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Abstract—Estimating the worst-case deadline failure probability
(WCDFP) of a real-time task is notoriously difficult, primarily
because a task’s execution time typically depends on prior
activations (i.e., history dependence) and the execution of other
tasks (e.g., via shared inputs). Previous analyses have either
assumed that execution times are probabilistically independent
(which is unrealistic and unsafe), or relied on complex upper-
bounding abstractions such as probabilistic worst-case execution
time (pWCET), which mask dependencies with pessimism. Explor-
ing an analytically novel direction, this paper proposes the first
closed-form upper bound on WCDFP that accounts for dependent
execution times. The proposed correlation-tolerant analysis (CTA),
based on Cantelli’s inequality, targets fixed-priority scheduling and
requires only two basic summary statistics of each task’s ground-
truth execution time distribution: upper bounds on the mean and
standard deviation (for any possible job-arrival sequence). Notably,
CTA does not use pWCET, nor does it require the full execution-
time distribution to be known. Core parts of the analysis have
been verified with the Coq proof assistant. Empirical comparison
with state-of-the-art WCDFP analyses reveals that CTA can yield
significantly improved bounds (e.g., a lower WCDFP than any
pWCET-based method for ≈70% of the workloads tested at
90% pWCET utilization and 60% average utilization). Beyond
accuracy gains, the favorable results highlight the potential of
the previously unexplored analytical direction underlying CTA.

I. INTRODUCTION

Probabilistic analysis of real-time systems holds the promise
of addressing the central challenge of modern hardware and
software architectures: unavoidable uncertainty in the execution
behavior of real-time tasks. Such uncertainty, deeply embedded
in the fabric of modern computing systems, more often than not
precludes meaningful (classical) worst-case analysis, leaving a
stochastic perspective as the only viable option.

One of the most pressing open problems in this space is
the issue of dependent execution times (also referred to as
execution-time correlation). Specifically, when bounding a
task’s worst-case deadline-failure probability (WCDFP), it is
crucial to account for possible dependencies on both previous
activations (intra-task dependence) and other tasks in the system
(inter-task dependence). If such dependencies are ignored, the
WCDFP may be severely under-approximated.

These observations are not new: the lack of independence
in practice was recognized as a safety problem already more
than 25 years ago by Tia et al. [49] in one of the first works
on probabilistic schedulability analysis. Unfortunately, only
little progress has been made on this issue since Tia et al.’s

observation, with Davis and Cucu-Grosjean noting in the clos-
ing remarks of their recent survey [19]: “Issues of dependence
are of great importance in probabilistic schedulability analysis
[...] Analyses are needed that can address dependencies”.

Prior attempts at tackling dependence in state-of-the-art
WCDFP analyses have relied on over-approximation. The
common idea in this line of work is to “pad” the ground-
truth execution-time distributions with “sufficient pessimism,”
to the point that task behavior can be safely assumed to be inde-
pendent. The primary mechanism for realizing such an analysis
in a sound manner is the concept of a probabilistic worst-case
execution time (pWCET) distribution [5, 8, 14, 17, 18], which
can be determined for each task either via static analyses [e.g.,
4, 6, 16, 31] or with measurement-based techniques such as
extreme value theory (EVT) [e.g., 32, 33, 46, 47].

Specifically, the pWCET approach promises that the analysis
may model execution times with independent random variables
following the pWCET distribution, provided the pWCET
distribution is suitably determined [19]. However, a significant
limitation of such independence-assuming analysis (IAA) lies in
its inherent over-approximation of the ground truth, which can
lead to considerable pessimism compared to actual behavior.

This paper. Exploring a fundamentally different direction, we
propose a novel correlation-tolerant analysis (CTA) of WCDFP
under fixed-priority scheduling. CTA is based on Cantelli’s
inequality [9] and departs from the state of the art in three major
ways: first, CTA does not use pWCET, nor does it otherwise
require ground-truth distributions to be pessimistically padded;
second, unlike traditional methods, CTA does not require full
knowledge of the ground-truth distributions, as it uses only
bounds on their means and standard deviations (under any
possible job-arrival sequence); and last but not least, CTA is
safe in the presence of arbitrarily dependent execution times.
Notably, CTA also does not require the degree of inter- or intra-
task correlation to be quantified, which is desirable in practice.

In developing CTA, we make the following contributions:

• We convey the core idea with a simple example (Sec. II).
• From Cantelli’s inequality [9], we derive, and verify with

Coq [13, 41], an upper bound on the sum of random
variables with unknown degrees of correlation (Sec. IV).

• We formally model the execution of a stochastic sporadic
real-time workload under preemptive uniprocessor fixed-
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priority scheduling with a job-abortion policy that discards
incomplete jobs at their deadline (Sec. V).

• Connecting Sec. IV and Sec. V, we obtain CTA (Sec. VI).
• Finally, we report on an empirical evaluation that reveals

CTA to be effective at reclaiming pessimism relative to
pWCET-based baselines in many (but not all) scenarios,
thereby showing CTA to be a promising addition to the
existing portfolio of WCDFP analysis methods.

II. MOTIVATING EXAMPLE

Fig. 1 shows an illustrative example comprised of two tasks
τ1 and τ2 executing on a uniprocessor. Both tasks have identical
periods and deadlines of 10 time units (TUs). Additionally, we
assume their arrivals to be aligned, and that jobs are aborted
upon reaching their deadlines. Task τ1 has higher priority than
task τ2 and thus always executes first.

Let us assume that each job of τ1 executes for

• 1 TU with probability 0.965,
• 3 TUs with probability 0.015, or
• 5 TUs with probability 0.02.

Assume that τ2’s execution depends on the execution of the
previously executed job of τ1 as illustrated in Fig. 1. From the
six depicted scenarios, we can infer that a job of τ2 requires

• 2 TUs with probability 0.975, or
• 8 TUs with probability 0.025.

We refer to these distributions as ground-truth distributions. As
shown in Fig. 1, there are only two scenarios in which τ2’s job
misses its deadline. Consequently, the ground-truth WCDFP
of τ2 is 0.02 = 0.01 + 0.01, denoted WCDFP2 = 0.02.

Now, let us explore three different approaches for calculating
an upper bound on WCDFP.

A. Assuming Independence When There is None

Already in one of the earliest papers on the stochastic
analysis of real-time systems [49], Tia et al. observed that
assuming random variables that model ground-truth behavior
to be independent when they are not may cause the WCDFP to
be under-approximated. This is indeed the case with τ2, since
under an (incorrect) independence assumption, the response-
time distribution of τ2 would be:

• 3 = 1 + 2, with probability 0.940875 = 0.965 · 0.975
• 5 = 3 + 2, with probability 0.014625 = 0.015 · 0.975
• 7 = 5 + 2, with probability 0.0195 = 0.02 · 0.975
• 9 = 1 + 8, with probability 0.024125 = 0.965 · 0.025

While the only two cases resulting in deadline failure are:

• 11 = 3 + 8, with probability 0.000375 = 0.015 · 0.025
• 13 = 5 + 8, with probability 0.0005 = 0.02 · 0.025

Consequently, the independence-assuming WCDFP bound
0.000375+0.0005 = 0.000875 under-approximates the ground-
truth WCDFP (0.02). As this example shows again, to ignore
correlations is to risks unsound WCDFP estimates.
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Fig. 1. Two dependent tasks: τ2’s execution time varies with τ1’s.

B. Safe Over-Approximation with pWCET

The widely studied pWCET approach [17, 19] promises
sound results without having to forego the analytical conve-
niences afforded by independence. Let us next sketch how to
safely upper-bound WCDFP2 in this manner.

The essence of the pWCET idea is to come up with one
execution-time distribution for each task that is sufficiently
“padded” to over-approximate the task’s actual execution-time
distribution in any scenario, even if job execution times are
assumed to be independent. In other words, by injecting
“sufficient pessimism” into each task’s pWCET distribution, it
becomes possible to introduce independence as a simplifying
assumption without jeopardizing soundness.1

When deriving pWCET distributions, there is some degree
of freedom due to the interplay of the “padding.” Multiple
valid pWCET distributions can hence be derived for both tasks;
the following two yield the least pessimistic WCDFP for τ2.2

According to pWCET1, any job of τ1 executes for at most
• 1 TU with probability 0.2,
• 3 TUs with probability 0.4, or
• 5 TUs with probability 0.4.
According to pWCET2, any job of τ2 executes for at most
• 2 TUs with probability 0.3, or
• 8 TUs with probability 0.6.
Given the two pWCETs, we may derive a bound on the

sum pWCET1 + pWCET2 assuming independence (i.e., using
convolution), and thereby obtain as a response-time estimate

• 1 + 2 = 3, with probability 0.06 = 0.2 · 0.3
• 3 + 2 = 5, with probability 0.13 = 0.4 · 0.3
• 5 + 2 = 7, with probability 0.13 = 0.4 · 0.3
• 1 + 8 = 9, with probability 0.13 = 0.2 · 0.6

While the only two cases resulting in deadline failure are:
• 3 + 8 = 11, with probability 0.26 = 0.4 · 0.6
• 5 + 8 = 13, with probability 0.26 = 0.4 · 0.6

1In concurrent work [8], a rigorous, axiomatic definition of pWCET
has been formalized using the Coq proof assistant and formally verified to
enable independence-based reasoning. The pWCET distributions obtained in
the presented example are consistent with the Coq-verified definition [8].

2The entire motivating example, including the complete derivation of
the pWCET distributions, is available online as a Python Jupyter notebook
file [42].
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Thus, any pWCET-based analysis has no choice but to vastly
over-approximate the ground-truth WCDFP (0.02) with 0.53 =
0.26 + 0.26. While independence is a convenient simplifying
assumption, it requires all dependencies to be “masked” by
padding, which results in prohibitive pessimism in this case.

C. Embracing Correlation with CTA

In this paper, we explore a different approach. Suppose that
from measurements we can determine upper bounds on the
expected values and standard deviations of the execution-time
distributions of the two tasks. For example, let us assume the
upper bounds given Table I.

TABLE I
TASK GROUND-TRUTH STATISTICS AND UPPER BOUNDS

Task τ1 τ2

Ground-Truth
Expected Value e1 = 1.11 TUs e2 = 2.15 TUs

Upper Bound on
Expected Value ê1 = 1.12 TUs ê2 = 2.16 TUs

Ground-Truth
Standard Deviation s1 ≈ 0.606 TUs s2 ≈ 0.937 TUs

Upper Bound on
Standard Deviation ŝ1 = 0.61 TUs ŝ2 = 0.94 TUs

As we show later, given these upper bounds ê1, ê2, ŝ1, and ŝ2
on the respective ground-truth statistics, we can upper-bound
the ground-truth WCDFP for the deadline D2 = 10 as follows.

WCDFP2 ≤ (ŝ1 + ŝ2)
2

(ŝ1 + ŝ2)2 + (D2 − (ê1 + ê2))2
≈ 0.05 (1)

As the example demonstrates, an upper bound on the ground-
truth WCDFP of τ2 derived in this way (i.e., using CTA),
which avoids the “pWCET detour,” can be markedly less
pessimistic than the pWCET-based WCDFP bound (0.53)
derived in Sec. II-B, i.e., 0.02 < 0.05 < 0.53. Importantly,
the CTA bound is safe as opposed to the optimistic WCDFP
(0.000875) derived in Sec. II-A, i.e., 0.000875 < 0.02 < 0.05.

In the remainder of this paper, we justify Inequality 1.

III. PROBABILITY THEORY BACKGROUND

We briefly review the needed probability theory background.
Let (Ω,F ,P) be a probability space, with sample space Ω

being the set of all possible outcomes, F ⊆ 2Ω the event space,
where an event is a set of outcomes in the sample space, and
P : F → [0, 1] a probability function. In the following, we let
R denote the reals and R the extended reals (R ≜ R∪{±∞}).

Def. 1 (Random Variable). A random variable X on the prob-
ability space (Ω,F ,P) is a measurable function X : Ω → R
such that {ω ∈ Ω : X(ω) = x} ∈ F for all x ∈ R.

We denote the probability of a random variable X taking a
value x with P[ω ∈ Ω | X(ω) = x] or, more briefly, P[X = x].

We use the following functions defined on random variables.

Def. 2 (Expected value). Given a random variable X , its
expected value E[X] ∈ R is a measure of the central tendency
or average value of the possible outcomes of X:

E[X] ≜
∫
ω∈Ω

X(ω) dP.

The expectation operator E[·] acts linearly on sums of random
variables, which is known as linearity of expectation.

Fact 1 (Linearity of expectation, [e.g., 25, p. 40]). Let X and
Y be two (possibly dependent) random variables. If E[X] and
E[Y ] are finite, then

∀a, b ∈ R, E[a ·X + b · Y ] = a · E[X] + b · E[Y ].

Def. 3 (Covariance). Given two random variables X and Y,
their covariance, denoted by Cov[X,Y ], is a measure of the
degree to which X and Y fluctuate in similar ways.

Cov[X,Y ] ≜ E[(X − E[X]) · (Y − E[Y ])]

Def. 4 (Variance). Given a random variable X , its variance,
denoted by V[X], is a measure of the dispersion or spread of
the possible outcomes of X .

V[X] ≜ Cov[X,X]

Fact 2. Given two random variables X and Y , if V[X], V[Y ]
and Cov[X,Y ] are finite, then

V[X + Y ] = V[X] + V[Y ] + 2 · Cov[X,Y ].

In the following, we write V[X] < ∞ and E[X] < ∞ to
denote that a random variable X has finite variance and mean.
Def. 5 (Standard deviation). Given a random variable X , its
standard deviation σ[X] is the square root of its variance:

σ[X] ≜
√

V[X].

Def. 6 (Conditional Probability). Let A and B be two events in
the probability space (Ω,F ,P) with P[B] > 0. The conditional
probability of event A given event B is denoted P[A|B], where

P[A|B] ≜
P[A ∩B]

P[B]
.

With all basic definitions in place, we next derive an upper
bound on the sum of potentially correlated random variables.

IV. CONCENTRATION INEQUALITY

To lay the foundations for CTA, we first obtain a concen-
tration inequality on the sum of dependent random variables
from a well-known result in probability theory and statistics—
Cantelli’s inequality [9]. The result we prove (Theorem 2) is
a closed-form expression, depending only on the means and
standard deviations of the random variables forming the sum.
All proofs in this section have been verified with the Coq proof
assistant [13], using the MathComp Analysis library [2, 3].
The Coq development is available online [41].

The main problem to be solved is the following.

Problem 1. Given a sum X1 +X2 + . . .+Xn of n potentially
correlated random variables, derive an upper bound B on the
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probability that the sum exceeds a given value t ∈ R, i.e.,
P[
∑n

i=1 Xi > t], using only the expected values and standard
deviations of X1, X2, . . . , Xn:

P
[ n∑

i=1

Xi > t
]
≤ B(t,E[X1], σ[X1], . . . ,E[Xn], σ[Xn]).

To define such a function B, we start with Cantelli’s
inequality, which provides a bound on the probability of a
random variable deviating from its mean.

Theorem 1 (Cantelli’s inequality [9]). For an arbitrary random
variable S such that V[S] < ∞ and E[S] < ∞, and any λ > 0,

P[S − E[S] ≥ λ] ≤ V[S]
V[S] + λ2

.

It will be useful to restate Theorem 1 as follows.

Corollary 1. For an arbitrary random variable S such that
V[S] < ∞ and E[S] < ∞, and any t > E[S],

P[S ≥ t] ≤ V[S]
V[S] + (t− E[S])2

. (2)

Proof. Making the variable change t = λ + E[S], we get
λ = t−E[S] > 0 for t > E[S]. Hence, according to Theorem 1:

P[S ≥ t] = P[S − E[S] ≥ λ] ≤ V[S]
V[S] + λ2

=
V[S]

V[S] + (t− E[S])2
,

which concludes the proof.

Next, we show that the right-hand side of Inequality (2) is a
non-decreasing function w.r.t. E[S] and V[S]. For brevity, we
abbreviate E[S] as e and V[S] as v.

Lemma 1. The function f(e, v) = v
v+(t−e)2 is non-decreasing

w.r.t. both e ∈ R and v ∈ R if e < t and v ≥ 0.

Proof. We must show f(e1, v1) ≤ f(e2, v2) for 0 ≤ v1 ≤ v2
and e1 ≤ e2 < t. Rewrite f as f(e, v) = v · (v + (t− e)2)−1:

v1 · (v1 + (t− e1)
2)−1 ≤ v2 · (v2 + (t− e2)

2)−1

Multiply by (v1 + (t− e1)
2) · (v2 + (t− e2)

2):

v1 · (v2 + (t− e2)
2) ≤ v2 · (v1 + (t− e1)

2)

Subtract v1 · v2 and rearrange:

v1 · (t− e2)
2 ≤ v2 · (t− e1)

2

Since 0 ≤ v1 ≤ v2 and 0 ≤ (t − e2)
2 ≤ (t − e1)

2 given
e1 ≤ e2 < t, the final inequality holds.

In other words, by Lemma 1, it is safe to use Corollary 1 even
if E[S] and V[S] are over-approximated with upper bounds.

Recall from Problem 1 that we seek a bound on a sum
of possibly dependent random variables. Thus let us now
consider S to be that sum, i.e., S =

∑n
i=1 Xi. By Corollary 1

and Lemma 1, we can use Cantelli’s inequality to bound
P[S ≥ t] despite unknown correlations among the terms,

provided we can upper-bound E[S] and V[S]. Let us hence
turn our attention to the problem of finding suitable upper
bounds on E[S] = E[

∑n
i=1 Xi] and V[S] = V[

∑n
i=1 Xi].

The former is trivial: we can efficiently compute E[
∑n

i=1 Xi]
thanks to the linearity of expectation (Fact 1). Importantly, this
holds even for correlated random variables.

The latter requires more elaboration, as the sum of variances
depends on the covariance (recall Fact 2), which in the context
of execution times is difficult to obtain in practice. Therefore,
the next step is to find an upper bound that avoids this
dependency. To this end, we first recall a useful fact.

Fact 3. For two possibly dependent random variables X and Y ,
if V[X] < ∞, V[Y ] < ∞, and Cov[X,Y ] < ∞, then

V[X + Y ] ≤ (σ[X] + σ[Y ])
2
.

Two of possibly many proofs of Fact 3 can be found
in textbooks by Keener [28, Inequality (4.11), p. 71] and
Mukhopadhyay [45, Inequality (3.9.13), p. 150]. From Fact 3,
we obtain the desired bound on V[S].

Lemma 2. Let X1, X2, . . . , Xn be n possibly dependent ran-
dom variables. If Cov[Xi, Xj ] < ∞ for all pairs Xi, Xj , then

V

[
n∑

i=1

Xi

]
≤

(
n∑

i=1

σ[Xi]

)2

.

Proof. By induction on n.
Base case n = 0: trivially, V[0] = 0 ≤ 02.
Induction step: for any arbitrary n ∈ N, assume that:

V

[
n∑

i=1

Xi

]
≤

(
n∑

i=1

σ[Xi]

)2

Then: V

[
n+1∑
i=1

Xi

]
= V

[
n∑

i=1

Xi +Xn+1

]

(i)

≤


√√√√V

[
n∑

i=1

Xi

]
+
√

V[Xn+1]

2

(ii)

≤


√√√√( n∑

i=1

σ[Xi]

)2

+ σ[Xn+1]


2

=

(
n+1∑
i=1

σ[Xi]

)2

,

where Inequality (i) follows from Fact 3, and Inequality (ii)
from the induction hypothesis.

We now have everything in place to state the main concen-
tration inequality, thus solving Problem 1.

Theorem 2. Let X1, X2, . . . , Xn be n possibly dependent
random variables with finite covariances (i.e., Cov[Xi, Xj ] < ∞
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for all pairs Xi, Xj). Define b ≜
∑n

i=1 E[Xi] and a ≜
(
∑n

i=1 σ[Xi])
2. Then, for any t > b, we have

P

[
n∑

i=1

Xi ≥ t

]
≤ a

a+ (t− b)2
.

Proof. We have:

P

[
n∑

i=1

Xi ≥ t

]
(i)

≤
V[
∑n

i=1 Xi]

V[
∑n

i=1 Xi] + (t− E[
∑n

i=1 Xi])2

(ii)

≤ a

a+ (t− E[
∑n

i=1 Xi])2
(iii)
=

a

a+ (t− b)2
,

where Inequality (i) follows from Corollary 1, Inequality (ii)
from Lemmas 1 and 2, and Equality (iii) from Fact 1.

Finally, we observe that the bound is robust with regard to
over-approximation, which is key to making it practical.

Corollary 2. Let X1, X2, . . . , Xn be n possibly dependent
random variables with finite covariances (i.e., Cov[Xi, Xj ] < ∞
for all pairs Xi, Xj). For any êi ≥ E[Xi] and ŝi ≥ σ[Xi], define
b ≜

∑n
i=1 êi and a ≜ (

∑n
i=1 ŝi)

2. Then, for any t > b, we have

P

[
n∑

i=1

Xi ≥ t

]
≤ a

a+ (t− b)2
.

Proof. From the assumption that êi and ŝi are upper bounds,
we have

∑n
i=1 êi ≥

∑n
i=1 E[Xi], and

∑n
i=1 ŝi ≥

∑n
i=1 σ[Xi].

Then, by Theorem 2 and Lemma 1, the claim follows.

In Sec. VI, we will use Corollary 2 as the core of CTA.
As already mentioned, all results in this section have been

formalized and verified with the Coq proof assistant [13], using
the MathComp Analysis library [2, 3]. The initial development
encompassed 750 lines of code (statements and proofs) and
took an experienced Coq user about a week of work to
complete. The results of general interest (e.g., Corollary 1)
have been upstreamed into the MathComp Analysis library,
leaving only about 200 lines of code specific to this paper [41].
The formalization effort was helpful in generalizing arguments
and making all assumptions explicit.

V. GROUND-TRUTH SYSTEM MODEL

We consider a set τ ≜ {τ1, τ2, . . . , τn} of n sporadic tasks
running on a uniprocessor under fixed-priority preemptive
scheduling. Tasks are indexed in order of decreasing priority,
i.e., τ1 has the highest priority, and no two tasks have equal
priority. We assume that, for each task τi, the minimum inter-
arrival time Ti between any two consecutive jobs is known,
as well as its relative deadline Di. We focus on constrained
deadlines, i.e., ∀i, 1 ≤ i ≤ n, Di ≤ Ti. When a job misses its
deadline, it is aborted, i.e., cut off from service and discarded.

We assume discrete time in the following, i.e., the set of
natural numbers N is the time domain (e.g., processor cycles).

Ground-truth behavior. Recall from Sec. III that Ω is the set
of all possible outcomes, i.e., system state evolutions, and that
ω ∈ Ω represents a single evolution. In the context of a given

TABLE II
OVERVIEW OF NOTATION

Symbol Explanation

τ A task set.
τi A task from τ with index i.
Ti The minimum inter-arrival time of τi.
Di Relative deadline of τi.

t ∈ N A point in time.

Ω Sample space of system evolutions.
ω ∈ Ω A sample (particular system evolution) from Ω.
ξ ⊆ Ω Event encompassing all evolutions exhibiting an

identical arrival sequence.
Jξ
i,j The j-th job of τi arriving in ξ.

aξ
i,j Arrival time of Jξ

i,j in ξ.
dξi,j Absolute deadline of Jξ

i,j in ξ.
Ci,j(ω) Execution time of Jξ

i,j in ω (specific to each ω ∈ ξ).

T CIi,t(ω) Carry-in workload at time t in ω, of jobs of τi
CIi,t(ω) Carry-in workload at time t in ω, of jobs of τi and

higher-priority jobs.
T Wi,[t1,t2)(ω) Workload of τi arriving within [t1, t2) in ω.
Wi,[t1,t2)(ω) Workload of jobs of τi and higher-priority jobs in

interval [t1, t2) in ω.
Ei,t,∆(ω) Processor demand w.r.t. τi in interval [t, t+∆) in ω.
Ri,j(ω) Truncated response time of Jξ

i,j in evolution ω.
WCDFP i Worst-case deadline failure probability of τi.

f̂(·) Upper bound on the given function f(·).

evolution ω ∈ Ω, the j-th job of τi arriving in ω is denoted
with Ji,j(ω), its arrival time with ai,j(ω), absolute deadline
with di,j(ω) ≜ ai,j(ω) +Di, and execution time with Ci,j(ω).

Following Bozhko et al. [7], we use the notion of an arrival
sequence ζ(t, ω) ≜ {Ji,j(ω) | ai,j(ω) = t}, which for a given
ω ∈ Ω maps each t ∈ N to the jobs that arrive at time t in ω.

Recall that F ⊆ 2Ω denotes the event space of Ω. Building
on ζ(t, ω), we define Ξ ⊆ F to be the set of all possible disjoint
events of Ω such that, for each event ξ ∈ Ξ, ξ encompasses
all evolutions in Ω with identical arrival sequence, that is,
∀ω, ω′ ∈ ξ,∀t ∈ N, ζ(t, ω) = ζ(t, ω′), and P[ξ] > 0. In the
context of a fixed event ξ ∈ Ξ, we can drop ω for brevity and
simply write Jξ

i,j , aξi,j , and dξi,j since they are the same for
all ω ∈ ξ. In contrast, Ci,j(ω) may vary for different ω ∈ ξ.
For notational convenience, we define Ci,j(ω) to be zero in
the case that fewer than j jobs of τi arrive in evolution ω.

Table II summarizes the adopted notation.

Workload characterization. To formalize the stochastic exe-
cution behavior while acknowledging potential dependencies
among jobs, we next introduce several well-known concepts
commonly encountered in the schedulability analysis literature,
adapted to our context and notation.

For simplicity, we define the following functions in the
context of a fixed, individual possible event ξ ∈ Ξ, thus fixing
the arrival times and limiting randomness to execution costs.

Def. 7. The cumulative demand of jobs of τi issued within
the time interval [t1, t2) ⊂ N in evolution ω ∈ ξ is defined as

T Wi,[t1,t2)(ω) ≜
∑

j : aξ
i,j∈[t1,t2)

Ci,j(ω).
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Def. 8. The workload of jobs of τi and higher-priority jobs in
an interval [t1, t2) ⊂ N in evolution ω ∈ ξ is given by

Wi,[t1,t2)(ω) ≜
∑

1≤k≤i

T Wk,[t1,t2)(ω).

Let σ(ω, t) denote the job (if any) scheduled at time t in
evolution ω ∈ ξ, and |·| the cardinality of the enclosed set.

Def. 9. Let Si,j(ω, t) denote the total service received by a
job Jξ

i,j up to (but not including) time t, in evolution ω ∈ ξ.

Si,j(ω, t) ≜
∣∣∣{t′ ∈ [0, t) | σ(ω, t′) = Jξ

i,j

}∣∣∣
Next, we define the carry-in workload of jobs of τi, i.e., the

remaining execution time of jobs of τi at time instant t. Recall
that incomplete jobs are aborted at their deadline and Di ≤ Ti

for each τi ∈ τ . Thus, at most one job of each higher-priority
task contributes carry-in workload at any time.

Def. 10. The carry-in workload at time t due to task τi in
evolution ω ∈ ξ is:

T CIi,t(ω) ≜

{
Ci,j(ω)− Si,j(ω, t), if ∃j ∈ N : aξi,j ≤ t < dξi,j
0, otherwise.

Def. 11. The total carry-in workload of higher-priority jobs
affecting τi at time t ∈ N in evolution ω ∈ ξ is:

CIi,t(ω) ≜
∑

1≤k<i

T CIk,t(ω).

To complement the concept of carry-in work, we analogously
characterize the amount of work that has been discarded.

Def. 12. The aborted workload of task τi at time t in evolution
ω ∈ ξ is:

KWi(ω, t) ≜

{
Ci,j(ω)− Si,j(ω, t) if ∃j ∈ N : dξi,j = t

0 otherwise.

Def. 13. Let Ki,[t1,t2)(ω) be the total unfinished execution time
of jobs of τi and higher-priority jobs that are aborted due to
missing their deadline during [t1, t2) in ω ∈ ξ.

Ki,[t1,t2)(ω) ≜
∑

t′∈[t1,t2)

∑
1≤k≤i

KWk(ω, t
′)

Taken together, we obtain the total processor use affecting τi.

Def. 14. Let Ei,t,∆(ω) be the processor demand relevant to
task τi in the time interval [t, t+∆) in system evolution ω ∈ ξ.

Ei,t,∆(ω) ≜ CIi,t(ω) +Wi,[t,t+∆)(ω)−Ki,[t,t+∆)(ω)

Def. 15. The ground-truth response time RT i,j(ω) of Jξ
i,j in

evolution ω ∈ ξ, assuming t = aξi,j , is:

RT i,j(ω) ≜ inf {∆ | ∆ > 0 ∧ Ei,t,∆(ω) ≤ ∆} .

RT i,j(ω) is the least positive time duration ∆ from the
job’s arrival time aξi,j until a point in time aξi,j +∆ at which
there are no more pending higher-or-equal-priority jobs. If the
set is empty, the infimum operator results in +∞. If fewer

than j jobs of τi arrive in ξ, then the response time is zero by
definition. We assume that arriving jobs have a positive cost.

Def. 16. The ground-truth deadline failure probability (DFP)
of Jξ

i,j in a possible event ξ ∈ Ξ is:

P[RT i,j > Di | ξ] =
P[{ω ∈ ξ | RT i,j(ω) > Di}]

P[ξ]
.

To bound DFP (Def. 16), we can simplify Def. 15 since it
is only relevant whether the response time exceeds Di [7].

Def. 17. The truncated response time Ri,j(ω) of Jξ
i,j in system

evolution ω ∈ ξ is:

Ri,j(ω) ≜ min (Di + 1,RT i,j(ω)) .

Clearly, P[Ri,j(ω) > Di] = P[RT i,j(ω) > Di] for all
ω ∈ ξ, but the right-hand side of Def. 17 is always computable,
whereas the right-hand side of Def. 15 may be +∞. Following
Bozhko et al. [7], we arrive at the objective of our analysis.

Def. 18 ([7, Def. 24]). The ground-truth worst-case deadline-
failure probability (WCDFP) of τi is:

WCDFP i ≜ max
ξ∈Ξ

max
j∈N

{P[Ri,j > Di | ξ]} .

Our main contribution is a closed-form bound on Def. 18
that holds irrespective of any correlations among job costs.

VI. CORRELATION-TOLERANT ANALYSIS

We next present the paper’s main contribution, CTA, in
two steps. In Sec. VI-A, we first derive an upper bound
on WCDFP i by over-approximating Def. 14. Thereafter, in
Sec. VI-B, we connect this bound with the concentration in-
equality from Sec. IV, from which we obtain the proposed CTA.

A. An Upper Bound on WCDFP

We begin by deriving bounds on the main components of the
truncated ground-truth response time (Def. 17). Again, for ease
of understanding, we first consider an individual event ξ ∈ Ξ,
thus fixing all arrival times and limiting randomness to Ci,j(ω).

For ω ∈ ξ, we upper-bound T CIi,t(ω) with

T̂ CIi(ω, t) ≜

{
Ci,j(ω) if ∃j ∈ N : aξi,j ≤ t < dξi,j
0 otherwise

(3)

and define
ĈIi,t(ω) ≜

∑
1≤k<i

T̂ CIk(ω, t).

Eq. (3) accounts for the entire cost Ci,j(ω) of the last job
arriving before t, if any, irrespective of the actual schedule.

Lemma 3. For all t ∈ N and ω ∈ ξ: ĈIi,t(ω) ≥ CIi,t(ω).

Proof. Trivially, T̂ CIi(ω, t) ≥ T CIi,t(ω) since Si,j(ω, t) is
non-negative (Def. 9), and thus:

ĈIi,t(ω) =
∑

1≤k<i

T̂ CIk(ω, t) ≥
∑

1≤k<i

T CIk,t(ω) = CIi,t(ω).
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Next we derive upper bounds on the workload accumulation
functions T Wi,[t1,t2)(ω) and Wi,[t1,t2)(ω). Given ω ∈ ξ, let
T̂ Wi,[t1,t2)(ω) be the sum of the first

⌈
t2−t1
Ti

⌉
execution times

of jobs of τi arriving at or after t1 in ω ∈ ξ:

T̂ Wi,[t1,t2)(ω) ≜
∑

k≤j≤k+
⌈

t2−t1
Ti

⌉Ci,j(ω)

where Jξ
i,k is the first job arriving at or after t1. The

corresponding aggregate bound is

Ŵi,[t1,t2)(ω) ≜
∑

1≤k≤î

T Wk,[t1,t2)(ω).

Lemma 4. For all t1, t2 ∈ N such that t1 < t2 and all ω ∈ ξ:

Ŵi,[t1,t2)(ω) ≥ Wi,[t1,t2)(ω)

Proof. From the assumption of sporadic tasks, it follows that
a task τi can release at most

⌈
t2−t1
Ti

⌉
jobs within a time

interval [t1, t2), and hence T̂ Wi,[t1,t2)(ω) ≥ T Wi,[t1,t2)(ω)

for each τi. Thus, Ŵi,[t1,t2)(ω) =
∑

1≤k≤i T̂ Wk,[t1,t2)(ω) ≥∑
1≤k≤i T Wk,[t1,t2)(ω) ≜ Wi,[t1,t2)(ω).

Next, we define a simplified upper bound R̂i,j(ω,∆) on the
ground-truth response time for any ω ∈ ξ, assuming t = aξi,j .

R̂i,j(ω,∆) ≜ ĈIi,t(ω) + Ŵi,[t,t+∆)(ω) (4)

Our next objective is to prove that R̂i,j(ω,∆) implies a
bound on the ground-truth DFP, which requires additional setup.

Lemma 5. For all ∆ ∈ (0, Di] and ω ∈ ξ, if Ri,j(ω) > Di,
then R̂i,j(ω,∆) > ∆.

Proof. By Def. 17, Ri,j(ω) > Di implies ∆ < Ei,t,∆(ω) for
all ∆ ∈ (0, Di]. From Lemmas 3 and 4 and since ∀t1, t2 ∈ N,
Ki,[t1,t2)(ω) ≥ 0, we further have ∆ < Ei,t,∆(ω) ≤ ĈIi,t(ω)+

Ŵi,[t,t+∆)(ω). Thus, by Eq. (4), ∆ < R̂i,j(ω,∆).

As the next stepping stone, we relate the ground-truth DFP
of any Jξ

i,j in ξ to a simplified upper bound using R̂i,j(ω,∆).

Lemma 6. For all ξ ∈ Ξ, τi ∈ τ , j ∈ N, and ∆ ∈ (0, Di]:

P[Ri,j > Di | ξ] ≤ P
[
R̂i,j(∆) > ∆ | ξ

]
Proof. From Lemma 5, we have

∀ω ∈ ξ,Ri,j(ω) > Di ⇒ R̂i,j(ω,∆) > ∆,

which implies

{ω ∈ ξ | Ri,j(ω) > Di} ⊆
{
ω ∈ ξ | R̂i,j(ω,∆) > ∆

}
,

and

P[{ω ∈ ξ | Ri,j(ω) > Di}] ≤ P
[
{ω ∈ ξ | R̂i,j(ω,∆) > ∆}

]
,

and hence, by dividing both sides by P[ξ], we obtain

P[Ri,j > Di | ξ] ≤ P
[
R̂i,j(∆) > ∆ | ξ

]
.

Note that Lemma 6 holds for all ∆ ∈ (0, Di], and thus in
particular also for the ∆ ∈ (0, Di] that minimizes the bound.
Finally, we obtain an upper bound on WCDFP i.

Def. 19. Let ŴCDFP i be defined as follows.

ŴCDFP i ≜ max
ξ∈Ξ

max
j∈N

min
∆∈(0,Di]

{
P
[
R̂i,j(∆) > ∆ | ξ

]}
Theorem 3. ∀τi ∈ τ : WCDFP i ≤ ŴCDFP i

Proof. Follows from Def. 18 and Lemma 6:

WCDFP i ≜ max
ξ∈Ξ

max
j∈N

{P[Ri,j > Di | ξ]}
(i)

≤ max
ξ∈Ξ

max
j∈N

min
∆∈(0,Di]

{
P
[
R̂i,j(∆) > ∆ | ξ

]}
= ŴCDFP i

where (i) follows from Lemma 6.

B. Applying the Correlation-Tolerant Concentration Inequality

Theorem 2 lets us bound the probability of a sum of corre-
lated random variables by only considering upper bounds on
each random variable’s expected value and standard deviation.
Theorem 3 shows that WCDFP i is upper-bounded by

max
ξ∈Ξ

max
j∈N

min
∆∈(0,Di]

{
P
[
R̂i,j(∆) > ∆ | ξ

]}
,

where R̂i,j(∆) is a finite sum of possibly dependent random
variables. We now put these pieces together.

First, observe that, to safely bound P
[
R̂i,j(∆) > ∆ | ξ

]
for

a particular ξ ∈ Ξ, we require only the following bounds:
• êξ,i — an upper bound on the expected execution time of

any job of τi in ξ, i.e., ∀j ∈ N, êξ,i ≥ maxj∈N E[Ci,j | ξ],
where E[Ci,j | ξ] ≜

∑
c∈N c · P[Ci,j = c | ξ];

• ŝξ,i — an upper bound on the standard deviation of τi’s ex-
ecution time in ξ, i.e., ∀j ∈ N, ŝξ,i ≥ maxj∈N σ[Ci,j | ξ],
where σ[Ci,j | ξ] ≜

√
E[(Ci,j − E[Ci,j | ξ])2 | ξ].

For brevity, we let êξ ≜ (êξ,1, . . . , êξ,n) and similarly ŝξ ≜
(ŝξ,1, . . . , ŝξ,n) denote vectors of per-task bounds, and define

α(i,x,∆) ≜ xi +

i−1∑
h=1

xh ·
(⌈

∆

Th

⌉
+ 1

)
,

where x is a vector such as êξ or ŝξ.
Finally, we use the concentration inequality from Sec. IV.

Lemma 7. For all τi ∈ τ , ξ ∈ Ξ, and any ∆ ∈ (0, Di], if
0 < α(i, êξ,∆) < ∆, then:

P
[
R̂i,j(∆) > Di | ξ

]
≤ α(i, ŝξ,∆)2

α(i, ŝξ,∆)2 + (∆− α(i, êξ,∆))2
.

Proof. Starting from Eq. (4), we obtain:

P
[
R̂i,j(∆) > ∆ | ξ

]
= P

[
ĈIi,t + Ŵi,[t,t+∆) > ∆ | ξ

]
(i)

≤ α(i, ŝξ,∆)2

α(i, ŝξ,∆)2 + (∆− α(i, êξ,∆))2

where Inequality (i) follows from Corollary 2.
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Lemma 7 is close to what we want, but still applies to individ-
ual arrival sequences. Next, we eliminate ξ from the inequality.
To this end, suppose we are given the following bounds:

• êi — an upper bound on the expected execution time of
any job of τi in any ξ ∈ Ξ, i.e., êi ≥ maxξ∈Ξ êξ,i, and

• ŝi — an upper bound on the standard deviation of the
execution time of any job of τi in any ξ ∈ Ξ, i.e., ŝi ≥
maxξ∈Ξ ŝξ,i.

Again, we let ê ≜ (ê1, . . . , ên) and ŝ ≜ (ŝ1, . . . , ŝn) denote
vectors of the just-defined per-task bounds.

Lemma 8. For all τi ∈ τ , ξ ∈ Ξ, and any ∆ ∈ (0, Di], if
0 < α(i, ê,∆) < ∆, then:

α(i, ŝξ,∆)2

α(i, ŝξ,∆)2 + (∆− α(i, êξ,∆))2

≤ α(i, ŝ,∆)2

α(i, ŝ,∆)2 + (∆− α(i, ê,∆))2

Proof. Note that α(i, ŝξ,∆) ≤ α(i, ŝ,∆) due to definition of
α(i, ·,∆) and since, by definition,

∀τi ∈ τ, ŝi ≥ max
ξ∈Ξ

ŝξ,i.

Similarly, α(i, êξ,∆) ≤ α(i, ê,∆) since

∀τk ∈ τ, êi ≥ max
ξ∈Ξ

êξ,i.

The claim then follows by Lemma 1.

Theorem 4 (Correlation-Tolerant WCDFP Analysis). For all
τi ∈ τ and any ∆ ∈ (0, Di], if 0 < α(i, ê,∆) < ∆, then:

WCDFP i ≤
α(i, ŝ,∆)2

α(i, ŝ,∆)2 + (∆− α(i, ê,∆))2
.

Proof. Starting from Theorem 3, we have:

WCDFP i ≤ ŴCDFP i

(i)
= max

ξ∈Ξ
max
j∈N

min
∆⋆∈(0,Di]

{
P
[
R̂i,j(∆

⋆) > ∆⋆ | ξ
]}

(ii)

≤ max
ξ∈Ξ

max
j∈N

{
P
[
R̂i,j(∆) > ∆ | ξ

]}
(iii)

≤ max
ξ∈Ξ

max
j∈N

{
α(i, ŝξ,∆)2

α(i, ŝξ,∆)2 + (∆− α(i, êξ,∆))2

}
(iv)

≤ max
ξ∈Ξ

max
j∈N

{
α(i, ŝ,∆)2

α(i, ŝ,∆)2 + (∆− α(i, ê,∆))2

}
(v)
=

α(i, ŝ,∆)2

α(i, ŝ,∆)2 + (∆− α(i, ê,∆))2

Equality (i) is Def. 19. Inequality (ii) follows since ∆ ∈ (0, Di]
and from the definition of min. Inequality (iii) follows from
Lemma 7 for ∆ > α(i, êξ,∆), which holds since we have ∆ >
α(i, ê,∆) as a premise and ∀ξ ∈ Ξ, α(i, ê,∆) ≥ α(i, êξ,∆).
Similarly, Inequality (iv) holds by Lemma 8 for ∆ > α(i, ê,∆),
which is our premise. Finally, Equality (v) follows trivially since
ξ and j no longer appear in the term being maximized.

Theorem 4 establishes the soundness of CTA, but it is not
obvious from Theorem 4 that CTA offers any improvements

over existing pWCET-based methods. To explore this aspect, we
conducted an empirical evaluation comparing CTA with IAA.

VII. EVALUATION

We report on experiments comparing our proposed method,
referred to as CTA in the following, with two IAA baselines:

• Berry-Esseen— a lower bound on WCDFP derived by
Marković et al. [40] from the Berry-Esseen theorem; and

• Chernoff — an upper bound on WCDFP proposed by
Chen et al. [10] based on the Chernoff bound.

Recall from Sec. II that the baselines and CTA approach the
analysis of each task τi ∈ τ quite differently. The IAA baselines
employ pWCETi, a distribution that over-approximates all
conceivable scenarios of operation of τi [8, 19]. In contrast,
CTA relies only on êi and ŝi, as established in Sec. VI-B.

The real-time systems literature presently offers no guidance
on how, in real workloads, the summary statistics used by CTA
relate to obtainable pWCET distributions. We, therefore, chose
to investigate a broad spectrum of possible relationships in
our study to give an account of how CTA might perform for
many possible workload types. For this purpose, we designed
a base setup that we refined into four experiments. Each of
these experiments perturbs one of the key parameters used to
generate synthetic workloads, as discussed next.

A. Experimental Setup

For each combination of the analyzed workload-generation
parameters n, Uwc, Uavg, and rmax, all defined in the following,
we randomly generated 500 sporadic task sets.

Each task set was generated as follows. Given the desired
task-set size n, we randomly selected n periods T1, T2, . . . , Tn

from the set {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000} (all in
milliseconds), which are commonly found in automotive
systems [29]. We assigned all tasks rate-monotonic priorities.
Next, given a target utilization Uwc, we used the Dirichlet-
Rescale algorithm [24] to pick n random utilization values
uwc
1 , uwc

2 . . . , uwc
n summing to Uwc. Mimicking the experi-

mental setup of Bozhko et al. [7], we considered uwc
i to

be the expected utilization according to pWCETi, that is,
uwc
i = E[pWCETi]/Ti and Uwc =

∑n
i=1 E[pWCETi]/Ti,

where pWCETi denotes τi’s pWCET distribution.
Each task τi’s pWCETi was generated following a normal

distribution with mean E[pWCETi] = uwc
i · Ti, and a standard

deviation selected uniformly at random from the interval
[0.01 · E[pWCETi], 0.25 · E[pWCETi]]. To provide a rationale
for the chosen maximum standard deviation, in a normal
distribution with mean µ = 100 and standard deviation
σ = 0.25 · 100, 95% of the samples fall within [50, 150].
After generating the standard deviation and expected value, we
discretized pWCETi into four to eight discrete values, while
preserving the targeted mean and standard deviation, to ensure
that the Chernoff method can be computed efficiently.

As CTA relies on upper bounds on the true expected value
and standard deviation of each task’s execution-time distribution
(in any arrival sequence), we also defined an average utilization
Uavg =

∑n
i=1 u

avg
i =

∑n
i=1 êi/Ti, where êi is the upper
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bound on the expected execution time of τi as specified in
Sec. VI-B. Given a target Uavg, naturally it must hold that
Uavg ≤ Uwc overall, and for each task τi, u

avg
i ≤ uwc

i . Hence,
we randomly generated n individual uavg

i values summing to∑n
i=1 u

avg
i = Uavg, once more using the Dirichlet-Rescale

algorithm while setting the respective uwc
i as an upper bound

for each uavg
i . For each task, êi was simply set to êi = uavg

i ·Ti.
The upper bound ŝi on the ground-truth standard deviation

was chosen uniformly at random from the interval [0.01 ·
êi, r

max · êi], where rmax denotes a configurable maximum
ratio between the generated standard deviation and mean.

Base setup. The base configuration used as a starting point
for all experiments consisted of n = 25 tasks per task set
with Uwc = 0.9 and Uavg = 0.2. The gap between Uwc and
Uavg matches the intuition sketched in Sec. II that pWCET
distributions tend to significantly overestimate the average
execution behavior of dependent tasks. The maximum ratio
of the ground-truth standard deviation was rmax = 0.25,
analogously to the generated pWCET distributions.

B. Interpretation of Results

The point of comparison is the WCDFP bound reported by
each of the three methods for the lowest-priority task (i.e.,
the one subject to maximal interference). In the following
discussion, and in particular in Figs. 2–5, three relationships
among the bounds obtained with the CTA, Berry-Esseen, and
Chernoff methods are of particular interest.

• CTA < Berry-Esseen: This condition indicates that CTA
yields a better (i.e., lower) bound than any possible IAA
method since it attains a WCDFP bound below the lower
bound on WCDFP provided by Berry-Esseen.

• Berry-Esseen < CTA < Chernoff : In this case, CTA
demonstrates the potential to deliver better results than
some IAA methods—in particular, CTA attained a lower
bound than the Chernoff method—but there might exist
IAA methods more accurate than CTA since the bound
reported by CTA exceeds the Berry-Esseen lower bound.

• Chernoff < CTA: This outcome indicates the case where
CTA does not offer any advantages over the state of the
art, since it provides a more conservative (pessimistic)
WCDFP bound than the Chernoff method.

In addition to these summary categories, we also report
scatter plots directly relating CTA and Chernoff , exhibiting the
involved numerical magnitudes, as explained in more detail
shortly. We next report on the results of the four experiments,
focusing on high-level trends and major factors that affect CTA.

C. Experiment 1: Influence of the Task Set Size

In the first experiment, we varied the number of tasks n
from 5 to 50, in increments of 5. The results are shown in
Fig. 2. Consider the plot at the top first. As the number of
tasks in the task set increases, the relative advantage of the
CTA method over the IAA baselines improves, going from 50%
certainly better results (n = 5, case CTA < Berry-Esseen) to
more than 80% certainly better results (n = 50).

5 10 15 20 25 30 35 40 45 50
Number of tasks (n)

0

100

200

300

400

500

Nu
m

be
r o

f s
am

pl
es

CTA > Chernoff
Berry-Esseen < CTA < Chernoff
CTA < Berry-Esseen

10010 110 210 310 410 510 610 710 810 910 10

CTA

100

10 1

10 2

10 3

10 4

10 5

10 6

10 7

10 8

10 9

10 10

Ch
er

no
ff

 5.00
10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00

Fig. 2. Experiment 1: Varying n. Top: Number of samples for which CTA
provides better results than any possible IAA method (green), a better result
than Chernoff but undecided w.r.t. IAA in general (yellow), a worse result
than Chernoff (red). Bottom: Scatter plot of all WCDFP estimates given by
CTA (X-axis) and Chernoff (Y-axis). A point above the diagonal indicates that
CTA provides a better result. A point’s shade indicates its value of n.

The observed trend is explained by the linearity of expecta-
tion (Fact 1). Since the expected value of each task’s pWCET
distribution exceeds that of its ground-truth distribution, IAA
methods accumulate pessimism with each added higher-priority
job that has to be considered. In contrast, the total average
utilization is not impacted by n. This highlights a significant
structural advantage of CTA, which benefits from the fact that
expected values are unaffected by dependence, a factor that
IAA methods are not equipped to consider.

Next, consider the scatter plot at the bottom of Fig. 2, which
shows WCDFP estimates provided by the CTA and Chernoff
methods. The results for all task set sizes (n) are combined
and distinguished according to the color scale indicated in the
legend. Points above the diagonal line represent instances where
CTA provided a better WCDFP estimate than the Chernoff
method. Conversely, points below the diagonal indicate cases
where Chernoff is preferable.

While we observe that CTA yields better WCDFP estimates
in a significant number of analyzed task sets, it is noteworthy
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Fig. 3. Experiment 2: Varying Uwc. The figure is organized like Fig. 2.

that, when Chernoff outperforms CTA, its estimates seem to
exhibit more breadth, covering a range of probabilities from
10−3 to 10−10, unlike CTA’s estimates, which fall within the
narrower 10−4 to 10−3 range. This discrepancy arises because
CTA, a simple closed-form bound, relies solely on êi and
ŝi, parameters that remain within a static range of values
in this experiment. In contrast, Chernoff taps into the shape
of pWCET distributions using a more intricate optimization
process [10]. This result implies a potential area for future
exploration: enhancing CTA by integrating more details about
the underlying ground-truth distribution could be promising.

D. Experiment 2: Varying Total Expected pWCET Utilization

The second experiment varied the expected pWCET utiliza-
tion, Uwc, from 0.8 to 1 in increments of 0.02. The results are
shown in Fig. 3. The plot at the top of Fig. 3 reveals that the
relative merit of CTA compared to the IAA baselines improves
with the increase in Uwc. This trend is expected because,
as the pessimism in the pWCET distributions progressively
increases relative to the unchanging Uavg from the base setup,
CTA’s benefit becomes more pronounced. Conversely, when
Uwc is reduced, the analysis problem becomes simpler for
IAA methods. As a result, for the lowest evaluated Uwc value
(Uwc = 0.8), Chernoff offers better WCDFP bounds for more
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Fig. 4. Experiment 3: Varying Uavg. The figure is organized like Fig. 2.
Top: An additional category shows the number of samples for which CTA and
Chernoff both report a WCDFP of 1 (black).

than 50% of the tested task sets. Overall, Fig. 3 shows a clear
trend: CTA is less attractive in settings where IAA methods are
not challenged, and clearly preferable to any IAA method when
pWCET distributions are subject to significant pessimism.

In the bottom plot of Fig. 3, we notice that, once again,
due to the invariant êi and ŝi parameters, all WCDFP bounds
provided by CTA fall within [10−4, 10−2], while the Chernoff
estimates converge to 1 as Uwc increases.

E. Experiment 3: Influence of the Average Utilization

In the third experiment, we varied the average total utilization
Uavg from 0.05 to 0.9 in increments of 0.05. The results are
shown in Fig. 4. In the plot at the top of the figure, the CTA
method demonstrates a relatively consistent rate of success
in identifying superior WCDFP estimates up to a utilization
level of ≈ 0.65. Beyond this point, however, the performance
of CTA sharply declines until it is unable to identify a single
better estimate at a utilization level of ≈ 0.85.

This trend is not unexpected. As the average utilization in-
creases, each task’s pWCET becomes more representative of the
ground-truth distribution, implying greater task independence.
Consequently, the CTA method, which tolerates correlation but
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uses a comparably coarse concentration inequality, becomes
increasingly pessimistic for the underlying system.

Interestingly, the fraction of workloads for which the
Chernoff method outperforms CTA (i.e., the width of the “red
band”) does not change substantially across the entire range.
Instead, a new category emerges, namely workloads for which
both Chernoff and CTA report a WCDFP of 1 (black), i.e.,
difficult workloads that defied effective analysis.

The bottom plot of Figure 4 provides further insight into
the significant impact of average utilization on the WCDFP
estimates provided by CTA. Lower Uavg values entail smaller
êi values, favoring the concentration inequality at the heart
of CTA. As Uavg increases, êi values also rise, resulting in
estimated probabilities ranging from 10−5 to 1.

F. Experiment 4: Influence of the Maximum Standard Deviation

In the fourth experiment, we varied rmax from 0.01 to 0.25
in steps of 0.01. To put this into perspective, consider a normal
distribution with mean µ = 100. For σ = 0.1 · 100, 95% of
the samples will fall within [80, 120], for σ = 0.01 · 100, it is
[98, 102], and as mentioned, for σ = 0.25 · 100, it is [50, 150].

In the top plot of Fig. 5, we observe that the number
of superior WCDFP estimates produced by CTA remains
consistent across the entire considered range. For each point,
CTA yields a better WCDFP estimate than any possible IAA
method for approximately 350 out of 500 analyzed task sets.

However, it would be wrong to conclude that rmax has
no impact on CTA. In the bottom plot, CTA’s estimated
probabilities span from 10−5 to 10−3, increasing with the rising
maximum standard deviation. This trend intuitively follows
from the foundation of CTA, Cantelli’s inequality. Looking at
Theorem 2, we observe that, by maintaining a constant expected
value (as is the case with our baseline Uavg) and increasing
variation (as performed in this experiment), the contribution
of the term involving the expected execution cost diminishes.
As a result, the bound tends towards 1 as rmax increases.

These observations underscore that, unsurprisingly, the
accuracy of the WCDFP bounds generated by CTA is quite
sensitive to both Uavg and rmax. Overall, our evaluation shows
CTA to be complementary to existing IAA methods: in many
cases, CTA can provide bounds better than any possible IAA
method (i.e., when pWCETs are inherently pessimistic), but in
settings inherently favoring IAA (i.e., pWCETs without much
structural pessimism), CTA offers only limited improvements.

VIII. RELATED WORK

Comprehensive surveys by Davis and Cucu-Grosjean [17, 19]
offer an extensive assessment of probabilistic schedulability and
timing techniques, often highlighting two issues that are central
to this paper: accounting for dependent tasks in probabilistic
analysis, and effectively estimating the WCDFP.

Ivers and Ernst [27] investigated the problem of unknown
dependencies among the execution times of jobs in a given,
fixed arrival sequence, exploring the use of copulas, originally
used in timing analysis by Bernat et al. [6]. Ivers and Ernst
presented a solution for systems under fixed-priority preemptive
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Fig. 5. Experiment 4: Varying rmax. The figure is organized like Fig. 2.

scheduling, assuming availability of the entire probability
distribution for each task. Their method uses copulas and
Frechet bounds to model relationships among distributions,
deriving probabilistic response-time bounds. In comparison,
CTA operates under a different premise, assuming sporadic
tasks, and uses only bounds on each task’s expected execution
time and standard deviation in any arrival sequence (rather
than full distributions, as in Ivers and Ernst’s approach [27]).

Markov models have also been employed to handle execution
time dependencies in real-time systems. Frías et al. [20] and
Abeni et al. [1] used hidden Markov models (HMMs) for
periodic tasks with dependent execution times provisioned
in constant bandwidth servers. Further, Friebe et al. [21–23]
proposed the application of continuous Gaussian emission
distributions in HMMs, and suggested an approach to bound the
deadline-miss probability in a reservation-based system where
each task is confined to a private reservation. The accuracy of
Markov models depends heavily on the data used for model
identification, and as observed by Friebe et al. [22, 23], such
distributions are likely changing over time. We also note that
the deadline-miss probability estimated in this line of work
considers a long-frequency interpretation [19], which differs
from the WCDFP metric addressed in this paper. Moreover,
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while Markov models can capture intra-task dependencies well,
inter-task dependencies remain a challenging problem.

The dependence problem has also been considered in
the context of EVT and its application in measurement-
based statistical analysis of execution times [15, 32, 33] and
response times [35–37]. While EVT-based analyses have been
extensively used in research and practice, they nonetheless are
subject to some noteworthy limitations. EVT works under the
assumption that the statistical limit laws hold for a given set
of samples [12, Ch. 5, pp. 92–93]. The sample size required to
obtain a good agreement between the empirical and theoretical
distributions heavily depends on the degree of correlation,
i.e., highly correlated sequences require a much larger dataset
than weakly correlated ones. To analyze dependent tasks,
assumptions of stationarity [30] or extremal independence [48]
of the analyzed distributions must be met.

Several approaches tackled the dependency problem by
introducing specific structural assumptions on how execution
times may relate. Mills and Anderson [44] proposed a schedul-
ing policy that allows for stochastic execution-time demands
with arbitrary degrees of dependence limited to pre-specified
time intervals of bounded length. von der Brüggen et al. [51]
proposed an approach for approximating the WCDFP under
EDF that allows for dependencies in a bounded number of
subsequent jobs. Liu et al. [34] proposed a stochastic response-
time analysis that introduces the concept of an independence
threshold, i.e., a per-task threshold that splits each job’s
execution cost into a dependent and a (presumed) independent
part. In this paper, we do not impose any limitations or
constraints on the nature or magnitudes of dependencies.

Except for work by von der Brüggen et al. [51], the just-
cited approaches do not address WCDFP estimation, which
has been primarily examined in the context of fixed-priority
scheduling using pWCET-based IAA methods. There has been
much progress in this direction in recent years: von der Brüggen
et al. [50] adapted the Hoeffding and Bernstein inequalities
for WCDFP estimation; Chen et al. [10] derived an IAA
method from the Chernoff bound, which we compared CTA
to in Sec. VII; Marković et al. [39] developed an optimal
resampling and an efficient circular-convolution algorithm for
IAA methods; and Bozhko et al. [7] proposed an approach
rooted in Monte-Carlo sampling. Most recently, Chen et al. [11]
rectified a mistaken critical-instant assumption found in several
IAA methods, and Marković et al. [40] applied the Berry-
Esseen theorem to estimate the range of a task’s response-
time distribution, which we adopted as a baseline in Sec. VII.
Complementing the studies cited so far, which for the most part
consider fully-preemptive fixed-priority uniprocessor schedul-
ing, there also exist a number of additional IAA methods
applicable to other workload models [e.g., 26, 38, 43, 52].

CTA departs from the IAA tradition: instead of relying
on pWCET distributions to mask any correlation with pes-
simism [8], CTA works directly with bounds on simple
summary statistics of the ground-truth behavior such that
arbitrary, unknown correlation is tolerated.

IX. CONCLUSION

We have proposed a new method, CTA, for safely estimating
the WCDFP of sporadic real-time tasks under preemptive fixed-
priority scheduling. CTA offers two major innovations: first, it
is robust in the presence of arbitrary, unknown dependencies
among execution times, and second, it does not rely on
pWCET as a building block. Instead, CTA requires only bounds
on the mean and standard deviation of each task’s ground-
truth execution-time distribution (in any arrival sequence).
Mathematically, CTA is a consequence of Cantelli’s Inequality,
which previously had not been applied to probabilistic real-
time systems. We have verified with Coq that the concentration
inequality at the heart of CTA, Corollary 2, does indeed hold
in the presence of dependent random variables, as claimed.

Empirically, our evaluation has shown that CTA effectively
reduces analysis pessimism when pWCET distributions over-
estimate the expected ground-truth execution time, which
is generally impossible to avoid due to the guarantees that
pWCET must provide for IAA [8]. Conversely, CTA becomes
comparatively less effective as the difference between ground-
truth distributions and pWCET diminishes. Overall, CTA
complements existing methods by providing significantly
improved bounds for many, but not all, tested workloads.

More generally, the CTA idea is broadly applicable beyond
our setting since Corollary 2 is policy-agnostic and could
be readily adapted to, for instance, global multiprocessor
scheduling. Partitioned multicore scheduling, in particular,
does not cause any conceptual issues: CTA applies as-is on
each core. Cross-core interference (e.g., via shared caches or
memory buses) will manifest in the ground-truth execution-
time distributions of the workloads on each core. Our analysis
remains sound, provided the bounds on the means and standard
deviations correctly reflect the effects of cross-core interference.
It is worth noting that CTA is particularly well suited for future
extensions targeting locking-related delays, which are inherently
not independently distributed (and thus challenging for IAA).

CTA opens the door to many interesting possibilities for
future work. In practical terms, it is reasonable to expect that
high confidence bounds on means and standard deviations will
be much easier to obtain (and with substantially fewer samples)
than full pWCET distributions. It will be interesting to validate
CTA in conjunction with measurement-based approaches on a
real hardware platform. Analytically, it is striking that CTA,
by considering bounds on only two simple summary statistics
(mean and standard deviation) and making no further assump-
tions about the ground-truth distributions, already manages
to provide insights complementary to state-of-the-art pWCET-
based methods. It stands to reason that substantially more
advanced tools from probability theory can be brought to bear
in a similar way, with the promise of even better bounds where
the initial CTA, as developed in this paper, is still less effective
(e.g., high average utilization). In general, methods that account
for task dependencies warrant much further attention.
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[41] F. Marković, P. Roux, S. Bozhko, A. V. Papadopoulos, and
B. B. Brandenburg, “Coq-verified proof of the correlation-
tolerant concentration inequality,” 2023. [Online]. Available:

https://doi.org/10.5281/zenodo.8215125
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