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Abstract—This paper provides an exact and sustainable schedu-
lability test for a set of non-preemptive jobs scheduled with a
fixed-job-priority (FJP) policy upon a uniprocessor. Both classic
work-conserving and recent non-work-conserving schedulers are
supported. Jobs may exhibit both release jitter and execution time
variation. Both best- and worst-case response time bounds are
derived. No prior response-time analysis (RTA) for this general
setting is both exact and sustainable, nor does any prior RTA
support non-work-conserving schedulers. The proposed analysis
works by building a schedule graph that precisely abstracts all
possible execution scenarios. Key to deferring the state-space
explosion problem is a novel path-merging technique that collapses
similar scenarios without giving up analysis precision. In an
empirical evaluation with randomly generated workloads based
on an automotive benchmark, the method is shown to scale to
30+ periodic tasks with thousands of jobs (per hyperperiod).

I. INTRODUCTION

The key challenge in the analysis of non-preemptive unipro-
cessor scheduling is that it exhibits anomalies due to execution
time variations and release jitter. That is, even though a periodic
real-time workload may meet all deadlines when all jobs exhibit
maximal execution times and arrive as late as possible (which
intuitively should constitute the “worst case”), under non-
preemptive scheduling, the workload may still suffer deadline
misses if some jobs execute for a shorter time or arrive earlier,
which intuitively should be an “easier” scenario, but often is not.

Such variations, however, are inevitable in real systems due
to practical issues such as interrupt-handling delays, timer
inaccuracies, data dependencies, multiple program paths, or
system configuration changes. Further, in addition to these
system factors, existing timing analysis frameworks exhibit
imprecision in estimating both the best- and worst-case
execution times (BCETs and WCETs, respectively) of programs,
and particularly so if the underlying processor uses caches or
out-of-order pipelines. And even in non-processor contexts
such as the analysis of messages transmitted over a CAN
bus, payload sizes and the times at which messages become
available for transmission may vary unpredictably at runtime.

As a result, to be useful in practice, schedulability analysis
must be designed to cope with uncertain resource needs and
timing behavior. That is, a practical schedulability test must
be sustainable [1], which means that if it deems a workload
schedulable, then all deadlines must be met even if jobs under-
run their WCETs or exhibit less jitter than anticipated.

Unfortunately, guaranteeing that analysis results for non-
preemptive policies are sustainable is quite difficult due to the
inherent unsustainability of the scheduler itself. In particular,
it rules out any approaches based on simulating the worst case,
simply because the true worst case is unknown in general.

The traditional approach for sustainable schedulability analy-
sis is hence to pessimistically over-approximate the true worst

case with an artificially designed scenario that may not actually
be possible at runtime. For example, in the classic response-
time analysis (RTA) for non-preemptive fixed-priority (NP-FP)
scheduling [2, 3], a task’s response time is bounded under the
assumption that a job in the worst case incurs both maximal
blocking due to lower-priority jobs and maximal interference
due to higher-priority jobs. And while this is exact for sporadic
tasks, for periodic workloads—the focus of this paper—such an
approach is often too pessimistic since typically no individual
job suffers both maximal blocking and maximal interference.

As a more recently explored alternative, approaches based on
model checking (e.g., [4, 5]) or the exhaustive exploration of
all system states [6, 7, 8] can guarantee exact and sustainable
analysis results in principle. However, in addition to the fact
that these proposals have so far been aimed at a very different
scheduling problem, namely preemptive global multiprocessor
scheduling, they suffer also from massive state-space explosion
issues that render these techniques impractical even for mod-
estly sized workloads (as discussed in more detail in Sec. V).

Common to both classic RTA and the more recent techniques
based on formal methods is that neither approach supports non-
work-conserving schedulers, which in the past few years have
been shown to offer promising schedulability advantages [9, 10].
In particular, Precautious Rate-Monotonic (P-RM) [9] and
Critical-Window EDF (CW-EDF) [10] scheduling, two recent
proposals built on the idea of separating an idle-time insertion
policy (IIP) from the usual job-ordering policy, offer empirically
excellent performance while remaining conceptually simple.
Unfortunately, the only available schedulability tests for these
non-work-conserving algorithms are limited to specific, narrow
special cases such as harmonic tasks with no release jitter and
workloads that do not exhibit varying execution times. The lack
of a general and sustainable schedulability analysis for non-
work-conserving schedulers is a major gap in understanding,
both in practical terms and from a foundational point of view.

To summarize, the current state of the art in the analysis of
non-preemptive periodic real-time workloads on uniprocessors
leaves considerable room for improvement.
This paper. To address these shortcomings, we provide the first
sustainable and exact schedulability analysis for both work-
conserving and non-work-conserving fixed-job-priority (FJP)
scheduling algorithms—including NP-FP, non-preemptive EDF
(NP-EDF), P-RM, and a variant of CW-EDF—while allowing
for both execution time variation and release jitter.

Our schedulability analysis (Sec. III) is based on building a
graph (Sec. III-B), called the schedule graph, that precisely ab-
stracts all possible execution orders of a set of jobs (Sec. III-C),
and from which tight response-time bounds can be easily
inferred (Sec. III-D). The key technique in the construction of



the schedule graph is a novel merge phase that collapses similar
scenarios without giving up analysis precision. This pruning
of the graph allows our solution to scale to real-world-sized
workloads, as we show in Sec. IV with an empirical evaluation
considering workloads consisting of more than 30 periodic
tasks with thousands of jobs (per hyperperiod).

II. SYSTEM MODEL AND DEFINITIONS

For ease of exposition, we first introduce our analysis for
finite job sets (i.e., without a task concept), and discuss how
to apply the technique to periodic tasks later in Sec. III-E.

A. Job and System Model

We consider the problem of scheduling a finite set of non-
preemptive jobs J on a uniprocessor. Each job Ji has an
earliest release time rmin

i , latest release time rmax
i , absolute

deadline di, BCET Cmin
i , WCET Cmax

i , and priority pi. A
numerically smaller value of pi implies higher priority. All job
parameters are integer multiples of the system clock.

At runtime, each job is released at an a priori unknown time
ri, where ri ∈ [rmin

i , rmax
i ], and requires Ci ∈ [Cmin

i , Cmax
i ]

units of processor service. Release jitter (i.e., bounded release-
time uncertainty) is caused by implementation factors such
as interrupt latency or timer inaccuracy, and also if releases
are triggered by external events that may be delayed (e.g.,
network packets). Execution time variation arises due to pro-
cessor caches, input dependencies, program-state dependencies,
program path diversity, etc. Note that release jitter does not
affect the absolute deadline of a job, i.e., di is relative to the
expected release time rmin

i . We do not consider job-discarding
policies: released jobs remain pending until completed.

We say a job Ji is possibly released at time t if t ≥ rmin
i ,

and certainly released if t ≥ rmax
i . If a job Ji with execution

cost Ci starts execution at time tx ≥ ri, then it occupies the
processor during the interval [tx, tx + Ci) and we say that
Ji finishes by time tx + Ci, i.e., the next job can commence
execution at time t if the previous job finishes by time t.

We assume that any ties in priority are broken by task and/or
job ID. For ease of notation, we assume that the “<” order
reflects this tie-breaking rule, i.e., tie-breaking is implicit.

We use {.} to denote a set of items in which the order of
elements is irrelevant and 〈.〉 to denote an enumerated set (or
sequence) of items. In the latter case, we assume that items
are indexed in the order of their appearance in the sequence.
Finally, we let P(J ) denote the power set of J , and use N
(including zero and ∞) to model discrete time.

B. Execution Scenarios, Schedulers, and Idle-Time Insertion

A set of jobs J is schedulable under a given scheduling
policy if no execution scenario of J results in a deadline miss,
where an execution scenario is defined as follows.

Definition 1. An execution scenario γ = (C,R) for a set of
jobs J is a sequence of execution times C = 〈C1, C2, . . . , Cm〉
and release times R = 〈r1, r2, . . . , rm〉 such that, for each job
Ji, Ci ∈ [Cmin

i , Cmax
i ] and ri ∈ [rmin

i , rmax
i ].

Algorithm 1: IIP-Aware FJP Scheduler

Input : t: the current time, L: the IIP, J S : completed
jobs

1 Ji ← the highest-priority pending job;
2 if t ≤ L(Ji, t,J S) then
3 Schedule Ji;
4 else
5 Idle the processor until the next job is released;
6 end

In this paper, we focus exclusively on deterministic schedul-
ing algorithms, i.e., scheduling algorithms that always produce
the same schedule for a given execution scenario. The schedu-
lability analysis presented in the paper can be applied both
to classic work-conserving and a special class of non-work-
conserving FJP scheduling algorithms that augment the job
priority ordering with an idle-time insertion policy (IIP) [10].

An IIP is invoked whenever the system may commence
the execution of a job, as shown in line 2 of Algorithm 1. It
determines whether the highest-priority job should be scheduled
(as is always the case in a work-conserving scheduler), or
whether alternatively the processor should be idled in a non-
work-conserving fashion. The basic IIP idea is that strategically
inserted idle time can greatly increase non-preemptive schedu-
lability by avoiding pathological blocking scenarios [10].

We generalize this notion to the case of job-set-dependent-
IIPs (JIIPs). A JIIP determines the latest permissible start time
L(Ji, t,J S) of the highest-priority pending job Ji at time t,
given that the set of jobs denoted by J S have already finished
(see line 2 in Algorithm 1). In other words, if t ≤ L(Ji, t,J S),
then job Ji will be scheduled, otherwise the processor will be
idled until another job is released (line 5 in Algorithm 1).

We require JIIPs to be stable in their decisions, i.e., a JIIP
is not allowed to “flip-flop” on its decision whether to block
Ji. More precisely, if at some point in time t the JIIP blocks
a job Ji from being scheduled (for a given J S), then it will
also block Ji at any later point in time (for the same J S): if
t > L(Ji, t,J S), then also t′ > L(Ji, t

′,J S) for any t′ > t.
That is, once a job Ji is blocked by the JIIP, the set of scheduled
jobs J S must change before Ji may be considered again.

Our JIIP definition covers many forms of previously studied
IIPs. For example, under P-RM [9], a low-priority job may be
scheduled only if it cannot cause the next maximum-priority
job to miss a deadline, which can be formalized as follows.
Let p̂ denote the maximum priority level. At a given time t,
let Jx (x 6= i) be the job (if any) that satisfies the condition

rmax
x = min

{
rmax
z

∣∣ Jz ∈ J \ J S ∧ pz = p̂ ∧ t < rmax
z

}
.

Based on the intuition that Jx could miss its deadline if Ji
starts execution after time dx − Cmax

x − Cmax
i , we define

L(Ji, t,J S) =

{
dx − Cmax

x − Cmax
i if Jx exists,

∞ otherwise.
(1)

If there is no future higher-priority job that must be “pro-
tected,” or if Ji has maximum priority itself (pi = p̂), then
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Fig. 1. An example for 3 different scheduling scenarios of a job set J =
{J1, J2, . . . , J9} with no release jitter. The execution time range for J1 to
J6 is [1, 2], for J7 and J8 it is [7, 8], and for J9 it is [3, 13]. The relative
deadline of J1 to J6 is 10, for J7 and J8 it is 30, and for J9 it is 60.

L(Ji, t,J S) =∞, which means that the JIIP never blocks Ji.
The CW-EDF JIIP [10] is conceptually similar, but notationally
more involved, in part since CW-EDF assumes tasks without
release jitter; these details can be found in the appendix.

The proposed schedulability analysis supports the broad class
of work-conserving and non-work-conserving non-preemptive
scheduling algorithms that satisfy the following three properties:
(i) the non-preemptive scheduling policy must be based on
fixed job priorities (FJP), i.e., a job commences execution only
if it has the highest priority among all pending jobs; (ii) it must
use a stable JIIP, or no IIP at all; and (iii) it must be an eager
scheduling algorithm, i.e., it must not leave the processor idle
as long as the highest-priority pending job in the system is
allowed to be scheduled by the JIIP. Hereafter, we use the terms
IIP and JIIP interchangeably and assume the presence of an IIP.
Work-conserving algorithms that do not require an IIP can be
modeled with the trivial JIIP ∀Ji, t,J S : L(Ji, t,J S) ,∞.

III. EXACT SCHEDULABILITY ANALYSIS

The core of our schedulability analysis is a search in a
graph that abstracts the schedules of all possible execution
scenarios. We first illustrate the main idea of the approach with
an example, then precisely define the algorithm, establish its
correctness, show how it yields exact response-time bounds,
and finally discuss how it can be applied to periodic tasks.

A. Motivation and Basic Idea

Consider a job set subject to execution time variation as
shown in Fig. 1.1 For simplicity, there is no release jitter in this
example. In the execution scenario in which all execution costs
are maximal, i.e., ∀i, Ci = Cmax

i , all deadlines are met in the
schedule produced by NP-EDF as illustrated in Fig. 1-(a).

1This job set is based on an example in [10].

Fig. 2. A schedule graph for the job set in Fig. 1 scheduled by NP-EDF.

However, if C7 = 7 < Cmax
7 = 8, a deadline is missed as

shown in Fig. 1-(b), which illustrates the problem of scheduling
anomalies under non-preemptive polices. The job set is hence
not schedulable under NP-EDF as there exists a scenario in
which not all deadlines are met.

In this example, the problem can be avoided by using NP-FP
and the priority assignment p1 < p2 < . . . < p6 < p9 < p7 <
p8, as shown in Fig. 1-(c). In fact, with this priority assignment,
no deadline is missed in any execution scenario.

In general, it is not easy to distinguish between the cases
illustrated in Figs. 1-(b) and 1-(c), i.e., to decide whether there
exists an execution scenario in which a deadline is missed (for
a given set of jobs and a given priority order). The central
contribution of this paper is a method that solves this problem
with practical time and memory requirements.

Our schedulability analysis is based on searching all possible
job orderings (or sequences) produced by a given schedul-
ing algorithm A for all possible execution scenarios. For
example, if NP-EDF is used to schedule the job set in
Fig. 1, although there are many possible execution scenar-
ios, there are only exactly two possible job sequences that
can arise: 〈J1, J7, J2, J9, J3, J4, J8, J5, J6〉 (Fig. 1-(a)) and
〈J1, J7, J9, J2, J3, J4, J8, J5, J6〉 (Fig. 1-(b)). Once all such
sequences are known, the schedulability analysis problem
reduces to simply calculating the earliest- and latest-possible
finish time (EFT and LFT) of each job in each possible sequence.
The main challenge is hence the need for an exact yet efficient
way for enumerating all possible job sequences.

For example, consider the job set in Fig. 1 under NP-EDF
scheduling. In particular, consider the prefix sequence 〈J1, J7〉:
due to the execution time uncertainty of J1 and J7, the EFT
and LFT of J7 are 8 and 10, respectively. Since a high-priority
job is released within this interval (J2 is released at time 10),
two cases may arise depending on the total sum of execution
costs C1 + C7: if C1 + C7 = 10, then J2 is scheduled next
(Fig. 1-(a)), but if C1 + C7 ≤ 9, then J9 is scheduled next
(and J2 misses its deadline, Fig. 1-(b)).

This information can be expressed with a directed acyclic
graph (DAG) as shown in Fig. 2, where each edge is labeled
with the job that is scheduled next, and each vertex is labeled
with an interval of time spanning the EFT and LFT of the
last-scheduled job. Equivalently, the label of a vertex vi can
be seen as the EFT and LFT of the sequence of jobs that
are edge labels on the path from v1 to vi. Importantly, this
graph has a branch (i.e., a path originating at the root v1) for
every possible job sequence, thereby abstracting all possible
execution scenarios. For instance, in Fig. 2, the EFT of v4 is
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reached when C1 = 1, C7 = 7, and C9 = 3, while the EFT of
v5 is reached when C1 + C7 = 10 and C2 = 1.

More formally, a schedule graph is a DAG G = (V,E),
where the label of each edge ek ∈ E is a job Jx ∈ J and
the label of each vertex vi ∈ V is an interval, denoted by
[ei, li], that represents the EFT and LFT of the sequence of
jobs (i.e., edge labels) in any path that connects the root vertex
v1 to vi. That is, with the exception of v1, for any vi and
any time t ∈ [ei, li], we require that there exists an execution
scenario such that the last job in the sequence of jobs on the
corresponding path from v1 to vi finishes by time t.

We next explain how to build a schedule graph G for a
given set of jobs J such that G abstracts all schedules that
can arise due to any possible execution scenario of J .

B. Generating a Schedule Graph

At a high level, the proposed algorithm consists of two
alternating phases, the expansion phase and the merging phase.
During the expansion phase, (one of) the shortest path(s) in the
graph from the root to a leaf is grown by considering all jobs
that can appear next in the sequence represented by the path.
For each such job, a new vertex is created, added to the graph,
and connected via an edge from the last-expanded vertex.

After a path has been expanded, the merging phase tries to
compact the graph. To this end, the ending vertices of paths
that have the same set of labels (i.e., jobs) and intersecting
end-vertex labels (i.e., finish-time intervals) are merged. This
step is essential to avoid redundant work, i.e., to recognize two
or more similar states early on before they are expanded.

The algorithm terminates when there are no more incomplete
paths to expand, or if a dead-end path is discovered (i.e., an
incomplete path that cannot be further expanded).

Algorithm 2 shows the proposed iterative schedule graph
generation algorithm (SGA) in full detail. The graph is
initialized in line 1 with a root vertex v1 labeled with the
interval [0, 0]. The repeating expansion phase corresponds to
lines 2-10; lines 12–14 constitutes the merging phase. The
expansion and merging phases repeat until every path in the
graph contains |J | distinct jobs, or until a path fails to be
expanded (lines 4–6). In the remainder of this section, we
discuss the expansion and merge phases in detail.

1) Expansion phase: Fig. 3 shows an illustration of the
expansion phase. In general, given a path P from v1 to a leaf
vi (line 3), let J P and |J P | denote the job sequence (i.e., the
sequence of labels of traversed edges) and the length of P ,
respectively, and let ei and li denote the EFT and LFT of vi,
respectively (i.e., vi is labeled with the interval [ei, li]).

In order to expand P , Algorithm 2 must consider all jobs
that can be scheduled after ei in some execution scenario.
Conversely, the goal is to filter jobs that will certainly not
be scheduled next in any execution scenario. To this end, we
introduce three notions of “eligibility” to be scheduled next.

Definition 2. A possibly released job Jj is priority-eligible at
time t iff

@Jx ∈ J \ J P s.th. rmax
x ≤ t ∧ px < pj . (2)

Algorithm 2: Schedule Graph Construction (SGA)
Input : Job set J , scheduling algorithm A
Output : Schedule graph G = (V,E)

1 Initialize G by adding a root vertex v1 with interval
[0, 0];

2 while (∃ path P from v1 to a leaf s.th. |P | < |J |) do
3 P ← the shortest path from v1 that ends in a leaf;
4 if (there is no eligible job (Definition 5) then
5 return unschedulable;
6 end
7 for each eligible successor job Jj (Definition 5) do
8 Add a new vertex vk to V with label [ek, lk]

based on Equations (3) and (5);
9 Add an edge from vi to vk with label Jj ;

10 Let path P ′ = P + 〈vk〉;
11 while (∃ path Q that matches P ′ (Definition 6)

do
12 Update [ek, lk]← [eq, lq] ∪ [ek, lk];
13 Redirect all incoming edges of vq to vk;
14 Remove vq from V ;
15 end
16 end
17 end

In other words, Jj is priority-eligible iff rmin
j ≤ t and there

is no certainly released, still incomplete higher-priority job.

Example. Consider Fig. 3, where J5 is the last-scheduled job
on path P to vi. J5 can finish by any time from ei until li. In
this example, J7, J6, J3, and J2 are priority-eligible because
for each job there exists an execution scenario in which it
becomes the highest-priority pending job at some time during
[ei, li]. If J5 finishes by time ei and J6 is released prior to
ei, then J6 becomes the highest-priority job at ei. However, if
J5 finishes by time ei and J6 is released at time rmax

6 , then
J7 has the highest priority at time ei. Similarly, if J5 finishes
by time rmin

3 (respectively, time rmin
2 ), then J3 (respectively,

J2) can become the highest-priority pending job. Crucially,
J4 can never succeed J5 in any execution scenario as it is
always released after the higher-priority job J3; J4 is thus not
priority-eligible and can be safely ignored when expanding P .

Next, we observe that it is similarly safe to ignore jobs that
are certainly blocked by the IIP.

Definition 3. A job Jj is IIP-eligible at time t iff the IIP
permits it to be scheduled, i.e., iff t ≤ L(Jj , t,J P ).

Finally, we must take into account a third necessary condi-
tion: to be scheduled next, a job Jj must either (i) be already
released by the time the predecessor finishes (i.e., at the latest
by time li, which implies rmin

j ≤ li), or (ii) there must exist
an execution scenario such that no other job is scheduled in the
time between the completion of the predecessor and the release
of Jj . That is, if rmin

j > li, then for Jj to be scheduled next,
the system must be certainly idle in the time interval [li, rmin

j ).
We refer to this criterium as “potentially-next eligibility.”

Definition 4. A job Jj is potentially next at time t iff either:
(i) Jj can be released before li, i.e., rmin

j ≤ li, or
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Fig. 3. An example showing how a given path P ending in vi can be expanded.
Note that jobs on lower axes have higher priority. The label of vi, the interval
[ei, li], is marked in the figure by a dashed line between two diamond-shaped
points. For the sake of illustration, assume that a = li − 1.

(ii) no other job is certainly scheduled before Jj , i.e., there
does not exist a job Jx ∈ J \ J P (i 6= x, rmax

x < t) that is
both priority-eligible and IIP-eligible at time max{rmax

x , li}.

Example. Returning to the example in Fig. 3, jobs J2–J7
are trivially potentially-next jobs as they satisfy clause (i) of
Definition 4. Next, consider job J1, which does not satisfy
clause (i). However, since none of the jobs J2, J3, J4, J6, and
J7 are IIP-eligible at the time li, job J1 satisfies the second
clause, and hence, is a potentially next job for vi.

Based on Definitions 2–4, we can precisely characterize the
set of potential successor jobs in path P .

Definition 5. A job Jj ∈ J \ J P is an eligible successor for
path P ending in vertex vi iff Jj is IIP-eligible, priority-eligible,
and potentially next at time tE = max{ei, rmin

j }.

In Fig. 3-(a), J7, J6, J3, J2, and J1 are eligible successors
of J5. Job J4 is not eligible because it is not priority-eligible
at time max{ei, rmin

4 } = rmin
4 due to the presence of J3.

We later show in Lemma 3 that Definition 5 is a necessary
and sufficient condition for a job to be scheduled next in some
possible execution scenario. Next, we derive the earliest- and
latest-possible finish times of a successor job.

2) EFT and LFT of a new vertex: Consider an eligible-
successor job Jj that is added at the end of path P after vertex
vi as the label of an edge to a new vertex vk (lines 7–10 in
Algorithm 2). The EFT of Jj (or, equivalently, of vk) is

ek = tE + Cmin
j , (3)

where tE = max{ei, rmin
j } is the earliest start time of Jj .

The LFT is determined by three factors that bound the latest
time at which Jj must start execution to be next in line. First,
under eager policies, Jj must start execution by time

tL = max{li, rmax
j },

because by that time it will certainly be released (tL ≥ rmax
j )

and the previous job has certainly finished (tL ≥ li).
Second, since we consider FJP policies, Jj must start

execution before a higher-priority job is certainly released,

Fig. 4. The schedule graph produced by Algorithm 2 for the job set in Fig. 1
under NP-EDF scheduling. In v6, the two paths representing the scenarios in
Figs. 1-(a) and 1-(b) merge; the vertex label is hence a union of two intervals.

since the release of a higher-priority job implies that Jj cannot
commence execution. Formally, given the set of incomplete
higher-priority jobs JH =

{
Jx
∣∣ Jx ∈ J \ J P i ∧ px < pi

}
,

Jj’s latest start time is upper-bounded by

tH =

{
∞, if JH = ∅
min

{
rmax
x

∣∣ Jx ∈ JH
}
− 1 otherwise.

(4)

Third, the latest time after time tE at which the IIP permits
Jj to start, which is given by tI = L(Jj , tE ,J P ), is also an
upper bound on the latest start time if Jj is scheduled next.

Based on these considerations, the LFT Jj (or vk) is

lk = min{tL, tH , tI}+ Cmax
j . (5)

We next discuss the merge phase, which seeks to collapse
redundant branches of the schedule graph.

3) Merge phase: To slow the growth of the graph, we merge
“matching” paths that represent the same jobs (lines 11–15).

Definition 6. A path Q from v1 to vq is matching a given
path P from v1 to vp iff J P = JQ ∧ [eq, lq] ∩ [ep, lp] 6= ∅,
where J P and JQ are the sets of jobs of paths P and Q (i.e.,
the labels of the traversed edges), respectively.

By merging a path Q with a path P we mean replacing the
last vertex of Q with the last vertex of P . Assume that vq
and vp are the last vertices of Q and P , respectively. First, we
update the interval [ep, lp] (i.e., the label of vp) as follows:

[ep, lp]← [ep, lp] ∪ [eq, lq]. (6)

Second, we modify the incoming edges to vq to point them
to vp instead. At this point, vq is no longer connected to or
reachable from the rest of the graph and we simply remove vq .
As a result, after the merge, both paths P and Q end in vp.

Example. In Fig. 2, the two paths P = 〈v1, v2, v3, v4, v6〉
and Q = 〈v1, v2, v3, v5, v7〉 are matching paths because they
represent the same set of scheduled jobs (albeit in different
orders) and because the labels of v6 and v7 intersect: [12, 24]∩
[14, 25] 6= ∅. The two paths will thus be merged by Algorithm 2,
which leads to the final graph shown in Fig. 4.

It is worth noting that, by design, Algorithm 2 does not merge
vertices that have outgoing edges. This property is ensured
because Algorithm 2 always expands (one of) the shortest
path(s), similar to a breadth-first traversal. As a result, all paths
grow in a balanced way so that, if a path Q matches the newly
formed path P ′ in line 11 of Algorithm 2, then Q’s last vertex
has not yet been expanded. That is, at any point in time, any
two paths from v1 to any leafs differ in length by at most one.
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Fig. 5. The schedule graph generated by Algorithm 2 for a pathological case
where jobs are released in reverse order of their priorities, the WCET of each
job exceeds li − ei, and the BCET of each job is zero, which maximizes the
number of possible job sequences. For simplicity, there is no release jitter.

Fig. 5 shows a graph created by Algorithm 2 for a set of jobs
that are released in the reverse order of their priority, which
represents the worst-case scenario with regard to the number
of leaf vertices that must be explored in the expansion phase.

However, as indicated with dashed edges, although there
are many eligible successors initially, the width of the graph
reduces quickly after several merge steps. While an analysis
of the computational complexity of Algorithm 2 is beyond the
scope of this paper (see also Sec. III-F), it is interesting that,
given n = 4 eligible jobs in Fig. 5, the number of vertices
reachable from vi via a path of length x is given by the binomial
coefficient

(
n
x

)
, i.e., there are

(
4
1

)
= 4 vertices reachable from

vi in 1 hop,
(
4
2

)
= 6 vertices reachable in 2 hops,

(
4
3

)
= 4

vertices reachable in 3 hops, and only
(
4
4

)
= 1 vertex reachable

in 4 hops. In contrast, a naı̈ve brute-force expansion without a
merge phase would generate a tree with n! vertices.

C. Proof of Correctness

In the following we establish that the graph constructed by
Algorithm 2 reflects all job sequences that can arise from any
possible execution scenario (Theorem 1). The proof has two
main steps: we first argue that the EFT and LFT obtained from
Equations (3) and (5) are tight (Lemmas 1 and 2), and then
show that Definition 5 is a necessary and sufficient condition
for a job to be scheduled after a given path (or job sequence)
in at least one execution scenario (Lemma 3).

Lemma 1. The EFT and LFT of a newly created vertex vp
cannot be smaller than (3) or larger than (5), respectively.

Proof. By induction. The base case is for v1, in which the EFT
and LFT are both trivially 0. In the induction step, assume that
each label on every vertex from v1 to vi is an exact bound on
the EFT and LFT of any path P from v1 to vi. We show that
for a new vertex vp that is added after vi and connected by an
edge labeled with a job Jj , (3) and (5) provide tight bounds
on the EFT and LFT of all paths from v1 to vp.

EFT: The earliest start time of Jj , i.e., tE , cannot be smaller
than ei since, by the induction hypothesis, ei is the earliest
time at which all prior jobs in path P can be finished. A lower
bound on tE is given by rmin

j , because Jj cannot execute

before it is released. If Jj starts its execution at tE , it cannot
finish before (3) since its minimum execution time is Cmin

j .
LFT: Next, we show that lp − Cmax

j cannot exceed tL, tI ,
or tH . First, consider tH and suppose tH 6=∞ (otherwise the
claim is trivial). Since a higher-priority job is certainly released
at the latest at time tH +1, Jj is no longer the highest-priority
pending job after tH , and hence cannot commence execution
under a FJP scheduler after time tH . Hence, Jj will be a direct
successor of path P only if its execution starts no later than
time tH . For the same reason, Jj must start its execution no
later than time tI , because if it does not commence execution
before or at time tI , then a stable IIP will continuously block
Jj until another job has been scheduled.

If li < rmax
j ≤ min{tI , tH}, and if Jj is the job that is

scheduled next, then Jj is the highest-priority job at time rmax
j

that is allowed to be scheduled by the IIP. Since the scheduling
algorithm under consideration is an eager scheduler, Jj is
scheduled at rmax

j . Otherwise, if rmax
j ≤ li ≤ min{tI , tH},

then Jj will be the highest-priority job at li and must be
scheduled no later than li since all prior jobs in the path have
finished by time li. Finally, since Jj can exhibit its maximum
execution time Cmax

j , the latest finish time of Jj is lp =
Cmax

j +min{tI , tH ,max{li, rmax
j }}.

Lemma 2. For every vertex vp ∈ V and any time t ∈ [ep, lp],
there exists an execution scenario and a corresponding path
P = 〈v1, . . . , vp〉 such that the last job in the job sequence
represented by path P finishes by time t.

Proof. Vertex labels are created in line 8 and modified in
line 12 of Algorithm 2, where the union of two intersecting
intervals replaces the previous label. Since such merges trivially
maintain the claimed property, it is sufficient to show that each
interval label created from (3) and (5) satisfies the claim.

The claim can be established inductively, where the base
case (v1) is again trivial. For the induction step, let vi be the
vertex via which vp is initially connected when vp’s vertex
label is first created. Let Jj be the label of the edge from vi
to vp, and suppose the claim holds for vi, i.e., for any time
t′ ∈ [ei, li], there exists an execution scenario such that the
last job from v1 to vi finishes exactly by t′.

From (3), we have ep = tE +Cmin
j , and from (5), we have

lp ≤ tL + Cmax
j , which translates into four (not necessarily

disjoint) cases: (i) ei ≤ rmin
j ∧ li ≤ rmax

j , (ii) rmin
j ≤ ei ∧

rmax
j ≤ li, (iii) rmin

j ≤ ei ≤ li ≤ rmax
j , and (iv) ei ≤ rmin

j ≤
rmax
j ≤ li. For each case, we identify an execution scenario

such that Jj finishes by any chosen time t ∈ [ep, lp].
In case (i), ep = rmin

j + Cmin
j and lp ≤ rmax

j + Cmax
j .

Let Jj arrive at time rj = max{t − Cmax
j , rmin

j }, which is
possible since t ≤ rmax

j + Cmax
j , let Jj execute for Cj =

min{Cmax
j , t − rmin

j } time units, which is possible since
t ≥ rmin

j +Cmin
j , and choose an execution scenario such that

the predecessor of Jj (if any) finishes by time t′ = ei ≤ rmin
j ,

which exists by the induction hypothesis. Then Jj is scheduled
immediately at time rj and finishes by time t.

In case (ii), ep = ei + Cmin
j and lp ≤ li + Cmax

j . Let Jj
arrive at time rj = min{ei, rmax

j }, which is possible since
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rmin
j ≤ ei, let Jj execute for Cj = min{Cmax

j , t− ei} time
units, which is possible since t ≥ ei + Cmin

j , and choose an
execution scenario such that the predecessor of Jj (if any)
finishes by time t′ = max{ei, t − Cmax

j }, which exists by
the induction hypothesis and since t ≤ li + Cmax

j . Then Jj is
scheduled at time t′ and finishes by time t.

In case (iii), ep = ei + Cmin
j and lp ≤ rmax

j + Cmax
j . Let

Jj arrive at time rj = max{ei, t− Cmax
j }, which is possible

since rmin
j ≤ ei and t ≤ rmax

j + Cmax
j , let Jj execute for

Cj = min{Cmax
j , t− ei} time units, which is possible since

t ≥ ei+Cmin
j , and choose an execution scenario such that the

predecessor of Jj (if any) finishes by time t′ = min{li, rj},
which exists by the induction hypothesis and since rj ≥ ei.
Then Jj is scheduled at time rj and finishes by time t.

Finally, in case (iv), ep = rmin
j +Cmin

j and lp ≤ li+Cmax
j .

Let Jj arrive at time rj = min{rmax
j , max{rmin

j , t−Cmax
j }},

let Jj execute for Cj = min{Cmax
j , t− rj} time units, which

is possible since t ≥ rmin
j + Cmin

j , and choose an execution
scenario such that the predecessor of Jj (if any) finishes by
time t′ = max{t− Cmax

j , rj}, which exists by the induction
hypothesis and since ei ≤ rj ≤ li and t ≤ el + Cmax

j . Then
Jj is scheduled at time t′ and finishes by time t.

Note that Lemma 2 does not claim that every path to a given
vertex represents a set of execution scenarios that covers the
full range of the vertex label. This is because the merge phase
may widen vertex labels. For example, in Fig. 4, the label of v6
is [12, 25], but in any execution scenario that ends in J2 being
scheduled last (i.e., corresponding to the path 〈v1, . . . , v4, v6〉),
the last job in the sequence finishes by time 24 at the latest
(as is also apparent in Fig. 2). However, the precise maximum
finish time of J2 can still be inferred from the graph in Fig. 4
by evaluating Equation (5) in the context of v4 and the path
prefix 〈v1, . . . , v4〉. Next, we consider the set of eligible jobs.

Lemma 3. Job Jj is scheduled in some execution scenario as
the next job in the job sequence represented by a path to a
vertex vi iff it is an eligible successor (Definition 5).

Proof. Let P denote a path from v1 to vi.
If: Consider the following execution scenario: each job

Jx ∈ J \ J P other than Jj is released at rmax
x and Jj is

released at rmin
j . Since Jj is an eligible-successor, it is priority-

eligible, and hence must be the highest-priority pending job
among all other jobs that are certainly released before tE . It is
further IIP-eligible, and hence must be allowed to be scheduled
by the IIP at time tE . If tE ≤ li, then Jj can be scheduled
at time tE in an execution scenario in which the last job of
path P finishes by time tE . The existence of such an execution
scenario follows from Lemma 2.

Otherwise, if tE > li, then the following execution scenario
allows Jj to be scheduled after P : the last job of path P finishes
its execution at time li, Jj is released at time rmin

j , no other job
is scheduled between the last job of P and Jj (i.e., the processor
idles from li until , rmin

j ), and hence Jj is scheduled at time
rmin
j . The fact that the processor remains idle between the last

job of P and Jj follows from clause (ii) of Definition 4 (which

applies if tE > li): Jj is an eligible successor of P only if any
other job Jx that is certainly released before time tE = rmin

j

(i.e., rmax
x < tE) is either IIP-ineligible or priority-ineligible

at time max{rmax
x , li} (where max{rmax

x , li} < tE = rmin
j

since li < tE and rmax
x < tE). Furthermore, any such

job Jx remains IIP-ineligible or priority-ineligible (or both)
throughout the interval [max{rmax

x , li}, rmin
j ] since a job is

priority-ineligible while the processor is idle only if there
exists a pending higher-priority, IIP-ineligible job, and since
the IIP is stable (i.e., any job Jx that is IIP-ineligible at time
max{rmax

x , li} remains indefinitely IIP-ineligible while the
processor idles). Thus, Jj can be scheduled at rmin

j while no
other job is scheduled between the last job of P and Jj .

Only if: We show that if Jj is not eligible by Definition 5,
then there is no execution scenario in which Jj is scheduled
after P . If Jj is not IIP-eligible, then the IIP will indefinitely
block Jj from being scheduled until another job is scheduled
since the IIP is stable. If Jj is not priority-eligible at time tE ,
it cannot be scheduled after P since there will certainly exist
a higher-priority pending job at time tE , which prevents Jj
from being scheduled under a FJP scheduler. Finally, if Jj is
not next-eligible, then there exists at least one job Jx that is
certainly released before rmin

j and that is IIP- and priority-
eligible at time max{rmax

x , li} < rmin
j . Under an eager FJP

scheduler, this job will precede Jj regardless of its priority.

Based on Lemmas 1–3, we conclude that Algorithm 2
constructs a precise abstraction: the final graph reflects all
possible (Lemmas 1 and 3) and no impossible scenarios
(Lemmas 2 and 3), which we summarize as Theorem 1.

Theorem 1. If Algorithm 2 terminates successfully, then there
exists an execution scenario such that a job Jj ∈ J completes
at some time t (under the given scheduler) iff there exists a
path P = 〈v1, . . . , vi, vp〉 in the schedule graph such that Jj
is the label of the edge from vi to vp and t ∈ [e′, l′], where e′

and l′ are given by Equations (3) and (5), respectively.

D. Obtaining Exact Worst- and Best-Case Response Times

The response time of a job Jj that completes at time t is
t− rmin

j . Based on Theorem 1, it is easy to obtain Jj’s worst-
and best-case response times (WCRT and BCRT, respectively):
simply check all edges that have Jj as a label. More precisely,
let Aj be the set of vertices that have an outgoing edge with
label Jj . The exact BCRT and WCRT of Jj are given by:

BCRTj = min {e′ | vi ∈ Aj } − rmin
j (7)

WCRTj = max {l′ | vi ∈ Aj } − rmin
j (8)

where e′ and l′ are obtained from (3) and (5) based on any
path from v1 to vi. BCRTj and WCRTj can be incrementally
computed as a part of Algorithm 2’s expansion phase.

In a hard real-time context, a job set is schedulable under
a given scheduling policy if WCRTj ≤ dj − rmin

j for every
Jj ∈ J . However, our approach is oblivious to the underlying
notion of temporal correctness; for instance, Equation (8) also
yields an exact tardiness bound: max{0,WCRTj−dj+rmin

j }.
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For example, in Fig. 4, for J2, we have A2 = {v3, v4},
and hence WCRT2 = max{12, 24} − 10 = 14. Our analysis
thus shows that, since WCRT2 = 14 > d2 − rmin

2 = 10, J2
is not hard real-time schedulable under NP-EDF. However, a
maximum tardiness of 4 can be guaranteed.

E. Applicability to Periodic Tasks
While we have focused so far on finite job sets for the sake

of clarity, our work is motivated by, and intended for, the
analysis of periodic real-time workloads. We briefly explain
how our analysis can be applied in this context.

A periodic task generates an infinite sequence of jobs. Thus,
in order to apply our job-set-based analysis to a set of periodic
tasks, we need to first generate a finite set of jobs that represents
an interval of time in which the release pattern of all tasks
repeats. We call this representative timeframe the observation
interval (OI). If the set of jobs in the OI can be shown to be
schedulable, then the infinite sequence of jobs is schedulable
as well. The choice of OI depends on the type of workload.

First, consider constrained-deadline tasks. For periodic tasks
without release offset, the OI is the hyperperiod of the tasks,
denoted by H . While in the worst case the number of jobs in H
is exponential in the number of tasks, typical task sets found in
industry exhibit usually only a few hundred to a few thousand
jobs in a hyperperiod (e.g., see [11, 12] for examples).

For periodic tasks with release offsets, the OI is 2H if the
release offset of each task is an integer multiple of its period
and smaller than H . Otherwise, for work-conserving schedulers,
the OI is 2H+Omax [13], where Omax is the maximum offset.
For non-work-conserving algorithms, however, the problem of
choosing a safe OI given arbitrary offsets is largely open.

For the case of periodic tasks with arbitrary deadlines,
Goossens et al. [13] recently derived an upper bound on the
length of the OI that holds for any deterministic scheduling
algorithm. It includes both work-conserving and non-work-
conserving algorithms. However, the provided bound grows
rapidly with the number of tasks and is likely impractical.

F. Time Complexity
Finally, we briefly remark on the computational complexity

of our approach. First, in the context of periodic tasks (i.e., if
the input is n tasks), it clearly depends on the number of jobs
in a hyperperiod, and hence is inherently exponential in n in
the worst case. (However, again, in practice one is unlikely to
find workloads in which all periods are relatively prime.)

In the context of finite job sets (i.e., if n = |J |), the runtime
complexity of Algorithm 2 is more interesting, and largely
depends on how effective the merge phase is (assuming that the
IIP function L has polynomial runtime complexity). Intuitively,
if all paths with the same set of jobs merge, the maximum
number of concurrently explored paths can be described by
a binomial coefficient that models the number of distinct
combinations of unique items (jobs) in the paths, as illustrated
in Fig. 5. However, showing that, or precisely under which
conditions, all such paths merge is nontrivial in the presence
of IIPs. Due to space constraints, we omit a detailed proof and
instead focus on the performance of the analysis in practice.

IV. EMPIRICAL EVALUATION

We conducted experiments to answer two main questions:
(i) does our exact test offer significant schedulability improve-
ments? And (ii) is the runtime of our analysis practical?

We applied Algorithm 2 to four scheduling policies: work-
conserving NP-FP and NP-EDF scheduling, and the two non-
work-conserving policies P-RM [9] and CW-EDF+, where the
latter is a slightly tweaked version of CW-EDF [10] that adds
support for release jitter, as discussed in the appendix.

As a baseline, we use the classic RTA of Davis et al. [2]
for NP-FP (denoted by NP-FP classic test). Regarding Jeffay’s
classic test for NP-EDF [14], since it evaluates all points in
time across a large test interval, it was not sufficiently scalable
for our experiments, which use nanosecond resolution.

In our experimental setup, we closely followed the descrip-
tion of an automotive benchmark application [12], where each
task is a sequence of functions, called runnables, which are
activated in series. All runnables in a task have the same period,
which is chosen from {1, 2, 5, 10, 20, 50, 100, 200, 1000} (mil-
liseconds). Kramer et al. [12] provide a realistic (non-uniform)
distribution of runnables across these periods and statistics on
BCETs and WCETs of runnables with a given period.

To randomly generate a task set with a given utilization U ,
we first randomly generated as many runnables as needed
to reach the target utilization, following the distribution of
periods, BCETs, and WCETs reported by Kramer et al. [12],
and then packed runnables of the same period into tasks. Since
a necessary schedulability condition for non-preemptive tasks
is that ∀i, 2 ≤ i ≤ n : Cmax

i ≤ 2(T1 − Cmax
1 ), where T1 is

the shortest period and n is the number of tasks, we first chose
a packing threshold ai uniformly at random from (0, 2(T1 −
Cmax

1 )] and then aggregated as many runnables into a task until
the threshold ai was reached. If more runnables with the same
period remained at this point, we created another task, chose a
new threshold ai, and repeated the process until all runnables
were assigned to tasks. Tasks were assumed to have implicit
deadlines. We considered three scenarios for release jitter of
the tasks: (i) no jitter, (ii) small jitter, i.e., each task has a jitter
value that is randomly chosen from [0, 100] microseconds, and
(iii) large jitter, i.e., the release jitter of each task is drawn
uniformly at random from [0, 0.2 × Ti]. Cases (ii) and (iii)
roughly represent jitter magnitudes that can be expected due to
interrupt handling and network congestion delays, respectively.

In the experiments, a task set was claimed unschedulable as
soon as either an execution scenario with a deadline miss is
found or a timeout of four hours was reached. Experiments
were conducted on a host equipped with an Intel Xeon E7-8857
v2 processor clocked at 3 GHz and 1.5 TiB RAM; the analysis
was implemented as a single-threaded C++ program2. Fig. 6
reports the observed schedulability ratio, the average number
of states (vertices) of the graph, and the average and individual
runtime of the analysis. In total, we generated 9,000 task sets
for this experiment (1,000 each for U ∈ {0.1, . . . , 0.9}).

2Available at: https://people.mpi-sws.org/∼bbb/papers/details/rtss17
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Fig. 6. Experimental results for task sets with zero, small, and large jitter. (a, g, m) Schedulability ratio. (b, h, n) Average analysis runtime. (c, i, o) Average
number of states in the graph. (d, j, p) Analysis runtime vs. the number of jobs in a hyperperiod. (e, k, q) Analysis runtime vs. the number of tasks.
(f, l, r) Analysis runtime of the NP-FP and NP-EDF analyses for schedulable task sets.

9



Figs. 6-(a), (g), and (m) show the schedulability ratio as a
function of total utilization U when tasks have zero, small, and
large jitter, respectively. First, note that the difference between
our new exact and the prior sufficient RTA for NP-FP exceeds
20% in the range from 0.3 to 0.5 when there is no release jitter,
which shows that our analysis is able to reclaim pessimism in
the state-of-the-art analysis for periodic tasks.

Another key observation is that CW-EDF+and P-RM are
much more efficient even when task sets are subject to release
jitter and execution time variation (prior studies on CW-EDF
and P-RM have not considered either type of uncertainty).
This result shows that non-work-conserving algorithms are
significantly more sustainable than work-conserving algorithms
since they are less susceptible to anomalies, handle blocking
times more carefully, and can hence correctly schedule many
more workloads. Prior to this work, no response-time bounds
were known for periodic tasks under P-RM or CW-EDF.

As is apparent from Figs. 6-(b), (h), and (n), the runtime of
the analyses increases with the increase in jitter. When jobs
are subject to large jitter, more eligible jobs appear in the
graph expansion phase and a (much) larger number of possible
interleavings must be considered, and hence there will be many
more vertices (as it can be seen in Figs. 6-(c), (i), and (o)).

Figs. 6-(d), (j), (p) and (e), (k), (q), depict the exact runtime
of the analyses for each task set versus the number of jobs in a
hyperperiod and the number of tasks in the task set, respectively.
As the number of jobs increases, the maximum and average
runtimes of the analyses increase. In the case of workloads with
large jitter and many tasks, the CW-EDF+analysis sometimes
did not complete within the four-hour timeout; task sets for
which this happened were reported as unschedulable. That is
why there is a drop in the schedulability of CW-EDF+in Fig. 6-
(m). In particular, about 22% of the task sets generated with
U = 0.9 exceeded the timeout. The timeout is also apparent
in the scatter plots shown in Figs. 6-(p) and (q), which exhibit
a sharp boundary at 14,400 seconds (i.e., four hours).

Figs. 6-(f), (l), and (r) show the runtimes of the NP-FP
and NP-EDF analyses for only schedulable task sets (which
require the exploration of the entire graph, i.e., no early exit).
As can be seen, our analysis for these algorithms finishes
considerably faster than for CW-EDF+due to the additional
cost of calculating the JIIP function during the expansion phase,
and since CW-EDF+achieves better schedulability for higher-
utilization workloads (which necessitates the exploration of
many more states). Overall, the observed runtimes for systems
with small or zero jitter range from less than a second to a
few minutes. In the case of workloads with large jitter, the
analysis can take multiple hours for complex workloads, which
however can still be acceptable for an offline, design-time
analysis. Regarding memory use, the analysis required only a
few dozen to a few hundreds megabytes of RAM for most task
sets; the peak memory use was about 26.9 GiB (for CW-EDF+).

To evaluate the effect of the path-merging phase, we selected
a representative task set with U = 0.3 and a moderate number
of jobs in the hyperperiod. We performed the analysis for
NP-FP with and without path merging on increasingly larger
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Fig. 7. Impact of the path-merging phase. (a) Runtime of the analyses. For
26 or more jobs, the naı̈ve analysis without the path-merging phase exceeded
the 12-hour timeout. With the path-merging phase enabled, the algorithm
required less than 20 milliseconds to analyze all 631 jobs in the hyperperiod.
(b) Number of states and parallel paths without the path-merging technique.

subsets of the job set, using a per-analysis timeout of twelve
hours. Fig. 7-(a) shows the runtime of both setups as a function
of the number of jobs being processed; Fig. 7-(b) shows the
number of states and the number of parallel paths in the graph
for the setup without path merging. While with merging all
631 jobs in the hyperperiod could be analyzed in less than
20 milliseconds, the analysis without merging exceeded the
timeout of twelve hours after analyzing the first 26 jobs in
the hyperperiod. Clearly, the proposed path-merging technique
plays an essential role in deferring the state-space explosion.

Finally, we conducted another experiment to better under-
stand the effect of the number of jobs on the performance
of Algorithm 2. In this experiment, each task set consisted
of eight tasks and periods were selected randomly from
[1, 1000] milliseconds following a log-uniform distribution,
which results in non-harmonic task sets with large hyperperiods.
Each generated task set was sorted in order of increasing
periods and a randomly selected execution time Cmax

1 was
assigned to the task with the shortest period T1. We then
selected Cmax

i ∈ [0.001, 2(T1 − Cmax
1 )] uniformly at random

as the WCET for each other task. Deadlines were equal
to the period and Cmin

i was chosen uniformly at random
from [0.5Cmax

i , Cmax
i ]. We considered the scenario with small

release jitter (as explained earlier) and varied the maximum
number of jobs per hyperperiod from 10,000 to 100,000.

Fig. 8 shows the schedulability ratio and average and
individual runtimes of the four analyses. As can be seen, even
when there are up to 100,000 jobs per hyperperiod, the runtimes
do not exceed the four-hour timeout, and in fact most analyses
complete within a few minutes. This shows that the runtime
of Algorithm 2 is much more dependent on the (relative)
magnitude of jitter, rather than the absolute number of jobs.

Interestingly, P-RM exhibits much reduced schedulability
in Fig. 8-(a). The reason for this drop in performance is that
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Fig. 8. Experimental results for non-harmic periodic task sets with small jitter
and long hyperperiods. (a) Schedulability ratio, (b) runtime of the proposed
analyses for NP-FP, P-RM, and CW-EDF+versus the number of jobs in a
hyperperiod, and (c) runtime of the proposed analysis for NP-FP and NP-EDF
for only schedulable task sets. Note the logarithmic scale in insets (b) and (c).

the P-RM IIP is designed to protect the task with the shortest
period, whereas the generated workloads sometimes contained
multiple tasks with the same short period T1, which the P-RM
IIP then failed to consider; an opportunity for future work.

Overall, we conclude that the proposed analysis is practical
for realistic workload sizes, that for workloads without jitter
the proposed exact analysis is significantly more accurate than
prior analyses for sporadic tasks, and that non-work-conserving
schedulers are substantially more robust to scheduling anoma-
lies, and thus can deliver much higher schedulability, than
classic work-conserving policies.

V. RELATED WORK

Non-preemptive scheduling with release and due dates has
been considered by many authors (see [15] for an overview).
However, these works typically focus on finding an offline
schedule that optimizes some objective function (e.g., maximum
tardiness) rather than verifying the schedulability of the job
set under an existing online policy.

Prior exact schedulability tests for non-preemptive policies
have been introduced by Jeffay et al. [14] (for NP-EDF) and
by Tindell et al. [3] and Davis et al. [2] (for NP-FP). Although
these tests are sustainable w.r.t. execution time variation, they
are exact only for sporadic tasks, where only the minimum

inter-arrival time of jobs is known. As shown previously [10]
and in Fig. 6-(a), these tests are pessimistic for periodic tasks.
Poon and Mok [16] investigated conditions for non-preemptive
sustainability w.r.t. varying periods and execution times.

Sun et al. [17] proposed three sufficient schedulability tests
for NP-FP scheduling and tasks with preemptive and non-
preemptive execution segments. Their test considers both
periodic and non-periodic tasks with given offsets (but not with
release jitter). These tests carefully characterize the blocking
caused by any lower-priority tasks that can start its execution
before the job under analysis. However, since they do not
precisely account for the earliest and latest finish times of
lower-priority jobs, the test cannot reliably filter all impossible
cases and hence is not exact and potentially pessimistic.

Stigge and Yi [18] proposed a sufficient schedulability test
for preemptive and non-preemptive digraph tasks. A digraph
task has a set of modes (with different periods or execution
times), between which it transitions at runtime in a non-
deterministic way. The schedulability analysis proposed by
Stigge and Yi [18] is based on searching all possible scenarios
while gradually pruning the number of test cases that will
certainly not lead to a deadline miss. Using this method,
experiments were conducted using task sets with up to 20
tasks. Our approach differs from theirs in three main aspects:
first, we consider a different workload model that incorporates
release jitter (which drastically increases the number of possible
interleavings); second, our approach is not based on post-hoc
pruning, but rather on the early merging of matching paths;
third, we provide an exact analysis; and fourth, our approach
works even for non-work-conserving policies.

An earlier exact schedulability test was introduced by Baker
and Cirinei [7] for preemptive sporadic tasks scheduled by
global EDF. The test uses a finite state machine that models all
possible combinations of arrival times and execution sequences.
As reported by the authors, the method can handle only tasks
with periods chosen from {3, 4, 5} due to an early state-
space explosion. Bonifaci and Marchetti-Spaccamela [8] and
Burmyakov et al. [6] later improved this technique, however,
without substantially altering its practical scalability limitations.

Guan et al. [4] used a model-checking approach based
on timed automata to analyze sporadic tasks under global
FP scheduling; their method was shown to scale acceptably
only as long as tasks have periods in the range from 8 to 20.
Similarly, Sun and Lipari [5] proposed an exact schedulability
analysis for a set of preemptive sporadic tasks under global
FP scheduling on a multiprocessor using hybrid automata.
To improve scalability, they provide a set of sound pruning
rules. According to the reported evaluation [5], the analysis
can handle up to 7 tasks and 4 processors before timing out.
Although these works are similar to our proposal in that they
seek to explore the space of all possible schedules, they leverage
general-purpose formal methods that are known to scale poorly,
whereas we have developed a much narrower, problem-specific
solution that scales much better. Furthermore, we have focused
on uniprocessor scheduling; an extension to multiprocessors
remains an interesting avenue for future work.
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To the best of our knowledge, this work provides the first
exact schedulability analysis of sets of non-preemptive jobs
(or periodic tasks) that both (i) is sustainable with regard to
release jitter and execution time variation and (ii) scales well
to relatively large job sets, e.g., in our experiments, we were
able to analyze workloads with up to 35 tasks or up to 100,000
jobs in their hyperperiod. Moreover, this work provides the
first general—and even exact—schedulability analysis for non-
work-conserving FJP policies based on idle-time insertion.

VI. SUMMARY AND CONCLUSION

We have introduced an exact and sustainable schedulability
analysis for non-preemptive jobs under work-conserving and
non-work-conserving fixed-job-priority scheduling, taking into
account both release jitter and execution times variation.

Our analysis is based on a graph that reflects all possible
execution scenarios and resulting job sequences. To cope with
the large state space, the analysis greedily prunes the graph by
merging similar paths. Importantly, the merge operation retains
sufficient information to obtain exact BCRTs and WCRTs.
Experiments with randomly generated workloads designed to
resemble an automotive benchmark show that task sets with
up to 35 tasks can be analyzed with our method with runtimes
ranging from less than a second to a few hours, depending on
the choice scheduling policy and the amount of jitter.

We plan to extend this method to non-preemptive global
scheduling on identical multiprocessors and to take into account
explicit precedence constraints. Moreover, as the graph reflects
all possible job sequences, it may be possible to use this
information to more accurately characterize the cache and
microarchitectural processor state before a job commences
execution, which could enable more accurate timing analysis.
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APPENDIX: JIIP FOR CW-EDF+

Critical-window EDF (CW-EDF) [10] is a non-work-
conserving scheduling algorithm that is designed for periodic
task sets without release jitter. We apply a few changes to
accommodate release jitter and to make the resulting IIP
compatible with our notion of a stable JIIP. To avoid confusion,
we refer to this tweaked variant of CW-EDF as CW-EDF+.

As explained in Sec. III-E, we assume that J is partitioned
into disjoint subsets, called tasks. We let τi denote the task to
which job Ji belongs.

For a given job Ji, the CW-EDF+ JIIP is defined as follows.
First, define a set of influencing jobs, denoted by I, which
may be affected by Ji. These jobs are selected as follows: for
each task τx (except τi), the influencing job Jx is the first
not-scheduled job of τx in J \ J S (if any) that satisfies

Jx ∈ J \ J S ∧ Jx 6= Ji ∧ rmin
x = min{rmin

z |τz = τx}.

Note that rmin
x < t is possible. Task without remaining pending

jobs are simply omitted from consideration.
Next, the jobs in I are sorted by deadline in ascending order.

Let Ii be the job index of the ith job in I . The latest start time
for each influencing job is then calculated as:

βIi =

{
dIi − Cmax

Ii
Ii = |I|,

min{βIi−1
, dIi} − Cmax

Ii
otherwise.

(9)

If there is no influencing job, then βI1 is simply set to ∞.
Finally, the function L is defined as L(Ji, t,J S) , βI1−Cmax

i .
Note that for a given job Ji, as long as J S remains unchanged,
the set of influencing jobs remains constant regardless of the
value of t. The CW-EDF+ JIIP is hence stable.
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