
Monte Carlo Response-Time Analysis
Sergey Bozhko, Georg von der Brüggen, and Björn B. Brandenburg

Max Planck Institute for Software Systems (MPI-SWS)

Abstract—Determining a soft or firm real-time task’s probabilis-
tic worst-case response time is a central goal when quantifying
and bounding the probability of deadline misses, but current
approaches are either (i) fast, but coarse-grained analytical
bounds without precision guarantees, (ii) based on convolution
and suffer from high space and time complexity, or (iii) combine
convolution with resampling techniques that accrue pessimism in
an uncontrolled manner. As a new alternative, this paper provides
the first probabilistic response-time analysis method based on
Monte Carlo simulation, which provides a controlled trade-off
between analysis runtime, the desired degree of accuracy, and the
permissible probability of a misestimate. An evaluation shows the
proposed Monte Carlo analysis to routinely provide more accurate
worst-case deadline failure probability (WCDFP) estimates than
prior approaches, especially when considering large task sets
(where prior methods struggle). In particular, it is shown to
scale to workloads with up to 500 tasks while achieving one to
three orders of magnitude better precision than analytical or
convolution-based approaches (given an equivalent time budget).

I. INTRODUCTION

In most “every-day” real-time systems, occasional deadline
misses do not cause disaster or complete failure of the system.
In the real-time systems literature, such systems are classified as
soft or firm. According to a recent survey of industry practice in
real-time systems [3], about two thirds (62%) of the respondents
indicated that the system they are working on includes soft
or firm timing constraints, and only 5% indicated that they
work on a system with purely hard timing constraints. Another
interesting finding [3] is that, when asked about the maximum
allowed frequency at which the most time-critical function of a
system can miss its deadlines, 45% of the respondents indicated
that said functionality can miss some deadlines (ranging from
1 in 10 to 1 in 1 billion), 35% were unable to give a specific
answer, and only 15% stated that deadlines cannot be missed.

Nonetheless, even in soft real-time systems, too-frequent
deadline misses can cause unacceptable performance degra-
dation; their likelihood should hence be assessed a priori.
One of the central metrics in this context is the worst-case
deadline failure probability (WCDFP) [17] (defined formally
in Section VI). Intuitively, this notion corresponds to an upper
bound on the probability of observing the first deadline miss
of a task under analysis in a given busy window. The WCDFP
allows bounding the average time to (temporal) failure of a
system and, if jobs that miss their deadlines are immediately
aborted by the system, directly corresponds to an upper bound
on the expected deadline-miss rate. Furthermore, even if tardy
jobs are not aborted, the WCDFP still plays an important role
when estimating the deadline-miss rate [11].

A common way to determine the WCDFP is to perform a
probabilistic response-time analysis [39, 41, 57]. In contrast

to classic response-time analyses based on a scalar worst-case
execution time (WCET) [4, 7, 18, 27, 32], which conservatively
assume each task activation (or job) to exhibit the worst possible
execution time, probabilistic response-time analyses consider
a distribution of potential execution times for each task and,
based on this, estimate the resulting response-time distribution.
Such response-time distributions are then used to derive the
probability that a task misses a deadline.

Probabilistic response-time analyses are a basic building
block for many probabilistic techniques and, in addition to
bounding the WCDFP, are used in numerous other related
problems such as analyses of controller area networks [5, 49],
preemption-point selection [39], correlated response times [54],
and fault tolerance [8, 16, 48].

Unfortunately, a fundamental complication in any probabilis-
tic response-time analysis is that a probabilistic response time
is ultimately a sum of (many) random variables. Thus, a direct,
exact computation via naı̈ve convolution would result in ex-
treme growth of the representation of the resulting distribution
and is practically infeasible. Consequently, prior analyses have
been driven towards faster techniques that safely upper-bound
the response-time distribution [10, 12, 42, 43, 50, 57]. These
methods can be informally divided into two families of ap-
proaches: convolution-based approaches and analytical bounds.

The convolution-based approaches trace their origin back
to Dı́az et al.’s concept of intentional pessimism in the
probabilistic analysis of real-time systems [20]. By defining a
partial order on random variables that reflects approximation
safety, Dı́az et al. enabled a lossy, but sound and more scalable
over-approximation of the resulting response-time distribution,
which has since been reused in several papers [42, 43, 50].
In particular, this idea was further developed by Refaat and
Hladik [50] and Maxim and Cucu-Grosjean [41], who proposed
to resample after each convolution step such that the resulting
distribution is upper-bounded by a distribution with a more
compact representation. This allows controlling the size of the
final distribution at the cost of some pessimism. However, the
pessimism of the resulting distribution depends in non-obvious
ways on the choice of resampling procedure and the number
of points in the representation of the resampled distribution.
Moreover, the pessimism tends to accumulate and compound.
To date, no bound on the final pessimism has been proposed
and there is no known way of ensuring that the pessimism
remains below a given threshold.

Analytical upper bounds circumvent the need to actually
obtain a response-time distribution and instead directly bound
the proportion of the distribution that exceeds the relative
deadline. These approaches make use of analytical upper

1

bounds on random variables such as Chernoff’s [13] (Chen et
al. [10, 12]), Bernstein’s [6], or Hoeffding’s [26] inequalities
(von der Brüggen et al. [57]). These inequalities are general
theorems about the probability of observing a given deviation
of the sum of multiple random variables from its expected
value that do not involve computing the underlying distribution.
However, while yielding an upper bound quickly, these methods
are also known to be quite pessimistic in many cases [12, 57].

In this paper, we aim for a middle ground between the
two families of prior approaches. To this end, we explore
the application of Monte Carlo methods (i.e., probabilistic
algorithms). The distinguishing feature of such algorithms is
that they may output incorrect results with (arbitrarily) low
probability for the benefit of significantly improved runtimes
compared to deterministic algorithms.

More precisely, we present a novel approach based on Monte
Carlo simulation that, at the cost of a configurable and bounded
probability of a misestimate, provides two desirable features:
(i) it allows estimating the probabilistic response-time of a job
significantly faster than known convolution-based approaches,
and (ii) in contrast to analytical bounds, it allows fine-grained
control over the achieved precision.

Contributions. We consider the problem of determining the
WCDFP of a task under uniprocessor fixed-priority preemptive
scheduling when each task’s execution time is defined using a
discrete distribution. Our main contributions are:

• We provide a novel approach based on Monte Carlo
simulation (Sections IV and V) that allows estimating the
probabilistic response-time of a given job with controllable
precision and controllable probability of a misestimate.

• We show how the proposed Monte Carlo method can be
used to bound the WCDFP under fixed-priority preemptive
uniprocessor scheduling (Section VI).

• We conducted an evaluation with randomized task sets
(Section VII), demonstrating scalability to large sets with
up to 500 tasks and improved accuracy compared to the
state of the art: on average, the proposed approach was
1–3 orders of magnitude more precise than analytical or
convolution-based methods (given the same time budget).

II. SYSTEM MODEL AND BACKGROUND

We begin by describing the general system model and
recalling some basic definitions on which our analysis rests.
We assume a discrete-time model, where the smallest quantity
γ > 0 represents an indivisible unit of time (e.g., a processor
cycle) and T , {γ · k | k ∈ N} ⊂ R denotes the time domain.

A. Probability Theory Primer

To start, we briefly review key concepts of probability theory.

Def. 1. A probability space is a triple (Ω,F ,P), where Ω is
the set of all possible outcomes of an experiment, F is a set of
events, where each event is a subset of Ω, and P : F → [0, 1]
is a probability function. If not specified otherwise, we assume
that Ω is discrete and F is the powerset of Ω (i.e., F = 2Ω).

In our context, a random variable is a function that maps
elements of the set of possible outcomes to a discrete set.

Def. 2. A random variable is a function X : Ω→ E from a
set of possible outcomes to a space E. In this paper, E is a
discrete subset of R or Rk such as {0, 1}, N, T, or Tk.

For notational brevity, it is common to omit the argument
of a random variable and use the expression P [X = x] as an
abbreviation for P [{ω ∈ Ω|X(ω) = x}]. Similarly, the expres-
sion P [X ≤ x] is an abbreviation for P [{ω ∈ Ω|X(ω) ≤ x}].
Furthermore, two random variables X, Y are independent if
P [X = x ∧ Y = y] = P [X = x] · P [Y = y].

Next, we define the cumulative distribution function.

Def. 3. Given a random variable X : Ω→ E, where E ⊆ R,
its cumulative distribution function (CDF) F [X] : R→ [0, 1]
is defined as F [X](x) , P [X ≤ x].

There is a simple relation between the equality of probabili-
ties and the equality of CDFs of two discrete random variables.

Fact 4. For any two random variables X and Y with codomain
T, F [X] = F [Y] if and only if P [X = t] = P [Y = t] for t ∈ T.

We adopt the notion of a partial order on random variables
from Dı́az et al. [20]. In the following sections, the terms “upper
bound” or “maximum” in the context of random variables or
distributions should always be understood in the sense of Def. 5.

Def. 5 (from [20]). Let X1 and X2 be two random variables.
We say that X1 is greater than or equal to X2 if F [X1](x) ≤
F [X2](x) for any x ∈ R, and denote this relation by X1 � X2.

Next, we define the inverse cumulative distribution function.

Def. 6. Given a random variable X : Ω→ E, where E ⊆ R, its
inverse cumulative distribution function (ICDF) Q[X] : [0, 1]→
R is defined as Q[X](q) , inf {x ∈ R | F [X](x) ≥ q }.

The first key result that plays an important role later in the
paper is the inverse transform sampling method, which allows
sampling from a complex distribution if the ICDF is known.
We use the following notation: given a random variable X :
Ω→ E1 and a function f : E1 → E2, we let f(X) : Ω→ E2

denote a random variable that maps each ω ∈ Ω to f(X(ω)).

Theorem 7 (Lemma 2.4 in [51]). Let X be a random variable
with cumulative distribution function F [X]. If a random
variable Y has a uniform distribution U ([0, 1]), then the
random variable Q[X](Y) has the same distribution as X.

Second, we recall that a function of multiple random
variables can be substituted with an equivalent expression
involving only individual random variables. To express this
concisely, let JxK denote the indicator function that evaluates
to 1 if x is true, and to 0 otherwise. Furthermore, given a
function f with domain Tk, let

∑
x1,...,xk

f(x1, . . . , xk) ,∑
x1∈T

∑
x2∈T . . .

∑
xk∈T f(x1, . . . , xk) denote the sum over

all possible tuples (x1, . . . , xk) in Tk.

2

Fact 8. For a function f(x1, . . . , xk) : Tk → T and k indepen-
dent random variables X1, . . . ,Xk, P [f(X1, . . . ,Xk) = x] =∑
x1,...,xk

Jf(x1, . . . , xk) = xK ·∏k
i=1 P [Xi = xi].

For the third and final major building block, recall that a
random variable X is called a Bernoulli trial if it has exactly
two outcomes that can be interpreted as “success” and “failure”
and in which the probability of a success p is the same every
time the experiment is conducted. Given a Bernoulli trial
with probability of success p, the binomial random variable
B(s, p) describes the probability of observing a given number
of successes in s independent Bernoulli trials.

In practice, the success probability p is often unknown.
To estimate the ground-truth success probability p from
repeated observations of an experiment, binomial proportion
confidence intervals are used. An interval [l, r] is called a
(1− ε)-confidence interval for parameter p if the probability
that p ∈ [l, r] is at least 1− ε. One commonly used confidence
interval is the Agresti–Coull interval [2], which we adopt, too.

Theorem 9 ([2]). Given k successes in s trials, let s̃ , s+ z2,
and p̃ , 1

s̃

(
k + z2

2

)
. Then a (1− ε)-confidence interval for p

is given by p̃ ± z
√
p̃(1− p̃)/s̃, where z is the (1 − ε/2)-th

quantile of the standard normal distribution (with mean 0 and
variance 1), that is, z , Φ−1

(
1− ε

2

)
.

B. System Model

We consider a system comprised of n sporadic firm real-
time tasks τ , {τ1, . . . , τn}. We assume that a job that misses
its deadline is immediately discarded (i.e., removed from the
system); we later revisit this assumption in Section VI. Each
task τi , (Fi, Ti, Di, πi) is characterized by an execution-time
distribution Fi, its minimum inter-arrival time Ti, its relative
deadline Di, and its priority πi. We write πh � πl to denote
that task τh has a priority equal to or exceeding that of task τl.
We consider constrained deadlines: Di ≤ Ti for any τi ∈ τ .

Whenever a task is activated, a corresponding job is released.
Let Ji,j denote the j-th job of task τi. Each job Ji,j has
a release (or activation) time ai,j , an absolute deadline
di,j = ai,j +Di, a priority equal to its task’s priority πi, and
an execution time (or cost) ci,j , where the possible values of ci,j
are distributed in accordance with the job’s (usually unknown)
probabilistic execution time (pET) C?i,j , which describes the
probability that the job exhibits a particular cost. We use the
terms “execution time” and “job cost” interchangeably.

The task set is scheduled on a uniprocessor according to
a fully preemptive fixed-priority scheduling policy. That is,
at each point in time, the scheduler ensures that (one of) the
ready job(s) with the highest priority is executed.

Unfortunately, pETs—which describe the probability that
a job’s actual execution time is equal to a given value—are
exceedingly difficult to obtain and not necessarily independent
random variables, which renders many analysis techniques
inapplicable. To mitigate these challenges, it is common [15]
to instead consider a probabilistic worst-case execution time
that upper-bounds the actual pET in the sense of Def. 5.

C?
i,1

<latexit sha1_base64="7UDxVXQPA2NtBx8L7CihXAzdKBE=">AAACAHicdVDLSsNAFJ3UV62vqgsXbgar4ELKxKbaZaEblxXsA5oYJtNJO3TyYGYilJCNv+LGhSJu/Qx3/o2TtoKKHrhwOOde7r3HizmTCqEPo7C0vLK6VlwvbWxube+Ud/e6MkoEoR0S8Uj0PSwpZyHtKKY47ceC4sDjtOdNWrnfu6NCsii8UdOYOgEehcxnBCstueUDO8BqTDBPW5mbsjMzu7WlwsItV1AVWRZqXEBUrdXqdcvUBKFazTShqUmOClig7Zbf7WFEkoCGinAs5cBEsXJSLBQjnGYlO5E0xmSCR3SgaYgDKp109kAGT7QyhH4kdIUKztTvEykOpJwGnu7Mz5W/vVz8yxskym84KQvjRNGQzBf5CYcqgnkacMgEJYpPNcFEMH0rJGMsMFE6s5IO4etT+D/pnldNq1q/tirN40UcRXAIjsApMMElaIIr0AYdQEAGHsATeDbujUfjxXidtxaMxcw++AHj7RMlvJaw</latexit>

C?
i,2

<latexit sha1_base64="wNHq8uNhY+YQQHPD+LpYkZlbfnY=">AAACAHicdVC7SgNBFJ2NrxhfUQsLm8EoWMgym2xeXSCNZQQTA8m6zE4myZDZBzOzQli28VdsLBSx9TPs/BsnD0FFD1w4nHMv997jRZxJhdCHkVlZXVvfyG7mtrZ3dvfy+wcdGcaC0DYJeSi6HpaUs4C2FVOcdiNBse9xeuNNmjP/5o4KycLgWk0j6vh4FLAhI1hpyc0f9X2sxgTzpJm6Cbsoprd9qbBw8wVkItuqVW2IzBKqVKo1TSr1erlkQ8tEcxTAEi03/94fhCT2aaAIx1L2LBQpJ8FCMcJpmuvHkkaYTPCI9jQNsE+lk8wfSOGZVgZwGApdgYJz9ftEgn0pp76nO2fnyt/eTPzL68VqWHMSFkSxogFZLBrGHKoQztKAAyYoUXyqCSaC6VshGWOBidKZ5XQIX5/C/0mnaFq2Wb6yC43TZRxZcAxOwDmwQBU0wCVogTYgIAUP4Ak8G/fGo/FivC5aM8Zy5hD8gPH2CV7Jltg=</latexit>

Ci,j

<latexit sha1_base64="G+aX9ZR5hDho5EDes3dFMJGEgzw=">AAAB+nicbVDLSsNAFL3xWesr1aWbYBVcSEmkostCNy4r2Ae0IUymk3bsZBJmJkqJ+RQ3LhRx65e482+ctFlo64GBwzn3cs8cP2ZUKtv+NlZW19Y3Nktb5e2d3b19s3LQkVEiMGnjiEWi5yNJGOWkrahipBcLgkKfka4/aeZ+94EISSN+p6YxcUM04jSgGCkteWZlECI1xoilzcxL6fl95plVu2bPYC0TpyBVKNDyzK/BMMJJSLjCDEnZd+xYuSkSimJGsvIgkSRGeIJGpK8pRyGRbjqLnlmnWhlaQST048qaqb83UhRKOQ19PZkHlYteLv7n9RMVXLsp5XGiCMfzQ0HCLBVZeQ/WkAqCFZtqgrCgOquFx0ggrHRbZV2Cs/jlZdK5qDn12uVtvdo4KeoowREcwxk4cAUNuIEWtAHDIzzDK7wZT8aL8W58zEdXjGLnEP7A+PwBbdiUBg==</latexit>

0

<latexit sha1_base64="pvJEnxNPqotzVu9Mnk33oBmylbg=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSp4KolU9Fjw4rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZquP1S2a24c5BV4uWkDDnq/dJXbxCzNEJpmKBadz03MX5GleFM4LTYSzUmlI3pELuWShqh9rP5oVNyYZUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjrZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTdGG4C2/vEpaVxWvWrluVMu18zyOApzCGVyCBzdQg3uoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBcquMng==</latexit>

1

<latexit sha1_base64="dcYc+6Gg6PqVw4x3kMHLF+zo8hw=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSp4KolU9Fjw4rEF+wFtKJvtpF272YTdjVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8N/PbT6g0j+WDmSToR3QoecgZNVZqeP1S2a24c5BV4uWkDDnq/dJXbxCzNEJpmKBadz03MX5GleFM4LTYSzUmlI3pELuWShqh9rP5oVNyYZUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjrZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTdGG4C2/vEpaVxWvWrluVMu18zyOApzCGVyCBzdQg3uoQxMYIDzDK7w5j86L8+58LFrXnHzmBP7A+fwBdC+Mnw==</latexit>

t

<latexit sha1_base64="4iy6WFCVS1q+k+pmMrR146CLVRI=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSp4KolU9Fjw4rEF+wFtKJvtpl272YTdiVBCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfju5nffuLaiFg94CThfkSHSoSCUbRSA/ulsltx5yCrxMtJGXLU+6Wv3iBmacQVMkmN6Xpugn5GNQom+bTYSw1PKBvTIe9aqmjEjZ/ND52SC6sMSBhrWwrJXP09kdHImEkU2M6I4sgsezPxP6+bYnjrZ0IlKXLFFovCVBKMyexrMhCaM5QTSyjTwt5K2IhqytBmU7QheMsvr5LWVcWrVq4b1XLtPI+jAKdwBpfgwQ3U4B7q0AQGHJ7hFd6cR+fFeXc+Fq1rTj5zAn/gfP4A2buM4g==</latexit>

Fig. 1: The pWCET Ci,j upper-bounds the pETs C?i,1 and C?i,2.

Def. 10. The probabilistic worst-case execution time (pWCET)
Ci,j of a job Ji,j is a random variable with codomain T such
that (i) it upper-bounds the pET of the job (i.e., Ci,j � C?i,j),
(ii) its distribution is equal to task τi’s execution-time distribu-
tion (i.e., F [Ci,j] = Fi), and (iii) pWCETs corresponding to
different jobs are independent random variables.

Since we require F [Ci,j] = Fi, we can state Def. 10 in a
different manner. Given an arbitrary constant x ∈ T and a job
Ji,j of task τi, it holds that P

[
C?i,j ≤ x

]
≥ Fi(x). Visually,

this means that the CDF of Ci,j stays below the CDF of C?i,j
for any j (see Fig. 1). We further assume that an ICDF Qi
corresponding to Fi is known for each τi. That is, there is a
function Qi : [0, 1]→ R such that for any quantile q ∈ [0, 1]
and any job Ji,j ∈ τi: P

[
C?i,j ≤ Qi(q)

]
≥ q.

For notational clarity, we introduce the arrival sequence
ξ(t) , {Ji,j | Ji,j : ai,j = t}, which maps each instant t to
the set of jobs that arrive at t. Based on ξ, we introduce three
auxiliary notions: the arrival sequence of a task τi, defined as
ξi(t) , ξ(t) ∩ {Ji,j | j ∈ N}, the higher-or-equal priority ar-
rival sequence of τi, defined as ξ�i(t) ,

⋃
h:πh�πi

ξh(t), and
their extensions to intervals, e.g., ξ([t1, t2)) ,

⋃
t∈[t1,t2) ξ(t).

III. FORMALIZATION OF THE RESPONSE-TIME BOUND

To lay a solid foundation for the subsequent development of
our method and its proof of correctness, we take a short detour
and derive the notion of a “probabilistic response-time bound”
from first principles. What we present is a simple construction
of a natural upper bound on the “probabilistic response time”
of a job. While arguably similar definitions were used implicitly
in many earlier papers on this topic [15, 19, 34, 39, 41, 45],
we are not aware of a similarly rigorous derivation of this
key concept in prior work. In particular, we emphasize the
separation between a random variable representing a response-
time bound and its distribution (in contrast to most prior
work), which later allows us to estimate a property of the
distribution using samples of the random variable without
needing to compute the distribution itself.

In the following, we build up to the notion of the probabilistic
response-time bound Rξx,y of a job Jx,y in a given arrival
sequence ξ (Def. 15 below). At a high level, the construction
we describe is the following. Since the job Jx,y under analysis is
known, we can restrict our attention to the interval [0, dx,y). We
split this interval into two subintervals [0, ax,y) and [ax,y, dx,y)

3

(i.e., at Jx,y’s arrival time ax,y). First, we define the accumlated
probabilistic carry-in at the end of [0, ax,y). Second, given this
carry-in at time ax,y, we define a probabilistic response time
bound of job Jx,y only focusing on the interval [ax,y, dx,y).

When discussing random variables, it is common to drop the
dependency on their sample spaces. That is, given a random
variable X : Ω→ T, it is customary to write X instead of X(ω).
For notational transparency, in the rest of this section, we do not
follow this convention and explicitly specify the sample space.

We begin with a definition of an outcome space that can ac-
commodate all the random variables needed to define Rξx,y(ω).
Let Ωi,j be the outcome set of the pWCET of a job Ji,j .
Since ξ is known, we can compute the exact number of
jobs of task τi arriving in the interval [0, dx,y), defined as
mi , |ξi([0, dx,y))|. The outcome set Ωi of a random variable
corresponding to the pWCETs of jobs of τi arriving in the
interval [0, dx,y) is thus the cross-product of the initial outcome
sets, that is Ωi , Ωi,1 × . . .× Ωi,mi

. Similarly, we combine
the per-task outcome sets to obtain an outcome set capable of
accommodating the pWCETs corresponding to all jobs arriving
in the interval [0, dx,y), defined as Ω , Ω1 × . . .× Ωn.

We use Ωi,j to refer to the jth outcome space of the ith

task, and given an outcome ω ∈ Ω, analogously use ωi,j
to refer to the jth outcome of the ith task in ω (where
ωi,j ∈ Ωi,j). Intuitively, every outcome ω ∈ Ω corresponds to
some deterministic evolution (or scenario) of the system from
time 0 to time dx,y. The corresponding event space 2Ω and
probability function, defined as the product of probabilities
over the individual outcome sets Ωi,j , allow us to assign a
notion of probability to such deterministic evolutions.

We next introduce probabilistic counterparts to the well-
known basic building blocks of deterministic response-time
analysis. We start with a probabilistic request-bound function.

Def. 11. The probabilistic request-bound function for a given
task τi and interval [t1, t2) ⊆ [0, dx,y) is a random variable that
describes the workload of τi in [t1, t2). Formally, for ω ∈ Ω:
RBFξi ([t1, t2), ω) ,

∑ {Ci,j(ωi,j) | Ji,j ∈ ξi([t1, t2))}.
Def. 11 upper-bounds a task’s actual demand since job costs

are modeled using pWCETs (and not pETs) and because jobs
are assumed to contribute their full cost upon arrival (even if
they are later aborted). Building on RBFξi , we next bound
interference due to tasks with higher or equal priority.

Def. 12. The probabilistic higher-or-equal-priority workload
with respect to task τi in a given interval [t1, t2) ⊆ [0, dx,y) is
a random variable that describes the total cost of all higher-
or-equal-priority jobs released in [t1, t2). Formally, for ω ∈ Ω:
Wξ
i ([t1, t2), ω) ,

∑{
RBFξh([t1, t2), ω) | τh : πh � πi

}
.

With Wξ
i ([t1, t2), ω) in place, we are ready to define the

well-known fixpoint at the heart of response-time analysis.

Def. 13. The probabilistic fixpoint for a given task τi,
time instant t < dx,y, and carry-in of size c is a ran-
dom variable that describes the solution of the workload-
fixpoint equation for an interval starting at time t with carry-

in c. Formally: Zξi (c, t, ω) , min ({dx,y + γ} ∪ F), where
F ,

{
t+ ∆

∣∣∣ ∆ > 0 : c+Wξ
i ([t, t+ ∆), ω) ≤ ∆

}
.

The artificial constant dx,y + γ encodes the occurrence
of a deadline miss and upper-bounds the search range, as
it ensures that any fixpoint solutions past the job’s deadline
(or the possibility that there are no solutions) are irrelevant.

Using the notion of a fixpoint, we define the carry-in at
time tc. Note that the carry-in at time tc does not include
the workload that arrives at time tc, and recall that a quiet
time occurs at a time t if any higher-or-equal-priority job that
arrived before time t is completed by time t.

Def. 14. The probabilistic carry-in for a given task τi and
time tc < dx,y is a random variable that describes the unfin-
ished interfering workload at time tc. Formally, let T ξi (tc, ω) ,

min
{
t
∣∣∣ t ∈ [0, tc] : Zξi (0, t, ω) > tc

}
be the latest quiet time

(w.r.t. task τi) no later than tc, then the carry-in at time tc is
Vξi (tc, ω) ,Wξ

i

(
[T ξi (tc, ω), tc), ω

)
− (tc − T ξi (tc, ω)).

Finally, we arrive at a probabilistic response-time bound.

Def. 15. Job Jx,y’s probabilistic response-time bound (pRT)
is the random variable Rξx,y(ω) , Zξx(Vξx(ax,y, ω), ax,y, ω).

Intuitively, Rξx,y(ω) describes the probability that the re-
sponse time of Jx,y with respect to arrival sequence ξ is equal
to a given value. However, due to the “stop value” in Def. 13,
the distribution of Rξx,y(ω) is truncated at dx,y +γ, so that the
intuition holds only for values not exceeding Jx,y’s deadline.
If Jx,y misses its deadline (that is, ∆ exceeds Dx), according
to Def. 13, Rξx,y(ω) is always equal to dx,y+γ, which suffices
to define the job’s probability of missing its deadline.

Def. 16. The deadline-failure probability (DFP) of a job Jx,y
in arrival sequence ξ is defined as P

[{
ω
∣∣ Rξx,y(ω) > Dx

}]
.

IV. MONTE CARLO ESTIMATION

In this section, we present our method for estimating the
probabilistic response-time bound of a given job. Due to
the challenges discussed in Section I, we relax the problem
and allow the algorithm to (i) fail with a small, quantifiable
probability and (ii) output only an approximate solution, where
the permissible degree of approximation can be specified.

Problem statement. Given a task set τ , a task τx ∈ τ ,
an arrival sequence ξ, a job Jx,y of task τx, the required
accuracy δ > 0, and the allowed misestimation proba-
bility ε > 0, derive estimates l and r for the unknown
DFP p = P

[
Rξx,y > Dx

]
such that

|l − r| < δ and P [l ≤ p ≤ r] ≥ 1− ε.
The misestimation probability has the frequentist interpretation
that, among m runs of the algorithm, we expect on average
ε ·m runs to result in l and r such that p 6∈ [l, r].

First, we explain why the reformulation of the problem still
has practical significance. Indeed, usually we are not interested
in obtaining the distribution of Rξx,y per se. Rather, the relevant
information is the DFP, that is P

[
Rξx,y > Dx

]
. Further, the

4

Algorithm 1: DFP estimation
Input: τ , τx, ξ, δ, and ε.
Output: Estimate of P

[
Rξx,y > Dx

]
.

1 k := 0, z := Φ−1
(
1− ε

2

)
, s := d(z/δ)2e;

2 for 1 to s do
3 Draw sample via Sξx,y (Def. 20 in Section V);
4 if Sξx,y > Dx then
5 k := k + 1;

6 s̃ := s+ z2, p̃ := 1
s̃

(
k + z2

2

)
;

7 return p̃± z
√

p̃(1−p̃)
s̃

DFP estimate needs to be neither exact nor absolutely certain.
For instance, if one seeks to verify that the DFP is at most 10−6,
one can use an inexact result, as long as the probability of the
result being wrong is sufficiently small as to be negligible in
the given engineering context (e.g., 10−9) and the upper bound
on the estimated result does not exceed 10−6, or in formal
terms: l ≤ p ≤ r ≤ 10−6 with probability at least 1− 10−9.

The above relaxations allow us to explore only a small
fraction of the possible scenarios and then apply statistical gen-
eralization to estimate the actual probability of a deadline miss.

Estimation algorithm. To start, note that the expression
Rξx,y > Dx is itself a random variable. The inequality might
resolve to a success if Rξx,y is greater than Dx, or to a failure
otherwise—it is a Bernoulli trial. Given a sequence of Bernoulli
trials, the success probability can be estimated using binomial
proportion confidence intervals, which we do in the following.

For ease of explanation, in this section we assume access to
a black-box sample generator Sξx,y (later defined in Section V)
that provides samples with the same distribution as the random
variable Rξx,y (that is, F [Rξx,y] = F [Sξx,y]). Given Sξx,y, the
problem reduces to collecting a sufficient number of samples
to make statistical generalizations with the desired accuracy
and misestimation probability, as shown in Algorithm 1.

Algorithm 1 samples a large number of values using Sξx,y,
counts the number of outcomes for which Sξx,y turned out to be
larger than Dx, and then applies the Agresti-Coull confidence
interval (Theorem 9) to estimate the ground-truth probability
of observing Sξx,y > Dx. Since both Sξx,y and Rξx,y have the
same distribution, this gives us a DFP estimate for a job Jx,y
in context of the given arrival sequence ξ.

To determine the number of samples s needed to achieve the
target accuracy and error probability, Algorithm 1 computes
z , Φ−1

(
1− ε

2

)
, where Φ−1 is the ICDF of the standard

normal distribution (i.e., with mean 0 and variance 1) and se-
lects s ≥

(
z
δ

)2
. The algorithm then draws s samples from Sξx,y

while counting the number of successes k, that is, the number of
outcomes in which Sξx,y > Dx. Finally, since k is a binomial
random variable, Algorithm 1 computes the Agresti–Coull
confidence interval (Theorem 9) to determine l and r. We next
argue that this statistical generalization is justified.

Theorem 17. Let τ, τx, ξ, δ, and ε be the input to Algorithm 1

and let (l, r) be the estimate that the algorithm produces. Then
l ≤ P

[
Rξx,y > Dx

]
≤ r with probability 1− ε and r − l ≤ δ.

Proof. Under the assumption that F [Rξx,y] = F [Sξx,y], it is
sufficient to estimate the probability p = P

[
Sξx,y > Dx

]
with

accuracy at least δ and misestimation probability at most ε.
Let {r1, . . . , rs} be a sample of size s obtained by drawing

from Sξx,y (as in Lines 2–5 of Algorithm 1), and let k ,∑s
j=1 Jrj > DxK. The summands Jrj > DxK are independent

and identically distributed Bernoulli trials; k is thus a binomial
random variable. Let l and r denote the lower and the upper
bounds returned by Algorithm 1, respectively. Applying the
Agresti-Coull [2] confidence interval (Theorem 9), we have
that p ∈ [l, r] with probability 1− ε. Further, the length of the

returned interval is at most: r − l = 2z
√

p̃(1−p̃)
s̃ ≤ 2z

√
1
4s̃ ≤

2z
√

1
4s ≤ 2z

√
δ2

4z2 = 2z δ
2z = δ. �

In the above proof, we use the coarse bound p̃(1− p̃) ≤ 1/4.
However, if the ground-truth probability p is low (as it usually
is in practice) and the number of samples s is sufficiently
large, then p̃(1 − p̃) becomes much smaller than 1/4. As
we show in the evaluation (Section VII-C), this means the
required accuracy is often reached already with significantly
fewer samples. Conversely, usually a much better accuracy
than δ is achieved with s samples.

In place of the Agresti-Coull confidence interval, one
could also use other confidence intervals such as the Wilson
score interval [59] or the Clopper–Pearson interval [14], or
concentration bounds such as Chernoff’s bound [13] and
Hoeffding’s bound [26]. We use the Agresti-Coull confidence
interval since it achieves a favorable trade-off between the
probability to cover the ground-truth value and the length of
the confidence interval for large samples [9].

V. RESPONSE-TIME BOUND SAMPLING

In this section, we define the sample generator Sξx,y upon
which Section IV rests. For Algorithm 1 to be practical, we must
generate samples that are distributed as Rξx,y (i.e., F [Rξx,y] =
F [Sξx,y]) in a sufficiently efficient manner. Fortunately, such a
method exists: a simple simulation of the schedule together
with inverse transform sampling does the trick.

We present this approach and argue its correctness in three
steps. First, in Section V-A, we describe a simulation algorithm
to compute the value of Rξx,y assuming that job costs are fixed.
Second, in Section V-B, we show that such an algorithm, if it
is applied on a sequence of job costs randomly drawn from the
pWCET distributions, yields response times that are distributed
identically to Rξx,y. Finally, in Section V-C, we complete the
sample generator by incorporating inverse transform sampling
to facilitate the random generation of execution-time samples.

A. Simulation Algorithm

We start by introducing a simple algorithm that, assuming
that all job costs are fixed, simulates the schedule in interval
[0, dx,y) and returns the response time of job Jx,y .

5

Algorithm 2: Schedule simulation Aξx,y
Input: τ , ξ, ~c, and Jx,y .
Output: Response time of Jx,y if it meets its deadline

or di,j + γ in case of a deadline miss.
1 v0 := 0;
2 for s := 1 to a do
3 ws−1 :=

∑ {ci,j | Ji,h ∈ ξ�x(`s−1)};
4 vs := max{0, vs−1 + ws−1 − (`s − `s−1)};
5 for s := a+ 1 to d do
6 w :=

∑ {ci,j | Ji,j ∈ ξ�x([`a, `s)};
7 if va + w ≤ `s − `a then
8 return va + w
9 return di,j + γ

For brevity, we first introduce a few auxiliary definitions.
Recall that, since we analyze job Jx,y, we are interested in
the interval [0, dx,y). Let mi , |ξi([0, dx,y))| be the number
of jobs of task τi that arrive in the interval [0, dx,y). Let #‰c be
a two-dimensional vector of job costs, where an element ci,j
denotes the cost of job Ji,j . (#‰c is not necessarily a rectangular
matrix because each task may have a different number of jobs.)
Finally, let ` , {t | t ∈ [0, dx,y) : ξ(t) 6= ∅} ∪ {dx,y} be the
union of (i) the set of time instants at which at least one job
arrives and (ii) the deadline of the job Jx,y under analysis. We
assume ` to be sorted in increasing order and let `i denote the ith

element of the sequence. We also let a and d be the indices of
respectively ax,y and dx,y in ` (i.e., `a = ax,y and `d = dx,y).

Algorithm 2 defines the simulation algorithm Aξx,y(#‰c),
which receives a vector of job costs #‰c and outputs the response
time of job Jx,y in arrival sequence ξ. Conceptually, Aξx,y is
just a straight-forward deterministic simulation of the schedule
for the given arrival times and job costs. First, the amount of
the carry-in va at time `a is computed (Lines 2–4). For `0, the
carry-in is 0. For `0 < `s ≤ `a, the carry-in can be computed re-
currently based on the carry-in vs−1 at time `s−1, the workload
ws−1 released at time `s−1, and the time difference between
`s−1 and `s as vs , max{0, vs−1 + ws−1 − (`s − `s−1)}.

Afterwards (lines Lines 5–8) the algorithm searches for a
time `s ≤ `d such that the carry-in at time `a and the new work-
load released in [`a, `s), w ,

∑ {ci,j | Ji,j ∈ ξ�x([`a, `s)},
are fully consumed (i.e., va + w ≤ `s − `a). If such a time
`s is found, then the algorithm returns the response time (i.e.,
va+w). Otherwise, not all higher-or-equal-priority workload is
consumed by the job’s deadline. Hence, the simulation indicates
that the response time exceeds the deadline by returning dx,y+γ
in Line 9 (recall that γ is the smallest unit of time).

B. Sampling via Algorithm 2

In this subsection, we argue that if, instead of a vector of
fixed job costs, Algorithm 2 is run on a vector of pWCETs (i.e.,
random variables), then the probability of Aξx,y yielding some
value r is equal to the probability of Rξx,y being equal to r.

First, we prove an auxiliary lemma stating that Aξx,y’s output
agrees with the response-time bound Rξx,y given in Def. 15. To

state the claim formally, suppose we have some collection of
job costs #‰c and an outcome ω ∈ Ω such that Ci,j(ωi,j) = ci,j
for each Ji,j ∈ ξ([0, dx,y)). We observe that in this case the
values of Aξx,y(#‰c) and Rξx,y(ω) are the same.

Lemma 18. Given a vector of job costs #‰c and an outcome
ω ∈ Ω, if Ci,j(ωi,j) = ci,j for each Ji,j ∈ ξ([0, dx,y)), then
Aξx,y(#‰c) = Rξx,y(ω).

Proof. We carry out the proof in three steps. First, we show
that, if `i ≤ `a is the last time before `a with vi = 0, then
`i is also the last quiet time in the sense of Def. 14. Second,
we show that Lines 1-4 indeed compute the carry-in at time
`a (Def. 14). Third, we show that Lines 5-9 compute Rξx,y .

Let `q ≤ `a be the last instant with carry-in 0, that is vq = 0
and ∀q′ ∈ {q + 1, . . . , a} : vq′ > 0. This is equivalent to the
conjunction of (i) Zξx(0, `q, ω) > `a, since all vq′ following vq
are positive, and (ii) ∀i ∈ {1, . . . , q − 1} : Zξx(0, `i, ω) ≤ `q,
since no fixpoint iteration that starts before `q can exceed
time `q because vq = 0. The conjunction of (i) and (ii) is
equivalent to the fact that T ξx (`a, ω) = `q (recall Def. 14).

We next show that Vξx(`a, ω) = va: since vq=0 and ∀q′ ∈
{q + 1, . . . , a} : vq′ > 0, we can replace va with

∑a−1
i=q wi −

(`a−`q), which equalsWξ
x([`q, `a), ω)−(`a−`q), since wi =

Wξ
x([`i, `i+1), ω) and T ξx (`a, ω) = `q . Hence va = Vξx(`a, ω).
It remains to be shown that va + w = Rξx(ω). Recall

from Def. 15 that Rξx(ω) = Zξx(Vξx(`a, ω), `a, ω), where
Zξx(Vξx(`a, ω), `a, ω) searches for the least time instant strictly
greater than `a when both the carry-in Vξx(`a, ω) and the higher-
or-equal-priority workload Wξ

x([`a, `s), ω) are consumed. This
is exactly the process performed in Lines 5-8, since the carry-in
is va = Vξx(`a, ω) and the higher-or-equal-priority workload is
w =Wξ

x([`a, `s), ω). Hence the algorithm indeed searches for
an `s such that Vξx(`a, ω)+Wξ

x([`a, `s), ω) = va+w ≤ `s−`a.
Furthermore, Rξx(ω) = dx,y + γ iff there is no fixpoint at

or before dx,y (recall Zξx(Vξx(`a, ω), `a, ω)). This, in turn, is
equivalent to the fact that the algorithm fails to find `s ≤ `d
such that va+w ≤ `s− `a; thus the algorithm returns dx,y +γ
in Line 9. Therefore, the claimed equivalence follows. �

Lemma 18 above is a claim about a (fixed) vector of
constants representing job costs, #‰c , related to a particular
element of the outcome space ω ∈ Ω. To formally make a claim
about the distribution of outputs of Aξx,y if invoked repeatedly
on inputs drawn from pWCET distributions, we need to lift
the established equivalence to the level of random variables.

To this end, let
#‰C denote a two-dimensional vector of

pWCETs, such that Ci,j is the pWCET of job Ji,j (Def. 10)
for each Ji,j ∈ ξ([0, dx,y)). We can interpret this vector as
a random variable that maps each element of the outcome
set ω ∈ Ω to a two-dimensional vector of job costs #‰c , with
ci,j = Ci,j(ωi,j). Taking this interpretation one step further,
a function Aξx,y(

#‰C) that applies Aξx,y to the vector of job
costs produced by

#‰C is itself a random variable that maps
each element of the outcome set ω ∈ Ω to a scalar, namely
the output of Algorithm 2. With this setup in place, we can
formally relate the output probability of Aξx,y with Rξx,y .

6

Lemma 19. For any constant r ∈ T, with respect to the
outcome set Ω, P

[
Aξx,y(

#‰C) = r
]

= P
[
Rξx,y = r

]
.

Proof. It suffices to show that E1 ,
{
ω ∈ Ω

∣∣ Rξx,y(ω) = r
}

is equal to E2 ,
{
ω ∈ Ω

∣∣∣ Aξx,y(
#‰C (ω)) = r

}
. We show that

ω ∈ E1 if and only if ω ∈ E2 for an arbitrary ω ∈ Ω. Given
ω ∈ Ω,

#‰C yields a vector #‰c such that Ci,j(ωi,j) = ci,j for all
i and j, which is used as input for Aξx,y . Hence, it remains to
be shown that Aξx,y(#‰c) = Rξx,y(ω), which holds according to
Lemma 18. Therefore ω ∈ E1 ⇐⇒ ω ∈ E2. �

C. Sampling Job Costs

In principle, one could use Algorithm 2 and Lemma 19
to sample values from Rξx,y. That, however, would require a
method for sampling uniformly at random from the underlying
outcome set Ω, which conceptually represents the set of possible
system evolutions. Sampling Ω directly would thus pose a
multitude of challenges, as it is necessarily workload-specific
(e.g., it encodes control-flow information such as the branches
taken by each job) and in all likelihood extremely complicated
to represent and manipulate. In other words, Ω is a key
abstraction, but not a practical building block. To bypass the
dependency on Ω, we employ inverse transform sampling,
which allows us to sample job costs directly without a need to
construct or even consider the underlying outcome set Ω.

Let ~U be a two-dimensional vector of uniform random
variables ranging over the interval [0, 1] with the same shape
as vector ~C. We use Ui,j to refer to the jth element of the ith

row of ~U . Furthermore, let Q(~U) denote a two-dimensional
vector obtained by applying task τi’s ICDF Qi (Def. 6) to
every element of the ith row of ~U . In other words, an element
of Q(~U) with indices i and j is equal to Qi(Ui,j).

The basic idea is to apply Aξx,y to Q(~U) instead of ~C. As we
show in the following, the output distribution of Aξx,y does not
change as a result. The benefit of switching from ~C to Q(~U) is
that there exists a variety of readily available and fast methods
to sample from U ([0, 1]) (e.g., [28, 30, 58]), and by extension
thus also from Q(~U). Hence, we define Sξx,y as follows.

Def. 20. Sξx,y , A
ξ
x,y(Q(~U)).

We now establish the defining property of Sξx,y: it has the
same distribution as Rξx,y . We first note that pWCET samples
and samples drawn from Q(~U) are identically distributed.

Lemma 21. For any Ci,j and any a ∈ T, it holds that
P [Ci,j = a] = P [Qi(Ui,j) = a].

Proof. By Fact 4, it is sufficient to prove that the distribution
of Ci,j is equal to the distribution of Qi(Ui,j). By construction,
Ui,j is distributed uniformly in [0, 1]. Thus, by Theorem 7, the
random variable Qi(Ui,j) has the distribution Fi = F [Ci,j]. �

Finally, we show that Sξx,y combines job-cost samples in
such a way that the initial distribution is preserved.

Theorem 22. F [Rξx,y] = F [Sξx,y].

Proof. By Fact 4, it suffices to show that P
[
Rξx,y = r

]
is equal

to P
[
Sξx,y = r

]
for an arbitrary r ∈ T.

P
[
Rξx,y = r

] (1)
= P

[
Aξx,y(

#‰C) = r
]

(2)
=

∑
c1,1,...,cn,mn

q
Aξx,y(#‰c) = r

y∏
i,j

P [Ci,j = ci,j]

(3)
=

∑
c1,1,...,cn,mn

q
Aξx,y(#‰c) = r

y∏
i,j

P [Qi(Ui,j) = ci,j]

(4)
= P

[
Sξx,y = r

]
,

where (1) holds by Lemma 19, (2) holds by Fact 8, (3) holds
by Lemma 21, and (4) holds by Fact 8 and Def. 20. �

A simple corollary of Theorem 22 is that we can use Sξx,y
to assess the probability of a deadline violation.

Corollary 23. P
[
Sξx,y > Dx

]
= P

[
Rξx,y > Dx

]
.

VI. WORST-CASE DEADLINE FAILURE PROBABILITY

In this section, we explain how to put everything together
and apply the algorithm presented in Sections IV and V to
estimate the WCDFP. To this end, we first recall its definition
and a theorem proven by Maxim and Cucu-Grosjean [41].

The WCDFP of task τi is an upper bound on the probability
that any single job of the task misses its deadline [17].

Def. 24. The worst-case deadline failure probability (WCDFP)
of a task τi is Λi , maxξ maxj P

[
Rξi,j > Di

]
.

The DFP estimation algorithm (Algorithm 1) does not rely
on any particular system properties (besides assuming a fully
preemptive uniprocessor) and can estimate the DFP of a given
job in a given arrival sequence independently of the kind
of deadline constraints or structure of the arrival pattern.
Furthermore, the estimated DFP remains sound regardless
of a system’s job abortion policy, since upon a job arrival
Algorithm 2 (in Lines 3 and 6) accounts for the full job cost,
which is a safe upper bound even if jobs are aborted [20].

Unfortunately, Def. 24 is not suitable for an actual computa-
tion of the WCDFP since it takes the maximum over an infinite
set of arrival sequences and jobs. However, under some not
too-restrictive assumptions, Maxim and Cucu-Grosjean [41]
showed that the calculation of the WCDFP under fixed-priority
scheduling can be reduced to one specific situation. Specifically,
for a set of constrained-deadline sporadic tasks scheduled by
a fully preemptive fixed-priority scheduler, if overruns are
prevented by aborting any incomplete jobs at their deadline,
it is sufficient to analyze the first job under a critical-instant
pattern ξcrit. (That is, the task under analysis and all higher-or-
equal-priority tasks release a job simultaneously at time 0 and
continue to release jobs with minimal inter-arrival time.)

Theorem 25 (Theorem 1 in [41]). Given a fully preemptive
fixed-priority scheduler, a set of constrained-deadline sporadic
tasks, and under the assumption that incomplete jobs are
aborted at their deadline, the first job in the synchronous
busy period exhibits a task’s WCDFP: Λi = P

[
Rξcrit
i,1 > Di

]
.

7

Since our system model matches the system model studied
by Maxim and Cucu-Grosjean [41], the WCDFP of task τx can
be estimated by running Algorithm 2 for Jx,1 with ξ = ξcrit.

VII. EVALUATION

We conducted an empirical evaluation using synthetic
workloads to asses the practicality of the proposed method and
to compare its performance to state-of-the-art algorithms.

Setup. We randomly generated sets of sporadic tasks
with two execution modes each, representing a task’s
typical behavior and a rare exceptional mode. For a
given task-set size n and expected total utilization u,
we drew n periods p1, . . . , pn uniformly at random from
{1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}ms, a set of periods
commonly used in automotive systems [25, 29, 52, 56]. Next,
we used the Dirichlet-Rescale algorithm [23, 24] to draw
n utilization values u1, . . . , un summing to u. The pWCET
of each task τi was defined as follows: c with probability
0.95 (the typical mode), and 4c with probability 0.05 (the
exceptional mode), where c was scaled such that the expected
value of the pWCET was ui · pi. Finally, we assigned rate-
monotonic priorities.

We evaluated four algorithms: classic exact convolution with
state merging (CX) by Maxim and Cucu-Grosjean [41]; con-
volution with reduced-pessimism resampling (CR) by Maxim
et al. [43]; the analytical approach using Chernoff bounds (AB)
by Chen and Chen [10]; and the Monte Carlo approach (MC)
proposed in this paper. We also tested k-most popular [42] and
uniform resampling [43] as alternatives to CR and analytical
bounds using Hoeffding’s and Bernstein’s inequalities [57] as
alternatives to AB, but do not report those results since they
proved to be less precise than CR and AB, respectively.

To allow for meaningful runtime comparisons, all approaches
were implemented in the same programming language, Rust,
and deployed on the same machine equipped with two Intel
Xeon “Platinum 8180” processors clocked at 2.50 GHz and 394
GiB RAM. To obtain a fair basis for comparison, we opted for
a single-threaded implementation of all methods; the degree
of parallelism offered by the hardware is hence irrelevant.

For convolution-based approaches, we implemented direct
convolution (with quadratic time complexity) and used Rust’s
HashMap library for automatic state merging. We implemented
the AB method’s search for minimizing parameters using
ternary search since the minimization problem is convex [12].

A. Comparison with State-of-the-Art Approaches

We compared the WCDFP estimates produced by MC
and the baselines. We generated 2500 task sets, 50 for
each combination of u ∈ {0.75, 0.8, 0.85, 0.9, 0.95} and
n ∈ {5, 10, . . . , 50}, and let AB, CR, and MC estimate the
WCDFP of the lowest-priority task in each task set. Under CR,
distributions were sampled down to 2000 values whenever
reaching 4000 values. For MC, we set the misestimation
probability to ε = 10−6 (i.e., accepting one expected failure in
1 million runs) and the time budget to 8 minutes per task set
(which was CR’s average runtime for the evaluated task sets).

10 8 10 6 10 4 10 2 100

WCDFP estimation via CR

10 8

10 6

10 4

10 2

100

W
CD

FP
 e

st
im

at
io

n
vi

a
M

C

2075

6

10 28 10 22 10 16 10 10 10 4

WCDFP estimation via AB

10 30

10 26

10 22

10 18

10 14

10 10

10 6

10 2

2358

137

Fig. 2: Scatter plot of WCDFP estimates given by CR and MC
(left plot) and AB and MC (right plot) for each of the generated
task sets. A point under the blue diagonal line indicates a task
set where MC provides a better result. The numeric labels in
the top-left and bottom-right corners indicate the number of
points above and below the line, respectively.

Fig. 2 shows the accuracy of MC in comparison to CR and
AB as scatter plots. Each point corresponds to one of the 2500
generated task sets. Compared to CR (left plot), MC provided
a better result for 2075 of the tested task sets, whereas CR was
more accurate for only 6 task sets, for which it could determine
WCDFPs below ≈ 10−6. (The remaining 419 points are on
or very close to the diagonal line and hence inconclusive.) In
comparison to AB (right plot), MC provided a lower WCDFP
estimate for 2358 task sets. However, the plot also shows that,
in the given 8-minute time budget, MC struggled to obtain a
sufficient number of samples to derive WCDFPs lower than
≈ 10−6, which is not an issue for AB. As a result, AB provided
better estimates for 137 task sets. Generally, Fig. 2 shows MC
to be an attractive alternative to both CR and AB.

To assess the impact of CR’s resampling threshold, we
also tested down-sampling to 250, 500, 1000, 2500, and
5000 retained values (when reaching twice the number of
values). While increasing the number of retained values
noticeably improved CR’s accuracy, it also had a major runtime
impact (doubling the threshold roughly doubled the runtime).
Consequently, even when retaining 5000 values, MC still
clearly outperformed CR. Retaining more than 5000 values
proved difficult, since for such large thresholds it took CR on
average more than 30 minutes to analyze a single task set.

In the remainder of the paper, we summarize scatter plots
as box plots of the ratio between the WCDFP as given by a
baseline method and by MC due to space constraints. Using
this method, Fig. 3 reports the same data as Fig. 2, grouped
by either n or u. For instance, Fig. 3a shows the WCDFP
obtained via CR divided by r (i.e., the upper bound of the
WCDFP interval reported by MC) for a varying n.

As evident in Fig. 3a, for smaller cardinalities (i.e., n ≤ 15),
MC performs similar to the CR baseline, yielding sometimes
better and sometimes worse estimates. However, as the number
of tasks grows (and thus the number of jobs that must
be considered), the ratio grows steadily to around 101–102,
meaning that MC is one to two orders of magnitude more

8

5 10 15 20 25 30 35 40 45 50
(a) Cardinality of task set

10 4

100

104

10 3

10 2

10 1

101

102

103 CR/MC

0.75 0.8 0.85 0.9 0.95
(b) Expected utilization

10 4

100

104

10 3

10 2

10 1

101

102

103 CR/MC

5 10 15 20 25 30 35 40 45 50
(c) Cardinality of task set

10 16

10 12

10 8

10 4

100

104

10 3
10 2
10 1

101
102
103

AB/MC
0.75 0.8 0.85 0.9 0.95

(d) Expected utilization
10 16

10 12

10 8

10 4

100

104

10 3
10 2
10 1

101
102
103

AB/MC

Fig. 3: Box plots of the ratios CR / MC (upper row) and AB / MC (lower row). A value exceeding 1 indicates MC yielding
a lower (i.e., better) WCDFP estimate than the respective comparison algorithm. Each box extends from the lower to the upper
quartile, with a line at the median; the bottom and top whiskers indicate the 1st and 99th quantile, respectively.

precise than CR in these cases. The reason is that MC scales
well with the number of jobs in the interval under analysis,
and thus maintains roughly the same precision irrespective of
n, whereas the number of resampling operations in CR grows
with the number of jobs, each time accruing more pessimism.

Fig. 3b shows the effects of varying the expected total
utilization. For u = 0.75, MC delivered results roughly one
to two orders of magnitude better than CR. As the utilization
increases, the magnitude of the ratios decreases, but MC
remains preferable to CR throughout the range. For u = 0.95,
the actual WCDFP is ≈ 10−1, at which point the normalization
obscures the trend due to the large denominator (e.g., even
trivially reporting 1 would not register as a large ratio).

Figs. 3c and 3d show a larger variance in the comparison
with AB. As both the median and the average are above 1,
MC tends to yield preferable results for all considered n and u.
The large variance stems from the fact that our sequential MC
implementation can collect only a limited number of samples
in the given 8-minute time budget, as already discussed in
the context of Fig. 2. Therefore, if the actual WCDFP is
vanishingly small, MC outputs conservative bounds dominated
by the limited number of samples, whereas analytical upper-
bounds have no such restrictions. Since the AB approach can
be computed very quickly, this suggests that one should apply
it first, and run the MC method with a sufficiently large time
budget only if the AB-provided estimate is unsatisfying.

B. Influence of the pWCET Distribution

To assess how each task’s pWCET parameter influences
analysis runtime and accuracy, we varied the the shape of the
generated pWCET distributions in three ways, as discussed next.

For each considered pWCET shape, we generated 500 task sets,
10 for each combination of u ∈ {0.75, 0.8, 0.85, 0.9, 0.95}
and n ∈ {5, 10, . . . , 50}. As before, we let AB, CR, and MC
estimate the WCDFP of the lowest-priority task in each task set.

First, we varied the difference between normal- and
exceptional-mode execution times. For each task, the pWCET
was defined to be c with probability 0.95 and k · c with
probability 0.05, where the discrepancy k varied across
{2, 3, 4, 5, 8, 16}. The results are shown in Figs. 4a and 4d.
The main observation is that MC remains preferable as the
discrepancy parameter increases, thus showing that it is not
negatively affected by more extreme pWCETs. For higher
discrepancy values, the ratios stabilize around 101, which is
due to the fact that higher-discrepancy task sets tend to exhibit
higher WCDFPs, so that even a trivial upper bound of 1 would
not register as a large ratio. Nonetheless, MC was more accurate
than either CR or AB for virtually all task sets with k ≥ 5.

Next, we varied how frequently jobs execute in normal mode
by defining each task’s pWECT to be c with probability p, and
4c with probability 1− p, where the normal-mode probability
p varied across {0.5, 0.75, 0.9, 0.95, 0.99, 0.999}. The results
shown in Figs. 4b and 4e reveal two main trends. If the normal-
mode probability is relatively low, AB yields good bounds while
the results of CR are poor: in some cases, CR’s estimates were
five orders of magnitude worse than those provided by MC. In
contrast, when the exceptional-mode probability is vanishingly
small, AB becomes somewhat more pessimistic, while CR
improves substantially: in some cases, CR yielded WCDFP
estimates up to 12 orders of magnitude lower than MC. This
observation is again explained by the employed sample budget,
which limited MC’s ability to assess rare events.

9

2 3 4 5 8 16
(a) Discrepancy

10 8

10 4

100

104

10 3

10 2

10 1

101

102

103

CR/MC
0.5 0.75 0.9 0.95 0.99 0.999

(b) Normal-mode probability
10 16

10 12

10 8

10 4

100

104

10 3
10 2
10 1

101
102
103

CR/MC
3 4 5 6

(c) Number of modes
10 4

100

104

10 3

10 2

10 1

101

102

103

CR/MC

2 3 4 5 8 16
(d) Discrepancy

10 16

10 12

10 8

10 4

100

104

10 3
10 2
10 1

101
102
103

AB/MC
0.5 0.75 0.9 0.95 0.99 0.999

(e) Normal-mode probability

10 16

10 12

10 8

10 4

100

104

10 3
10 2
10 1

101
102
103

AB/MC
3 4 5 6

(f) Number of modes

10 16

10 12

10 8

10 4

100

104

10 3
10 2
10 1

101
102
103

AB/MC

Fig. 4: Box plots of the ratios CR / MC (upper row) and AB / MC (lower row) grouped by the discrepancy (left column),
probability of the normal mode (middle column), and the number of modes (right column).

Finally, we varied the number of execution modes. To this
end, each task’s pWCET was defined as follows: for a given
number of modes m ∈ {3, 4, 5, 6}, mode s ∈ {2, . . . ,m} had
execution time 2(s− 1) · c and probability 2m−s/100, with the
remaining probability assigned to the normal mode s = 1 with
execution time c. The results are depicted in Figs. 4c and 4f,
which show that CR’s accuracy relative to MC consistently
degrades as the number of modes increases. AB’s relative
accuracy stabilizes at a plateau around one order of magnitude
worse than MC, with some outliers where AB yields results
below MC’s resolution limit (for the given time budget).

Overall, we conclude that MC’s performance is robust with
regard to changes in the shapes of the pWCET distributions.

C. Scalability of the Approach

One might be worried that the precision grows too slowly
with increasing sample counts. Indeed, as illustrated in Fig. 5,
according to the inequality s ≥ (z/δ)

2, a precision of 10−6

would require ≈ 1012 (i.e., ≈ 240) samples, which is impracti-
cal. Luckily, as pointed out in Section IV, this is an artifact of
the proof that upper-bounds the number of samples needed in
the worst-case scenario, which corresponds to a ground-truth
WCDFP of 0.5. However, in practice, one is usually interested
in workloads with a WCDFP much lower than 10−1.

To explore MC’s actual precision, we conducted an ex-
periment in which we measured the attained precision as a
function of the ground-truth WCDFP. To this end, we generated
1200 task sets in total, 80 task sets for each combination of
u ∈ {0.55, 0.65, 0.75, 0.85, 0.95} and n ∈ {2, 4, 6}. The setup
was restricted to small task sets to enable computation of the
exact WCDFP via CX, which does not scale much further.

10 7 10 6 10 5 10 4 10 3 10 2 10 1 100

Accuracy

101

103

105

107

109

1011

1013

1015

Nu
m

be
r o

f s
am

pl
es

= 0.1
= 0.01
= 0.001
= 0.000001
= 0.000000001
= 0.000000000001

Fig. 5: Number of samples predicted to be needed in the worst
case as a function of δ for various ε. The growth in the number
of samples is largely driven by decreasing δ, with decreases
in ε having a diminishing and comparably small effect.

Each task set was evaluated with CX with a 30-minute
timeout to determine the ground-truth WCDFP. Task sets that
CX could not analyze within 30 minutes were removed from
further consideration, resulting in 730 task sets with a known
exact WCDFP (i.e., 399, 253, and 78 task sets with 2, 4, and
6 tasks, respectively). Next, we evaluated these 730 task sets
with MC (with ε = 10−6) configured with different sample
budgets 216, 218, . . . , 228 and measured the empirical width
|r − l| of the confidence intervals reported by Algorithm 1.

Fig. 6a shows the results. When the WCDFP is large (e.g.,
10−1), even with 228 ≈ 108.4 samples (the bottommost curve),
MC cannot reach a modest estimation width of 10−4. The
reason is that, for large WCDFPs, the term p̃(1− p̃) in Line 7
of Algorithm 1 does not become substantially smaller than 1/4.

However, when the ground-truth WCDFP decreases, p̃(1− p̃)
decreases too, which shortens the width of the actually attained
confidence intervals considerably. Hence, as Fig. 6a shows,

10

10 110 210 310 410 510 610 710 810 910 1010 11

Ground truth WCDFP

10 6

10 4

10 2

100
W

id
th

 o
f M

C
es

tim
at

io
n

216 104.8

218 105.4

220 106.0

222 106.6

224 107.2

226 107.8

228 108.4

(a) Attained empirical width |r − l| for fixed sample budgets

10 110 210 310 410 510 610 710 810 910 1010 11

Ground truth WCDFP

10 7

10 6

10 5

10 4

10 3

W
id

th
 o

f M
C

es
tim

at
io

n

0.1
0.01
0.001
0.0001
0.00001
0.000001
0.000000001

(b) Attained empirical width |r − l| for various choices of ε

Fig. 6: Empirical width |r − l| of the attained confidence interval in relation to the ground-truth WCDFP.

if the ground-truth WCDFP is below 10−6, then 228 ≈ 108.4

samples actually result in an accuracy of |r − l| < 10−6 (in
contrast to the 1012 worst-case prediction, recall Fig. 5).

Even though in practice we do not have a priori knowledge
of the ground-truth WCDFP, the property highlighted in this
subsection plays a big role in the choice of the number of
samples. Usually, real-time systems are designed with some
prior belief about the allowed WCDFP. If the WCDFP is
expected to be small (e.g., 10−6) and the needed accuracy is
δ = 10−6, then one can simply try generating in the order
of 228 ≈ 108.4 samples—most likely, MC will provide a
satisfactory answer nonetheless. If however MC ultimately
fails to provide an answer with the required accuracy (i.e., if it
reports an interval length exceeding δ), then it is a reasonable
guess to assume that the ground truth actually exceeds 10−6.

Finally, Fig. 6a also confirms an effect already discussed
in the context of Figs. 2, 3c, and 3d: if MC is limited to a
relatively small number of samples, such as 216 ≈ 104.8 (the
topmost curve), then it cannot produce estimates below a certain
threshold dependent on the sample budget, which manifests in
Fig. 6a as the flat plateaus of the curves extending to the left.

D. Choice of Misestimation Probability ε

We next conducted an experiment to assess the influence
of the misestimation probability ε on the empirical width of
the attained confidence interval. Intuitively, it stands to reason
that, to increase confidence in the result, one should be more
conservative in one’s predictions. Thus, as ε decreases, we can
expect the width of the confidence interval to grow. However,
it is far from obvious how large an effect a decrease in ε has.

To measure this effect, we reused the 730 workloads with
known exact WCDFPs already discussed in Section VII-C
and ran MC with a fixed sample budget of 226 and
ε ∈ {10−1, . . . , 10−6, 10−9}. Fig. 6b depicts the results.

Similarly to Fig. 6a, the width of the interval decreases with
the ground-truth WCDFP. However, what may be surprising is
that, when the allowed misestimation probability is decreased
from ε = 10−2 (i.e., one misestimate in one hundred runs)
to ε = 10−9 (i.e., one misestimate in one billion runs), the
empirical width of the attained confidence intervals increases by
only a factor of 10. The reason is that ε influences the width of

5 10 25 50 100 200 300 400 500
Cardinality of task set

10 1

100

101

102

103

Ti
m

e
in

 se
c

Fig. 7: Runtime of MC vs. n. Note the nonlinear x-axis.

the interval only though the quantile function z , Φ−1
(
1− ε

2

)
in Theorem 9, which grows very slowly as ε tends to 0.

There is thus little harm in picking a suitably low misesti-
mation probability ε that can be considered negligible.

E. Scalability to Large Task Sets

In our last experiment, we evaluated the scalability of
the MC approach with respect to the number of tasks. To
this end, we generated 2250 task sets, 50 for each possible
combination of u ∈ {0.75, 0.8, 0.85, 0.9, 0.95} and n ∈
{5, 10, 25, 50, 100, 200, 300, 400, 500}. For each task set, we
measured the runtime of MC required to generate 105 samples.

The results are shown in Fig. 7. Note that the x-axis of Fig. 7
is nonlinear. For n ≤ 50, our sequential MC implementation
can sample 105 response times in approximately 30 seconds
(with a mean of 32 s for n = 50 tasks). At the upper end,
for n = 500, the generation of 105 samples took roughly 10
minutes in one case (with a mean of 8.9 minutes for n = 500).
Looking at median runtimes, it typically took 1.1, 29.0, and
434.2 seconds to generate the required number of samples for
task sets with cardinality 5, 50, and 500, respectively. The
observed runtimes, while not perfectly linear, clearly show
the MC approach to scale easily to large task-set sizes, well
beyond the reach of any current convolution-based methods.

Finally, it should be noted that Monte Carlo simulation is an
embarrassingly parallel workload—it is trivial to parallelize the
sampling across dozens, hundreds, or even thousands of cores
with minimal communication. Our sequential implementation
evaluated herein does not yet reflect this potential. As such, it

11

may be safely assumed that runtime scalability is not a limiting
factor of the MC approach given modern computing facilities.

VIII. RELATED WORK

Davis and Cucu-Grosjean [17] recently provided a com-
prehensive survey of probabilistic schedulability analysis tech-
niques. We focus our attention on the most closely related work.

Analyses modeling task execution times as pWCETs trace
their roots to work by Tia et al. [55] in 1995, who introduced
Probabilistic Time Demand Analysis (PTDA) based on the
time-demand analysis technique for the deterministic case by
Lehoczky et al. [33]. Gardner and Liu [22] extended PTDA to
Stochastic Time-Demand Analysis (STDA) by accounting for
backlog due to jobs that are not finished by their deadline.

STDA relies on the convolution of random variables rep-
resenting individual jobs. Continuing this line of work, Dı́az
et al. [20] noticed that exact stochastic analysis of practical
real-time systems is infeasible due to excessive computational
costs, which lead them to introduce the notion of intentional
pessimism captured by Def. 5. This idea was adopted by Refaat
and Hladik [50], who introduced resampling techniques that
trade some added pessimism for a decrease in the size of the
convolved distributions. Following up on this idea, Maxim
et al. [43] presented a resampling approach that accrues less
pessimism. Specifically, they suggested to keep the largest
value as well as the k−1 values with the largest probability in
the distribution when reducing it to size k, and to reassign the
probability of each removed point to the next-largest retained
point. While this approach reduces the pessimism compared
to Refaat and Hladik’s method [50], pessimism still accrues in
an uncontrolled manner if the method is applied repeatedly.

Instead of trying to speed up job-level convolution, von der
Brüggen et al. [57] proposed to move the convolution operation
to the task level, which is possible since all jobs of a task share
the same pWCET distribution. Using multinomial distributions,
they efficiently calculated each task’s total demand distribution
(for a given number of jobs in an interval under analysis) and
optimized the computation via pruning techniques. While their
method thus scales to larger task sets than prior approaches [57],
it remains subject to the efficiency and precision issues inherent
in convolution. Specifically, von der Brüggen et al. reported
runtimes of multiple hours for sets of 25 or more tasks,
while simultaneously employing pessimism-inducing state-
merging heuristics to lower the memory needs of the method.
As the results reported in Section VII strongly suggest that
the proposed Monte Carlo approach can match the level of
precision attained by task-level convolution for larger task sets
(as reported by von der Brüggen et al. [57]) with much lower
runtimes, we chose to exclude task-level convolution from
consideration in our experimental setup.

Concurrently with this study, Markovic et al. [40] pointed out
that implementing circular convolution (based on the Fourier
transform)—rather than naı̈ve direct convolution as done herein
and in most of the just-cited studies, with the notable exception
of Gardner and Liu’s early work [22]—can considerably lessens
the scalability issues of convolution-based approaches. There is

thus reason to expect the envelope in which convolution-based
methods remain competitive to be pushed further in future work.

Alternatively, analytic approximation techniques provide
an immediate upper bound on the probability of a deadline
miss without resorting to convolution. Chen and Chen [10]
proposed a scalable approximation based on the Chernoff
bound [13], which they later further enhanced with regard to
both runtime and precision [12]. Furthermore, von der Brüggen
et al. [57] presented analyses based on Bernstein’s [21] and
Hoeffding’s [26] inequalities. As discussed in Section VII, it
makes sense to try these upper bounds first since they are fast
to compute, but they do tend to be quite pessimistic in general.

Lu, Nolte, and several co-authors [35–38] studied the
applicability of statistical methods to estimate the response
time of a job. Their approach runs a system under analysis for
some time, records the observed response times, and applies
extreme value theory (EVT) to derive a probabilistic bound
on the maximum response time. Maxim et al. [44] examined
the soundness of such approaches. Note that this approach
solves a different problem than this paper: we approximate the
proportion of response times that exceed the deadline, whereas
Lu et al. seek to estimate the worst-case response time.

Finally, stochastic model checking (SMC) [53] is a well-
established area with a rich literature [1, 31] that may seem
conceptually very similar. However, there are major differences
in focus and technique. SMC provides an expressive modeling
formalism tailored to verifying complex, user-defined properties
specified with temporal logics (e.g., [46, 47]). Such flexibility
comes with a significant runtime cost, and hence SMC works
best for models comprised of a modest number of interacting
entities exhibiting complex behavior. In contrast, we have
developed—and rigorously justified—a minimal, extremely
lightweight sampling procedure tailored specifically to the
(much simpler) problem at hand that scales to hundreds of tasks
and tens of thousands of jobs. It is unlikely that a general SMC
approach could produce samples at a comparably high rate,
which is essential to achieving the required high precision δ.

IX. CONCLUSION AND FUTURE WORK

We have proposed a novel approach based on Monte Carlo
simulation to analyze the probabilistic response time of jobs
under preemptive static-priority scheduling on a uniprocessor,
and applied it to approximate the WCDFP of constrained-
deadline sporadic firm real-time tasks. The essence of the
Monte Carlo approach is to accept a minuscule possibility of
misestimation for the benefit of a comparably fast runtime. In
an evaluation with randomized task sets, the proposed approach
was shown to be highly effective compared to the state of the
art when given equivalent time budgets, scaling to large task
sets with up to 500 tasks while providing better precision than
prior analytical and convolution-based approaches.

In future work, it would be interesting to extend the proposed
approach to more complex task models (e.g., to self-suspending
tasks) and different scheduling policies like EDF, and to
examine the applicability to non/limited-preemptive workloads
or in situations where pWCETs are correlated.

12

ACKNOWLEDGEMENTS

This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation program (grant agreement No 803111).

REFERENCES

[1] G. Agha and K. Palmskog, “A survey of statistical model
checking,” ACM Trans. Model. Comput. Simul., vol. 28, no. 1,
pp. 6:1–6:39, 2018.

[2] A. Agresti and B. A. Coull, “Approximate is better than “exact”
for interval estimation of binomial proportions,” The American
Statistician, vol. 52, no. 2, pp. 119–126, 1998.

[3] B. Akesson, M. Nasri, G. Nelissen, S. Altmeyer, and R. I.
Davis, “A comprehensive survey of industry practice in real-
time systems,” Tech. Rep., 2020.

[4] N. C. Audsley, A. Burns, M. M. Richardson, K. Tindell, and A. J.
Wellings, “Applying new scheduling theory to static priority pre-
emptive scheduling,” Softw. Eng. J., vol. 8, no. 5, pp. 284–292,
1993.

[5] P. Axer, M. Sebastian, and R. Ernst, “Probabilistic response
time bound for CAN messages with arbitrary deadlines,” in
Design, Automation & Test in Europe Conference & Exhibition
(DATE’12), Dresden, Germany, March 12-16. IEEE Computer
Society, 2012, pp. 1114–1117.

[6] S. Bernstein, “Sur l’extension du théorème limite du calcul des
probabilités aux sommes de quantités dépendantes,” Mathema-
tische Annalen, vol. 97, no. 1, pp. 1–59, 1927.

[7] S. Bozhko and B. B. Brandenburg, “Abstract Response-Time
Analysis: A Formal Foundation for the Busy-Window Prin-
ciple,” in 32nd Euromicro Conference on Real-Time Systems
(ECRTS’20), July 7-10, 2020, Virtual Conference.

[8] I. Broster, A. Burns, and G. Rodrı́guez-Navas, “Probabilistic
analysis of CAN with faults,” in Proceedings of the 23rd IEEE
Real-Time Systems Symposium (RTSS’02), Austin, Texas, USA,
December 3-5. IEEE Computer Society, 2002, pp. 269–278.

[9] L. D. Brown, T. T. Cai, and A. DasGupta, “Interval estimation
for a binomial proportion,” Statistical science, vol. 16, no. 2, pp.
101–117, 2001.

[10] K.-H. Chen and J.-J. Chen, “Probabilistic schedulability tests for
uniprocessor fixed-priority scheduling under soft errors,” in 12th
IEEE International Symposium on Industrial Embedded Systems
(SIES’17), Toulouse, France, June 14-16. IEEE Computer
Society, 2017, pp. 1–8.

[11] K.-H. Chen, G. von der Brüggen, and J.-J. Chen, “Analysis of
deadline miss rates for uniprocessor fixed-priority scheduling,” in
24th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA’18), Hakodate,
Japan, August 28-31,. IEEE Computer Society, 2018, pp. 168–
178.

[12] K.-H. Chen, N. Ueter, G. von der Brüggen, and J.-J. Chen,
“Efficient computation of deadline-miss probability and potential
pitfalls,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE’19), Florence, Italy, March 25-29. IEEE
Computer Society, 2019, pp. 896–901.

[13] H. Chernoff, “A measure of asymptotic efficiency for tests of a
hypothesis based on the sum of observations,” The Annals of
Mathematical Statistics, vol. 23, no. 4, pp. 493–507, 1952.

[14] C. J. Clopper and E. S. Pearson, “The Use of Confidence
or Fiducial Limits Illustrated in The Case of The Binomial,”
Biometrika, vol. 26, no. 4, pp. 404–413, 12 1934.

[15] L. Cucu-Grosjean, “Independence-a misunderstood property of
and for probabilistic real-time systems,” In Real-Time Systems:
the past, the present and the future, pp. 29–37, 2013.

[16] R. I. Davis and A. Burns, “Robust priority assignment for
messages on controller area network (CAN),” Real Time Syst.,
vol. 41, no. 2, pp. 152–180, 2009.

[17] R. I. Davis and L. Cucu-Grosjean, “A survey of probabilistic
schedulability analysis techniques for real-time systems,” Leibniz
Trans. Embed. Syst., vol. 6, no. 1, pp. 04:1–04:53, 2019.

[18] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller
area network (CAN) schedulability analysis: Refuted, revisited
and revised,” Real Time Syst., vol. 35, no. 3, pp. 239–272, 2007.

[19] J. L. Dı́az, D. F. Garcı́a, K. Kim, C. Lee, L. L. Bello, J. M.
López, S. L. Min, and O. Mirabella, “Stochastic analysis of
periodic real-time systems,” in Proceedings of the 23rd IEEE
Real-Time Systems Symposium (RTSS’02), Austin, Texas, USA,
December 3-5. IEEE Computer Society, 2002, pp. 289–300.

[20] J. L. Dı́az, J. M. López, M. G. Vazquez, A. M. Campos, K. Kim,
and L. L. Bello, “Pessimism in the stochastic analysis of real-
time systems: Concept and applications,” in Proceedings of
the 25th IEEE Real-Time Systems Symposium (RTSS’04), 5-8
December, Lisbon, Portugal. IEEE Computer Society, 2004,
pp. 197–207.

[21] S. Foucart and H. Rauhut, A Mathematical Introduction to
Compressive Sensing, ser. Applied and Numerical Harmonic
Analysis. Birkhäuser, 2013.

[22] M. K. Gardner and J. W. Liu, “Analyzing stochastic fixed-priority
real-time systems,” in Tools and Algorithms for Construction and
Analysis of Systems, 5th International Conference (TACAS’99),
Amsterdam, The Netherlands, March 22-28. Springer, 1999,
pp. 44–58.

[23] D. Griffin, I. Bate, and R. I. Davis, “dgdguk/drs.”
[24] ——, “Generating utilization vectors for the systematic evalu-

ation of schedulability tests,” in 41st IEEE Real-Time Systems
Symposium (RTSS’20), December 1-4, Houston, TX, USA. IEEE
Computer Society, 2020, pp. 76–88.

[25] A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst,
“Communication centric design in complex automotive embedded
systems,” in 29th Euromicro Conference on Real-Time Systems
(ECRTS’17), June 27-30, Dubrovnik, Croatia. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2017, pp. 10:1–10:20.

[26] W. Hoeffding, “Probability inequalities for sums of bounded
random variables,” in The Collected Works of Wassily Hoeffding.
Springer, 1994, pp. 409–426.

[27] M. Joseph and P. K. Pandya, “Finding response times in a real-
time system,” Comput. J., vol. 29, no. 5, pp. 390–395, 1986.

[28] C. Kao and H.-C. Tang, “Several extensively tested multiple
recursive random number generators,” Computers & Mathematics
with Applications, vol. 36, no. 6, pp. 129–136, 1998.

[29] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world
automotive benchmarks for free,” in 6th International Workshop
on Analysis Tools and Methodologies for Embedded and Real-
time Systems (WATERS), 2015.

[30] P. L’Ecuyer and F. Panneton, “Fast random number generators
based on linear recurrences modulo 2: overview and comparison,”
in Proceedings of the 37th Winter Simulation Conference,
Orlando, FL, USA, December 4-7. IEEE Computer Society,
2005, pp. 110–119.

[31] A. Legay, B. Delahaye, and S. Bensalem, “Statistical model
checking: An overview,” in Runtime Verification - First Inter-
national Conference (RV’10), St. Julians, Malta, November 1-4,
2010. Proceedings. Springer, 2010, pp. 122–135.

[32] J. P. Lehoczky, “Fixed priority scheduling of periodic task
sets with arbitrary deadlines,” in Proceedings of the Real-Time
Systems Symposium (RTSS’90), Lake Buena Vista, Florida, USA,
December. IEEE Computer Society, 1990, pp. 201–209.

[33] J. P. Lehoczky, L. Sha, and Y. Ding, “The rate monotonic
scheduling algorithm: Exact characterization and average case
behavior,” in Proceedings of the Real-Time Systems Symposium
(RTSS’89), Santa Monica, California, USA, December. IEEE
Computer Society, 1989, pp. 166–171.

[34] J. M. López, J. L. Dı́az, J. Entrialgo, and D. F. Garcı́a, “Stochastic
analysis of real-time systems under preemptive priority-driven

13

scheduling,” Real Time Syst., vol. 40, no. 2, pp. 180–207, 2008.
[35] Y. Lu, T. Nolte, J. Kraft, and C. Norström, “A statistical

approach to response-time analysis of complex embedded real-
time systems,” in 16th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications
(RTCSA’10), Macau, SAR, China, 23-25 August. IEEE Computer
Society, 2010, pp. 153–160.

[36] ——, “Statistical-based response-time analysis of systems with
execution dependencies between tasks,” in 15th IEEE Interna-
tional Conference on Engineering of Complex Computer Systems
(ICECCS’10), Oxford, United Kingdom, 22-26 March. IEEE
Computer Society, 2010, pp. 169–179.

[37] Y. Lu, T. Nolte, I. Bate, and L. Cucu-Grosjean, “A statistical
response-time analysis of complex real-time embedded systems
by using timing traces,” in 6th IEEE International Symposium
on Industrial Embedded Systems (SIES’11), Vasteras, Sweden,
June 15-17. IEEE Computer Society, 2011, pp. 43–46.

[38] ——, “A statistical response-time analysis of real-time embedded
systems,” in Proceedings of the 33rd IEEE Real-Time Systems
Symposium (RTSS’12), San Juan, PR, USA, December 4-7. IEEE
Computer Society, 2012, pp. 351–362.

[39] F. Markovic, J. Carlson, R. Dobrin, B. Lisper, and A. Thekkilakat-
til, “Probabilistic response time analysis for fixed preemption
point selection,” in 13th IEEE International Symposium on
Industrial Embedded Systems (SIES’18), Graz, Austria, June
6-8. IEEE Computer Society, 2018, pp. 1–10.

[40] F. Markovic, A. V. Papadopoulos, and T. Nolte, “On the
convolution efficiency for probabilistic analysis of real-time
systems,” in 33rd Euromicro Conference on Real-Time Systems
(ECRTS’21), July 5-9, 2021, Virtual Conference. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021, pp. 16:1–
16:22.

[41] D. Maxim and L. Cucu-Grosjean, “Response time analysis for
fixed-priority tasks with multiple probabilistic parameters,” in
Proceedings of the IEEE 34th Real-Time Systems Symposium
(RTSS’13), Vancouver, BC, Canada, December 3-6. IEEE
Computer Society, 2013, pp. 224–235.

[42] D. Maxim, L. Santinelli, and L. Cucu-Grosjean, “Improved
sampling for statistical timing analysis of real-time systems,”
Proceedings of the 18th International Conference on Real-Time
Networks and Systems (RTNS’10), Toulouse, France, 2010.

[43] D. Maxim, M. Houston, L. Santinelli, G. Bernat, R. I. Davis, and
L. Cucu-Grosjean, “Re-sampling for statistical timing analysis
of real-time systems,” in 20th International Conference on Real-
Time and Network Systems (RTNS’12), Pont a Mousson, France
- November 08 - 09. ACM, 2012, pp. 111–120.

[44] D. Maxim, F. Soboczenski, I. Bate, and E. Tovar, “Study of the
reliability of statistical timing analysis for real-time systems,” in
Proceedings of the 23rd International Conference on Real Time
Networks and Systems (RTNS’15), Lille, France, November 4-6.
ACM, 2015, pp. 55–64.

[45] D. Maxim, R. I. Davis, L. Cucu-Grosjean, and A. Easwaran,
“Probabilistic analysis for mixed criticality systems using fixed
priority preemptive scheduling,” in Proceedings of the 25th
International Conference on Real-Time Networks and Systems
(RTNS’17), Grenoble, France, October 04 - 06, 2017. ACM,
2017, pp. 237–246.

[46] B. L. Mediouni, “Modeling and Analysis of Stochastic Real-
Time Systems,” Ph.D. dissertation, Université Grenoble Alpes,
2019.

[47] B. L. Mediouni, A. Nouri, M. Bozga, M. Dellabani, A. Legay,
and S. Bensalem, “S BIP 2.0: Statistical model checking stochas-
tic real-time systems,” in Automated Technology for Verification
and Analysis - 16th International Symposium (ATVA’18), Los
Angeles, CA, USA, October 7-10, 2018, Proceedings. Springer,
2018, pp. 536–542.

[48] N. Navet, Y. Song, and F. Simonot, “Worst-case deadline failure

probability in real-time applications distributed over controller
area network,” J. Syst. Archit., vol. 46, no. 7, pp. 607–617, 2000.

[49] T. Nolte, H. Hansson, and C. Norström, “Probabilistic worst-
case response-time analysis for the controller area network,”
in Proceedings of the 9th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS’03), May 27-30,
Toronto, Canada. IEEE Computer Society, 2003, pp. 200–207.

[50] K. S. Refaat and P. Hladik, “Efficient stochastic analysis of
real-time systems via random sampling,” in 22nd Euromicro
Conference on Real-Time Systems (ECRTS’10), July 6-9, Brus-
sels, Belgium. IEEE Computer Society, 2010, pp. 175–183.

[51] C. P. Robert and G. Casella, Monte Carlo Statistical Methods,
ser. Springer Texts in Statistics. Springer, 2004.

[52] A. Sailer, S. Schmidhuber, M. Deubzer, M. Alfranseder,
M. Mucha, and J. Mottok, “Optimizing the task allocation step
for multi-core processors within autosar,” in 2013 International
Conference on Applied Electronics. IEEE, 2013, pp. 1–6.

[53] K. Sen, M. Viswanathan, and G. Agha, “On statistical model
checking of stochastic systems,” in Computer Aided Verification,
17th International Conference (CAV’05), Edinburgh, Scotland,
UK, July 6-10, 2005, Proceedings. Springer, 2005, pp. 266–280.

[54] B. Tanasa, U. D. Bordoloi, P. Eles, and Z. Peng, “Probabilistic
response time and joint analysis of periodic tasks,” in 27th
Euromicro Conference on Real-Time Systems (ECRTS’15), July
8-10, Lund, Sweden. IEEE Computer Society, 2015, pp. 235–
246.

[55] T. Tia, Z. Deng, M. Shankar, M. F. Storch, J. Sun, L. Wu, and
J. W. Liu, “Probabilistic performance guarantee for real-time
tasks with varying computation times,” in 1st IEEE Real-Time
Technology and Applications Symposium, Chicago, Illinois, USA,
May 15-17, 1995. IEEE Computer Society, 1995, pp. 164–173.

[56] S. Tobuschat, R. Ernst, A. Hamann, and D. Ziegenbein, “System-
level timing feasibility test for cyber-physical automotive sys-
tems,” in 11th IEEE Symposium on Industrial Embedded Systems
(SIES’16), May 23-25, Krakow, Poland. IEEE Computer Society,
2016, pp. 121–130.

[57] G. von der Brüggen, N. Piatkowski, K.-H. Chen, J.-J. Chen, and
K. Morik, “Efficiently approximating the probability of deadline
misses in real-time systems,” in 30th Euromicro Conference
on Real-Time Systems (ECRTS’18), July 3-6, Barcelona, Spain.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, pp.
6:1–6:22.

[58] B. A. Wichmann and I. D. Hill, “Generating good pseudo-
random numbers,” Comput. Stat. Data Anal., vol. 51, no. 3, pp.
1614–1622, 2006.

[59] E. B. Wilson, “Probable inference, the law of succession,
and statistical inference,” Journal of the American Statistical
Association, vol. 22, no. 158, pp. 209–212, 1927.

14

	Introduction
	System Model and Background
	Probability Theory Primer
	System Model

	Formalization of the Response-Time Bound
	Monte Carlo Estimation
	Response-Time Bound Sampling
	Simulation Algorithm
	Sampling via alg:simulation
	Sampling Job Costs

	Worst-Case Deadline Failure Probability
	Evaluation
	Comparison with State-of-the-Art Approaches
	Influence of the pWCET Distribution
	Scalability of the Approach
	Choice of Misestimation Probability
	Scalability to Large Task Sets

	Related Work
	Conclusion and Future Work

