
Work-in-Progress: Automatically Generated
Response-Time Proofs as Evidence of Timeliness

Marco Maida, Sergey Bozhko, and Björn B. Brandenburg
Max Planck Institute for Software Systems (MPI-SWS)

I. INTRODUCTION

The purpose of a response-time analysis (RTA) is to obtain
safe bounds on the worst-case response times of all critical
tasks in a real-time system. To this end, the system is described
with a mathematical model (typically, comprising a workload
model, a resource model, and a scheduling policy), which is
then analyzed to derive response-time bounds. This procedure
requires (i) a theory that rigorously justifies that the RTA
correctly characterizes the worst-case scenario, and (ii) an RTA
tool that executes the concrete calculations.

Both are equally critical for the correctness of the computed
bounds. An error in (i), such as an invalid over-generalization or
a missed corner case, leads to a flawed theory. An error in (ii),
which can be any significant bug in the tool, leads to a flawed
implementation. Given the number of documented analysis
mistakes in the real-time literature (e.g., [5, 7, 9, 11]), and the
reality that complex tools are rarely bug-free, both the research
community and industry have shown a growing interest in
the application of computer-assisted formal verification (e.g.,
[10, 12]), while safety standards also started advising its use
(e.g., ISO 26262, DO-178C). Most relevant in the context of
RTA, Cerqueira et al. introduced Prosa [4], the to-date largest
mechanized (i.e., machine-checked) framework for real-time
schedulability analysis, based on the Coq proof assistant [1].

Applying the currently available proof assistants and ver-
ification tools to mechanize RTAs and formally verify RTA
tools is neither an easy nor a cheap task. Once a theory — or
the behavior of a program — is encoded in a proof assistant’s
specification language, it usually needs to be augmented
with additional information (e.g., step-by-step proofs, program
invariants) before the verification procedure can succeed. This
process requires human intervention and a significant amount
of time. Moreover, developing and maintaining a verified tool
requires advanced programming skills and specialized expertise.
Lowering the cost and knowledge barriers blocking access to
the benefits of formal verification remains, therefore, a major
challenge for the adoption of formal methods in industry.

This project seeks to design and implement an RTA tool that
can assert the correctness of its results with high confidence,
without any need for the tool itself to be verified. Our RTA
tool, called POET (Prosa Obsigned Evidence of Timeliness),
works in conjunction with Bozhko and Brandenburg’s abstract
RTA theory [3]. When a problem instance (i.e., a concrete task
set, scheduling policy, and preemption model) is given as input,
POET produces, along with the RTA results, a set of certificates

of correctness that are then automatically machine-checked by
the Coq proof assistant [1]. Each certificate contains a proof of
correctness of the computed response-time bound of one task.
The process is completely automated and does not require any
expertise with formal verification on behalf of the user.

Given that POET directly produces formal proofs of correct-
ness in Coq, it can be regarded as the first foundational [2] RTA
tool. The critical advantage of foundational tools is that the
trusted computing base (TCB) is reduced to the proof checker
and its dependencies: the tool itself does not need to be trusted.
Therefore, the source code can be updated, modified, ported,
and optimized like any common non-critical software. In fact,
we developed POET in Python, a convenient but notoriously
complex-to-verify language.

Foremost, POET makes it possible for users unfamiliar with
Coq to benefit from the power of formal verification and, in
particular, from the Prosa open-source libraries [3, 4].

In this paper:
• We report on the ongoing development of POET, the first

foundational and automated response-time analysis tool.
The certificates produced by POET are short, readable, and
fully commented Coq files that can be machine-checked
in (usually) minutes.

• We describe the mechanisms implemented in POET to
ensure the validity of the generated certificates.

• We report on a preliminary evaluation of the effectiveness
and practicality of our approach on synthetic task sets.

II. BACKGROUND

Coq is an interactive theorem prover with which mathemati-
cal theories can be formalized and machine-checked. It provides
two languages: Gallina, a formal specification language to write
mathematical definitions and functional programs, and Ltac,
an untyped macro language used to steer the proof engine.

While proof checking does not require human intervention,
Coq is not a fully automatic theorem prover: once a theorem
is specified, it is necessary to provide a sequence of tactic
applications (each of which can be seen as a single step of
the proof) that, starting from the stated hypotheses, allows the
proof engine to reach the claimed conclusion. Given that Coq
allows the user to specify custom tactics via the Ltac language,
it is possible to introduce domain-specific automation. This
feature is heavily used in the implementation of POET.

Once a Coq source file (.v) has been written, it can be
compiled into a lower-level representation (generating a .vo
file) and finally machine-checked by the standalone checker

1



coqchk. These two tools (the Coq compiler and the Coq checker)
and their dependencies represent the entire TCB of POET.

Prosa, the proof framework underlying POET’s certificates,
is based on Coq and its popular extension ssreflect [13].
Starting from classic real-time systems concepts, such as job,
task, processor, and arrival curve, the contributors of Prosa
mechanized several classical results (e.g., the optimality of the
earliest-deadline-first scheduling policy) as well as new ones,
the most relevant for this paper being abstract RTA (aRTA) [3].

aRTA formalizes the well-known concept of the busy-
window principle to derive a generic RTA that is applicable
to different types of workload, scheduling policy, and pre-
emption model. This abstract core has been instantiated for
two scheduling policies (earliest-deadline-first, fixed-priority)
and for four preemption models (preemptive, non-preemptive,
limited-preemptive, floating non-preemptive) in every possible
combination, yielding eight different fully verified RTAs.

Given that all proofs are mechanized, aRTA is undoubtedly
correct. However, a mechanized RTA theory, much like its
traditional pen-and-paper counterpart, only describes how to
obtain the response-time bounds, but it is not, per se, a program
that can yield numerical results given a concrete task set. The
theory of aRTA is, in fact, developed by treating the scheduler,
the tasks and the claimed response-time bounds as variables
on which a number of assumptions are made.

The key idea at the base of POET is that, by providing
instantiations for all variables (i.e., assigning a concrete value
to each), and proving that they satisfy all assumptions, the
theorems of aRTA can be put to use to formally verify
precomputed response-time bounds.

III. POET: DESIGN AND WORKFLOW

POET is a tool that generates certificates (i.e., Coq files
containing formal proofs of correctness for a given response-
time bound) for some of the concrete RTAs supported in aRTA.
At the time of writing, POET is already fully functional for fully-
preemptive fixed-priority (FP-FP) and non-preemptive fixed pri-
ority (NP-FP) scheduling and arbitrary-deadline periodic tasks.

In the following, we discuss the challenges and design
decisions involved in automating the generation of RTA
certificates, and the resulting workflow.

Usability of the tool. For the idea behind POET to be
successful, the tool must remain accessible to a general
audience without any expertise in formal verification. In
particular, users must not be expected to be proficient in
authoring Coq proofs. To generate proven RTA results, POET
indeed only requires a specification file containing the task set
information, the scheduling policy, and the preemption model.
An example is presented in Fig. 1.

Transparency and trustworthiness. Since the process of
calculating the response-time bounds, generating formal proofs
of their correctness, and then machine-checking the proofs
is entirely automated, it is necessary to avoid silent failures
and make it possible for a human to scrutinize the certificates.
Moreover, there are ways in which correctly machine-checked

scheduling policy: FP # fixed-priority
preemption model: FP # fully-preemptive
task set:

- id: 1
worst-case execution time: 20
period: 100
deadline: 100
priority: 2

- id: 2
worst-case execution time: 10
period: 120
deadline: 100
priority: 1

Fig. 1. An example input file (in YAML format) describing a task set with
two tasks scheduled under the fully-preemptive fixed-priority (FP-FP) policy.

Fig. 2. The POET workflow.

proofs might still not justify the intended conclusions. This
issue is further discussed in Section IV.

Scalability. Numerically-large computations are infeasible with
the standard unary-based representation of numbers employed
by Coq and ssreflect. However, POET’s certificates need to
support large numbers due to the numerical magnitude of
real-world task sets (periods, costs, and deadlines are often
expressed in nanoseconds or processor cycles). We discuss
how to obtain nonetheless efficient calculations in Section V.

Workflow. The aforementioned design issues lead to the work-
flow illustrated in Fig. 2. Conceptually, the entire procedure
comprises two parts, namely (a) the generation of certificates
starting from an input file provided by the user, and (b) the
compilation and machine-checking done by Coq.

The input file (recall Fig. 1), contains the necessary in-
formation about the task set, the scheduling policy, and the
preemption model. Given an input file, POET produces one
certificate (.v file) per task by instantiating a template specific
to the given scheduling policy and preemption model. During
this phase, Coq itself is not involved in any way. Once the
certificates are in place, POET triggers first the Coq compiler,
which will produce compiled files (.vo) containing low-level
proof terms, and finally the Coq checker (coqchk), which will
verify them. Note that parts (a) and (b) are independent and
performed by different tools (POET and Coq). In particular, the
second part — compilation and verification of the certificates

2



— may be performed repeatedly and on different machines.
The user does not need to act at any step, but we expect

some degree of supervision, as discussed next.

IV. TRUSTWORTHINESS OF THE PROCEDURE

Since POET itself does not need to be trusted, in this section
we focus on how machine-checked, auto-generated certificates
could still be subject to fallacies leading to wrong conclusions.
Only the Coq toolchain is assumed to work correctly.

A. Incomplete proofs

Since POET is not assumed to be correct, measures need to
be taken to ensure that no incomplete proofs can be silently
generated and machine-checked. Coq and POET are working
independently of one another; hence POET might conceivably
generate an incomplete (or, in the extreme case, even com-
pletely empty) certificate file that Coq would then successfully
machine-check. Furthermore, Coq gives the possibility to admit
theorems, i.e., to accept them as valid without giving any proof,
therefore treating them as axioms.

Though these edge cases could be easily programmatically
detected by POET itself, doing so would implicitly turn the
tool into a trusted component. For the same reason, POET
cannot be in charge of reporting the results of the verification
attempt to the user. After the certificates have been generated,
POET must not intervene in any way. Therefore, any action
that needs to be executed after the creation of the certificates is
handled entirely in the Coq environment. This includes printing,
which is done directly in Coq, and checking that no theorem
has been admitted (using coqchk).

To completely eliminate the need to trust POET, the
certificates are designed to be human-readable. Supervision
is required to (1) check that the input file and the generated
certificates match in terms of task set, scheduling policy and
preemption model and (2) observe the output of the Coq
compiler and checker to assess whether they succeeded.

Finally, it is possible for an experienced user to scrutinize the
complete list of proof steps (i.e., tactic applications) that lead to
the response-time bound. Though it is generally not necessary to
closely inspect the certificates, striving for readability increases
their quality and renders them suitable as transparent evidence
of temporal correctness since they can be dissected and studied
up to their fundamental definitions (as provided by Prosa).

B. Contradicting hypotheses

A second, more subtle type of error is related to the possible
existence of contradicting hypotheses inside the certificates. In
this scenario, conclusions reached in a sound way may still
be incorrect (note that, in general, it is not possible to detect
contradicting hypotheses automatically). This potential pitfall
has been described in-depth by Cerqueira et al. [4]. It is hence
necessary to show that it is possible to instantiate each of the
variables such that all hypotheses are respected.

POET’s certificates generalize over only one variable, namely,
the arrival sequence, whose purpose is to yield, for each given
instant, a sequence of new jobs (each of which has a specific

cost) that have been released by their respective tasks. This is
done because, like most RTAs, aRTA considers every possible
combination of job arrivals and job costs that respect the
workload constraints (e.g., that jobs arrive periodically).

To prove the absence of contradictions beyond any doubt,
POET generates, in addition to the certificate of correctness of
the general response-time bound, a second certificate for each
task free of any variables or hypotheses (i.e., a concrete arrival
sequence with fixed job costs) and for which the response-
time bound is proven once more to hold. Instantiating any
valid arrival sequence suffices to show that the hypotheses
are contradiction-free; we chose the concrete arrival sequence
that, at each instant t, maximizes the number of arrivals in the
interval [0, t] while respecting all workload constraints.

V. SCALABILITY OF THE CERTIFICATION PROCEDURE

POET’s certificates depend on Prosa, and therefore implicitly
on ssreflect. We found that, without adopting any further solu-
tion, certification time grew prohibitively with increasing costs,
periods, and deadlines. The root cause turned out to be that
ssreflect employs a unary representation of numbers. This has
clear advantages when writing proofs, as it simplifies inductive
reasoning and case analyses. However, even a moderately
large unary number (like one billion) takes considerable time
to instantiate and can easily trigger a stack overflow in the
Coq compiler. Roughly, on our test machine (described in
Section VI), the certification process stays somewhat feasible
(i.e., takes hours) despite the unary representation as long as
costs, periods, and deadlines remain in the order of 106.

For example, consider the task set in Fig. 1, which uses
milliseconds as its unit of measure. If we instead express all
parameters in microseconds (i.e., multiply worst-case execution
times, periods, and deadlines by 103), we do not, in principle,
change the complexity of the RTA problem. However, when
using ssreflect’s number representation, this has an enormous
impact on performance, pushing the certification time from less
than three seconds to around 15 minutes. A unary representation
hence renders it impossible to support nanosecond resolution
(and would therefore severely limit the applicability of POET).

Instead, POET’s certificates employ a binary representation
of numbers. However, this is easier said than done: since
the aRTA library [3] expects unary numbers, trying to apply
its definitions and functions to binary-encoded inputs would
result in type-checking errors. Therefore, the necessary aRTA
calculations were re-implemented to support binary numbers
and connected to the existing aRTA proofs using CoqEAL [6],
a framework for changes in data representation. The support
code necessary to speed up the certifications of FP-FP task sets
is roughly 600 LOCs of definitions, proofs, and tactics, and a
similar amount is required for NP-FP. Note that CoqEAL is not
part of the TCB since, as a Coq library, it is itself subject to full
verification by coqchk when a certificate is machine-checked.

The switch to binary representation dramatically impacts
runtime and memory needs, rendering nearly instantaneous
previously infeasible operations. Consider once again the task
set in Fig. 1 (expressed in milliseconds). With the binary

3



Fig. 3. Total time taken to generate and machine-check the certificates for an entire task set, w.r.t. (a) number of tasks in the task set and (b) total utilization.
Each box shows the interquartile range (IQR); the median is indicated by a horizontal line. Boxes are omitted in (a) for clarity. Whiskers extend to the
minimum and maximum measured values. Inset (b) shows workloads with 25 and 30 tasks.

representation in place, the total certification time is around
five seconds on our testing machine (i.e., slightly slower than
before) but stays roughly the same irrespective of whether the
task set is expressed in microseconds or nanoseconds. For task
sets with small parameters (on the order of 102), the unary
representation remains faster as the overhead of the translation
to binary exceeds the cost of the calculation. However, in this
edge case, the total certification time is quite low, and hence
the difference between the two approaches is negligible.

VI. PRELIMINARY EVALUATION

To assess whether POET can produce certificates for task
sets of realistic complexity (in terms of task count, utilization,
and numerical magnitude of the data), we ran the certification
process on 540 synthetic task sets generated using Emberson
et al.’s unbiased task-set generator [8]. The number of tasks
ranged from 5 to 50 in steps of 5. Utilization ranged from 0.1
to 0.9 in steps of 0.1. We expressed time in nanoseconds, which
means that the average numerical magnitude of parameters was
in the order of 109. All experiments were run on a 2.5 GHz
Intel Xeon Platinum 8180 processor with 376 GB RAM.

Considering once again the workflow as depicted in Fig. 2,
our experiments have shown that the processing time is largely
dominated by part (b). In other words, the time taken by POET
to perform the RTA and generate the certificates is negligible
w.r.t. the time taken by Coq to check the certificates. Hence,
the preliminary evaluation does not distinguish between the
two and only shows the total time taken for both (a) and (b).

As can be seen in Fig. 3, certification time grows with the
number of tasks (Fig. 3a) while it is not affected by the total
utilization (Fig. 3b). The super-linear growth apparent in Fig. 3a
is due to the fact that adding a task both increases the number
of certificates that must be checked while also increasing the
the complexity of the certificates of all prior tasks.

Although machine-checking times significantly differ from
task to task (and, consequently, from task set to task set), in
every test POET was able to certify the task set under analysis
in at most 45 minutes. We interpret these results to indicate
that the design of POET works and scales to realistic task sets.

VII. CONCLUSION

Our preliminary results show that foundational RTA tools
that certify the bounds they produce with machine-checkable
proofs of correctness, like POET, can be a viable alternative
to verified RTA tools. Going forward, we plan to extend
POET to support sporadic tasks. Moreover, we intend to
explore RTAs for different preemption models and earliest-
deadline first scheduling.

REFERENCES

[1] “The Coq Proof Assistant,” https://coq.inria.fr.
[2] A. W. Appel, “Foundational proof-carrying code,” in LICS, 2001.
[3] S. Bozhko and B. B. Brandenburg, “Abstract Response-Time

Analysis: A Formal Foundation for the Busy-Window Principle,”
in ECRTS, 2020.

[4] F. Cerqueira, F. Stutz, and B. B. Brandenburg, “PROSA: A case
for readable mechanized schedulability analysis,” in ECRTS,
2016.

[5] J.-J. Chen, G. Nelissen, W.-H. Huang, M. Yang, B. Brandenburg,
K. Bletsas, C. Liu, P. Richard, F. Ridouard, N. Audsley et al.,
“Many suspensions, many problems: a review of self-suspending
tasks in real-time systems,” Real-Time Systems, vol. 55, no. 1,
2019.

[6] C. Cohen, M. Dénès, and A. Mörtberg, “Refinements for free!”
in CPP, 2013.

[7] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller
Area Network (CAN) schedulability analysis: Refuted, revisited
and revised,” Real-Time Systems, vol. 35, no. 3, 2007.

[8] P. Emberson, R. Stafford, and R. I. Davis, “Techniques for the
synthesis of multiprocessor tasksets,” in WATERS, 2010.

[9] A. Gujarati, F. Cerqueira, and B. B. Brandenburg, “Schedulability
analysis of the Linux push and pull scheduler with arbitrary
processor affinities,” in ECRTS, 2013.

[10] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish
et al., “seL4: Formal verification of an OS kernel,” in SOSP,
2009.

[11] K. Lakshmanan, D. de Niz, and R. Rajkumar, “Coordinated task
scheduling, allocation and synchronization on multiprocessors,”
in RTSS, 2009.

[12] X. Leroy, S. Blazy, D. Kästner, B. Schommer, M. Pister,
and C. Ferdinand, “CompCert-a formally verified optimizing
compiler,” in ERTS, 2016.

[13] A. Mahboubi and E. Tassi, Mathematical Components. Zenodo,
2021.

4

https://coq.inria.fr

	Introduction
	Background
	POET: Design and Workflow
	Trustworthiness of the procedure
	Incomplete proofs
	Contradicting hypotheses

	Scalability of the certification procedure
	Preliminary Evaluation
	Conclusion

