
From Intuition to Coq: A Case Study in
Verified Response-Time Analysis

of FIFO Scheduling
Kimaya Bedarkar Mariam Vardishvili Sergey Bozhko Marco Maida Björn B. Brandenburg

Max Planck Institute for Software Systems (MPI-SWS)

Abstract—Response-time analysis (RTA) is a key technique
for the analysis of (not only) safety-critical real-time systems.
It is hence crucial for published RTAs to be safe (i.e., correct),
but historically this has not always been the case. To ensure
the trustworthiness of RTAs, recent work has pioneered the
use of formal verification. The PROSA open-source project, in
particular, relies on the COQ proof assistant to mechanically check
all proofs. While highly effective at eradicating human error,
such formalization and automatic validation of mathematical
reasoning still faces barriers to more widespread adoption as
most researchers active today are not yet accustomed to the
use of proof assistants. To make this approach more broadly
accessible, this paper presents a case study in the verification of
a novel RTA for sporadic tasks under FIFO scheduling using
the COQ proof assistant. The RTA is derived twice, first using
traditional, intuition-based reasoning, and once more formally in
a style that highlights the similarity to the intuitive argument. The
verified RTA is of interest in itself: experiments with synthetic
workloads based on an automotive benchmark show the new RTA
to clearly outperform a prior RTA for FIFO scheduling. The paper
further explores the performance of FIFO scheduling relative to
traditional fixed-priority and earliest-deadline-first approaches,
showing that FIFO scheduling can benefit lower-rate tasks.

I. INTRODUCTION

The defining characteristic of real-time systems is that their
constituent processes must meet timing constraints. Especially
in safety-critical systems, such timing constraints are typically
strict and subject to a priori validation. A common approach to
this end is the use of a response-time analysis (RTA) [30, 33] to
bound the worst-case response times of time-critical processes.

RTAs have been developed for a large variety of scheduling
policies and workload characteristics. Published RTAs differ
in many details large and small, but they all share one trait: it
is inherent in their intended use that they must be sound. The
reason is obvious—if a flawed RTA is used to analyze a safety-
critical system, an incorrect (i.e., optimistic) response-time
“bound” could undermine the desired safety assurances.

Alas, there is ample evidence that the literature on real-
time systems, despite all efforts and critical peer-review, has
harbored a nontrivial number of flawed analyses over the years
(e.g., [14, 18, 28, 32]), with new refutations still continuing
to appear on a regular basis (e.g., [29, 53]). To counteract
this regrettable trend, recent work has started using formal
verification methods, in particular the COQ proof assistant [1],
to minimize the risk of human error in timing analyses intended
for critical systems [9, 10, 12, 13, 23–25, 28, 40, 47].

As we argue in more detail in Sec. II-C, this is a necessary
and promising reaction. While formal, machine-checked proofs
arguably should have been adopted decades ago [21, 51], it is
only recently that advances in tooling [1], libraries [39], and
educational materials [46] have made such an approach viable
at broader scale and for a broader audience.

Even then, formal verification still comes with a nontrivial
learning curve. Its widespread adoption is further hindered
by the fact that many researchers active today have little to
no experience in using proof assistants. The situation is also
not helped by the observation that few, if any, of the above-
cited papers are aimed at novice users not yet accustomed to
formalized mathematics and machine-checked proofs.

Motivated by these circumstances, and in the hope of
furthering the use of proof assistants in the analysis of real-time
systems, we present a case study in the verification of a novel
RTA for first-in-first-out (FIFO) scheduling. To provide an easy-
to-follow, self-contained example, we derive the proposed RTA
twice, first in a traditional style rooted in intuitive reasoning,
and then formally such that its correctness argument can be
checked with the COQ proof assistant.
Why FIFO? Under FIFO scheduling, or, equivalently, first-
come-first-served (FCFS) scheduling, jobs are executed simply
in order of their arrival times, disregarding any differences
in priority or urgency. Compared to the fixed-priority (FP)
or earliest-deadline-first (EDF) policies, FIFO cannot match
their hard-real-time schedulability [11, 17]. Nonetheless, FIFO
scheduling is a common choice in the design of simple, low-
cost embedded systems and device drivers, in model-based
design [43, 44], in the Linux kernel [7], and real-time packet-
switching and processing [22, 37].

The key reason to adopt FIFO is its simplicity, which mani-
fests in various aspects. FIFO scheduling is (1) straightforward
to implement, given that it only requires the management of
a list of jobs. Since jobs are executed in arrival order, (2) no
preemption occurs, greatly reducing the necessary bookkeeping
code in the OS, context-switch overheads, cache-related delays,
and the total state space of the system.

Moreover, (3) FIFO has remarkably low scheduling over-
heads, as a scheduling decision happens only once per job,
and the only operation performed—extracting the head element
from a FIFO queue—takes negligible time. In addition, the
scheduler can remain completely loop-free and thus (4) takes
constant time. In contrast, obtaining a constant-time scheduler

1

https://people.mpi-sws.org/~bbb/papers/details/rtss22

is generally not possible with EDF scheduling, while for FP
scheduling it requires limiting the number of priorities to a
constant number. FIFO’s inherent simplicity also makes it
(5) ideally suited for implementation in hardware. Finally,
FIFO (6) exhibits no scheduling anomalies w.r.t. execution
times on both uni- and multiprocessors [4] and (7) is trivially
starvation-free (i.e., every job eventually completes, unless
intentionally dropped), which ensures bounded tardiness [38].

For these reasons, FIFO finds widespread use in real-time
systems, especially in the case of non-periodic workloads
(e.g., as commonly found in energy-constrained devices that
maximize the time spent in low-power sleep states [3, 52]). It
may therefore come as a surprise that the existing real-time
literature on this pervasively used policy is remarkably sparse.

Related work. While FIFO scheduling has been extensively
explored from a stochastic perspective in queuing theory (e.g.,
[6, 27, 41]), the policy has received only limited attention by the
real-time systems community. An RTA for distributed systems
using FIFO was proposed by George and Minet [26] more than
two decades ago. A much more recent analysis of uniprocessor
FIFO scheduling by Altmeyer et al. [4] focuses mainly on
periodic tasks with offsets. Offset tuning, in particular, has been
shown to be highly effective for achieving high schedulability
under FIFO scheduling if all tasks are periodic [42]. Altmeyer
et al. also proposed a simple RTA for sporadic tasks under
FIFO scheduling, which however applies only if all tasks have
constrained deadlines and no deadlines are missed [4]. Davis
et al. proposed a schedulability analysis for CAN messages
in a network with both FIFO and FP nodes and studied
the detrimental effect of FIFO queuing on hard real-time
schedulability [19]. FIFO queuing has also been studied in the
analysis of real-time Ethernet variants [20, 49], and can be
characterized using network calculus [8]. Finally, for soft real-
time multiprocessor systems, Leontyev and Anderson derived
tardiness bounds for global FIFO scheduling [38].

This paper. We make three contributions in this paper. First, in
Sec. II, we propose a novel uniprocessor RTA for sporadic tasks
under FIFO scheduling. The proposed RTA is substantially
more flexible than the state of the art, along two dimensions.
For one, it applies to tasks with arbitrary deadlines [36],
rather than just constrained deadlines. Furthermore, all of
the above-cited analyses support only well-structured arrival
processes described by a scalar parameter, namely a period
or job minimum inter-arrival time. In contrast, our new RTA
supports arbitrary arrival curves [31], which can express a
wide range of irregular and bursty arrival processes.

Our second and main contribution, presented in Secs. III–
V, is a case study explaining how we verified the proposed
RTA with the COQ proof assistant. Our formal proof rests
on the semantic foundations provided by the PROSA open-
source project [2, 12] and uses its abstract RTA (ARTA)
framework [10]. We review each of these elements assuming
no prior familiarity (Sec. III), detail how we instantiated ARTA
to obtain the verified RTA (Sec. IV), and then reflect on lessons
learned, possible alternatives, and future extensions (Sec. V).

Finally, we report on an empirical evaluation of the proposed
RTA in Sec. VI. Experiments on synthetic workloads based
on the Bosch automotive benchmark due to Kramer et al. [35]
show the new RTA to compare favorably with the state of
the art [4]. Additionally, we report on an exploration of the
performance of FIFO relative to FP and EDF scheduling.

In conclusion, this paper provides a case study in formalized
mathematics in the real-time systems domain, by example of
a novel RTA for FIFO scheduling that is of interest in itself.

II. A RESPONSE-TIME ANALYSIS OF FIFO SCHEDULING

To begin, we introduce our system model and then derive
an RTA for FIFO from first principles.

A. System Model

We employ a discrete time model, and let T = N denote
the time domain and ε , 1 the indivisible least unit of time.

The workload is a set of n sporadic real-time tasks τ ,
{τ1, τ2,, τn}. Each task τi , (Ci, Di, αi) has a worst-case
execution time Ci, a relative deadline Di, and an arrival-
bound function αi(∆). The role of αi(∆) is to upper-bound
the number of activations of τi in any time window of length ∆.
At each activation, a task releases a corresponding job, i.e.,
the job arrives and is enqueued for execution. The j-th job
of the i-th task is denoted by Ji,j and is characterized by its
arrival time ai,j , an absolute deadline di,j = ai,j +Di, and a
cost ci,j with 0 ≤ ci,j ≤ Ci. Jobs do not self-suspend. Arrival
times are unknown a priori, but comply with αi(∆):

∀t,∀∆, |{Ji,j | t ≤ ai,j < t+ ∆}| ≤ αi(∆). (1)

The request-bound function RBF i(∆) , αi(∆)·Ci bounds the
total cost of all jobs of τi arriving in any interval of length ∆.

We study ideal unit-speed uniprocessors, which means that,
at any instant, the processor is either idle or exactly one job
is scheduled and receives one unit of processor service. Any
overheads are included in each task’s cost parameter Ci.

According to the FIFO scheduling policy, a job Jh,k has
higher-or-equal priority than another job Ji,j if Jh,k arrives no
later than Ji,j (i.e., ah,k ≤ ai,j). Tie-breaking between equal-
priority jobs is arbitrary, i.e., the analysis is correct regardless
of which tie-breaking policy is used. The schedule is assumed
to be work-conserving: the processor never idles if a pending—
i.e., arrived, but yet not completed—job is available.

Since FIFO naturally constrains the processor to complete
each scheduled job without preemption, the preemption policy
does not affect the response time of jobs. Therefore, we
impose no restriction on whether (or at what times) jobs
may be preempted. Jobs may further access shared resources
such as shared data structures, which we similarly do not
explicitly model since FIFO’s run-to-completion semantics
trivially ensure mutual exclusion.

B. FIFO Response-Time Analysis

With the system model in place, we next introduce a
response-time bound for the FIFO scheduling policy with
arbitrary deadlines and arbitrary arrival curves. Intuitively, a

2

job’s response time under FIFO scheduling is fairly obvious—it
is simply the job’s own execution time plus that of all still-
pending, earlier-arrived jobs. However, the modeling flexibility
afforded by arbitrary arrival curves and the possibility that jobs
may finish past their deadline make it somewhat less trivial to
determine the set of “all still-pending, earlier-arrived jobs,” as
a large backlog of pending jobs may have built up over time.

Our analysis therefore relies on the busy-window principle, a
classic concept in real-time scheduling [5, 18, 30, 33, 36] that
allows starting the analysis from a moment of zero backlog.
Intuitively, the busy window of an arbitrary job Ji,j is a time
interval (i.e., a window) in which the processor continuously
executes only higher-or-equal-priority jobs delaying Ji,j or
Ji,j itself (i.e., the processor is busy). More precisely, Ji.j’s
busy window is the longest such interval. Clearly, Ji,j’s busy
window ends only after (or with) the completion of Ji,j .

Now, job Ji,j’s response time can be bounded as follows.
Suppose Ji,j’s busy window starts at time ts, and let A ,
ai,j − ts denote Ji,j’s relative arrival time within its busy
window, as illustrated in Fig. 1. As already noted, at every
point in Ji,j’s busy window, Ji,j is either itself executing or
incurring interference due to the execution of jobs that arrived
prior to (or together with) Ji,j . It follows that every interfering
job necessarily arrives no earlier than at time ts and no later
than at time ai,j , i.e., during the interval [ts, ts+A]. Therefore,
the interference bound function

IBF (A) =

(∑
τk∈τ

RBF k(A+ ε)

)
− Ci (2)

upper-bounds the delay incurred by job Ji,j . Note that IBF (A)
includes the task under analysis τi in the summation to account
for self-interference by earlier jobs of the same task. Conversely,
since Ji,j does not interfere with itself, its cost Ci is subtracted.
The “+ε” in Eq. (2) is necessary because the interval under
consideration [ts, ts +A] is closed, i.e., |[ts, ts +A]| = A+ ε.

The above bound on interference can be used to calculate
a lower bound on the service received by a job in its busy
window. In the busy window, consider a time t > ai,j after the
job’s arrival, and define its offset relative to ai,j as F , t−ai,j .
Since the total interference incurred by Ji,j during the interval
[ts, t) = [ts, ts +A+ F) is capped at IBF (A), it follows that
Ji,j must have received at least A + F − IBF (A) units of
service by time t (if it did not already complete prior to t). Since
Ji,j requires at most Ci units of service, solving Ci = A+F−
IBF (A) yields a response-time bound: Ji,j completes no later
than F = IBF (A) + Ci − A =

(∑
τk∈τ RBF k(A+ ε)

)
− A

time units after its arrival, as illustrated in Fig. 1.

Unfortunately, this response-time bound is not directly useful
since it depends on the relative arrival time A, which is
unknown a priori. To obtain a general response-time bound,
we must determine the value of A for which F is maximized.

To this end, observe that A is an offset within Ji,j’s busy
window; the space of possible values of A is thus bounded by
the maximum busy-window length. To bound the length of the

<latexit sha1_base64="CabA8AnjhcaO1Ih1svZ+P7HcSBo=">AAAB6HicdVDLSgMxFM3UV62vqks3wSJ0NWTqjFN3FTcuW7APaIeSSTNtbCYzJBmhlH6BGxeKuPWT3Pk3pg9BRQ9cOJxzL/feE6acKY3Qh5VbW9/Y3MpvF3Z29/YPiodHLZVkktAmSXgiOyFWlDNBm5ppTjuppDgOOW2H4+u5376nUrFE3OpJSoMYDwWLGMHaSI2rfrGE7Mqlj85diGwPVaueZ4jv+67nQMdGC5TACvV+8b03SEgWU6EJx0p1HZTqYIqlZoTTWaGXKZpiMsZD2jVU4JiqYLo4dAbPjDKAUSJNCQ0X6veJKY6VmsSh6YyxHqnf3lz8y+tmOqoGUybSTFNBlouijEOdwPnXcMAkJZpPDMFEMnMrJCMsMdEmm4IJ4etT+D9pVWznwnYbbqlWXsWRByfgFJSBA3xQAzegDpqAAAoewBN4tu6sR+vFel225qzVzDH4AevtEwvPjQs=</latexit>

A

<latexit sha1_base64="NNy/ipmwaoKH02oiOHQ0WJPNaww=">AAAB6HicdVDLSgMxFM3UV62vqks3wSJ0NWSmrZ1lQRCXLdgHtEPJpJk2NpMZkoxQhn6BGxeKuPWT3Pk3pg9BRQ9cOJxzL/feEyScKY3Qh5Xb2Nza3snvFvb2Dw6PiscnHRWnktA2iXksewFWlDNB25ppTnuJpDgKOO0G06uF372nUrFY3OpZQv0IjwULGcHaSK3rYbGEbFStuY4DkV2p1GuuZ4jreY6HoGOjJUpgjeaw+D4YxSSNqNCEY6X6Dkq0n2GpGeF0XhikiiaYTPGY9g0VOKLKz5aHzuGFUUYwjKUpoeFS/T6R4UipWRSYzgjrifrtLcS/vH6qQ8/PmEhSTQVZLQpTDnUMF1/DEZOUaD4zBBPJzK2QTLDERJtsCiaEr0/h/6Tj2s6lXW1VS43yOo48OAPnoAwcUAcNcAOaoA0IoOABPIFn6856tF6s11VrzlrPnIIfsN4+Afd7jP0=</latexit>

F

<latexit sha1_base64="XIz+9owmpMkaxzfPdtL7sbSIyDU=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JIUY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzgwg3LFrbkLkHXi5aQCOZqD8ld/GLM04gqZpMb0PDdBP6MaBZN8VuqnhieUTeiI9yxVNOLGzxanzsiFVYYkjLUthWSh/p7IaGTMNApsZ0RxbFa9ufif10sxvPEzoZIUuWLLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNMp2RC81ZfXSfuy5l3V6vf1SqOax1GEMziHKnhwDQ24gya0gMEInuEV3hzpvDjvzseyteDkM6fwB87nD2S8jc0=</latexit>

ts

<latexit sha1_base64="j3WMpao2SeVCPo4O37QWSqVSvU8=">AAAB+HicdVDLSsNAFJ3UV62PRl26GSxC3YQkBm13VUF0V8E+oA1lMp20QycPZiZCDf0SNy4UceunuPNvnLQRVPTAwOGce7lnjhczKqRpfmiFpeWV1bXiemljc2u7rO/stkWUcExaOGIR73pIEEZD0pJUMtKNOUGBx0jHm1xkfueOcEGj8FZOY+IGaBRSn2IklTTQy/0AyTGV6fX55ax6djTQK6Zh27VavQ5Nw5xDEce27WMHWrlSATmaA/29P4xwEpBQYoaE6FlmLN0UcUkxI7NSPxEkRniCRqSnaIgCItx0HnwGD5UyhH7E1QslnKvfN1IUCDENPDWZxRS/vUz8y+sl0q+5KQ3jRJIQLw75CYMyglkLcEg5wZJNFUGYU5UV4jHiCEvVVUmV8PVT+D9p24Z1Yjg3TqVRzesogn1wAKrAAqegAa5AE7QABgl4AE/gWbvXHrUX7XUxWtDynT3wA9rbJxQlkqU=</latexit>

IBF (A)

<latexit sha1_base64="Qmvv02ODQYGTkC9HZwe5WX/0mQU=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSL0ICWRoh4LXjxWsB/QhrLZbtq1m03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dtbWNza3tgs7xd29/YPD0tFxy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvp357SeujYjVA04S7kd0qEQoGEUrtWk/ExeP036p7FbdOcgq8XJShhyNfumrN4hZGnGFTFJjup6boJ9RjYJJPi32UsMTysZ0yLuWKhpx42fzc6fk3CoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z+umGN74mVBJilyxxaIwlQRjMvudDITmDOXEEsq0sLcSNqKaMrQJFW0I3vLLq6R1WfWuqrX7WrleyeMowCmcQQU8uIY63EEDmsBgDM/wCm9O4rw4787HonXNyWdO4A+czx8unI9m</latexit>ai,j

<latexit sha1_base64="NZNnzPGRxHxrJP18WG/nQloohAU=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBahBymJFPUiFHrxWMF+QBvCZrtp12426e6mUEJ/hxcPinj1x3jz37htc9DWBwOP92aYmefHnClt299WbmNza3snv1vY2z84PCoen7RUlEhCmyTikez4WFHOBG1qpjntxJLi0Oe07Y/qc789oVKxSDzqaUzdEA8ECxjB2kgu8VJ2+TRDd6juMa9Ysiv2AmidOBkpQYaGV/zq9SOShFRowrFSXceOtZtiqRnhdFboJYrGmIzwgHYNFTikyk0XR8/QhVH6KIikKaHRQv09keJQqWnom84Q66Fa9ebif1430cGtmzIRJ5oKslwUJBzpCM0TQH0mKdF8aggmkplbERliiYk2ORVMCM7qy+ukdVVxrivVh2qpVs7iyMMZnEMZHLiBGtxDA5pAYAzP8Apv1sR6sd6tj2VrzspmTuEPrM8fdOqRLA==</latexit>

ci,j = Ci

time
job executesjob waitsbusy-window prefix

Fig. 1: Worst-case scenario for the job Ji,j under analysis. Ji,j’s busy
window starts at time ts with the arrival of a higher-priority job, Ji,j

arrives at time ai,j = ts + A, and finishes at time ai,j + F after
executing for ci,j = Ci time units. Interfering higher-priority jobs
execute for IBF (A) time units in total during [ts, ts +A+ F).

busy window, consider the least positive constant L such that

L =
∑
τk∈τ

RBF k(L). (3)

If such an L exists, which is the case in non-overloaded systems,
then the total workload generated in an interval of length L
does not exceed the amount of work the processor can carry
out in the interval, which implies instants with zero backlog
are spaced at most L time units apart. In a non-overloaded
system, a busy window’s length is hence bounded by L.

Nonetheless, the resulting search space 0 ≤ A < L is still
too large since L can have a very large magnitude in practice
(e.g., if parameters are expressed in processor cycles). To further
reduce the search space, observe that different values of A can
map to the same value of IBF (A) since the underlying arrival
curves are step functions. It hence suffices to consider only
relative arrival times that map to distinct values of IBF (A).
After these two reductions, we obtain a sparse search space

A , {A < L | ∃τk ∈ τ, RBF k(A) 6= RBF k(A+ ε)} (4)

within which it is feasible to perform an exhaustive search. Let
R denote the search result, i.e., the least positive value s.th.

∀A ∈ A, ∃F, A+ F =
∑
τk∈τ

RBFk(A+ ε) ∧ F ≤ R. (5)

Equivalently, R = maxA∈A{
(∑

τk∈τ RBF k(A+ ε)
)
− A}.

The general response-time bound for FIFO scheduling with
arbitrary deadlines and arbitrary arrival curves follows.

Theorem 1. If a finite bound L on the maximum busy-window
length exists, then any job Ji,j of any given task τi ∈ τ will
finish execution by time ai,j +R.

C. The Need for Verification

FIFO is a fairly simple policy, and as there are no surprises in
Theorem 1, the proposed RTA may seem readily plausible to an
experienced scholar of real-time systems. Nonetheless, it is still
necessary to rigorously justify its correctness: in the past, there
have been far too many cases where intuitive results initially
appeared correct, only later to be found subtly flawed [12].

Case in point, both the classic CAN analysis [18, 50] and
several results on self-suspending tasks [14]—results that were
widely believed to be correct for many years, in some cases
even decades—are infamous examples of incorrect RTAs that

3

in terms of technique and style of derivation (i.e., appeal to
intuition) do not substantially differ from Theorem 1.

So should Theorem 1 be trusted? Even though FIFO is
simple, there is still opportunity for mistakes large and small.
Consider Eq. (2): does it really account for all self-interference
and possible ties in priority, even if multiple jobs of a bursty
task arrive at the same time? Do Eqs. (3) and (4) properly take
into account the effects of all push-through blocking that arises
in the absence of preemptions, which felled the original CAN
analysis [18]? Are A and F offsets or interval lengths, and
are the corresponding analysis windows half-open or closed?
From own experience, these details can be quite confusing and
all too easily cause off-by-one errors—e.g., is it indeed A+ ε
in Eq. (5)? Similarly, what if in Eq. (4) the steps of RBF k
were instead given by RBF k(A− ε) 6= RBF k(A)? Chances
are it would seem just as plausible.

To mitigate the risk of human error, the traditional approach
has been to rely on “pen-and-paper” proofs and peer review.
However, experience shows that peer reviewers, despite their
best efforts, cannot reliably spot all correctness issues [12]. In
particular, if the claimed results seem plausible enough, and
if the provided “proofs” really are just convincingly sounding,
well-flowing appeals to intuition (rather than rigorous, step-by-
step mathematical derivations), there is a limit to the level of
scrutiny that even the best-intentioned, but time-constrained
peer reviewers can achieve. Unsurprisingly, there are examples
of flawed analyses passing peer review multiple times both
at the conference and the journal levels [28] and finding their
way into industrial practice [18].

Since real-time systems are deployed in safety-critical appli-
cations, such mistakes are not just expensive or embarrassing,
but potentially disastrous. Generally, they undermine the trust
in formal timing analysis. Why should a certification authority
accept a response-time bound as evidence of a critical task’s
temporal correctness if the RTA used to obtain the bound is
itself clouded by reasonable doubt?

To overcome this unsatisfying state of affairs, we would
want an RTA backed by a proof of correctness that is not
rooted in intuition and not subject to human error. Fortunately,
owing to advances in the field of interactive theorem proving,
this vision is quickly becoming reality. In particular, with
modern interactive proof assistants and powerful frameworks,
it is now possible to create mechanized proofs (i.e., formal
proofs that can be automatically checked by machines) for
practical problems with reasonable effort.

Nonetheless, the barrier to entry remains significant, as work-
ing with a proof assistant represents a new way of reasoning
that few researchers in the real-time systems community have
experience with. To make matters worse, there are few good
examples to emulate, as prior work in this area has focused
primarily on verified results per se, but not on how they were
verified. We therefore dedicate the remainder of this paper to
a case study in RTA verification—the first of its kind—with
the aim of making formal verification more accessible.

Ultimately, by using the COQ proof assistant and building
on the PROSA project [2, 12] and its ARTA framework [10],

we were able to mechanize Theorem 1 and thereby create the
first formally verified RTA for FIFO scheduling in less than
400 lines of COQ code (including proofs)—formal, machine-
checked analysis is more viable than many realize today. With
the following case study, we seek to explain our mechanized
derivation and shed light on the involved steps, with the hope
that it may be emulated in future work.

III. FOUNDATIONS OF THE VERIFICATION

We begin with a brief introduction to the building blocks
underlying our verification effort: the COQ proof assistant,
PROSA, and its ARTA framework.

Developing a machine-checked proof with COQ entails
(1) stating mathematical definitions and theorems, and (2) manu-
ally constructing proof scripts that establish the stated theorems
in a manner that can be automatically verified by COQ. While
(1) is done using GALLINA, the native functional programming
language of COQ, (2) is usually done by steering the proof
engine using LTAC, the language of COQ tactics.1 Although
knowledge of LTAC is essential to constructing proofs, it is not
required to understanding the formal development and higher-
level arguments at the specification level (i.e., definitions and
theorem statements), which is the aim of this paper. Hence,
we omit a description of LTAC and refer the interested reader
to existing introductions to proving with LTAC [39, 46].

A. An Introduction to GALLINA as used in PROSA

COQ’s specification language GALLINA is a strongly typed
functional programming language based on the calculus of
inductive constructions [15, 16, 45]. We focus here on the
essential elements required to understand the specifications
shown in this paper. As a running example, Listing 1 exhibits
the main programming constructs used frequently in PROSA.

PROSA follows an axiomatic approach that resembles how
real-time scheduling problems are typically defined in the
literature. Specifically, this means that the central entities of
“jobs” and “tasks” are defined as opaque types about which
no implicit semantic assumptions are made. This can be seen
in Line 1 of Listing 1, which defines JobType as an alias of
eqType. This, in turn, implies that a typing statement of the
form Job : JobType (e.g., in Line 7) means that no assumptions
are made about Job other than that different elements of Job
(i.e., jobs) can be told apart. In other words, the type Job must
support decidable equality, hence the name eqType.

Any parameters or assumptions, such as on WCETs, arrival
times, etc., must be stated explicitly. To express that it is
assumed that jobs have certain attributes, such as an arrival
time, PROSA uses type classes [48]. For example, Line 3 defines
a type class named JobArrival, which on Line 4 introduces a
function job_arrival that maps each job (of type Job) to a
point in time (of type instant). In PROSA, all parameters are
introduced one by one in this axiomatic manner.

1For the sake of completeness, we note that there exist alternatives to LTAC
such as MTAC [34, 54]. Furthermore, it is in fact also possible to provide low-
level proof terms directly in COQ’s native logic without the help of any tactic
language. However, these advanced alternatives are less relevant to beginning
users and currently not used in PROSA, which relies exclusively on LTAC.

4

1 Definition JobType := eqType.
2

3 Class JobArrival (Job : JobType) :=
4 job_arrival : Job → instant.
5

6 Section BasicLemma.
7 Context {Job : JobType}.
8 Context ‘{JobArrival Job}.
9

10 Definition arrived_between (j : Job) (t1 t2 : instant)
11 := t1 ≤ job_arrival j < t2.
12 Definition arrived_before (j : Job) (t : instant)
13 := job_arrival j < t.
14

15 Variable t1 t2 : instant.
16

17 Hypothesis H_t1_le_t2 : t1 < t2.
18

19 Lemma arrived_between_before :
20 ∀ j, arrived_between j t1 t2 → arrived_before j t2.
21 Proof. [. . .] Qed.
22

23 End BasicLemma.

Listing 1: Illustrative GALLINA code resembling PROSA.

COQ’s type classes are similar to those in HASKELL or
interfaces in JAVA, meaning that they stipulate the existence of
named functions without giving a concrete definition, which
enables generic programming and abstract reasoning (i.e.,
subsequent proofs must hold for any possible implementation).
Fortunately, an in-depth understanding of the semantics of
type classes [48] is not essential to their use in PROSA. At an
intuitive level, PROSA simply uses type classes to explicitly list
the job and task parameters that an analysis relies on, just like
Sec. II-A explicitly introduces each relevant parameter. We will
discuss a concrete example demonstrating this in Sec. III-B.

Next, Lines 6 and 23 define a section. In GALLINA, the
section mechanism is used to define the scope for context
declarations, variables, and hypotheses, which we will discuss
shortly. Intuitively, a section is a means to group related
definitions and theorems that make common assumptions.

For example, the context declarations in Lines 7 and 8
express that the subsequent code assumes the existence of
a set of jobs (the Job type, Line 7), where each such job
is assumed to have an arrival time (JobArrival in Line 8
refers to the type class defined in Line 3). Once a job attribute
has been introduced by means of a context declaration, the
corresponding function can be used in the definitions and claims
enclosed in the section. For example, Lines 10 and 12 define
two predicates on a given job’s arrival time by referring to the
function job_arrival. As a result, these predicates are generic
— they apply to any set of jobs and any concrete arrival times.

An aside on notation: by convention, the PROSA codebase
uses simply j to denote a given job. To stay close to the code,
we adopt this scheme when discussing GALLINA listings and
in the following use j and Ji,j interchangeably to refer to jobs.

Next, we look at two core constructs in GALLINA, variables
and hypotheses, which PROSA uses extensively. The variable
declaration on Line 15 introduces two variables t1 and t2 of
type instant. PROSA uses a discrete time model and thus time
in PROSA is modeled by the natural numbers, so that instant

is just an alias of nat, the type of natural numbers.
COQ’s section variables are variables in the mathematical

sense, meaning that they do not “store” values (as in a
procedural programming language). Rather, statements about
variables must hold for any possible value assignment (i.e.,
section variables are implicitly ∀-quantified). The variables t1
and t2 thus represent any two points in time (or even the same).

To restrict generality — that is, to state assumptions on
variables — COQ provides the Hypothesis keyword. For
example, on Line 17, a hypothesis named H_t1_le_t2 relating
the two variables t1 and t2 is imposed. The hypothesis is given
a name (by convention, starting with the prefix “H_”) so that
it can be easily referenced in proofs.

Hypotheses in COQ are propositions. They express precon-
ditions that must be satisfied in order for subsequent proofs to
hold. For example, Line 17 stipulates t1 < t2: the following
lemma can thus rely on the assumption that the two instants
describe a non-empty interval, with t1 denoting the start point.

Finally, a (trivial) lemma named arrived_between_before
is stated on Line 19. In natural language, this lemma observes
that any job j that arrives between t1 and t2 (as defined in
Line 10) must necessarily arrive before t2 (Line 12). The type of
job j is not given explicitly here because COQ can derive it via
type inference. Note that the keywords Theorem, Lemma, Fact,
and Corollary are equivalent in COQ and used interchangeably.

Following the statement of a lemma, a proof of the lemma
must be given enclosed by the keywords Proof and Qed. The
proof itself proceeds with the help of LTAC tactic applications,
which we omit here. The command Qed invokes COQ’s proof
checker, which verifies the LTAC-generated proof of the lemma.
If the proof checker succeeds, the lemma is saved and can then
be used in the proofs of subsequent lemmas of theorems.

Variables and hypotheses are scoped to their enclosing sec-
tion, i.e., variables and hypotheses can be used in the definitions
of other variables, hypotheses, and lemmas only within the same
section. For example, the lemma arrived_between_before is
stated in terms of the variables t1 and t2, and holds only if
the two variables satisfy the hypothesis H_t1_le_t2.

If a lemma is to be used outside its defining section, COQ
ensures that all stated assumptions are met, i.e., it is impossible
to “forget” about any restrictions of generality under which a
lemma was proven. For example, if arrived_between_before
is to be used in a proof elsewhere, then H_t1_le_t2 becomes
a proof obligation that must be shown to hold.

With these few GALLINA basics in place, we are now ready
to take a look at the actual PROSA model of real-time systems.

B. The PROSA Axiomatic Model of Real-Time Scheduling

Listing 2 summarizes key definitions in PROSA relevant
to our work. As already discussed, jobs (Line 1) and tasks
(Line 2) are opaque types in PROSA upon which no implicit
semantic assumptions are made (other than decidable equality).

Lines 4–11 introduce the key job parameters job_cost,
job_arrival, job_deadline, and job_task using type classes
(as just explained in Sec. III-A). The first three job parameters
respectively correspond to ci,j , ai,j , and di,j (recall Sec. II-A).

5

1 Definition JobType := eqType.
2 Definition TaskType := eqType.
3

4 Class JobCost (Job : JobType) :=
5 job_cost : Job → work.
6 Class JobArrival (Job : JobType) :=
7 job_arrival : Job → instant.
8 Class JobDeadline (Job : JobType) :=
9 job_deadline : Job → instant.

10 Class JobTask (Job : JobType) (Task : TaskType) :=
11 job_task : Job → Task.
12

13 Class TaskCost (Task : TaskType) :=
14 task_cost : Task → duration.
15 Class TaskDeadline (Task : TaskType) :=
16 task_deadline : Task → duration.
17

18 Definition valid_job_cost (j : Job) :=
19 job_cost j ≤ task_cost (job_task j).
20

21 Definition arrival_sequence := instant → seq Job.
22 Class MaxArrivals (Task : TaskType) :=
23 max_arrivals : Task → duration → nat.
24 Definition respects_max_arrivals arr_seq τi := ∀t1t2,
25 t1 ≤ t2 → number_of_task_arrivals arr_seq τi t1 t2
26 ≤ max_arrivals τi (t2 − t1).
27

28 Section Schedule.
29 Definition processor_state := option Job.
30 Definition schedule := instant → processor_state.
31

32 Variable sched : schedule.
33 Variable j : Job.
34 Definition scheduled_at t := sched t == Some j.
35 Definition service t :=

∑
(0 ≤ t′ < t) scheduled_at t′.

36 Definition completed_by t := service t ≥ job_cost j.
37 End Schedule.
38

39 Definition response_time_bounded_by τ R :=
40 ∀ sched j, job_task j = τ →
41 completed_by sched j (job_arrival j + R).

Listing 2: Key constructs in PROSA. These definitions, here grouped
together and streamlined for presentation purposes, are actually
distributed across several files in the PROSA code base. The types
work, instant, and duration are aliases of natural numbers (nat).

The latter one, job_task, maps each job to its associated task,
and hence conceptually corresponds to the task index “i”.

Similarly, Lines 13–16 introduce the task parameters
task_cost and task_deadline, which correspond to Ci and
Di, respectively. An essential aspect of the PROSA specification
is to encode the semantics of all model parameters, which it
accomplishes by stating hypotheses that relate the various
parameters. To this end, PROSA defines validity constraints.
For example, Line 18 defines the notion of a correct WCET
bound: a given job j’s cost is deemed valid if it does not
exceed the WCET of its associated task (i.e., ci,j ≤ Ci).

There are too many validity constraints to summarize
them all here, but it is important to realize that PROSA’s
axiomatic semantic model is simply a (large) collection of such
validity constraints. Together, the validity constraints encode
the meaning of the model stated in Sec. II-A. Lemmas in
turn use this semantic model by stating the necessary validity
constraints as hypotheses in their enclosing sections.

Lines 21–26 formalize the arrival curve concept. First,
Line 21 defines the notion of an arrival sequence, which is

simply a function that, given a time, yields the sequence of
jobs that arrive at that time. Line 22 defines the task parameter
max_arrivals, which corresponds to αi. Finally, Lines 24–26
give the validity constraint: given an arrival sequence arr_seq
and a task τi, max_arrivals is a valid arrival curve if the
number of jobs of τi that arrive in any interval [t1, t2) does not
exceed max_arrivals τi (t2 − t1), which is equivalent to Eq. (1).
(The definition of number_of_task_arrivals is omitted here.)

Next, the section in Lines 28–37 introduces the notion of an
ideal uniprocessor schedule. In PROSA, a schedule (Line 30)
is a function that maps each point in time (i.e., a natural
number) to a processor state. Under the ideal uniprocessor
model, a processor state (Line 29) is simply the scheduled
job (if any), which is expressed with COQ’s option type,
a standard construct in functional programming languages
expressing the possible absence of a value. A value of type
option Job is either the constant None, which indicates that no
job is scheduled (i.e., the processor is idle), or a value Some j,
which represents that the job j is running at the time.

The next three definitions apply to any given schedule sched
and any given job j, as stated in Lines 32–33. The definition on
Line 34 simply makes the semantics of the schedule explicit:
job j is scheduled at time t if sched t, the processor state at
time t, equals Some j. In turn, the function service defined on
Line 35 measures the amount of service received by job j up
to time t. On an ideal uniprocessor, j receives exactly one unit
of processor service in each instant that it is executing. The
function service hence simply counts the number of times
t′ < t such that j is scheduled at time t′—the syntax ∑

(0 ≤ t’
< t) is equivalent to

∑
0≤t′<t. As a result, we obtain a natural

definition of job completion: as stated in Line 36, a job is
complete by time t if the amount of service it has received
prior to t is no less than its execution cost.

Finally, Lines 39–41 show PROSA’s formalization of the
principal subject of this paper: a constant R is a response-time
bound for a task τ if, for any job j of τ and in any arbitrary
schedule sched, it holds that job j is complete within at most
R units of its arrival, i.e., by time job_arrival j + R.

Due to space constraints, some details have been elided in
Listing 2. Nonetheless, it provides a faithful summary of the
parts of the PROSA semantic model most relevant to this paper.

C. Abstract Response-Time Analysis (ARTA)

To establish that a claimed response-time bound holds, one
could prove a corresponding RTA “from scratch” (i.e., starting
from first principles). However, this would involve a lot of
repetitive and ultimately unnecessary reasoning, and hence is
unattractive in practice. Instead, PROSA provides the ARTA
framework [10] to streamline the development of new RTAs.

Intuitively, ARTA can be seen as a “template” for RTAs.
Technically, it is a general proof of the classic busy-window
principle that proceeds at an abstract level of reasoning by
relying on only a small set of assumptions (i.e., variables and
hypotheses). What makes ARTA “abstract” is what it does not
rely on: a specific scheduling policy or preemption model.

6

ARTA instead builds on a behavioral interface comprised
of three abstract functions, namely the interference, interfering
workload, and interference bound functions, that jointly charac-
terize the effects of scheduling decisions. To obtain a formally
verified RTA for a specific scheduling policy, ARTA can be
instantiated, which means, firstly, concretely defining these
functions to capture the semantics of the targeted policy and,
secondly, proving that all analysis assumptions upon which
ARTA rests are satisfied by the chosen definitions.

The behavioral interface can capture a wide variety of system
models. Indeed, prior work has instantiated ARTA for FP and
EDF scheduling in combination with fully-preemptive and fully
non-preemptive tasks, segmented limited-preemptive tasks, and
floating non-preemptive sections [10]. In this paper, we provide
further evidence for the generality of ARTA by introducing
the first instantiation of ARTA for FIFO scheduling.

IV. INSTANTIATING ARTA: A STEP BY STEP BREAKDOWN

In this section, we take a close look at how we instantiated
ARTA to verify Theorem 1. As our case study is intended to
serve as a template for future efforts, we describe not only the
steps specific to the FIFO instantiation, but also more generally
a process other instantiations may follow. Our description is
split across seven subsections, each dedicated to one conceptual
step, building up to the final Theorem 2. Throughout this
section, we refer to Listing 3, which shows excerpts from our
COQ development. The full development is available online.2

A. Defining the System Model

Before any formal claims can be stated, an initial setup is
needed to define the system model under consideration. As
explained in Sec. III-B, the system model is established by
introducing section variables and hypotheses expressing validity
constraints. For example, Lines 1–3 in Listing 3 introduce the
task under consideration τi, the task set τ , and the schedule
and arrival sequence under analysis. Since section variables are
implicitly ∀-quantified, this context ensures generality—e.g.,
the following must hold for any semantically valid schedule.

As mentioned previously, the semantics of the system model
is encoded by defining validity constraints as hypotheses. For
example, the hypothesis H_work_conserving on Lines 5–8
states that we assume the schedule under consideration to be
work-conserving. It may be read as follows: for any job j and
at any point in time t, if j is a job relevant to the schedule
(i.e., it stems from the arrival sequence introduced in Line 2),
and if j is backlogged (pending but not scheduled) at time t in
sched (the schedule under consideration, introduced in Line 3),
then there exists a job j′ that is scheduled at time t. Recall
from Sec. II-A that a work-conserving schedule is one of the
central assumptions underlying the proposed RTA—hypothesis
H_work_conserving formalizes this assumption.

2Please refer to https://people.mpi-sws.org/~bbb/papers/details/rtss22 for
supplemental materials, which include the complete proof, instructions
explaining how to check it, and a cross-referenced HTML rendering of the Coq
development that is helpful when following along with the discussion in Sec. IV.

The system model further specifies the type of processor
under consideration (e.g., ideal uniprocessor), workload model
(e.g., sporadic tasks), scheduling policy (e.g., FIFO), preemption
model, etc. We define each of these elements to match the
system model stated in Sec. II-A. For example, recall from
Listing 2 the processor model (Line 29 in Listing 2) and
the workload model based on arrival curves (Lines 21–26
of Listing 2). Due to space constraints, these variables and
hypotheses have been elided in Listing 3.

The scheduling policy and preemption model are obviously
key elements of the system model. As mentioned previously,
the core ARTA theorem abstracts from these specifics, but an
instantiation usually specifies both concretely and must then
prove that ARTA’s abstract assumptions are satisfied by the
concrete definitions (as we will see shortly in Sec. IV-B).

In the case of FIFO, the situation is slightly different. Since
the preemption model of a system is irrelevant to the FIFO RTA
(a FIFO scheduler does not preempt even if the workload per
se is preemptable), our ARTA instantiation concretely defines
the FIFO scheduling policy, but leaves the preemption model
∀-quantified (i.e., abstract). As a result, the verified RTA applies
to any preemption model and thus maximizes generality.

With this setup in place, the objective of our ARTA
instantiation is to formally state and prove a bound on the
response time of task τi that is equivalent to Theorem 1.

B. Encoding the Scheduling Policy and Preemption Model

The first step is to connect the scheduling policy to ARTA.
ARTA’s behavioral interface. Recall from Sec. III-C that
ARTA models the scheduling policy implicitly via its behavioral
interface, which captures the effects of scheduling decisions.
The interface consists of three functions, which the ARTA core
assumes as section variables, together with some hypotheses
relating these functions. To apply ARTA, we must provide con-
cretely defined functions and show that our chosen definitions
comply with ARTA’s hypotheses.

In this subsection, we define the first two required functions:
the interference Iσ and the interfering workload Wσ. (The
subscript σ signifies that the definitions are made in the context
of a given schedule σ = sched; we retain it here to remain
consistent with Bozhko and Brandenburg’s notation [10].)
Intuitively, Wσ tracks how “delay” potentially affecting the
task under analysis is being produced, while Iσ tracks how
such “delay” is being consumed over time.

More formally, consider a job Ji,j of the task under analysis
τi and an arbitrary point in time t. The interference function
Iσ(Ji,j , t) is a predicate that ARTA requires to be true at time
t iff Ji,j cannot be scheduled at time t due to some unspecified
source of delay (irrespective of whether Ji,j is actually pending
at time t). Correspondingly, the interfering workload function
Wσ(Ji,j , t) counts the amount of interference that is generated
at time t w.r.t. Ji,j (e.g., the amount of higher-priority workload
released at time t). In other words, Wσ counts the number
of future points in time at which Iσ is true due to “delay”
introduced at time t. These abstract concepts will become
much clearer with a concrete example.

7

https://people.mpi-sws.org/~bbb/papers/details/rtss22

1 Variables (τi : Task) (τ : seq Task).
2 Variable arr_seq : arrival_sequence Job.
3 Variable sched : schedule (ideal.processor_state Job).
4

5 Hypothesis H_work_conserving :
6 ∀ j t, arrives_in arr_seq j →
7 backlogged sched j t →
8 ∃ j′, scheduled_at sched j′ t.
9

10 Definition is_priority_inversion t :=
11 if sched t is Some jlp then ¬hep_job jlp j else false.
12 Definition interf_hep_job j t :=
13 if sched t is Some jhp then another_hep_job jhp j
14 else false.
15 Definition interference j t :=
16 is_priority_inversion j t || interf_hep_job j t.
17

18 Definition int_wl_hep_jobs j t :=
19

∑
(j′ ← arrivals_at arr_seq t | another_hep_job j′ j)

20 job_cost j′.
21 Definition interf_workload j t :=
22 is_priority_inversion j t + int_wl_hep_jobs j t.
23

24 Fact abstractly_work_conserving :
25 work_conserving_ab interference interf_workload.
26

27 Variable L : duration.
28 Hypothesis H_L_positive : L > 0.
29 Hypothesis H_fixed_point : L = total_rbf L.
30 Fact bi_bounded : busy_intervals_bounded_by L.
31

32 Definition IBF A ∆ :=
33 (

∑
(τk ← τ) rbf τk (A + ε)) − task_cost τi.

34 Lemma interference_bounded :
35 job_interference_bounded_by IBF.
36

37 Definition is_in_concrete_search_space A :=
38 (A < L) ∧ has (λ τk ⇒ rbf τk A 6= rbf τk (A + ε)) τ .
39 Lemma A_is_in_concrete_search_space :
40 ∀ A, is_in_abstract_search_space A →
41 is_in_concrete_search_space A.
42

43 Variable R : duration.
44 Hypothesis H_R_max :
45 ∀ A, is_in_concrete_search_space A →
46 ∃ F , A+ F ≥

∑
(τk ← τ) rbf τk (A + ε) ∧ F ≤ R.

47

48 Lemma soln_abstract_response_time_recurrence :
49 ∀ A, is_in_abstract_search_space A →
50 ∃ F , A+ F ≥ task_rtct τi + IBF τi A (A+ F)
51 ∧ F + (task_cost τi − task_rtct τi) ≤ R.
52

53 Theorem FIFO_uniprocessor_response_time_bound :
54 response_time_bounded_by τi R sched.

Listing 3: Streamlined excerpts from the FIFO instantiation of ARTA.2

Defining Iσ and Wσ. Lines 15–16 in Listing 3 specify Iσ
for our FIFO instantiation: a given job j is considered to incur
interference iff it experiences priority inversion (Lines 10–
11) or a higher-priority job is scheduled (Lines 12–14). Here,
the auxiliary predicate another_hep_job jhp j in Line 13 is
equivalent to jhp 6= j ∧ job_arrival jhp ≤ job_arrival j,
and ¬ hep_job jlp j in Line 11 implies job_arrival jlp >
job_arrival j (“¬” denotes boolean negation).

As an aside, it may seem strange that our proof reasons
about priority inversion although priority inversion is actually
impossible under FIFO scheduling. This could in fact be
avoided and is the consequence of a design choice: our proof

touches on priority inversion because we reuse general, ARTA-
provided definitions for arbitrary job-level fixed-priority (JLFP)
policies. Since JLFP policies such as EDF and FP scheduling
can be subject to priority inversion when jobs execute non-
preemptively, the general definitions require us to consider
priority inversion explicitly and prove its absence. While
conceptually a digression, the reuse of existing JLFP definitions
is a worthwhile tradeoff as it saves a significant amount of proof
effort. Specifically, it enables the reuse of general results already
present in PROSA for some of the following proof obligations.

The interfering workload functionWσ is defined in Lines 21–
22 to match the conditions that cause Iσ to be true. Since
structurally there are two cases in Line 16, there are also two
bounds summed in Line 22. The first summand is simply the
priority-inversion predicate itself, which again is later shown to
always evaluate to false. (There is an implicit type-conversion
at work here: the boolean predicate is used as a natural number,
with the obvious interpretation of true 7→ 1 and false 7→ 0.)
The second summand is the more interesting int_wl_hep_jobs,
defined in Lines 18–20. The syntax in Lines 19–20 defines a
sum across all jobs j′ arriving at time t (“j′ ← arrivals_at
arr_seq t”) that satisfy “another_hep_job j′ j,” adding up

their actual execution costs (“job_cost j′”).
Observe how Iσ andWσ are designed to match: for example,

let j denote any job and suppose that at time t = 10 a single
higher-priority job j′ arrives (w.r.t. j), and that j′ requires
3 units of service. Then Wσ(j, 10) evaluates to 3—which is
exactly the number of times that Iσ(j, t′) can evaluate to true
because sched t′ is Some j′ (recall Line 13), since after this
has happened 3 times, j′ is necessarily complete. Equivalently,
in simpler terms, the job j′ arriving at time t = 10 can cause
job j to incur up to 3 time units of delay.

C. From Classic to Abstract Work Conservation

The relationship sketched above, namely that Iσ and Wσ

always eventually match, is a central pillar of ARTA and
referred to as “abstract work conservation.” We must prove it.

Abstract busy window. In order to state the proof obligation
precisely, let CI(Ji,j , [t1, t2)) ,

∑
t1≤t<t2 Iσ(Ji,j , t) and

CW(Ji,j , [t1, t2)) ,
∑
t1≤t<t2Wσ(Ji,j , t) denote cumulative

interference and workload, respectively.
Now, consider a point in time t where CI(Ji,j , [0, t)) =

CW(Ji,j , [0, t)) and either t ≤ ai,j or Ji,j is complete. Such
a time t is said to be a quiet time w.r.t. the job Ji,j since all
the higher-or-equal priority interference produced so far (i.e.,
CW(Ji,j , [0, t))) has been fully consumed (i.e., no backlog)
and Ji,j is not carried-in.

Finally, consider an interval [t1, t2) such that t1 and t2 are
quiet times (w.r.t. Ji,j), no time instant in (t1, t2) is quiet (w.r.t.
Ji,j), and Ji,j arrives in [t1, t2). This interval is called Ji,j’s
abstract busy window. Intuitively, Ji,j must begin and complete
its execution within [t1, t2), if Iσ and Wσ are defined properly.

Proof obligation. Formally, the guarantee that Ji,j will finish
by the end of its busy window is a consequence of abstract
work conservation, which the instantiation establishes with

8

the fact abstractly_work_conserving in Lines 24–25. As
mentioned above, we reuse general JLFP definitions for Iσ
and Wσ. One benefit of this design choice is that the fact
abstractly_work_conserving is actually a trivial consequence
of a general lemma already present in PROSA. For illustrative
purposes, let us nonetheless consider the argument in more
detail. After unfolding work_conserving_ab (i.e., substituting it
with its definition), the actual proof obligation is equivalent to:

Lemma 1 (abstract work conservation).
∀ j t1 t2 t, arrives_in arr_seq j →

job_task j = τi → job_cost j > 0 →
busy_interval j t1 t2 → t1 ≤ t < t2 →

¬ interference j t ↔ job_scheduled_at j t.

In other words, the instantiation must establish that, for any
job j of the task under analysis τi that arrives and has nonzero
execution cost, at any point in time t in j’s (abstract) busy
window [t1, t2), the interference predicate Iσ evaluates to false
iff job j is scheduled. This lemma ensures on the one hand that
Iσ and Wσ indeed “match” since busy_interval is phrased
in terms of Wσ. On the other hand, it also ensures that the
definition of Iσ captures the semantics of the scheduling policy
since the auxiliary predicate job_scheduled_at (with obvious
meaning, omitted from Listing 3) depends on the policy’s rules.
As one may expect, the proof of Lemma 1 proceeds from
classic work conservation (H_work_conserving, Lines 5–8).

D. Bounding the Maximum Busy-Window Length

The next step is conceptually straightforward. As already
discussed in Sec. II, RTA is applicable only if busy windows
are finite. To this end, ARTA simply assumes the existence of
some bound L on the maximum length of any abstract busy
window. An instantiation in turn must define an actual bound,
which obviously depends on the concrete workload properties
and the analyzed scheduling policy, and prove it correct.

Listing 3 shows the relevant parts in Lines 27–30. Mirroring
the setup before Eq. (3) in Sec. II, Line 27 first introduces a
section variable L, which is constrained to be positive (Line 28).
Crucially, H_fixed_point on Line 29 then formalizes the
assumption that Eq. (3) holds. The fact bi_bounded on Line 30
then establishes the correctness of the bound. After unfolding
and slight simplification, it is equivalent to:

Lemma 2 (max. length of abstract busy windows).
∀ j, arrives_in arr_seq j →

job_task j = τi → job_cost j > 0 →
∃ t1 t2, t2 ≤ t1 + L ∧ busy_interval j t1 t2.

That is, the instantiation must prove that, for any job j of the
task under analysis that arrives and has nonzero execution cost,
there exist two points in time t1, t2 such that t2 is within L time
units of t1 and [t1, t2) is job j’s busy window. Conceptually,
the proof proceeds by observing that, if t1 is the last quiet time
before j’s release, then another quiet time t2 necessarily occurs
“soon enough” because, jointly, H_fixed_point, the definition
of Wσ, and Lemma 1 imply both that job j completes and
that CI(j, [0, t)) “catches up” with CW(j, [0, t)).

Technically, bi_bounded is again a direct consequence of a
general result already available in PROSA, which highlights the
benefits of building on top of ARTA’s general JLFP definitions.

E. Bounding the Delay Within a Busy Window
Having established that busy windows are finite, the next

step is to bound the delay experienced by the job under analysis
within its busy window, analogous to Eq. (2). To this end, the
third element of ARTA’s behavioral interface is the (abstract)
interference-bound function (IBF). As the name suggests, this
function must bound abstract interference.

More precisely, let [t1, t2) denote the busy window of a job
Ji,j of the task under analysis, and let A , ai,j − t1 denote its
relative arrival time. ARTA requires a function IBF : T×T→
T that bounds cumulative interference: ∀∆, if Ji,j is incomplete
at time t1 + ∆, then CI(Ji,j , [t1, t1 + ∆)) ≤ IBF (A, ∆).

Since ARTA expects such a function, the FIFO instantiation
must provide a concrete definition and prove its correctness
(Lines 32–35 of Listing 3). First, Lines 32–33 concretely define
IBF exactly as stated in Eq. (2): the syntax ∑

(τk ← τ) is
equivalent to

∑
τk∈τ , and RBF k corresponds to rbf τk. Note

that ARTA generally allows IBF to depend on ∆, but in
the case of the FIFO policy, the concrete definition actually
depends only on the relative arrival time A, so that ∆ remains
unused in Line 33. Correctness of the bound is established in
Lines 34–35, which unfolds to:

Lemma 3 (abstract interference bound).
∀ t1 t2 ∆ j, arrives_in arr_seq j → job_task j = τi →

busy_interval j t1 t2 → t1 + ∆ < t2 →
¬ job_completed_by j (t1 + ∆) →

cumul_interference j t1 (t1 + ∆) ≤ IBF A ∆.

Here, cumul_interference j t1 (t1 + ∆) is CI(Ji,j , [t1, t1 +
∆)). Lemma 3 hence satisfies ARTA’s above-stated assumption
that IBF bounds cumulative interference within busy windows.

F. Defining the Search Space, Abstractly and Concretely
As explained in Sec. II, for the RTA to be practical, it

is important to obtain a sparse search space. Fortunately, the
notion of a sparse search is built into ARTA: this is the abstract
search space. As in the prior subsections, it’s an instantiation’s
obligation to complement the abstract search space with a
concrete search space and to relate the two.

To this end, our FIFO instantiation defines a predicate
is_in_concrete_search_space in Lines 37–38 of Listing 3.
Given an offset A, two conditions are checked. First, for A to
be included, A < L must hold, since A denotes the relative
arrival time of the job under analysis within its busy window,
which by Lemma 2 is at most L time units long.

The second condition reads as follows. Given a predicate
p, the function has p τ checks whether any of the tasks in τ
has property p, that is, has p τ evaluates to true iff a task in τ
satisfies p. Here, the predicate is (λ τk ⇒ rbf τk A 6= rbf τk (A
+ ε)), which is an anonymous function (i.e., a lambda term) that
yields true iff, for a given task τk, RBF k(A) 6= RBF k(A+ε).
Lines 37–38 hence implement exactly the membership test for
the search space given in Eq. (4).

9

Next, Lines 39–41 relate the concrete to the abstract search
space by establishing a subset relationship. Specifically, the
lemma shows that any offset A that satisfies the predicate
is_in_abstract_search_space also satisfies the concrete one
given in Lines 37–38. After unfolding the abstract search
space’s membership predicate, the lemma reduces to:

Lemma 4 (search space inclusion).
∀ A, (A = 0 ∨ 0 < A < L

∧ ∃∆, IBF (A − ε) ∆ 6= IBF A ∆ ∧ ∆ < L)
→ is_in_concrete_search_space A.

Lemma 4 thus ensures that the concrete search space correctly
captures where the instantiation-provided IBF “steps.”

G. Stating and Re-Stating the Claimed Bound

Having established all necessary preliminaries, it is finally
time to state the claimed response-time bound R. In a pattern
that should be familiar by now, we will characterize R twice:
first concretely as we seek to verify it (i.e., matching Sec. II),
and then again in the general “shape” that ARTA expects.

To begin with, the concrete definition is given in Lines 43–
46. First, R is introduced as a section variable in Line 43.
Second, the hypothesis H_R_max in Lines 44–46 formalizes the
assumption that the claimed bound R satisfies the condition
stated in Eq. (5): namely, that for each A in the concrete
search space, there exists an offset-specific solution F such
that R ≥ F ≥

(∑
τk∈τ RBF k(A+ ε)

)
−A.

Recall that the overall objective is to show that a value R
satisfying H_R_max is indeed a response-time bound for the task
under analysis. To this end, we seek to apply the general ARTA
theorem [10, Theorem 18]. That is, we intend to show that—in
the context of all the definitions established in the preceding
sections—the claimed response-time bound is a consequence
of ARTA’s general bound. However, before we can apply the
general bound, we must transform the FIFO-specific hypothesis
H_R_max into the general shape that ARTA expects.

In preparation of this final step, we need to introduce one
more concept: the run-to-completion threshold RTCT i, which
ARTA uses to abstract over many possible preemption models.
In short, RTCT i denotes an upper bound on the amount of
processor service that any job of task τi must receive before
it certainly becomes non-preemptable, after which it runs to
completion [10]. As already mentioned in Secs. II-A and IV-A,
this notion is actually irrelevant in our case since, under FIFO
scheduling, jobs anyway run to completion once started.

Nonetheless, since ARTA is phrased in terms of RTCT i, we
must mention it, too. Our FIFO instantiation hence introduces
the task parameter task_rtct (analogously to Lines 13–16 in
Listing 2), but without imposing restrictions on it (beyond basic
validity), thereby retaining support for any preemption model.

With the run-to-completion threshold in place, we can restate
H_R_max in the expected form, which is done in Lines 48–51.
Not coincidentally, the structure is similar to H_R_max, with
three main differences: the statement is about offsets in the
abstract search space (rather than the concrete one), the general
form uses the abstract IBF instead of the FIFO-specific rbf,

and task_rtct is added in Line 50 and subtracted in Line 51.
In the case of FIFO, however, IBF is defined in terms of rbf,
and does not use the ∆ parameter (recall Sec. IV-E), which
greatly simplifies the structure of the inequality. Consequently,
with some algebraic manipulation after applying Lemma 4, the
proof is able to derive an F that satisfies the stated conditions.

H. Soundness of the Response-Time Bound

Finally, Lines 53–54 of Listing 3 establish the soundness of
the claimed response-time bound R using the general ARTA
theorem [10, Theorem 18]. In fact, it takes just thirteen lines
of LTAC tactic invocations to prove Lines 53–54, which shows
the benefit of building on ARTA (rather than proving the RTA
from first principles). After unfolding (recall Lines 39–41 in
Listing 2), the final theorem of our instantiation translates to:

Theorem 2 (soundness of FIFO RTA).
∀ j, job_task j = τi →

completed_by sched j (job_arrival j + R).

In other words, any value R that satisfies the hypothesis
H_R_max (Lines 44–46) bounds the response time of any job
of the task under analysis τi in the schedule under analysis
sched. Since we have not placed any restrictions on τi or
sched (besides semantic validity constraints), the bound holds
without loss of generality. Furthermore, as the declared system
model is equivalent to that assumed in Sec. II-A, and since
H_R_max matches Eq. (5), Theorem 2 verifies Theorem 1.

V. DISCUSSION

In addition to verifying Theorem 1, our case study also
raises some salient points of a more general nature.

Proof effort. Our foremost observation is just how little code
was ultimately required to establish the desired result. The
module providing the formalized RTA amounts to only 434
non-blank lines, of which 208 are actually comments.2 The
remaining 224 lines include both the GALLINA specification
discussed herein as well as the LTAC proof scripts actually
establishing the lemmas and theorems. Accounting for FIFO-
specific definitions and lemmas in PROSA’s support libraries
adds only another 155 lines of GALLINA and LTAC code.

It is surprising, or at least not widely appreciated, that
with less than 400 lines of code it is possible to verify an
(admittedly simple) RTA. Anecdotally, many researchers still
deem the barrier to entry considerably higher. To the contrary,
our case study demonstrates that, nowadays, verification of real-
time scheduling theory is possible with acceptable effort (once
familiarity with LTAC has been obtained, for which high-quality
tutorials and textbooks are readily available—see [1, 39, 46]).

Unsurprisingly, the “trick” that allows establishing The-
orem 2 with so few lines of code is maximal code reuse:
by leveraging generic definitions and proofs in PROSA, we
could focus on FIFO-specific reasoning. We draw three general
conclusions from this. First, it is generally a good idea to
start from domain-specific libraries such as PROSA rather than
proving everything “from scratch.” Second, results that stray
further in scope from the existing general results in PROSA will

10

require a proportionally larger proof effort. And third, there is
much value in future work extending PROSA’s abstract core.
Alternate proof strategy. As mentioned in Sec. I, FIFO
arbitration is well-studied in the Network Calculus (NC)
literature (e.g., [8]). In fact, Theorem 1 could alternatively
also be obtained from NC. However, with the available state-
of-the-art COQ libraries, this would not make its verification any
easier. Case in point, Roux et al. [47] just recently explored the
complexities involved in formalizing NC and formally relating
it to RTA. That said, future work extending Roux et al.’s
bridging efforts might render NC a viable, and maybe even
convenient, starting point for verified RTAs such as Theorem 2.
Limitations and Extensions. For didactic reasons, it is helpful
for Theorems 1 and 2 to be as simple as possible. From
a practical point of view, however, several extensions are
desirable. In particular, we plan to explicitly incorporate
scheduling overheads such as context-switching. Additionally,
it would be interesting to allow for arbitrary service descriptions
based on supply curves (as in NC), which would extend support
to reservation-based scheduling [11]. It would be even more
ambitious to allow for self-suspensions [14]. In keeping with the
spirit of maximal reuse, each of these extensions will primarily
require a generalization of PROSA’s ARTA core, after which
the FIFO-specific reasoning will be relatively simple.

VI. EVALUATION

To assess the proposed RTA empirically, we conducted
schedulability experiments with synthetic workloads modeled
after the Bosch automotive benchmark due to Kramer et al. [35].
Setup. For a given number of tasks n, we randomly generated
each task τi as follows. First, we selected a minimum inter-
arrival time (or, interchangeably, period) Ti from the set
{1, 2, 5, 10, 20, 50, 100, 200, 1000}ms according to a (non-
uniform) distribution specified by Kramer et al. [35]. The
corresponding arrival-bound function is simply αi(∆) ,

⌈
∆
Ti

⌉
.

For each period, Kramer et al. specify a range of periodic-
specific average execution times and multiplicative factors to
obtain a representative maximum execution time of “runnables,”
a common sub-task abstraction in automotive systems. For
simplicity, we considered each task to consist of one runnable
and, given Ti, used Kramer et al.’s tables to randomly generate
the task’s WCET Ci. The task’s resulting utilization is ui , Ci

Ti
.

All task parameters were expressed as integral nanoseconds.
For each n, we generated 500 task sets. To each task set

and each task, we applied four RTAs: (i) the proposed RTA
(Theorem 1), (ii) Altmeyer et al.’s RTA for sporadic tasks under
FIFO scheduling [4], (iii) Bozhko and Brandenburg’s RTA for
non-preemptive FP scheduling (NP-FP) [10], and also (iv) their
RTA for non-preemptive EDF scheduling (NP-EDF) [10]. We
further (v) assessed whether finite response-time bounds exist
at all by checking the necessary condition

∑
i ui ≤ 1.

Baseline comparison. In the first experiment, we varied n
from 2 to 30 and compared (i), (ii), and (v), i.e., the two
RTAs for FIFO and the feasibility test. The results are shown
in Fig. 2a. For (i) and (ii), the graph shows the fraction of

task sets for which the RTA could find a response-time bound;
for (v), it shows the fraction of feasible task sets.

It is immediately apparent that Altmeyer et al.’s RTA
succeeds for far fewer task sets than Theorem 1. In fact,
Theorem 1 yields bounds for all feasible workloads (its curve
overlaps with the feasibility curve). The underlying reason is
that Altmeyer et al.’s RTA does not apply to workloads that
can experience self-interference—it can be seen as roughly
equivalent to Theorem 1 artificially restricted to a singleton
search space A = {0}. However, as the number of tasks n
increases, so does the total utilization, and consequently self-
interference becomes an increasingly frequent phenomenon
that renders Altmeyer et al.’s RTA inapplicable. In contrast, by
considering the full search, our proposed RTA finds a response-
time bound for every workload for which one exists.

To confirm the impact of self-interference, we conducted
a second experiment in which we constrained task periods
to be at least 20 ms (by discarding and redrawing tasks with
Ti < 20 ms), which has the effect of rendering workloads much
more homogeneous. Due to the period-specific distributions
reported by Kramer et al. [35], it further has the effect of
significantly lowering the average utilization, which allowed
us to vary n from 2 to 80 (in steps of 2).

The results are depicted in Fig. 2b. As expected, Altmeyer
et al.’s RTA performs much better in this simplified setting,
yielding bounds for all task sets with n ≤ 22. In contrast, in
Fig. 2a, it fails to find bounds for more than 60% of the task
sets with n = 10. Nonetheless, Theorem 1 is still preferable
for larger n, yielding bounds for all feasible workloads.

In a third experiment, we kept the restriction to tasks with
Ti ≥ 20 ms, but additionally introduced release jitter to reflect
workloads with more irregular arrival patterns. Specifically,
for each task τi, we randomly chose a release jitter JIT i ∈
[0, 0.75Ti]. The resulting arrival-bound function is αi(∆) ,⌈

∆+JIT i

Ti

⌉
. We varied n from 2 to 40; Fig. 2c shows the results.

Compared to Fig. 2b, it is striking how the efficacy of
Altmeyer et al.’s RTA is dramatically reduced in Fig. 2c: it
could find bounds for less than 10% of the task sets with
n = 20. In contrast, Theorem 1 is completely unaffected by
the introduction of release jitter. The explanation is that, on
the one hand, release jitter does not affect utilization (i.e.,
feasibility), while on the other hand, it makes self-interference
much more likely. This again demonstrates the advantage of
considering the full search space. Overall, we find Theorem 1
to be a welcome improvement over the baseline [4].

Policy comparison. Since Theorem 1 applies to all feasible
workloads, it allows (for the first time) to fairly compare FIFO
with the more traditional real-time scheduling policies NP-FP
(with rate-monotonic priorities) and NP-EDF (with implicit
deadlines), as represented by RTAs (iii) and (iv), respectively.

We compared the policies in terms of their average response-
time ratios (RTRs), which we define as follows. Given a task
τi ∈ τ , let RFIFO , RFP , and REDF denote the bounds given
by RTAs (i), (ii), and (iii), respectively. Task τi’s RTR under
NP-FP (resp., NP-EDF) is then given by RFP

RFIFO (resp, REDF

RFIFO).

11

5 10 15 20 25 30
Number of tasks

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 ta
sk

 se
ts

Analysis
Feasibility
This paper (Theorem 1)
Altmeyer et al. (2016)

(a) Full period range

0 10 20 30 40 50 60 70 80
Number of tasks

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 ta

sk
 se

ts

Analysis
Feasibility
This paper (Theorem 1)
Altmeyer et al. (2016)

(b) Restricted period range (Ti ≥ 20 ms)

5 10 15 20 25 30 35 40
Number of tasks

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 ta

sk
 se

ts

Analysis
Feasibility
This paper (Theorem 1)
Altmeyer et al. (2016)

(c) With release jitter JIT i ∈ [0, 0.75Ti]

Fig. 2: Comparison of the proposed RTA (Theorem 1) with Altmeyer et al.’s RTA for sporadic tasks under FIFO scheduling [4].

5 10 15 20 25 30
Number of tasks

1.0

0.2

0.3

0.4
0.5
0.6
0.7

2.0

Ra
tio

: F
P

/ F
IF

O

Task period
1 ms
2 ms
5 ms

10 ms
20 ms
50 ms

100 ms
200 ms
1000 ms

(a) NP-FP

5 10 15 20 25 30
Number of tasks

1.0

0.2

0.3

0.4
0.5
0.6
0.7

2.0
Ra

tio
: E

DF
 /

FI
FO

Task period
1 ms
2 ms
5 ms

10 ms
20 ms
50 ms

100 ms
200 ms
1000 ms

(b) NP-EDF

5 10 15 20 25 30
Number of tasks

0.1

1.0

0.2

0.3
0.4
0.5
0.7

2.0

3.0
4.0
5.0
7.0

Ra
tio

: F
P

/ F
IF

O

Task period
1 ms
2 ms
5 ms

10 ms
20 ms
50 ms

100 ms
200 ms
1000 ms

(c) NP-FP, release jitter JIT i ∈ [0, 1.5Ti]

Fig. 3: Comparison of FIFO with NP-FP and NP-EDF in terms of average RTR, split by task period.

We tracked the RTRs on a per-period basis and computed
the average across all 500 task sets (for each considered n,
excluding infeasible task sets).

First, consider Fig. 3a, which shows the average RTR (per
period) for NP-FP for the same workloads as considered in
Fig. 2a. A clear pattern emerges: the curves are arranged top-to-
bottom roughly in order of their periods. The tasks with shorter
periods (i.e., higher rates) exhibit lower average RTRs, which
means they benefit the most from NP-FP scheduling (instead
of FIFO). Conversely, tasks with longer periods (i.e., lower
rates) benefit from FIFO scheduling—they exhibit average
RTRs exceeding one, which means Theorem 1 yields lower
bounds than the NP-FP analysis. For the considered workloads,
the dividing line is between 20 ms and 50 ms, with the former
period benefiting from NP-FP and the latter from FIFO.

Second, consider Fig. 3b, which shows the average per-period
RTRs under NP-EDF for the same workloads as considered in
Figs. 2a and 3a. The trends are largely the same as in Fig. 3a,
with the biggest difference being a less pronounced, but still
clearly beneficial average RTR for Ti = 10 ms. This confirms
that NP-EDF and NP-FP are quite alike (for these workloads),
but also very different from FIFO.

Next, Fig. 3c shows NP-FP RTRs for a similar setup as in
Figs. 2a, 3a and 3b with the addition of release jitter in the
range [0, 1.5Ti]. Again, release jitter generally increases self-
interference and thus worst-case bounds. As a result, the trends
remain structurally similar to Fig. 3a, but their magnitude is
greatly increased (note the difference in Y-axis scale).

Finally, we plotted all experimental results also as a function
of the total utilization

∑
i ui (rather than n) and observed

equivalent trends; due to space constraints we omit these plots.

VII. CONCLUSION

We have presented a case study in verified analysis of real-
time systems, by example of a novel RTA for sporadic tasks
under FIFO scheduling. The RTA was derived twice: first in a
traditional style based on an appeal to intuition (Sec. II), and
once more formally based on PROSA’s ARTA framework [10,
12] using the COQ proof assistant (Sec. IV). The case study
highlights the similarity of the formal argument to the intuitive
line of reasoning. It is our hope that this case study will enable
and motivate more researchers to explore the use of proof
assistants to minimize human error in mathematical reasoning.

Furthermore, the verified RTA is also of practical interest.
Whereas Altmeyer et al.’s RTA for sporadic tasks under
FIFO scheduling [4] does not account for self-interference,
which limits its applicability (Sec. VI), our new RTA yields a
response-time bound as long as the maximum busy window is
bounded (i.e., if the workload is feasible at all). Additionally,
our experiments show that FIFO scheduling can actually be
beneficial for lower-rate tasks, at the expense of higher-rate
tasks. With the proposed RTA, workloads that can tolerate this
trade-off can benefit from FIFO’s low runtime overheads and
trivial implementation requirements, which offers engineers a
new trustworthy alternative for resource-constrained systems.

12

ACKNOWLEDGEMENTS

This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No
803111), and from the German Research Foundation (Deutsche
Forschungsgemeinschaft, DFG) — 391919384.

REFERENCES

[1] “The Coq proof assistant,” https://coq.inria.fr.
[2] “Prosa,” http://prosa.mpi-sws.org/.
[3] T. A. AlEnawy and H. Aydin, “On energy-constrained real-time

scheduling,” in Proceedings of the 16th Euromicro Conference
on Real-Time Systems (ECRTS), 2004, pp. 165–174.

[4] S. Altmeyer, S. M. Sundharam, and N. Navet, “The case for
FIFO real-time scheduling,” University of Luxembourg, Tech.
Rep., 2016, http://hdl.handle.net/10993/24935.

[5] N. Audsley, A. Burns, M. Richardson, K. Tindell, and A. J.
Wellings, “Applying new scheduling theory to static priority
pre-emptive scheduling,” Software engineering journal, vol. 8,
no. 5, pp. 284–292, 1993.

[6] U. N. Bhat, An introduction to queueing theory: modeling and
analysis in applications. Springer, 2008, vol. 36.

[7] D. P. Bovet and M. Cesati, Understanding the Linux Kernel:
from I/O ports to process management. O’Reilly, 2005.

[8] M. Boyer, E. Le Corronc, and A. Bouillard, Deterministic
Network Calculus: From Theory to Practical Implementation.
John Wiley & Sons, 2018.

[9] M. Boyer, P. Roux, H. Daigmorte, and D. Puechmaille, “A
residual service curve of rate-latency server used by sporadic
flows computable in quadratic time for network calculus,” in
Proceedings of the 33rd Euromicro Conference on Real-Time
Systems (ECRTS), 2021, pp. 14:1–14:21.

[10] S. Bozhko and B. B. Brandenburg, “Abstract response-time
analysis: A formal foundation for the busy-window principle,”
in Proceedings of the 32nd Euromicro Conference on Real-Time
Systems (ECRTS), 2020, pp. 22:1–22:24.

[11] G. C. Buttazzo, Hard real-time computing systems: predictable
scheduling algorithms and applications. Springer, 2011.

[12] F. Cerqueira, F. Stutz, and B. B. Brandenburg, “PROSA:
A case for readable mechanized schedulability analysis,” in
Proceedings of the 28th Euromicro Conference on Real-Time
Systems (ECRTS), 2016, pp. 273–284.

[13] F. Cerqueira, G. Nelissen, and B. B. Brandenburg, “On strong and
weak sustainability, with an application to self-suspending real-
time tasks,” in Proceedings of the 30th Euromicro Conference
on Real-Time Systems (ECRTS), 2018, pp. 26:1–26:21.

[14] J.-J. Chen, G. Nelissen, W.-H. Huang, M. Yang, B. Brandenburg,
K. Bletsas, C. Liu, P. Richard, F. Ridouard, N. Audsley et al.,
“Many suspensions, many problems: a review of self-suspending
tasks in real-time systems,” Real-Time Systems, vol. 55, no. 1,
pp. 144–207, 2019.

[15] T. Coquand and G. Huet, “The calculus of constructions,”
Information and Computation, vol. 76, no. 2, pp. 95–120, 1988.

[16] T. Coquand and C. Paulin, “Inductively defined types,” in
Proceedings of the International Conference on Computer Logic,
1988, pp. 50–66.

[17] D. Cornhilll, L. Sha, and J. P. Lehoczky, “Limitations of Ada for
real-time scheduling,” ACM SIGAda Ada Letters, vol. 7, no. 6,
pp. 33–39, 1987.

[18] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller
area network (CAN) schedulability analysis: Refuted, revisited
and revised,” Real-Time Systems, vol. 35, no. 3, pp. 239–272,
2007.

[19] R. I. Davis, S. Kollmann, V. Pollex, and F. Slomka, “Controller
area network (CAN) schedulability analysis with FIFO queues,”

in Proceedings of the 23rd Euromicro Conference on Real-Time
Systems (ECRTS), 2011, pp. 45–56.

[20] J. Diemer, D. Thiele, and R. Ernst, “Formal worst-case timing
analysis of Ethernet topologies with strict-priority and AVB
switching,” in Proceedings of the 7th IEEE International
Symposium on Industrial Embedded Systems (SIES), 2012, pp.
1–10.

[21] B. Dutertre, “The priority ceiling protocol: formalization and
analysis using PVS,” in Proceedings of the 21st IEEE Real-Time
Systems Symposium (RTSS), 1999, pp. 151–160.

[22] X. Fan, M. Jonsson, and J. Jonsson, “Guaranteed real-time
communication in packet-switched networks with FCFS queuing,”
Computer networks, vol. 53, no. 3, pp. 400–417, 2009.

[23] P. Fradet, X. Guo, J.-F. Monin, and S. Quinton, “A generalized
digraph model for expressing dependencies,” in Proceedings of
the 26th International Conference on Real-Time Networks and
Systems (RTNS), 2018, pp. 72–82.

[24] P. Fradet, M. Lesourd, J.-F. Monin, and S. Quinton, “A generic
Coq proof of typical worst-case analysis,” in Proceedigns of
the 39th IEEE Real-Time Systems Symposium (RTSS), 2018, pp.
218–229.

[25] P. Fradet, X. Guo, J.-F. Monin, and S. Quinton, “CertiCAN:
A tool for the Coq certification of CAN analysis results,”
in Proceedings of the 25th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2019, pp. 182–
191.

[26] L. George and P. Minet, “A FIFO worst case analysis for a hard
real-time distributed problem with consistency constraints,” in
Proceedings of 17th International Conference on Distributed
Computing Systems (ICDCS), 1997, pp. 441–448.

[27] G. Giambene, Queuing Theory and Telecommunications: Net-
works and Applications. Springer, 2005.

[28] A. Gujarati, F. Cerqueira, B. B. Brandenburg, and G. Nelissen,
“Correspondence article: a correction of the reduction-based
schedulability analysis for APA scheduling,” Real-Time Systems,
vol. 55, no. 1, pp. 136–143, 2019.

[29] M. Günzel and J.-J. Chen, “A note on slack enforcement
mechanisms for self-suspending tasks,” Real-Time Systems,
vol. 57, no. 4, pp. 387–396, 2021.

[30] P. K. Harter Jr, “Response times in level-structured systems,”
ACM Transactions on Computer Systems (TOCS), vol. 5, no. 3,
pp. 232–248, 1987.

[31] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and
R. Ernst, “System level performance analysis–the SymTA/S
approach,” IEE Proceedings-Computers and Digital Techniques,
vol. 152, no. 2, pp. 148–166, 2005.

[32] L. S. Indrusiak, A. Burns, and B. Nikolic, “Analysis of buffering
effects on hard real-time priority-preemptive wormhole networks,”
arXiv preprint arXiv:1606.02942, 2016.

[33] M. Joseph and P. Pandya, “Finding response times in a real-time
system,” The Computer Journal, vol. 29, no. 5, pp. 390–395,
1986.

[34] J.-O. Kaiser, B. Ziliani, R. Krebbers, Y. Régis-Gianas, and
D. Dreyer, “Mtac2: typed tactics for backward reasoning in
Coq,” Proceedings of the ACM on Programming Languages,
vol. 2, no. ICFP, pp. 78:1–78:31, 2018.

[35] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world
automotive benchmarks for free,” in Proceedings of the 6th
International Workshop on Analysis Tools and Methodologies
for Embedded and Real-time Systems (WATERS), 2015.

[36] J. P. Lehoczky, “Fixed priority scheduling of periodic task sets
with arbitrary deadlines,” in Proceedings of the 11th IEEE Real-
Time Systems Symposium (RTSS), 1990, pp. 201–209.

[37] ——, “Scheduling communication networks carrying real-time
traffic,” in Proceedings of the 19th IEEE Real-Time Systems
Symposium (RTSS), 1998, pp. 470–479.

[38] H. Leontyev and J. H. Anderson, “Tardiness bounds for FIFO

13

https://coq.inria.fr
http://prosa.mpi-sws.org/
http://hdl.handle.net/10993/24935

scheduling on multiprocessors,” in Proceedings of the 19th
Euromicro Conference on Real-Time Systems (ECRTS), 2007,
pp. 71–71.

[39] A. Mahboubi and E. Tassi, Mathematical Components.
Zenodo, 2022. [Online]. Available: https://doi.org/10.5281/
zenodo.7118596

[40] M. Maida, S. Bozhko, and B. B. Brandenburg, “Foundational
response-time analysis as explainable evidence of timeliness,”
in Proceedings of the 34th Euromicro Conference on Real-Time
Systems (ECRTS), 2022, pp. 19:1–19:25.

[41] T. Meisling, “Discrete-time queuing theory,” Operations Re-
search, vol. 6, no. 1, pp. 96–105, 1958.

[42] M. Nasri, R. I. Davis, and B. B. Brandenburg, “FIFO with
offsets: High schedulability with low overheads,” in Proceedings
of the 24th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2018, pp. 271–282.

[43] N. Navet and L. Fejoz, “CPAL: High-level abstractions for
safe embedded systems,” in Proceedings of the International
Workshop on Domain-Specific Modeling, 2016, pp. 35–41.

[44] N. Navet, L. Fejoz, L. Havet, and A. Sebastian, “Lean model-
driven development through model-interpretation: the CPAL
design flow,” in Proceedings of the 8th European Congress on
Embedded Real Time Software and Systems (ERTS), 2016.

[45] C. Paulin-Mohring, “Introduction to the calculus of inductive
constructions,” in All about Proofs, Proofs for All, B. W. Paleo
and D. Delahaye, Eds. College Publications, 2015.

[46] B. C. Pierce, A. Azevedo de Amorim, C. Casinghino,
M. Gaboardi, M. Greenberg, C. Hriţcu, V. Sjöberg, and
B. Yorgey, Logical Foundations, ser. Software Foundations,
B. C. Pierce, Ed. Electronic textbook, 2022, vol. 1, version 6.2.

[Online]. Available: http://softwarefoundations.cis.upenn.edu
[47] P. Roux, S. Quinton, and M. Boyer, “A formal link between

response time analysis and network calculus,” in Proceedings of
the 34th Euromicro Conference on Real-Time Systems (ECRTS),
2022, pp. 5:1–5:22.

[48] M. Sozeau and N. Oury, “First-class type classes,” in Interna-
tional Conference on Theorem Proving in Higher Order Logics.
Springer, 2008, pp. 278–293.

[49] D. Thiele, P. Axer, and R. Ernst, “Improving formal timing
analysis of switched Ethernet by exploiting FIFO scheduling,” in
Proceedings of the 52nd Annual Design Automation Conference
(DAC), 2015, pp. 1–6.

[50] K. Tindell, A. Burns, and A. J. Wellings, “Calculating con-
troller area network (CAN) message response times,” Control
engineering practice, vol. 3, no. 8, pp. 1163–1169, 1995.

[51] M. Wilding, “A machine-checked proof of the optimality of a
real-time scheduling policy,” in Proceedings of the International
Conference on Computer Aided Verification (CAV), 1998, pp.
369–378.

[52] F. Yao, A. Demers, and S. Shenker, “A scheduling model for
reduced CPU energy,” in Proceedings of the 36th IEEE Annual
Conference on Foundations of Computer Science, 1995, pp. 374–
382.

[53] Q. Zhou, J. Huang, J. Li, and Z. Li, “Response time analysis for
hybrid task sets under fixed priority scheduling,” in Proceedings
of the 28th IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2022, pp. 108–120.

[54] B. Ziliani, D. Dreyer, N. R. Krishnaswami, A. Nanevski, and
V. Vafeiadis, “Mtac: A monad for typed tactic programming in
Coq,” Journal of functional programming, vol. 25, 2015.

14

https://doi.org/10.5281/zenodo.7118596
https://doi.org/10.5281/zenodo.7118596
http://softwarefoundations.cis.upenn.edu

	Introduction
	A Response-Time Analysis of FIFO Scheduling
	System Model
	FIFO Response-Time Analysis
	The Need for Verification

	Foundations of the Verification
	An Introduction to Gallina as used in Prosa
	The Prosa Axiomatic Model of Real-Time Scheduling
	Abstract Response-Time Analysis (aRTA)

	Instantiating aRTA: A Step by Step Breakdown
	Defining the System Model
	Encoding the Scheduling Policy and Preemption Model
	From Classic to Abstract Work Conservation
	Bounding the Maximum Busy-Window Length
	Bounding the Delay Within a Busy Window
	Defining the Search Space, Abstractly and Concretely
	Stating and Re-Stating the Claimed Bound
	Soundness of the Response-Time Bound

	Discussion
	Evaluation
	Conclusion

