=1 (αh(∆) + 1) · êh (2)

Ŝ(i,∆) ≜ ŝi +
∑i−1

h=1 (αh(∆) + 1) · ŝh (3)

In broad strokes, CTA then starts from Theorem 4 and, using
Theorem 2 with Eqs. (2) and (3) as respectively ê and ŝ, ulti-
mately arrives at the following correlation-tolerant DFP bound.

Theorem 5 (CTA DFP bound [46, Theorem 4]). For all τi ∈ τ
and ∆ ∈ (0, Di], if 0 < Ê(i,∆) < ∆, then:

DFP i ≤
(
Ŝ(i,∆)

)2
·
((

Ŝ(i,∆)
)2

+
(
∆− Ê(i,∆)

)2)−1

.

As discussed, Theorem 5 holds in the face of unknown
dependencies among execution times. We next present a novel
analysis that improves upon Theorem 5 in terms of accuracy
by explicitly accounting for covariance, using Theorem 3.

VI. CORRELATION-AWARE ANALYSIS

The main idea is to incorporate information about the
correlation between random variables along with their expected
values and standard deviations. Hence, in addition to Analysis
Inputs 1 and 2, suppose we are given bounds on intra- and
inter-task correlation via the following two task parameters.

Analysis Input 3. υ̂k,k is an upper bound on the intra-task
covariance of the execution time of any two different jobs of
τk: υ̂k,k ≥ Cov[Ck,j , Ck,ℓ] for all j, ℓ ∈ N and j ̸= ℓ.

Analysis Input 4. υ̂k,q is an upper bound on the inter-task
covariance of the execution time of any two jobs of distinct
tasks τk and τq: υ̂k,q ≥ Cov[Ck,j , Cq,ℓ] for all j, ℓ ∈ N.

These bounds may be omitted for some tasks, as it is possible
to derive safe (but pessimistic) upper bounds from Analysis
Input 2 for any task for which the input lacks explicit bounds
υ̂k,k and υ̂k,q (via Fact 3, υ̂k,q ≤ ŝk · ŝq and υ̂k,k ≤ ŝk · ŝk).

As a first step towards exploiting Analysis Inputs 3 and 4,
we connect the conservative characterization of a given job’s
response time R̂i,j(∆) from Eq. (1) with Theorem 3. For
brevity, given a set S, we write (S)2 to denote the Cartesian
product S × S, e.g., (Λi,j(∆))2 denotes Λi,j(∆)× Λi,j(∆).

Lemma 3. For any τi ∈ τ , j ∈ N, and ∆ ∈ (0, Di], given
ê ≥

∑
C∈Λi,j(∆) E[C] and ĉ ≥

∑
(C,C′)∈(Λi,j(∆))2 Cov[C, C′],

if 0 < ê < ∆, then

P
[
R̂i,j(∆) > ∆

]
≤ ĉ ·

(
ĉ+ (∆− ê)2

)−1
.

Proof. P
[
R̂i,j(∆) > ∆

]
(i)
= P

[∑
C∈Λi,j(∆) C > ∆

]
(ii)

≤ ĉ ·
(
ĉ+ (∆− ê)

2
)−1

where Step (i) expands Eq. (1) and Step (ii) applies Theorem 3.
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As before, we can easily obtain a suitable bound ê from
Analysis Input 1 via Eq. (2). Deriving a bound ĉ from Analysis
Inputs 2–4 is more challenging. To this end, we define:

Υ̂(i,∆) ≜

(
i∑

k=1

V̂i,k(∆)+ÎCi,k(∆)

)
+

i−1∑
h=1

i∑
q=h+1̂

XCi,h,q(∆),

(4)where

V̂i,k(∆) ≜

{
(αk(∆) + 1) · ŝ2k i ̸= k

ŝ2i i = k,

ÎCi,k(∆) ≜

{
(αk(∆) + 1) · αk(∆) · υ̂k,k i ̸= k

0 i = k, and

X̂Ci,h,q ≜

{
2 · (αh(∆) + 1) · (αq(∆) + 1) · υ̂h,q i ̸= q

2 · (αh(∆) + 1) · υ̂h,q i = q.

We establish in the following that Υ̂(i,∆) upper-bounds the
total covariance sum

∑
C,C′∈(Λi,j(∆))2 Cov[C, C′], as required

to use Lemma 3 with ĉ = Υ̂(i,∆). To start, we split the total
covariance sum into three summands capturing (I) variance,
(II) intra-task covariance, and (III) inter-task covariance.

Lemma 4.

total covariance sum︷ ︸︸ ︷∑
(C,C′)∈

(Λi,j(∆))2

Cov[C, C′] =

I variance sum︷ ︸︸ ︷
i∑

k=1

∑
(C,C)∈

(λi,j,k(∆))2

Cov[C, C] +

i∑
k=1

∑
(C,C′)∈

(λi,j,k(∆))2,

C≠C′

Cov[C, C′]

︸ ︷︷ ︸
II intra-task covariance sum

+

i−1∑
h=1

i∑
q=h+1

∑
(C,C′)∈

(λi,j,h(∆)×
λi,j,q(∆))

2 · Cov[C, C′]

︸ ︷︷ ︸
III inter-task covariance sum

Proof. Consider any pair of random variables (Ck,ℓ, Cq,r) ∈
(Λi,j(∆))2, i.e., any covariance term Cov[Ck,ℓ, Cq,r] contribut-
ing to the LHS of the equation. If k = q and ℓ = r, then
Cov[Ck,ℓ, Cq,r] is accounted for by summand I. If k = q but
ℓ ̸= r, then Cov[Ck,ℓ, Cq,r] is accounted for by summand II.
If k < q, then Cov[Ck,ℓ, Cq,r] is accounted for by a term
2 · Cov[Ck,ℓ, Cq,r] in summand III. Finally, for k > q, recall
that 2 · Cov[C, C′] = Cov[C, C′] + Cov[C′, C]. Thus, if k > q,
then Cov[Ck,ℓ, Cq,r] is implicitly accounted for by the term
2 · Cov[Cq,r, Ck,ℓ] in summand III. Conversely, any covariance
term on the RHS is also part of the LHS sum.

We now bound each of the three summands in turn.

Lemma 5. ∀τi, τk ∈ τ , k ≤ i, j ∈ N, ∆ ∈ (0, Di],

V̂i,k(∆) ≥
∑

(C,C) ∈ (λi,j,k(∆))2 Cov[C, C]

Proof. Observe that, by Defs. 4 and 5 and the definition
of Analysis Input 2, ŝ2k ≥ V[C] = Cov[C, C] for any C ∈
λi,j,k(∆). Further note that

∑
(C,C)∈(λi,j,k(∆))2 Cov[C, C] =∑

C∈λi,j,k(∆) Cov[C, C] ≤ |λi,j,k(∆)| · ŝ2k. If k ̸= i, then there
are at most αk(∆) + 1 random variables in λi,j,k(∆) by
Lemma 1. Otherwise, if k = i, there is exactly one random
variable in λi,j,k(∆) by Lemma 2. The bound follows.

Next, we bound the intra-task covariance sum (II).

Lemma 6. ∀τi, τk ∈ τ , k ≤ i, j ∈ N, ∆ ∈ (0, Di],

ÎCi,k(∆) ≥
∑

(C,C′)∈ (λi,j,k(∆))2, C≠C′ Cov[C, C′]

Proof. By the definition of Analysis Input 3, Cov[C, C′] ≤ υ̂k,k
for any two distinct C, C′ ∈ λi,j,k(∆). If i ̸= k, then, by
Lemma 1, there are at most (αk(∆) + 1) random variables
in λi,j,k(∆), and thus at most (αk(∆) + 1) · αk(∆) pairs of
non-identical random variables in (λi,j,k(∆))

2. If i = k, then
by Lemma 2 there is exactly one random variable in λi,j,k(∆),
and hence there are no pairs of distinct random variables.

Finally, we bound the inter-task covariance sum (III).

Lemma 7. ∀τh, τq, τi ∈ τ, h < q ≤ i,∀j ∈ N,∀∆ ∈ (0, Di],

X̂Ci,h,q(∆) ≥
∑

(C,C′)∈ (λi,j,h(∆)×λi,j,q(∆)) 2 · Cov[C, C′]

Proof. By the definition of Analysis Input 4, Cov[C, C′] ≤ υ̂h,q
for any two variables (C, C′) ∈ (λi,j,h(∆)× λi,j,q(∆)). By
Lemma 1, there are at most αh(∆) + 1 random variables in
λi,j,h(∆). If i ̸= q, then there are, also by Lemma 1, at most
αq(∆) + 1 random variables in λi,j,q(∆), and thus at most
(αh(∆)+1)·(αq(∆)+1) ordered pairs in the Cartesian product
λi,j,h(∆)× λi,j,q(∆). Otherwise, if i = q, then by Lemma 2
there is exactly one random variable in λi,j,q(∆), and hence
there are at most αh(∆) + 1 such ordered pairs.

Taken together, we observe that Υ̂(i,∆) as defined in Eq. (4)
indeed bounds the total covariance of jobs in Λi,j(∆).

Lemma 8. ∀τi ∈ τ , j ∈ N, ∆ ∈ (0, Di],

Υ̂(i,∆) ≥
∑

(C,C′)∈(Λi,j(∆))2 Cov[C, C′]

Proof. Follows from Lemma 4 by applying Lemmas 5–7 to
Summands I-III, respectively.

With Lemma 8 in place, we can finally instantiate Lemma 3
with the upper bounds ê = Ê(i,∆) and ĉ = Υ̂(i,∆).

Lemma 9. ∀τi ∈ τ , j ∈ N, ∆ ∈ (0, Di], if 0 < Ê(i,∆) < ∆,

P
[
R̂i,j(∆)>∆

]
≤ Υ̂(i,∆)·

(
Υ̂(i,∆)+

(
∆−Ê(i,∆)

)2)−1

Proof. The inequality follows from Lemma 3 applied to Eqs. (2)
and (4), as respectively justified by Fact 1 and Lemma 8.

Lastly, using Theorem 4 as the starting point, Lemma 9
yields the final DFP bound.

Theorem 6 (Correlation-aware DFP analysis). For all τi ∈ τ
and any ∆ ∈ (0, Di], if 0 < Ê(i,∆) < ∆, then

DFP i ≤ Υ̂(i,∆) ·
(
Υ̂(i,∆) +

(
∆− Ê(i,∆)

)2)−1

. (5)

Proof. DFP i

(i)

≤ max
j∈N

min
∆∗∈(0,Di]

{
P
[
R̂i,j(∆

⋆) > ∆∗
]}

(ii)

≤ max
j∈N

{
P
[
R̂i,j(∆) > ∆

]}
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(iii)

≤ max
j∈N

{
Υ̂(i,∆) ·

(
Υ̂(i,∆) +

(
∆− Ê(i,∆)

)2)−1
}

(iv)

≤ Υ̂(i,∆) ·
(
Υ̂(i,∆) +

(
∆− Ê(i,∆)

)2)−1

Step (i) is Theorem 4. Step (ii) follows since ∀∆ ∈
(0, Di],min∆∗∈(0,Di] F (∆∗) ≤ F (∆) for any F . Step (iii)
follows from Lemma 9. Finally, Step (iv) follows trivially
since j no longer appears in the term being maximized.

If Analysis Inputs 3 and 4 are substituted for all tasks via
Fact 3, then CAA reduces to CTA. If, however, covariance
bounds are available, then CAA naturally extends CTA.

Theorem 7 (Dominance). If υ̂k,q ≤ ŝk · ŝq for all τk, τq ∈ τ ,
then the upper bound on DFP i in Theorem 6 (CAA) is lower
than or equal to the upper bound on DFP i in Theorem 5 (CTA).

Proof. We show that Υ̂(i,∆) ≤
(
Ŝ(i,∆)

)2
, which implies

that Theorem 6 dominates Theorem 5 due to the monotonicity
of both bounds (Fact 4). For brevity, let Ax ≜ αx(∆) since ∆
is constant throughout the proof.

Υ̂(i,∆)
(i)
=

(
i∑

k=1

V̂i,k(∆)+ÎCi,k(∆)

)
+

i−1∑
h=1

i∑
q=h+1

X̂Ci,h,q(∆)

(ii)
=

((
ŝ2i +0

)
+

i−1∑
h=1

(Ah+1)·ŝ2h+(Ah+1)·Ah ·υ̂h,h

)
+ i−1∑

h=1

2·(Ah+1)·υ̂h,i+
i−1∑

q=h+1

2·(Ah+1)·(Aq+1)·υ̂h,q


(iii)

≤ ŝ2i +

(
i−1∑
h=1

(Ah+1)·ŝ2h + (Ah+1)·Ah ·ŝh ·ŝh

)
+

2 ·

 i−1∑
h=1

(Ah+1)·ŝh ·ŝi+
i−1∑

q=h+1

(Ah+1)·(Aq+1)·ŝh ·ŝq


(iv)
= ŝ2i +

(
i−1∑
h=1

(Ah+1)2 · ŝ2h

)
+

2 ·

 i−1∑
h=1

(Ah+1)·ŝh ·ŝi+
i−1∑

q=h+1

(Ah+1)·(Aq+1)·ŝh ·ŝq


(v)
= ŝ2i + 2 ·

(
i−1∑
h=1

(Ah+1)·ŝh ·ŝi

)
+

(
i−1∑
h=1

(Ah+1)2 · ŝ2h

)
+

2 ·

 i−1∑
h=1

i−1∑
q=h+1

(Ah+1)·(Aq+1)·ŝh ·ŝq


(vi)
= ŝ2i + 2 ·

(
i−1∑
h=1

(Ah+1)·ŝh ·ŝi

)
+

(
i−1∑
h=1

(Ah+1) · ŝh

)2

(vii)
=

(
ŝi +

i−1∑
h=1

(Ah+1)·ŝh

)2

(viii)
=

(
ŝi +

i−1∑
h=1

(αh(∆)+1)·ŝh

)2

(ix)
=
(
Ŝ(i,∆)

)2

Step (i) is Eq. (4). Step (ii) renames the index variable of
the first sum from k to h, breaks out the case of h = i
in the first sum as well as the case of q = i in the nested
sum, and finally replaces V̂i,k(∆), ÎCi,k(∆), and X̂Ci,h,q(∆)
with their respective definitions. Step (iii) follows from the
antecedent υ̂k,q ≤ ŝk · ŝq . Step (iv) rewrites the first sum using
the distributive law (Ah+1)2 · ŝ2h = (Ah+1) · ŝ2h ·1+(Ah+1) ·
ŝ2h ·Ah. Step (v) simply splits the second sum and rearranges
the resulting summands. Step (vi) rewrites the latter two sums
using the expansion of a squared summation (

∑i−1
h xh)

2 =∑i−1
h=1 x

2
h+2

∑i−1
h=1

∑i−1
q=h+1 xhxq , where xh = (Ah+1) · ŝh.

Step (vii) rewrites (a + b)2 = a2 + 2ab + b2 for a = ŝi and
b =

∑i−1
h=1(Ah + 1) · sh. Finally, Step (viii) replaces Ah with

its definition and Step (ix) is Eq. (3).

Next we explain how to obtain Analysis Inputs 1–4.

VII. STATISTICAL INFERENCE

CAA depends on the ability to infer the per-task statistical
parameters êk, ŝk, υ̂k,k, and υ̂k,q , in a robust and economical
manner. Specifically, we require a distribution-agnostic sta-
tistical inference procedure, as execution-time distributions
are expected to vary widely in practice, and incorrectly
assuming the wrong underlying distribution can lead to unsound
results [e.g., 29, Ch. 1]. Additionally, for practical purposes, the
procedure should have modest sampling requirements, meaning
it must provide high-confidence estimates from relatively
small sample sizes. A well-known method that satisfies both
requirements is non-parametric bootstrapping [55]. We briefly
review how it generally works and then apply it to our case.

A. Review: Bootstrap Confidence Intervals
Let X be a random variable with an unknown distribution.

We are interested in estimating a ground-truth parameter θ of
X , such as E[X], V[X], or a similar quantity. Nonparametric
bootstrapping [55] is a classic method for inferring an estimate
θ̃ of θ from a finite sample of X collected during a random
experiment. Crucially, bootstrapping is more robust than simply
computing θ̃ on the given sample, as it approximates the
sampling distribution of θ̃. That is, it assesses how the sample
estimate θ̃ of the true parameter θ varies due to sampling noise,
and accounts for this uncertainty when determining the final
estimate. To this end, bootstrapping with a sample size G and
bootstrap count B works as follows:
B1 Draw an initial sample x1, x2, . . . , xG of G independent

observations of the random variable X . No assumption is
made on the ground-truth distribution of X besides that it
does not change between observations. Thus, the samples
are independent and identically distributed (i.i.d.).

B2 Generate a bootstrap sample x∗
1, x

∗
2, . . . , x

∗
G by randomly

resampling with replacement from the initial sample.
B3 Compute the bootstrap statistic θ̃∗ = f(x∗

1, x
∗
2, . . . , x

∗
G)

on the bootstrap sample (e.g., the mean to estimate E[X]).
B4 Repeat steps B2 and B3 to obtain B bootstrap samples

β1, . . . , βB with corresponding estimates θ̃∗1 , . . . , θ̃
∗
B .

B5 The bootstrap distribution θ̃∗1 , θ̃
∗
2 , . . . , θ̃

∗
B approximates

the sampling distribution of the estimated parameter θ̃.
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Intuitively, the variance of the bootstrap distribution (for
sufficiently large B) is a measure of how “noisy” the inference
process is. More formally, from θ̃∗1 , θ̃

∗
2 , . . . , θ̃

∗
B we can infer a

confidence interval (CI) [e.g., 17, 55] that is likely to contain
the true population parameter θ with arbitrary given confidence.
To compute a γ-CI for θ, where γ is a given level of confidence
(e.g., γ = 0.95 for a 95% CI), we proceed as follows:

P1 Sort the bootstrap estimates θ̃∗1 , . . . , θ̃
∗
B in increasing order.

P2 Let l = (1− γ)/2 and u = 1− l. Find the l-th and u-th
percentiles, denoted Ql and Qu.

P3 The γ-CI for θ is [Ql, Qu].
For sufficiently large G and γ < 1, the γ-CI has the property
that, if the entire bootstrap procedure is repeated multiple
times, then the fraction of inferred γ-CIs that contain the
true value of θ is in expectation at least γ [e.g., 53]. For
example, if we bootstrap a 99% CI (γ = 0.99) with the above
procedure (i.e., steps B1–B5 and P1–P3) 100 times to obtain
100 (different) CIs, then we expect the true θ of the ground-truth
distribution to lie outside of the computed γ-CI only once.

In the context of this paper, the goal is to derive an upper
bound on θ. As the interval [Ql, Qu] is likely to contain
the parameter θ (with the desired confidence γ), we use the
interval’s upper bound as the final estimate: θ̂ ≜ Qu.

B. CAA Input Parameter Inference

A random experiment on a real system is simply a repeated
trial of the system’s execution behavior under predetermined
conditions, producing a sample x1, x2, . . . , xG consisting of
G execution traces. However, there are some subtle nuances
involved in applying bootstrapping to periodic tasks. First, we
must set a fixed horizon (or trace length) H that determines
the length of each trial (i.e., how many jobs are measured).
For example, H could be some number of hyperperiods (e.g.,
in automotive systems with typically short hyperperiods [32]).

Second, recall from Sec. V that the execution cost of each
job is a separate random variable. Each time we record a
trace of execution times (for each job of each task released up
to time H), we collect one observation for each job. We are
thus effectively running many instances of the bootstrapping
procedure simultaneously. The sample size G is the total
number of traces that must be collected.

Third, and crucially, the measurement setup must be a
valid random experiment, ensuring that the i.i.d. assumption
underlying the bootstrapping method is met and that the
sampled distributions are indicative of the real system’s
behavior. For example, to ensure independence, the system and
all relevant parts of its environment can be rebooted (otherwise
reset to an initial state) before a trial is recorded, and the tracing
setup must ensure the absence of any harmful measurement
bias in the observed execution-time distributions.

Finally, job abortion poses a problem as we cannot observe
the full execution requirement of a job when it is aborted. Thus,
if a job Jk,j aborts or does not complete by time H in a given
trace, we conservatively assume that its execution requirement
was Dk,j +1, which safely over-approximates its real demand.

Under these assumptions, let Jk,j(x∗) denote the j-th job
of τk in trace x∗, Jk all jobs of τk in a trace of length H , and
Ck,j(x∗) the execution-time request of Jk,j(x∗).

Bootstrapping the sample mean and standard deviation for
each job following Sec. VII-A results in the upper bounds
Ê[Ck,j ] and σ̂[Ck,j ] for each Jk,j ∈ Jk. Analysis Inputs 1
and 2 are directly computed from these.

êk ≜ max
Jk,j∈Jk

{Ê[Ck,j ]} (6)

ŝk ≜ max
Jk,j∈Jk

{σ̂[Ck,j ]} (7)

Computing Analysis Inputs 3 and 4 is somewhat more
complex, as it involves all pairs of jobs. Using the same sample
x1, x2, . . . , xG underlying Eqs. (6) and (7), we bootstrap a
bound on the sample covariance for each pair of sampled jobs,
denoted Ĉov[Ck,j , Cq,l] for Jk,j ∈ Jk, Jq,l ∈ Jq , and τk, τq ∈ τ
(see Casella and Berger [9] for an extensive introduction to
sample statistics). Finally, Analysis Inputs 3 and 4 are computed
from the pairwise bounds as:

υ̂k,k ≜ max
Jk,j ,Jk,l∈(Jk×Jk), j ̸=l

Ĉov[Ck,j , Ck,l], (8)

υ̂k,q ≜ max
Jk,j ,Jq,l∈(Jk×Jq)

Ĉov[Ck,j , Cq,l]. (9)

The inference procedure is agnostic to practical factors
such as cache behavior, the number of cores, any effects of
cross-core interference, etc., and therefore applies equally on
uniprocessors and within multicore processors under partitioned
scheduling [8]. However, the conducted random experiment
must ensure that the combined effects of all such factors are
adequately reflected in the collected sample, which may require
exploring different scenarios of operation. In this case, if a
system’s stochastic execution behavior is explored through
multiple experiments to test various predetermined scenarios
of operation (e.g., different co-runners or memory stressors,
cache pressure, environmental inputs, etc.), Eqs. (6)–(9) must
reflect the maximum across all experiments.

Even then, no matter how many scenarios are sampled and
how many observations are made, Eqs. (6)–(9) represent a
crucial generalization step: the bootstrapped bounds, rooted in
the observation of finite traces, are lifted to task-level bounds
applicable to all jobs. This step relies on the representative
sampling assumption at the heart of any statistical approach—
the initial sample must accurately reflect the characteristics of
the larger population under analysis—a concept long studied
in both fundamental statistics [33] and measurement-based
probabilistic analysis of real-time systems [15]. Ensuring rep-
resentativeness is a complex challenge, but not specific to non-
parametric bootstrapping and beyond the scope of this paper.

Ultimately, it is important to recognize that no statistical
inference method can provide absolute certainty: there is always
a minuscule, but non-zero chance that a ground-truth parameter
lies outside the statistically estimated range, irrespective of the
statistical method used. For applications that cannot tolerate
such residual risk under any circumstances, classical WCET
analysis remains the only viable option (where available).
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For the wider class of modern systems with more flexible
requirements, however, bootstrapped CIs provide an excellent
means of estimating the ground truth that is statistically rigor-
ous, distribution-agnostic, sample-efficient, and mathematically
well understood. In such systems, it is crucial to understand the
methods and parameters employed to infer the inputs underlying
analysis results. DFP bounds should thus always be reported
and understood in the context of the inference settings used.
We explore the impact of the parameters G, B, and γ on the
DFP bounds through a case study in Sec. IX.

VIII. EVALUATION

We evaluated the accuracy of the proposed CAA and the
baseline CTA [46] methods using synthetically generated
workloads. Given the absence of real-world benchmarks or
standard procedures for generating stochastic task parameters
in the real-time systems community, we explored a wide range
of potential parameters, following a setup similar to [46].
Specifically, we examined various relationships among the
inputs of CTA and CAA to assess their accuracy in producing
DFP bounds across different workload profiles. Starting from
a base setup, we designed four distinct experiments, each
altering a key parameter used to generate synthetic workloads.
For each generated task set, we obtained DFP bounds for the
lowest-priority task τℓ using both CTA and CAA.

Experimental setup. For each combination of the workload-
generation parameters n, Umean, rmax, and cmax defined below,
we randomly generated 5000 periodic task sets with the follow-
ing procedure. For a given task-set size n, we randomly selected
n periods from the set 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000ms,
which are typical in automotive systems [32], and assigned rate-
monotonic priorities and implicit deadlines. Next, for a target
utilization Umean, we used the Dirichlet-Rescale algorithm [24]
to generate n random mean utilization values u1, u2, . . . , un

that sum to Umean. From each mean utilization ui, we inferred
the corresponding mean execution-time bound êi = Ti · ui.

In line with the CTA evaluation [46], the upper bound ŝi on
the standard deviation was selected uniformly at random from
the interval [0.01 · êi, rmax · êi], where rmax is the configurable
maximum ratio of the standard deviation and the mean.

For CAA, we similarly varied the maximum covariance υ̂i,k
between each pair of tasks. This value was selected uniformly
at random from the interval [0, cmax ·

√
ŝ2i · ŝ2k], where cmax is

the configurable covariance coefficient. This range spans from
independent execution (if υ̂i,k = 0) up to covariance equal to
the theoretical upper bound used by CTA (if υ̂i,k =

√
ŝ2i · ŝ2k).

The configuration serving as a reference point for all
subsequent experiments consisted of a task-set size n = 25
with Umean = 0.35 (approximately half of Liu & Layland’s
utilization bound [38] for n = 25). In addition, we set
rmax = 0.2 (which is in the range used in [46]) and cmax = 0.2
(i.e., up to a moderate amount of positive correlation).

Results. Fig. 2 consists of 4×2 plots arranged in four rows 1–4
and two columns A–B. Each row reports the results for one of
the four varying parameters: n, Umean, rmax, and cmax. Plots

in column A report the average DFP values estimated by both
CTA and CAA as a function of the varying parameter, while
column B shows the same underlying data sets as scatter plots.
In particular, column B reports the CAA (x-axis) and CTA
(y-axis) results as one point per task set, directly showing the
magnitudes of the computed DFP values. A color scale in the
far-right legend shows the magnitude of the varied parameter.

Influence of the task-set size n. In the first experiment, we
varied n from 5 to 50 in increments of 5. Fig. 21,A shows
CAA to realize an improvement of roughly one order of
magnitude over the CTA baseline. The gap becomes slightly
more pronounced as n increases. This trend is explained by
Bienaymé’s identity (Fact 2): as CTA is more pessimistic
(ŝi) than CAA (υ̂i,k) on a per-task basis, CTA accumulates
pessimism with each additional higher-priority job. Fig. 21,B
confirms the structural advantage of CAA, as it dominates CTA
not just on average, but for every tested workload.

Influence of the total mean utilization. In the second experi-
ment, we varied the mean utilization Umean from 0.1 to 1.0
in steps of 0.1, as shown in Fig. 22,A. Again, CAA yields a
clear improvement over CTA, with a decreasing improvement
at higher utilizations. This is particularly apparent in Fig. 22,B,
which reveals a fairly consistent offset for lower-utilization
task sets (which naturally also have lower DFPs overall). At
higher utilizations, as DFP approaches the trivial bound of 1, the
difference diminishes. However, workloads with such extremely
high DFPs are likely of little interest in practice.

Influence of standard deviation. Next, we varied the maxi-
mum ratio between standard deviation and mean, rmax, from
0.01 to 0.2 in steps of 0.01. Fig. 23,A and Fig. 23,B show CAA
to consistently offer a roughly one-magnitude improvement
over CTA throughout the evaluated parameter range. At the
same time, DFPs noticeably increase as the standard deviation
rises, which is expected since workloads with more volatile
execution-time distributions are less predictable than those with
lower dispersion in execution times.

Influence of covariance. Finally, we varied cmax from 0.1
(at most weak correlation) to 1 (extreme correlation as upper-
bounded by CTA is possible), thus affecting the range from
which the randomly generated correlation υ̂i,k parameters are
drawn. As anticipated, the plot in Fig. 24,A illustrates that CAA
achieves the greatest improvements if actual correlation is
much lower than CTA’s pessimistic upper bound. At the same
time, Fig. 24,A clearly demonstrates a gradually diminishing
advantage as covariance levels approach very high levels. The
shading in Fig. 24,B confirms this observation, again showing
that CAA is never worse than CTA for any tested workload.

In summary, across all experiments, CAA consistently
provides significantly more accurate DFP estimates than CTA,
often achieving an order-of-magnitude improvement. Next, we
report on a case study in which we explored whether this
advantage persists when task-model parameters are inferred
statistically, rather than derived from idealized (ground-truth)
parameters, which are obviously unknown in practice.
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Fig. 3: Box plots of DFP estimates for τ5 in Table II for varying statistical interference parameters: (a) varying the number of
ground-truth samples G; (b) varying the confidence level γ; and (c) varying the number of bootstrap samples B.

IX. CASE STUDY

We conducted a case study applying the distribution-agnostic
statistical inference method proposed in Sec. VII to a workload
extracted from the WATERS’17 industrial challenge [26]. The
objectives were to (i) serve as a proof of concept and (ii) explore
the impact of statistical inference on DFP estimation accuracy.

The WATERS’17 industrial challenge [26] features an auto-
motive workload deployed on a partitioned multicore processor
under partitioned fixed-priority scheduling. We focused on the
five highest-priority periodic tasks on the challenge system’s
core 2, as summarized in Table II. The challenge description
reports for each task both a maximum and a mean execution
time. Notably, the workload is classically infeasible, as the
reported WCET parameters result in a total utilization greater
than one. However, it is stochastically feasible since the total
mean utilization does not overload the system.

Task Ti Di WCET E[Ci] σ[Ci] Cov[Ci,j , Ci,j′ ]

τ1 2000µs 2000µs 404µs 294µs 25 639.16
τ2 5000µs 5000µs 931µs 635µs 68 4623.84
τ3 20000µs 20000µs 10468µs 6686µs 868 753175.39
τ4 50000µs 50000µs 3084µs 2019µs 244 59796.99
τ5 100000µs 100000µs 9418µs 6465µs 678 459129.35

TABLE II: Task set extracted from the WATERS’17 challenge,
with the assumed ground-truth values (last two columns).

Ground-truth DFP. As the challenge description omits detailed
statistical properties of the workload, we made simplifying
assumptions to allow the ground-truth DFP of τ5 (DFP5) to
be computed exactly. Specifically, we assumed that each task
executes for its reported WCET ci,wc with probability 0.05, and
for its minimum execution time ci,min with probability 0.95.
We set ci,min ≜ E[Ci]−0.05·ci,wc

0.95 , thus ensuring a mean execution
time consistent with the reported values [26]. To keep the com-
putation of DFP5 tractable, we assumed that all tasks are syn-
chronously released and that each task experiences maximum
intra-task correlation, but no inter-task correlation (i.e., tasks
are mutually independent, with inter-task covariances equal
to 0). Under these assumptions, DFP5 = 1.36875× 10−4.

Inference. As explained in Sec. VII, the proposed inference
method uses three parameters: the number of ground-truth
samples G, the confidence level γ, and the number of bootstrap
samples B. We report the DFP estimates computed by CAA

and CTA for τ5 as DFPcaa
G,B,γ and DFPcta

G,B,γ , respectively,
indicating the specific parameters used.

We varied G and B across {1000, 2000, 3000} and γ across
{95, 99, 99.999}, using G = B = 2000 and γ = 99 as the
base configuration. For each parameter combination, we ran
the statistical inference procedure 100 times and observed the
resulting distributions of DFPcaa

G,B,γ and DFPcta
G,B,γ estimates,

which are visualized in Fig. 3. For comparison, we also report
the best attainable DFP for each method, computed with ground-
truth task parameters rather than inferred ones.
Influence of the sample size. Fig. 3(a) shows that both methods
tend towards their respective optimal DFP estimates as G
increases. Importantly, in all trials, the DFP estimates did
not underestimate their respective optima nor the ground-truth
DFP. In fact, using fewer samples renders the predictions
more pessimistic, rather than unsound, which is reassuring.
Additionally, the symmetric nature of the DFPcaa

G,B,γ and
DFPcta

G,B,γ box plots suggests that using the median DFP
estimate from repeated inference attempts is a robust choice.
Influence of the percentile. As expected, increasing γ leads
to more conservative results, as evident in Fig. 3(b) for both
CTA and CAA. This effect is more pronounced in CTA, where
a larger γ amplifies the pessimism in the analysis.
Influence of the bootstrap count. Finally, Fig. 3(c) shows that
the B setting has no significant impact on analysis accuracy
(for the range of values considered here), which is expected,
as discussed by Tibshirani and Efron [55, p. 52-53].

In summary, all estimated DFP values slightly exceeded their
respective optima and, most importantly, the ground-truth DFP.
In other words, not a single attempt at parameter inference
resulted in an unsound DFP prediction. While any measurement-
based approach inherently cannot achieve absolute certainty,
this proof of concept demonstrates the promising potential
of the proposed distribution-agnostic bootstrapping method.
These encouraging initial results emphasize the need for further
studies on real systems with more complex workloads.

X. RELATED WORK

In 2019, Davis and Cucu-Grosjean provided comprehensive
surveys of probabilistic schedulability [16] and timing [15]
analysis techniques. As discussed in Sec. I, this paper is a direct
response to some of the key challenges and open problems
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highlighted by Davis and Cucu-Grosjean. Our proposal, CAA
together with distribution-agnostic nonparametric bootstrapping,
is the first solution to explicitly account for largely unrestricted
inter- and intra-task covariance. Nonetheless, prior work has
explored various approaches to addressing more restricted forms
of execution-time dependence, which we briefly review below.

Hidden Markov models (HMMs) offer a natural approach
to handling execution-time dependencies arising from a task’s
internal state. In particular, Frías et al. [20] and Abeni et al. [1]
use HMMs to address execution-time dependence in periodic
tasks provisioned in constant-bandwidth servers. The applica-
tion of HMMs with continuous Gaussian emission distributions
has been proposed by Friebe et al. [21–23]. Their approach
bounds the deadline-miss probability for a reservation-based
system with private reservations for each task. While the
accuracy of HMMs heavily depends on the quality of the
underlying data, these distributions are likely varying over time,
as pointed out by Friebe et al. [22, 23]. Furthermore, HMMs
can capture a limited degree of intra-task dependence, although
still with independent emission distributions, but cannot account
for inter-task dependence. We note that this line of work studies
the deadline-miss probability in a long-run interpretation [16],
which is a different metric than the DFP considered here.

The problem of unknown dependencies among jobs was
examined by Ivers and Ernst [28], who provided a solution
for fixed-priority preemptive scheduling, under the assumption
that the entire probability distribution for each task is fully
known and that each job follows the same distribution. Their
method leverages copulas (as first used by Bernat et al. [3]
in timing analysis) and Fréchet bounds to derive probabilistic
response-time bounds. In contrast, CAA accounts for covariance
regardless of whether all jobs follow the same distribution,
which is not always the case, and uses only bounds on simple
summary statistics that can be inferred via bootstrapping.

Extreme value theory (EVT) has been applied in statistical
analyses of both measured execution times [14, 36, 37] and
observed response times [41–43] in contexts with dependencies.
Notably, EVT imposes nontrivial restrictions when applied to
a series of dependent observations [13, Ch. 5]. Furthermore,
the distributions must be extremal independent [51] or sta-
tionary [34] for dependent tasks. In contrast, our proposal is
mathematically simpler and distribution-agnostic.

Other approaches considering restricted notions of depen-
dence include von der Brüggen et al.’s analysis of DFP under
EDF scheduling [57], which allows for dependencies among
a small number of subsequent jobs. Liu et al. [39] proposed
independence thresholds, where a per-task threshold splits
a job’s execution cost into a dependent and an independent
part, and provided a related stochastic response-time analysis.
Mills and Anderson [49] designed a multiprocessor scheduling
policy ensuring bounded average-case tardiness despite arbitrary
degrees of dependence, provided that any dependence is limited
to time intervals of bounded length. CAA shares none of these
restrictions: it imposes no limits on the dependent fraction of
a job’s total execution time nor on the maximum separation in
time or job count over which dependencies manifest.

While considering various restricted forms of dependence,
the approaches discussed above (with the exception of [57]) do
not consider the DFP metric. The DFP metric is primarily
analyzed by applying independence-assuming methods to
properly padded pWCET distributions [5] under preemptive
static-priority scheduling. Notably, in 2022, Chen et al. [12]
rectified a mistaken critical-instant assumption common in
earlier DFP analyses. The convolution-based method by Maxim
and Cucu-Grosjean [48] bounds DFP by convolving discrete
pWECT distributions of individual jobs. This method was
improved by Marković et al. [44] with optimal resampling
and more efficient circular convolution. Task-level convolution
was proposed by von der Brüggen et al. [56] as an alternative.
Furthermore, well-known analytical bounds have been used to
bound DFP directly: Chen et al. [10, 11] adapt the Chernoff
bound while von der Brüggen et al. [56] consider Hoeffding and
Bernstein inequalities. The Berry-Esseen theorem was applied
by Marković et al. [45] to estimate response-time distributions.

In a different direction also rooted in independence assump-
tions, Bozhko et al. [4] recently proposed to apply Monte-
Carlo sampling to estimate response-time distributions. Many
more non-analytical methods exist for the periodic task model
[e.g., 7, 18, 19, 40] and interested readers are referred to Davis
and Cucu-Grosjean’s surveys [15, 16] for further details.

XI. CONCLUSION

The field of probabilistic schedulability analysis promises to
provide a sound and accurate characterization of the temporal
behavior of modern real-time embedded systems deployed on
complex hardware platforms with uncertain execution behavior.
Despite significant progress in recent years, important open
problems remain. In particular, Davis and Cucu-Grosjean in
their survey of real-time probabilistic analysis [16] highlight
the need for “analyses [. . . ] that can address dependencies”
as a key unsolved challenge in need of attention.

In response, we have introduced CAA, the first probabilistic
schedulability analysis to explicitly account for task dependen-
cies using bounds on maximum inter- and intra-task covariance.
Using this information, CAA safely estimates a task’s response-
time distribution to upper-bound its DFP, i.e., the risk of missing
a deadline. By design, CAA dominates the earlier CTA [46],
which, while sound in the presence of task dependencies, does
not explicitly analyze them. As demonstrated also empirically,
CTA therefore produces significantly more pessimistic bounds
than CAA. Furthermore, we have addressed the challenge of
obtaining the necessary model parameters through statistical in-
ference and proposed a nonparametric bootstrapping approach,
which was demonstrated in a proof-of-concept case study.

Finally, as Davis and Cucu-Grosjean [16] also identified
computational efficiency as an unresolved challenge, it is worth
noting that CAA offers a closed-form solution that is fast to
compute and uses negligible memory.

CAA presents numerous opportunities for future work. In par-
ticular, it calls for experimental validation in practical settings
with real workloads on complex hardware platforms, as well as
extensions to a broader class of system models and schedulers.
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[22] A. Friebe, F. Marković, A. V. Papadopoulos, and T. Nolte, “Adap-
tive runtime estimate of task execution times using Bayesian
modeling,” in 27th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, (RTCSA),
2021, pp. 1–10.

[23] ——, “Continuous-emission Markov models for real-time
applications: Bounding deadline miss probabilities,” in 29th
IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2023, pp. 14–26.

[24] D. Griffin, I. Bate, and R. I. Davis, “Generating utilization
vectors for the systematic evaluation of schedulability tests,”
in 41st IEEE Real-Time Systems Symposium (RTSS), 2020, pp.
76–88.

[25] G. Grimmett and D. Welsh, Probability: An Introduction.
Oxford University Press, 2014.

[26] A. Hamann, D. Dasar, S. Kramer, M. Pressler, F. Wurst, and
D. Ziegenbein, “WATERS industrial challenge 2017,” in 8th
International Workshop on Analysis Tools and Methodologies
for Embedded and Real-time Systems (WATERS), 2017.

[27] O. Hössjer and A. Sjölander, “Sharp lower and upper bounds
for the covariance of bounded random variables,” Statistics &
Probability Letters, vol. 182, p. 109323, 2022.

[28] M. Ivers and R. Ernst, “Probabilistic network loads with
dependencies and the effect on queue sojourn times,” in 6th
International ICST Conference on Heterogeneous Networking
for Quality, Reliability, Security and Robustness (QShine), 2009,
pp. 280–296.

[29] N. Jayakrishnan, A. Wierman, and B. Zwart, The Fundamen-
tals of Heavy Tails: Properties, Emergence, and Estimation.
Cambridge University Press, 2022, vol. 53.

[30] Y. Jiang and Y. Liu, Stochastic Network Calculus. Springer,
2008, vol. 1.

[31] A. Klenke, Wahrscheinlichkeitstheorie. Springer, 2006, vol. 1.
[32] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world

automotive benchmarks for free,” in 6th International Workshop
on Analysis Tools and Methodologies for Embedded and Real-
time Systems (WATERS), vol. 130, 2015.

[33] W. Kruskal and F. Mosteller, “Representative sampling, iv: The
history of the concept in statistics, 1895-1939,” International
Statistical Review, pp. 169–195, 1980.

[34] M. R. Leadbetter, G. Lindgren, and H. Rootzén, “Conditions for
the convergence in distribution of maxima of stationary normal
processes,” Stochastic Processes and their Applications, vol. 8,

13



no. 2, pp. 131–139, 1978.
[35] E. A. Lee, “The past, present and future of cyber-physical

systems: A focus on models,” Sensors, vol. 15, no. 3, pp. 4837–
4869, 2015.

[36] G. Lima and I. Bate, “Valid application of EVT in timing
analysis by randomising execution time measurements,” in 23rd
IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2017, pp. 187–198.

[37] G. Lima, D. Dias, and E. Barros, “Extreme value theory for
estimating task execution time bounds: A careful look,” in 28th
Euromicro Conference on Real-Time Systems (ECRTS), 2016,
pp. 200–211.

[38] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” Journal of
the ACM, vol. 20, no. 1, pp. 46–61, 1973.

[39] R. Liu, A. F. Mills, and J. H. Anderson, “Independence
thresholds: Balancing tractability and practicality in soft real-time
stochastic analysis,” in 35th IEEE Real-Time Systems Symposium
(RTSS), 2014, pp. 314–323.

[40] J. M. López, J. L. Díaz, J. Entrialgo, and D. García, “Stochastic
analysis of real-time systems under preemptive priority-driven
scheduling,” Real-Time Systems, vol. 40, no. 2, pp. 180–207,
2008.

[41] Y. Lu, T. Nolte, J. Kraft, and C. Norström, “Statistical-based
response-time analysis of systems with execution dependencies
between tasks,” in 15th IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS), 2010, pp.
169–179.

[42] ——, “A statistical approach to response-time analysis of com-
plex embedded real-time systems,” in 16th IEEE International
Conference on Embedded and Real-Time Computing Systems
and Applications (RTCSA), 2010, pp. 153–160.

[43] Y. Lu, T. Nolte, I. Bate, and L. Cucu-Grosjean, “A statistical
response-time analysis of real-time embedded systems,” in 33rd
IEEE Real-Time Systems Symposium, (RTSS), 2012, pp. 351–362.
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