
Easy to
 R

eu
se

 *
 C

on
sistent * Well D

ocum
ented *

Global Scheduling Not Required: Simple, Near-Optimal
Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations

Björn B. Brandenburg Mahircan Gül
Max Planck Institute for Software Systems (MPI-SWS)

Abstract—Prior work has identified several optimal algorithms
for scheduling independent, implicit-deadline sporadic (or peri-
odic) real-time tasks on identical multiprocessors. These algo-
rithms, however, are subject to high conceptual complexity and
typically incur considerable runtime overheads. This paper estab-
lishes that, empirically, near-optimal schedulability can also be
achieved with a far simpler approach that combines three well-
known techniques (reservations, semi-partitioned scheduling, and
period transformation) with some novel task-placement heuristics.

In large-scale schedulability experiments, the proposed ap-
proach is shown to achieve near-optimal hard real-time schedu-
lability (99+% schedulable utilization) across a wide range of
processor and task counts. With an implementation in LITMUSRT,
the proposed approach is shown to be practical and to incur only
low runtime overheads, comparable to a conventional partitioned
scheduler. It is further shown that basic slack management tech-
niques can help to avoid more than 50% of all migrations of semi-
partitioned reservations if tasks execute on average for less than
their provisioned worst-case execution time.

Two main conclusions are drawn: pragmatically speaking,
global scheduling is not required to support static workloads of
independent, implicit-deadline sporadic (or periodic) tasks; and
since such simple workloads are well supported, future research
on multiprocessor real-time scheduling should consider more chal-
lenging workloads (e.g., adaptive workloads, dynamic task arrivals
or mode changes, shared resources, precedence constraints, etc.).

I. INTRODUCTION

Commonsense dictates that simplicity must be a primary goal
in the design of critical real-time systems, as complex solutions
are more costly to develop, test, and validate, and potentially also
less robust. A well-engineered design will hence employ a more
complex, more difficult solution only if all simpler alternatives
fail to accomplish a given objective.

However, simplicity is not the only concern: to be economi-
cally viable, a design must usually also be efficient, in the sense
that it must fully exploit the available resources to avoid over-
provisioning. This is particularly true in the context of embedded
real-time systems subject to tight resource constraints.
Simple vs. efficient scheduling. Unfortunately, when it comes
to scheduling real-time tasks upon shared-memory multipro-
cessors, simplicity is traditionally at odds with design-time effi-
ciency. The simplest approach is partitioned scheduling, wherein
tasks are statically mapped to individual processors and a classic
uniprocessor policy such as earliest-deadline first (EDF) is used
on each processor [27]. However, partitioned scheduling suffers
from inherent efficiency limitations due to the underlying bin-
packing problem [7]: for certain workloads that require more
than 50% of the available processing capacity, a valid task-
to-processor mapping simply does not exist. Semi-partitioned
schedulers [5] partially overcome this limitation by migrating

This paper has passed an Artifact Evaluation process. For additional details,
please refer to http://2016.rtss.org/artifact-evaluation-for-rtss/.

tasks that could not be statically assigned among two or more
processors at runtime, thus spreading their load dynamically, but
have been observed to still struggle with some high-utilization
task sets (i.e., 90% utilization or higher) [13, 19, 35].

At the other extreme, in work focused primarily on design-
time efficiency (rather than simplicity), many optimal multi-
processor real-time scheduling algorithms have been identified
(e.g., [8, 11, 32, 39, 42, 44, 48, 51]). These schedulers, most
prominently PD2 [48], LLREF [24], RUN [44], U-EDF [42],
and QPS [39], are optimal in the sense that all processors can
be fully allocated to real-time tasks without risking deadline
misses (under certain assumptions, see §II). Ignoring overheads,
these schedulers are perfectly efficient as no over-provisioning
is needed to guarantee a workload’s timing requirements.

Unfortunately, this provable efficiency comes with a substan-
tial tradeoff in terms of complexity. At runtime, optimal sched-
ulers tend to require careful coordination among all or many of
the processors—they are global schedulers in nature—which
translates into non-trivial runtime overheads [12, 16, 18, 37].
Optimal schedulers are arguably also much more difficult to
understand, to extend and adapt, to implement, and to test in
a real OS. One can further hazard a guess that sophisticated
scheduling approaches are likely quite challenging to certify.

This paper. We take another look at multiprocessor real-time
scheduling, but this time with a focus on simplicity. Motivated
by our experience in implementing, evaluating, and maintaining
schedulers in LITMUSRT [2, 16, 21], we ask: is it really
necessary to resort to complex, difficult to understand, difficult
to implement, and difficult to extend algorithms to efficiently
provision hard real-time workloads on multiprocessors?

This work establishes that, empirically, the answer is ‘no’.
Near-optimal hard real-time schedulability—that is, schedulable
processor utilizations exceeding 99%, which is arguably “good
enough” for all practical purposes—can be achieved with a
simple (but novel) combination of three well-known techniques:

1) processor reservations [40] with basic slack management,
2) semi-partitioned scheduling with the C=D heuristic [19],

and
3) period transformation (i.e., “slicing” jobs across multiple

budgets with a shorter period).
While each technique is well-established by itself, to the best of
our knowledge, they have not been studied in conjunction, nor
has their surprising joint efficacy been reported in the literature.

Contributions. To achieve the claimed near-optimal schedula-
bility, and to limit the number of job migrations, we introduce
several simple, but effective “tweaks” to the underlying tech-
niques (§IV), including two meta-heuristics (i.e., heuristics that
combine other heuristics) that have not been studied before.

1

http://2016.rtss.org/artifact-evaluation-for-rtss/

We empirically substantiate our central claim with schedu-
lability experiments covering a wide range of processor and
task counts using two different task-set generators (§V). We
first identify under which conditions conventional partitioned
scheduling fails, and then assess the efficacy of the proposed
semi-partitioning and period-transformation techniques in these
cases. Our results show that, under the idealized, overhead-free
conditions assumed in optimality proofs, the proposed approach
generally achieves schedulable utilizations exceeding 99%.

We further show the proposed approach to be practical. To
this end, we first establish that it does not require infeasibly
small job slices: high schedulability is achieved even if a
minimum allocation granularity of hundreds of microseconds is
enforced (§VI). We also show that the maximum context-switch
rate is usually (far) lower than under optimal schedulers.

Most importantly, in §VII, we report on a robust implemen-
tation of the proposed approach in LITMUSRT [2, 16, 21]. We
benchmarked this implementation on a 44-core Intel Xeon plat-
form and observed that the proposed approach incurs overheads
as low as a conventional partitioned scheduler (§VII-A). In
particular, our implementation exhibited substantially lower
overheads than prior implementations [25, 26] of the optimal
RUN [44] and QPS [39] schedulers (§VII-B).

Finally, we provide empirical evidence that shows the pro-
posed slack management heuristics to be highly effective at
avoiding job migrations (§VII-C), yielding an up to 5x reduction
in migration rate if tasks under-run their WCET.

A discussion of limitations and related work is provided in
§VIII. We next clarify our assumptions (§II) and provide a brief
review of the concepts that comprise our approach (§III).

II. SYSTEM MODEL AND ASSUMPTIONS

We seek to schedule a real-time workload τ consisting of n
sporadic real-time tasks τ1, . . . , τn upon a shared-memory plat-
form consisting of m identical processors. As in prior work on
optimal multiprocessor real-time scheduling [11, 39, 44, 48], we
initially assume a highly idealized setting. We revisit overheads
and more general workloads in §VII and §VIII, respectively.

Each task τi = (Ci, Di, Ti) is characterized by a period (or
minimum inter-arrival time) Ti, a relative deadline Di, and a
per-job worst-case execution cost (WCET) Ci. As in prior work
on optimal multiprocessor real-time scheduling [11, 39, 44, 48],
we initially permit only implicit-deadline tasks: Di = Ti for all
τi, in which case we write τi = (Ci, Ti). If tasks are permitted to
have constrained deadlines (i.e., ifDi < Ti), optimal scheduling
generally requires clairvoyance [30]. If relative deadlines exceed
periods (i.e., if Di > Ti), they can be trivially truncated.

Each sporadic task τi releases a sequence of jobs. Each job
requires at most Ci time units of processor service. Any two
jobs of τi are released at least Ti time units apart. As a special
case, consecutive jobs of a periodic task are separated by exactly
Ti time units. Jobs and tasks are sequential: a job can use at
most one processor at any time, and the next job can commence
execution only when the previous job has completed.

Each job of τi must finish within Di time units of its release.
The workload is schedulable (under a particular scheduler) if
all jobs of all tasks are guaranteed to finish on time for all

possible job arrival sequences. The ratio Ci

min(Ti,Di)
denotes

τi’s density, the ratio Ci

Ti
denotes τi’s utilization, and the sum

U(τ) =
∑n
i=1

Ci

Ti
is the workload’s total utilization. We say that

an algorithm (empirically) achieves a schedulable utilization of
X% if all (tested) workloads with U(τ)

m ≤ X
100 are schedulable.

Again matching the prior literature on optimal scheduling, all
tasks are assumed to be independent (i.e., they share no resources
besides the processors) and to execute without self-suspensions
(i.e., a job, once released, is ready for execution until finished).
The workload is furthermore static: tasks do not join or leave
the system, nor do any task parameters change. Finally, WCETs
are considered fixed and to not be affected by migrations, cache
effects, or inter-core interference. In §VIII, we discuss the impact
of lifting these unrealistic assumptions.

III. ESSENTIAL BACKGROUND

Our proposal reuses simple, widely-known concepts. For the
sake of completeness, we provide a brief summary here.

A. Reservation-based EDF Scheduling with Slack Reclamation

The idea behind processor reservations, a classic concept
already employed in RT-Mach [40], is to separate (low-level)
process dispatching from the (high-level) real-time policy and
bookkeeping. Instead of scheduling processes directly, the sched-
uler manages a set of processor reservations. Each processor
reservation in turn serves one or more processes.

In this simple two-level scheduling scheme, whenever a
reservation is selected for service by the top-level scheduler, a
reservation-local scheduler picks one of the contained processes
for dispatching. When a reservation has exhausted its budget,
the contained processes are cut off from processor service until
the reservation’s budget has been replenished. The primary
advantages of reservation-based scheduling are improved tem-
poral isolation (i.e., WCET overruns and aperiodic activation
patterns are contained due to precisely enforced budgets) and the
ability to implement conceptually sequential real-time “tasks”
as collections of cooperating processes or threads.

A rich literature on various reservation types and algorithms
exists (see e.g. [4, 40, 43, 49]). We require here only the
most basic case: each task τi is contained in a corresponding,
private polling reservation with a maximum budget Qi and a
replenishment interval ∆i. By default, we simply set Qi = Ci
and ∆i = Ti. At runtime, each reservation further maintains a
current budget bi and a current scheduling deadline di.

A polling reservation works as follows. Initially, a polling
reservation is inactive. When the contained task first releases
a job at time t, it becomes active, bi is set to Qi, and di is set
to t + ∆i. Whenever the reservation is selected for service, bi
depletes at linear rate. When bi reaches zero, the reservation is
depleted and no longer considered for scheduling until, at time
di = t+ ∆i, the current budget bi is replenished to Qi and the
scheduling deadline di is postponed by ∆i. When the contained
task’s job completes, the reservation becomes inactive again.

There are two points to clarify. First, what happens when an
active reservation exhausts its budget (i.e., when a job fails to
complete within one budget)? Rajkumar et al. [43] introduced

2

two types of reservations: a hard reservation is indeed cut off
from service, as described so far. In contrast, a soft reservation
is allowed to receive additional service even when it is depleted,
however only with background priority (i.e., if the system would
otherwise idle). We use both types of reservations.

Second, what happens if a job under-runs its WCET (i.e.,
when a reservation becomes inactive with a non-zero current
budget)? In this case, the reservation generates dynamic slack
(i.e., allocated, but unneeded processor capacity) that can be
reclaimed and repurposed by the scheduler. To exploit such
slack, Caccamo et al. [20] proposed a particularly simple and
effective slack management strategy called CASH, which we
adopt in our solution (§IV). In a nutshell, CASH awards all slack
to the reservation with the next-earliest scheduling deadline,
modulo some corner cases that we gloss over here.

The scheduler thus works as follows (on a uniprocessor): the
top-level EDF scheduler always services (one of) the active, non-
depleted reservation(s) with the earliest scheduling deadline(s),
or if no such reservation exists, any active, but depleted soft
reservations in a round-robin fashion. Whenever possible, a
reservation selected for service consumes any dynamic slack
before draining its own budget, as determined by CASH [20].

B. Period Transformation

By period transformation, we refer to an obvious “trick” that
exploits that reservation parameters and task requirements need
not exactly match. For example, a sporadic task τi with WCET
Ci = 50ms and period Ti = 100ms can also be scheduled
by a reservation with budget Qi = 25ms and period ∆i =
50ms: in this case, each job of τi is “sliced” across (up to) two
replenishment intervals, which spreads out the job’s execution
in time at the expense of causing additional context switches.

In general, ignoring overheads, an implicit-deadline task
τi = (Ci, Ti) can be trivially served by any reservation with
parameters Qi = Ci

ki
and ∆i = Ti

ki
, where ki ∈ N. We call

this parameter ki the period ratio. Non-integer period ratios and
more advanced budgeting are possible, but not relevant here.

C. Partitioned Scheduling

As discussed in §I, partitioned scheduling is a straightforward
way to extend any uniprocessor scheme (such as the one in
§III-A) to multiprocessors. The scheme is simply instantiated
in isolation once per processor, and each task (or reservation)
is statically assigned to one of the processors. At runtime, no
communication takes place among the individual schedulers.

In the case of implicit-deadline tasks (or reservations) and
EDF-scheduled processors, the task assignment problem corre-
sponds exactly to the classic bin-packing problem (where tasks
are items, utilizations are item sizes, and processors are bins),
and is hence usually solved with common bin-packing heuristics.

Relevant to this work are the first-fit decreasing (FFD) and
worst-fit decreasing (WFD) heuristics. In both cases, the to-be-
assigned tasks are considered in order of decreasing density
and placed as follows. Let P1, . . . , Pm denote the available
processors, and let τ(Pi) denote the tasks already assigned to
Pi. With the FFD heuristic, a task τi is assigned to the lowest-
indexed processor that satisfies U(τ(Pi)) + Ci

Ti
≤ 1 (if any).

release

completion

deadline

proc. 1

proc. 2

151050

⌧1

⌧2

⌧ 03

⌧ 003

Fig. 1. An example semi-partitioned schedule. Task τ3 has been split into two
separately allocated subtasks. The second subtask τ ′′3 is activated at time 5 when
the first subtask τ ′3 has exhausted its budget of C′

3 = 5 time units.

The WFD heuristic instead picks the processor Pi such that
U(τ(Pi)) + Ci

Ti
is minimized (i.e., it maximizes the remaining

gap). As a result, the WFD heuristic tends to spread out tasks
roughly evenly among all processors, whereas the FFD heuristic
tries to fully load some processors while idling others.

D. Semi-Partitioned Scheduling
The key limitation of partitioned scheduling is that a valid task-

to-processor mapping may not exist (or may not be found). For
example, consider three identical tasks τ1 = τ2 = τ3 = (10, 15)
that are to be scheduled on two processors. As any two of the
tasks over-utilize a single processor, no valid mapping exists.

Semi-partitioning strategies attempt to overcome this problem
by splitting some of the tasks into multiple smaller, constrained-
deadline subtasks. These subtasks are then assigned to different
processors, conceptually subject to a precedence constraint to
serialize their execution. At runtime, each job of the split task
must then migrate among the processors to use the processor
time allocated to the subtasks on their respective processors.

Returning to our example, suppose that τ1 and τ2 have been
assigned to processors P1 and P2, respectively. In this case,
one can split τ3 into two constrained-deadline subtasks τ ′3 =
(5, 5, 15) and τ ′′3 = (5, 10, 15), where C3 = C ′3 + C ′′3 and
T3 = D3 = D′3 + D′′3 . Using Baruah’s processor-demand
criterion (PDC) [10], it can be verified that it is safe to assign τ ′3
to processor P1 and τ ′′3 to processor P2.

An illustrative example schedule is shown in Fig. 1. In this
example, all three tasks release a job at time 0. As a result, the
subtask τ ′3 is also considered to release a job at time 0. Because
of its tight deadline, the “job” of τ ′3 is serviced immediately on
processor P1, which means that the actual job of task τ3 begins
execution. At time 5, the “job” of τ ′3 is “complete” (i.e., has used
up its allocation) and τ ′′3 , the second subtask of τ3, is activated
on processor P2. However, the newly released “job” of τ ′′3 is
not serviced until time 10 because it does not have an earlier
deadline than the currently scheduled job (of τ2). At that point,
the actual job of τ3 migrates from P1 to P2 to be scheduled
until time 15. All jobs complete by their deadline because τ3’s
execution has been carefully distributed across both processors.

Generally speaking, the main decisions in a semi-partitioned
approach are (i) how to identify which tasks to split, (ii) how to
split them (i.e., selecting the parameters of the subtasks), and
(iii) where to assign the subtasks. No provably optimal approach
is known, but several heuristics have been proposed.

In this work, we build upon Burns et al.’s C=D approach [19],
which has been empirically shown to be particularly effec-

3

tive [19]. Burns et al. introduced the C=D task-splitting rule
(described below), which they combined with two configurable
task-selection strategies (or meta-heuristics), called the continu-
ous and the pre-selection strategies, respectively. The continuous
strategy identifies which tasks to split dynamically, whereas
the pre-selection strategy first determines which tasks to split,
then partitions the remaining tasks, and finally attempts to split
the pre-selected tasks. Both strategies can be instantiated with
different task ordering and placement heuristics [19].

For our purposes, we require only the continuous approach,
which we apply as follows. We start with the FFD heuristic, and
whenever a task cannot be assigned to a non-empty partition, we
split the task according to these rules:

1) Let τi denote the task that did not fit, and let Pk denote
the processor to which a task was last added.

2) Identify the largest possible x < Ci such that a subtask
τ ′i = (x, x, Ti) can be feasibly added to τ(Pk). Note that
C ′i = D′i, hence the name of Burns et al.’s heuristic.

3) Add the subtask τ ′i = (x, x, Ti) to Pk, and return the
subtask τ ′′i = (Ci−x, Ti−x, Ti) to the set of unassigned
tasks, to be reconsidered according to its density.

For Step 2), Burns et al. [19] provide an algorithm to
identify the largest x that satisfies Baruah et al.’s (necessary and
sufficient) PDC [10]. After the split, processor Pk is maximally
filled and no longer considered by the FFD heuristic.

In the example shown in Fig. 1, task τ3 was split using the
C=D heuristic. In the example, x = 5 is the largest possible
“chunk” for which D′3 = C ′3 = x is feasible on processor P1.

With all essential concepts in place, we can now introduce
how we integrate reservation-based scheduling (§III-A), period
transformation (§III-B), and semi-partitioning (§III-D).

IV. OUR APPROACH: SEMI-PARTITIONED RESERVATIONS

Our approach is a straightforward combination of the tech-
niques reviewed in the preceding section: we employ reservation-
based scheduling with EDF on each processor, encapsulate all
tasks in polling reservations, and then apply Burns et al.’s C=D
approach [19] to the reservations (rather than directly to tasks)
to allow for period transformation. On top of this foundation, we
introduce several runtime tweaks to lower overheads (§IV-A),
and substantially extend the task placement phase to increase
the likelihood that a semi-partitioning can be found (§IV-B).

A. Runtime Tweaks

Assuming a valid semi-partitioning has been found, we use
three techniques to lower runtime overheads. Compared to a
conventional partitioned scheduler, the main additional overhead
in a semi-partitioned scheduler stems from job migrations. In
the worst case, such migrations are inevitable (otherwise the
workload could have been partitioned), but it is possible to
dynamically avoid many migrations in common-case situations.

Flip the C=D subtask order. The first step is to flip the C=D
subtask order: when splitting a task, we still create a subtask
τ ′i with C ′i = D′i, but (arbitrarily) declare this to be the tail of
the job. In other words, when a split task τi releases a job at
time t, we first activate τ ′′i (with D′′i = Ti −D′i), and activate

release

completion

deadline

proc. 1

proc. 2

151050

⌧1

⌧2

⌧ 03

⌧ 003

slack reclaimed

subtask not activated

Fig. 2. An example of migration avoidance. As the C=D subtask order is flipped,
τ ′′3 is activated at time 0. Since τ2 under-runs its budget, slack reclamation allows
τ3’s job to finish before τ ′3 must be activated at time 10, thus saving a migration.

τ ′i (and trigger the migration) only at time t+D′′i . Fig. 2 shows
an example, which we discuss shortly after two more tweaks.

From a theory point of view, the order of the subtasks is
irrelevant: each job of a split task τi is guaranteed to receive
sufficient processor time either way. However, from a practical
point of view, flipping the C=D subtask order is a major
improvement since it opens the door for the next two tweaks.
Use soft reservations to avoid migrations. Now that jobs of
split tasks start executing in the subtask with non-zero laxity
(i.e., C ′′i < D′′i), we can employ proven techniques for assigning
it spare capacity. The hope is that, by giving the first subtask
processor time in excess of its reserved amount, the job of the
migrating task will be able to finish before the migration occurs.

Based on this consideration, we use soft reservations [43] to
realize reservations that correspond to subtasks of split tasks.
Partitioned tasks can be placed in either hard or soft reservations.
Use slack reclamation. We additionally employ CASH-based
slack reclamation [20], as reviewed in §III-A, as it may also
benefit migrating reservations. One could further experiment
with overriding the CASH heuristic to directly award any slack
to migrating reservations (regardless of their current scheduling
deadlines). However, in our implementation (§VII), we have for
now stuck with the original CASH rules.

An example illustrating the impact of these tweaks is shown
in Fig. 2. It shows the same scenario as depicted in Fig. 1, but
this time subject to the flipped C=D subtask order and slack
reclamation. For the sake of the example, suppose that τ2 and
τ3’s jobs require only 1 and 6 (instead of C2 = C3 = 10) time
units of service, respectively (i.e., they under-run their WCETs).

When τ3 releases its job at time 0, its subtask τ ′′3 on proces-
sor P2 is activated. Since it has an earlier scheduling deadline
than τ2, it is scheduled until its budget is depleted at time 5. At
that point τ2’s job commences execution, but since it under-runs
its budget, it finishes early at time 6, thus generating 9 time
units of slack. This slack is reclaimed by CASH and given to
the active, but depleted reservation of τ3. As a result, τ3’s job
finishes at time 7, thereby avoiding the migration at time 10.

In §VII, we report on an empirical evaluation of these
migration avoidance techniques in the real system. Next, we
present several new strategies for finding valid task assignments.

B. Task Allocation Strategies

The C=D heuristic as instantiated in §III-D bundles three key
choices: (i) when to split (on FFD failure), (ii) which task to
split (the task that failed to be assigned), and (iii) how to split

4

(the C=D rule). As with all best-effort heuristics, these choices
are somewhat arbitrary, but justified by good performance in
empirical comparisons [19]. Nonetheless, we obtained some
improvements by keeping (iii) while varying both (i) and (ii). In
the following, we document the heuristics that, together, achieve
near-optimal schedulability, as discussed later in §V.

Run many heuristics. First of all, we observe that most
partitioning heuristics are quite cheap to compute, compared
to modern hardware capabilities and usual task-set sizes. Hence
it is not necessary to limit oneself to just one heuristic—instead,
we try many heuristics for each task set, roughly in the order
from quickest to slowest to compute, starting with WFD and
FFD, until one succeeds. While the success rates of similar
heuristics often differ by only a few task sets, the cumulative
effect of applying many different heuristics is significant.

Combine WFD with C=D. While Burns et al. considered only
the FFD heuristic in their experiments [19], we found that the
C=D splitting rule combines well also with the WFD heuristic.
The reason is that the WFD heuristic leaves roughly equally-
sized “gaps” on all processors, which lend themselves to placing
large subtasks. We denote this combination as WFD-C=D, and
call the original heuristic FFD-C=D to avoid ambiguity. Under
the WFD-C=D heuristic, the C=D splitting rule is triggered for
processor Pk and task τi when U(τ(Pk)) is minimal among all
partitions, but τi cannot feasibly be assigned to Pk.

Find the maximal split. The WFD-C=D heuristic can further
be improved by observing that the processor that triggered the
splitting rule is not necessarily best suited to accommodate a
large subtask, that is, it may not yield the maximal possible
“chunk-size” x, as determined by the C=D splitting rule. A
simple improvement is to compute a “chunk-size” xk for each
processor Pk, and to assign the first subtask τ ′i to whichever
processor yields the maximal xk. We denote the resulting
placement heuristic WFD-C=D-MS.

Since this heuristic is more expensive to compute, and since
it is not always better, we run the WFD-C=D heuristic first, and
apply WFD-C=D-MS only if plain WFD-C=D fails. We denote
this “WFD twice” strategy as 2WFD-C=D.

Two-phase semi-partitioning. Recall from §III-D that, under
Burns et al.’s continuous strategy [19], a task is split immediately
whenever a processor fills up. Sometimes, this is too aggressive.

We add four new two-phase semi-partitioning heuristics that
apply first either WFD or FFD, and then 2WFD-C=D or FFD-
C=D. For brevity, we call these composite heuristics WWFD,
FWFD, WFFD, and FFFD, respectively. In the first phase, the
WFD or FFD strategy is used without task splitting to place all
or most tasks. In the second phase, 2WFD-C=D or FFD-C=D
is then applied only to the remaining, still-unassigned tasks (if
any), while respecting all existing first-phase assignments.

In contrast to Burns et al.’s pre-selection strategy [19], this
two-phase approach avoids having to “guess” which tasks to split.
Rather, the set of tasks to be split is discovered automatically as
a result of the failure of the heuristic used in the first phase.

Next, we introduce two meta-heuristics that can be applied to
any of the heuristics described so far.

Pre-assign failures meta-heuristic. The first meta-heuristic
attempts to use the observation that certain tasks failed to be
assigned as a signal in a feedback loop: tasks that could not
be assigned are likely the “most difficult to assign,” and hence
should be placed before considering the remaining tasks.

Based on this intuition, the pre-assign failures (PAF) meta-
heuristic proceeds as follows. Given two heuristics h1 and h2,
it splits the set of tasks τ into two disjoint subsets, failures
and rest . Initially, failures = ∅ and rest = τ . It then repeatedly
applies h1 to all tasks in failures to pre-assign any “troublesome”
tasks before applying h2 to rest to place the remaining tasks
(while respecting the pre-assignment from h1). Any task that
fails to be placed by h2 is moved from rest to failures . After at
most |τ | iterations, the meta-heuristic either succeeds if h2 can
place all tasks, or fails if h1 fails to place all tasks in failures .

If none of the basic heuristics succeeds for a given task
set τ , we try six instantiations of the PAF meta-heuristic with
h2 = 2WFD-C=D and h1 being one of the heuristics FFD-C=D,
2WFD-C=D, WWFD, FWFD, WFFD, or FFFD.
Reduce-periods meta-heuristic. The final strategy period-
transforms tasks with periods above a configurable threshold,
based on the following rationale.

We observed that the C=D splitting rule is not “scale-
invariant,” in the sense that, all other things being equal, it does
not work nearly as well for splitting a task τi = (100, 1000) as it
does for splitting a task τj = (2, 20), even though the two tasks
have the same utilization. This is because the maximum zero-
laxity “chunk size” x that can be placed on a given processor
Pk is determined by the parameters of the tasks already placed
on Pk, and not by the utilization of the task that is to be split.
Obviously, splitting off a subtask with a budget of, say, x = 1
has a much larger effect on τj than it does on τi.

The reduce-periods (RP) meta-heuristic caters to this effect
by repeatedly period-transforming both (i) all tasks with periods
above a certain threshold (which is lowered from iteration
to iteration) and (ii) any tasks that failed to be assigned
in previous iterations (as in the PAF meta-heuristic). When
transforming a task, the PAF meta-heuristic picks the smallest
period ratio ki that renders the transformed period smaller than
the current threshold. The PAF meta-heuristic terminates either
when the underlying heuristic succeeds in finding a valid semi-
partitioning, or when a minimum threshold has been reached. In
our experiments, we impose a minimum threshold of 4ms .

In a nutshell, C=D works best if WCET magnitudes are small
in relation to the relative deadlines of other tasks, and the RP
meta-heuristic breaks down large WCETs. We use it on top of
the 2WFD-C=D, FWFD, and WWFD heuristics.

All (meta-)heuristics are available in the open-source library
SchedCAT [3]. Illustrative pseudocode is provided online [1].

V. SCHEDULABILITY EVALUATION

We conducted schedulability experiments to evaluate our
semi-partitioned reservations approach under the same idealized
conditions as assumed in the proofs of optimality of PD2,
LLREF, RUN, QPS, etc., and as spelled out in §II.
Setup. We explored a diverse parameter space and considered
platforms with m ∈ {2, 4, 8, 16, 24, 32, 64} processors. For

5

each m, we tested workloads with task counts in the range
n ∈ [m + 1, 4m]. For a given m and n, we varied the total
utilization U across U ∈ [1,m]. Finally, for each (m,n,U), we
generated more than 1,100 task sets with Emberson et al.’s unbi-
ased task set generator [28], which yields uniformly distributed
task utilizations. Task periods were drawn uniformly at random
from the set {1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250,
500, 1000} (in milliseconds), which we chose both to reflect
realistic timing constraints and to ensure a short hyperperiod.

We applied all strategies given in §IV-B to all task sets and
determined the fraction of task sets for which a valid semi-
partitioning could be found. Fig. 3 shows an excerpt of our
results for m = 8, which we discuss in detail in the following.
Partitioning. Much of the research into global and optimal
multiprocessor real-time scheduling is in large parts motivated
by the observation that the (far simpler) partitioned approach
cannot support certain feasible workloads. However, empirically
speaking, when exactly does partitioning actually fail?

Fig. 3(a) shows the fraction of task sets for which either the
WFD or FFD heuristic could find a valid mapping, as a function
of U for m = 8 and different n. It is immediately apparent
that the number of tasks has a large impact on schedulability,
which intuitively makes sense: bin-packing many smaller items
is much simpler than packing fewer, larger ones.

What is surprising, though, is that even for relatively modest
task counts, partitioning is very effective up to high utilizations.
For example, for n = 3m = 24, virtually all tested task sets with
a utilization of at most 95% could be successfully partitioned, a
trend that we observed also with all other considered processor
counts. We conclude that multiprocessor real-time scheduling
(with implicit deadlines) is difficult only if, roughly, n < 3m.

However, we also observe that partitioning fails to support
workloads consisting of few high-utilization tasks. In our
experiments, task sets with n = m+ 1 or n = m+ 2 generally
proved to be the most difficult workloads. For example, in
Fig. 3(a), the schedulability of workloads with n = m+ 1 = 9
and n = m+2 = 10 tasks starts to degrade already at utilizations
as low as 77%-80%. How effective is semi-partitioning at
overcoming these limits?
Semi-partitioning. Fig. 3(b) shows the fraction of task sets for
which any of the heuristics (but not meta-heuristics) in §IV-B
succeeded at finding a valid semi-partitioning. First, note that
Fig. 3(b) uses a different X-axis scale: even the most difficult
to schedule workloads (n = m + 1, n = m + 2) pose no
problems up to 90% utilization. In fact, for the simpler case of
n = 3m = 24, close to 99% schedulable utilization is reached.
We observe that basic semi-partitioning techniques, paired with
simple heuristics, can reach at least 90% schedulable utilization.

Still, for workloads with few tasks, noticeable performance
degradation becomes apparent around 92%–96% utilization.
(However, for context, one may also recall that, on uniprocessors,
fixed-priority scheduling with a schedulable utilization below
90% is considered acceptable for most practical purposes.)
Meta-heuristics. Finally, we consider the impact of applying the
PAF and RP meta-heuristics. The results for semi-partitioning
with (only) the PAF meta-heuristic are shown in Fig. 3(c). As is

clearly apparent, the PAF meta-heuristic is highly effective: even
in the most difficult case (n = m+ 2 = 10), 98% schedulable
utilization of is reached. All other curves already approach 99%
schedulable utilization (or better). And should this not suffice,
then the final “gap” can be closed with the RP meta-heuristic: if
both meta-heuristics are enabled, then schedulable utilizations
in excess of 99% are reached for all task-set sizes. No graph is
shown for the RP meta-heuristic since all curves overlap, the
results being limited by the experiment’s sampling resolution.1

Varying m. Importantly, these results are not at all specific to
m = 8 processors. Fig. 4 shows the schedulability achieved
with partitioning heuristics, semi-partitioning heuristics, semi-
partitioning with only the PAF meta-heuristic, and semi-
partitioning with both meta-heuristics for m = 4, m = 16,
and m = 24, and n = 2m. First, note that, in all three insets, the
top-most curve corresponding to the use of both meta-heuristics
reaches almost 100% schedulable utilization, and well in excess
of 99% schedulable utilization, as just discussed. Second, as
can be inferred from the similar shapes of the curves in all
insets, the reported trends do not strongly depend on the absolute
value of m, but rather are a function of relative utilization.
Curiously, partitioning and semi-partitioning become slightly
more effective with increasing core counts.

Task-set composition. In addition to the experiments reported
here, we further obtained schedulability results with a different,
independently developed task generator used in prior LITMUSRT

studies (e.g., see [16, 18]). Due to space constraints, we omit
a detailed discussion, but note that the additional results fully
confirm the trends reported herein. This shows that the proposed
strategies are not tied to Emberson et al.’s generator [28].

We conclude: under the same, highly idealized assumptions
used to establish formal claims of optimality, the proposed semi-
partitioned reservation scheme (with meta-heuristics) achieves
99% schedulable utilization—empirically, it is near-optimal.

VI. TOWARDS PRACTICE

Clearly, many of the assumptions in §II are not realistic. Of
particular concern is the stipulated absence of scheduling over-
heads, as it potentially allows to schedule tasks in infinitesimally
small allocations, with arbitrarily high context-switch rates, until
the solution approaches a fluid schedule. We therefore next take
a closer look at allocation sizes and context-switch rates.

Allocation granularity. While we do enforce a (somewhat
arbitrarily chosen) minimum period of 4ms in the RP meta-
heuristic, which prevents infinitesimal budgets and infinite
context-switch rates, the basic C=D splitting rule can still
produce implausibly small budgets: if a processor is almost fully
packed, the C=D splitting rule could determine a minuscule
subtask budget x, below the limits of what can be feasibly
enforced (in software) on contemporary commodity platforms.

We therefore augmented the C=D splitting rule with a
minimum slice size parameter ε, with the interpretation that a
split is accepted only if both resulting subtasks have a budget of

1The complete set of results (including all graphs and detailed comparisons
of all individual heuristics), all relevant source code, and detailed instructions
for reproducing our results are provided online [1].

6

��

����

����

����

����

��

��� ��� ��� ��� ��� ����

��
�
�
���
�

�
�
��
�
�
�
�
�
�
��
�
��

�
��
�
�
�
�
�
��

�������������������������������

���
����

����
����

����
����

����
����

����

(a) partitioning only

��

����

����

����

����

��

��� ��� ��� ��� ��� ����

��
�
�
���
�

�
�
��
�
�
�
�
�
�
��
�
��

�
��
�
�
�
�
�
��

�������������������������������

���
����

����
����

����
����

����
����

����

(b) basic semi-partitioning

��

����

����

����

����

��

��� ��� ��� ��� ��� ����

��
�
�
���
�

�
�
��
�
�
�
�
�
�
��
�
��

�
��
�
�
�
�
�
��

�������������������������������

���
����

����
����

����
����

����
����

����

(c) semi-partitioning w/ the PAF meta-heuristic
Fig. 3. Schedulability results for m = 8 and n ∈ {m+ 1,m+ 2,m+ 4,m+ 6, 2m, 2.5m, 3m, 3.5m, 4m}. Note the different X-axis ranges.

��

����

����

����

����

��

��� ��� ��� ��� ��� ��� ��� ����

��
�
�
���
�

�
�
��
�
�
�
�
�
�
��
�
��

�
��
�
�
�
�
�
��

�������������������������������

�������������������������
�����������������������
�����������������������

�����������������

(a) m = 4

��

����

����

����

����

��

��� ��� ��� ��� ��� ��� ��� ����

��
�
�
���
�

�
�
��
�
�
�
�
�
�
��
�
��

�
��
�
�
�
�
�
��

�������������������������������

�������������������������
�����������������������
�����������������������

�����������������

(b) m = 16

��

����

����

����

����

��

��� ��� ��� ��� ��� ��� ��� ����

��
�
�
���
�

�
�
��
�
�
�
�
�
�
��
�
��

�
��
�
�
�
�
�
��

�������������������������������

�������������������������
�����������������������
�����������������������

�����������������

(c) m = 24

Fig. 4. Schedulability results for m ∈ {4, 16, 24} and n = 2m. The general trends are largely independent of m.

at least ε time units. This method eliminates implausibly small
budgets, but how does it affect schedulability?

To find out, we reran a subset of the experiments with eight
different ε values. A representative excerpt for m = 8 and n ∈
{10, 16, 24} is shown in Fig. 5. As can be seen in Fig. 5(a) for the
most difficult to support workload (n = m+ 2 = 10), enforcing
a non-zero ε does have a measurable, but overall minor effect
on schedulability. In Fig. 5(a), even with a large threshold of
ε = 500µs, a schedulable utilization of 98% is achieved. A curve
for ε = 2000µs is also shown, however, this is a much larger
threshold than realistically required and is included only for
illustration purposes. Insets Fig. 5(b) and Fig. 5(c) show that the
impact of ε diminishes with larger n as the scheduling problem
becomes easier. In Fig. 5(c), where n = 3m, even a choice
of ε = 2000µs still yields almost 99% schedulable utilization.
Pragmatically speaking, this is likely more than “good enough.”
Context-switch rates. Finally, in a third experiment, we deter-
mined for each task set a simple upper bound on the maximum
context-switch rate per second, normalized per core. An excerpt
of these experiments for m = 8 and n ∈ {10, 16, 24} is
shown in Fig. 6. Each inset shows five curves, corresponding to
partitioning only, basic semi-partitioning, semi-partitioning with
all meta-heuristics, and the optimal RUN and QPS algorithms.

Under our approach, each task and subtask causes two context
switches per activation: one to switch to the (sub-)job, and one
to switch away. A similar bound can be inferred for QPS. A
bound for RUN is provided by Regnier et al. [44]. Other optimal
multiprocessor schedulers are known to preempt and migrate
jobs (much) more frequently than RUN or QPS [39, 42, 44].

Consider Fig. 6(a), where n = m+ 2 = 10, which is one of
the most challenging considered workloads. For low utilizations,

all curves but the one corresponding to RUN coincide because
QPS and our approach reduce to conventional partitioning for
workloads that are easy to schedule. The curve corresponding
to partitioning first becomes “noisy” and then stops early due
to a lack of samples at high utilizations. RUN exhibits a higher
maximum context-switch rate at low utilizations, but has the
advantage of remaining relatively stable even at extremely high
utilizations when the rates under the other schedulers begin
to rise. The curves corresponding to basic semi-partitioning
and semi-partitioning with meta-heuristics start to rise slowly
around 90%, but for the most part remain below the QPS curve,
with the exception of the meta-heuristics curve at the very end.
This, however, is an outlier due to the small number of tasks.
As Figs. 6(b) and 6(c) demonstrate, maximum context-switch
rates typically remain far below QPS, with a growing gap as
n increases. It is thus not the case that the task-splitting or
period-transformation techniques induce intolerable context-
switch rates. Further note that these are static upper bounds
on maximum context-switch rates that do not yet reflect any
positive effects from the efforts to avoid migrations (§IV-A).

VII. SEMI-PARTITIONED RESERVATIONS IN LITMUSRT

To assess the viability of the proposed approach in a real OS,
we developed and evaluated semi-partitioned reservations in
LITMUSRT [2, 16, 21]. We focused on three questions:

1) how much additional kernel overhead is incurred com-
pared to a conventional partitioned scheduler (§VII-A),

2) how much lower are kernel overheads compared to the
optimal schedulers RUN and QPS (§VII-B), and

3) are the proposed runtime tweaks (§IV-A) effective at
lowering migration rates (§VII-C)?

7

��

����

����

����

����

��

��� ��� ��� ��� ��� ����

��
�
�
���
�

�
�
��
�
�
�
�
�
�
��
�
��

�
��
�
�
�
�
�
��

�������������������������������

�������������
�������������
�������������
�������������
�������������
�������������
��������������
��������������

(a) n = 10

��

����

����

����

����

��

��� ��� ��� ��� ��� ����

��
�
�
���
�

�
�
��
�
�
�
�
�
�
��
�
��

�
��
�
�
�
�
�
��

�������������������������������

�������������
�������������
�������������
�������������
�������������
�������������
��������������
��������������

(b) n = 16

��

����

����

����

����

��

��� ��� ��� ��� ��� ����

��
�
�
���
�

�
�
��
�
�
�
�
�
�
��
�
��

�
��
�
�
�
�
�
��

�������������������������������

�������������
�������������
�������������
�������������
�������������
�������������
��������������
��������������

(c) n = 24

Fig. 5. Schedulability results for m = 8, n ∈ {m+ 2, 2m, 3m}, and minimum slice-size thresholds in the range ε ∈ [100µs, 2000µs].

��

����

����

����

����

����

����

����

����

��� ��� ��� ��� ��� ����

�
�
�
��
�
��
�
�
���
�
�
�
��
�
�
�
�
�

�
��
�
��
�
�
��
�

�������������������������������

�������������������������
�����������������������

�����������������
���
���

(a) n = 10

��

����

����

����

����

����

����

����

����

��� ��� ��� ��� ��� ����

�
�
�
��
�
��
�
�
���
�
�
�
��
�
�
�
�
�

�
��
�
��
�
�
��
�

�������������������������������

�������������������������
�����������������������

�����������������
���
���

(b) n = 16

��

����

����

����

����

����

����

����

����

��� ��� ��� ��� ��� ����

�
�
�
��
�
��
�
�
���
�
�
�
��
�
�
�
�
�

�
��
�
��
�
�
��
�

�������������������������������

�������������������������
�����������������������

�����������������
���
���

(c) n = 24

Fig. 6. Bounds on context-switch rates under the optimal QPS scheduler and three task placement strategies for m = 8 and n ∈ {m+ 2, 2m, 3m}.

Implementation. Due to space constraints, we omit a discussion
of implementation details. The basic (i.e., partitioning-only)
reservation framework, which has its origins in an earlier proto-
type from 2014 [17], is already part of the latest LITMUSRT re-
lease (version 2016.1). We plan to include our semi-partitioning
extensions, which are available online [1], in a future release.

Platform. We ran experiments on a two-socket Intel platform
consisting of two 22-core Xeon E5-2699 v4 processors clocked
at 2.2 GHz with private 256-KiB per-core L2 caches and shared
55-MiB per-socket L3 caches. Though untypical for (embedded)
real-time systems, such a large platform has the advantage that
scalability bottlenecks become obvious. In terms of overheads,
smaller platforms are easier to support.

A. Comparison with Stock LITMUSRT Schedulers

To obtain a flexible benchmark, we generated ten task sets for
each combination of m = 44, n ∈ {m+ 1, 1.5m, 2m, 4m, 6m,
8m, 10m}, and U ∈ {75%, 80%, . . . , 95%} as described in §V,
which yielded 350 task sets in total. The generated workloads
simulated CPU-bound, periodic tasks based on the generated
task parameters. Each task had a (private) working set matching
the L2 cache size. Additionally, a cache-polluting background
process was run on each core to generate memory contention.

We ran each task set under four different schedulers for 30
seconds each: with the proposed semi-partitioned reservations
(SP-RES), and under LITMUSRT’s stock global EDF (G-EDF),
partitioned EDF (P-EDF), and partitioned fixed-priority (P-FP)
plugins (the latter with rate-monotonic priorities). We included
the three conventional process schedulers to provide a known,
well-established baseline. In particular, P-FP and P-EDF are
known to incur the lowest overheads in LITMUSRT [16].

To run task sets that could not be partitioned under P-EDF or
P-FP, we simply truncated migrating tasks to the first subtask.
While running each workload, we collected overhead samples
with the Feather-Trace framework built into LITMUSRT. In total,
we collected more than 6.6 billion overhead samples (122 GiB)
across more than eleven hours of real-time execution.

Common overheads. Fig. 7 shows the distributions of three key
kernel overheads. Note the log scale in Figs. 7(a) and 7(c).

Scheduling overhead, shown in Fig. 7(a), describes the cost of
determining which process to dispatch next; it corresponds to the
core scheduling logic plus any synchronization overhead. It is
immediately apparent that the scheduling overhead distributions
under P-EDF, P-FP, and SP-RES are similar, in contrast to the
much larger overheads under G-EDF, which reflect scalability
bottlenecks in LITMUSRT’s stock G-EDF scheduler [22]. For
example, the observed 99th percentile scheduling overhead is
only 2,092 cycles under SP-RES, 2,059 cycles under P-FP, and
2,150 cycles under P-EDF,2 but 181,934 cycles under G-EDF.3

The similarity to partitioned schedulers is even more pro-
nounced in the case of context-switch overhead, shown in
Fig. 7(b), which describes the cost of actually dispatching a
process (e.g., switching address spaces, prefetching the process
control block, etc.). The distributions under the two partitioned
schedulers and SP-RES are virtually identical (the curves
overlap almost completely), whereas context-switches are more
costly under G-EDF (at the 99th percentile, 2,584 cycles under
G-EDF vs. about 990 cycles under the other schedulers). Since

2The long tails of the distributions reflect outliers due to unpredictability in
the memory hierarchy, which is unavoidable on our commodity platform.

3As these measurements are platform- and benchmark-dependent, primarily
their relative magnitudes are of interest, not their absolute values.

8

��

���

���

���

���

���

���

���

���

���

����

����� ������ �������

�
�
��
�
�
��
�
��
�
�
�
�
��
�
�
�
�
�

���������������������������

������
�����
����

�����

(a) scheduling overhead

��

���

���

���

���

���

���

���

���

���

����

���� ���� ����� ����� ����� ����� ����� ����� ����� ����� �����

�
�
��
�
�
��
�
��
�
�
�
�
��
�
�
�
�
�

����������������

������
�����
����

�����

(b) context-switch overhead

��

���

���

���

���

���

���

���

���

���

����

����� ������ �������

�
�
��
�
�
��
�
��
�
�
�
�
��
�
�
�
�
�

���������������������������

������
�����
����

�����

(c) release overhead
Fig. 7. Common overheads under three process-based schedulers (G-EDF,
P-EDF, P-FP) and the semi-partitioned reservation scheduler (SP-RES). On
the experimental platform, 1µs corresponds to approximately 2200 cycles.

the context-switch path is identical under all schedulers, this
difference reflects increased memory contention under G-EDF.

The biggest difference between P-EDF, P-FP, and SP-RES
is apparent in Fig. 7(c), which shows release overhead (i.e., the
cost of activating a task). Here SP-RES incurs somewhat higher
overhead than either P-EDF or P-FP because it is optimized
for sporadic task activations, whereas P-EDF and P-FP are
optimized for periodic workloads (such as the one used in this
benchmark). More precisely, release overhead under SP-RES
also includes the cost of Linux’s wake-up path because tasks
suspend between jobs (via schedule_hrtimeout() in the kernel),
whereas periodic tasks remain in Linux’s TASK_RUNNING
state under P-EDF and P-FP even while they await their next
job release in the release queue. This optimization is not possible
for sporadic tasks; for simplicity, our SP-RES implementation
omits the special-case handling of periodic tasks.

Release overhead is lowest under P-EDF, which uses bi-
nomial heaps to merge newly released jobs of periodic tasks
efficiently into the ready queue. Our SP-RES implementation
uses a simple linked list instead. Nonetheless, the shape of the

��

���

���

���

���

���

���

���

���

���

����

�� ���� ����� ����� ����� ����� ����� ����� ����� ����� �����

�
�
��
�
�
��
�
��
�
�
�
�
��
�
�
�
�
�

����������������

����������������
���������������

������������������

Fig. 8. Scheduling and subtask overheads under SP-RES.

curve reveals again that SP-RES is structurally similar to the
partitioned schedulers P-EDF and P-FP.

Extra overheads. In addition to the common overheads incurred
by all schedulers, SP-RES also incurs new overheads when
migrating semi-partitioned reservations among processors. In
particular, it incurs the cost of servicing a migration timer on
the source processor when a migration must be initiated, and the
cost of servicing an inter-processor interrupt to activate the next
subtask on the target processor. The distributions of these two
overheads, together with the scheduling overhead from Fig. 7(a)
as a point of reference, are depicted in Fig. 8.

While these overheads are more costly than a regular local
scheduling decision due to the need to synchronize data struc-
tures shared between cores, they are still relatively small in
absolute terms (e.g., at the 99th percentile, less than 3,750 cycles
≈ 1.7µs on our platform). Roughly speaking, we observe a cross-
processor subtask activation to cause twice as much overhead as
a regular, processor-local job release, which is still two orders
of magnitude lower than release overhead under G-EDF.

Overall, the comparison with LITMUSRT’s stock plugins con-
firms that the proposed semi-partitioned reservations approach
not only achieves high schedulability in theory, but also very low
runtime overheads in practice, which are generally in line with
those incurred under a conventional partitioned scheduler.

B. Comparison with RUN and QPS

In a second, smaller-scale experiment, we conducted a
direct comparison with prior implementations of RUN and
QPS in LITMUSRT, which were kindly provided by Com-
pagnin et al. [25, 26]. To ensure a common base for comparison,
we ported their code to the latest version of LITMUSRT (2016.1).
Notably, Compagnin et al.’s implementation of QPS supports
two configurations: one using a single global spin lock, denoted
QPS-G, and one using “per-cluster” spin locks, denoted QPS-C.
On our platform, QPS-C actually uses one spin lock per core.
The RUN implementation always uses a single global lock.

Due to implementation limitations, we could not execute the
same task sets as in the first experiment.4 We hence instead
generated 60 high-utilization task sets using Compagnin et al.’s
experimental setup [25, 26]. We executed each task set under
RUN, QPS-G, QPS-C, and SP-RES for 30 seconds each while

4The employed RUN and QPS implementations [25, 26] support only tasks
with integral millisecond parameters, whereas our workloads require (at least)
microsecond granularity. This is purely an implementation artifact; in the
underlying RUN [44] and QPS [39] algorithms, this limitation is not present.

9

��

���

���

���

���

���

���

���

���

���

����

����� ������ �������

�
�
��
�
�
��
�
��
�
�
�
�
��
�
�
�
�
�

���������������������������

������
�����
�����
���

(a) scheduling overhead

��

���

���

���

���

���

���

���

���

���

����

����� ������ �������

�
�
��
�
�
��
�
��
�
�
�
�
��
�
�
�
�
�

���������������������������

������
�����
�����
���

(b) release overhead
Fig. 9. Overheads under two process-based optimal schedulers (RUN, QPS)
and the semi-partitioned reservation scheduler (SP-RES). For QPS, results for
two different configurations are shown: one using a single global lock (QPS-G)
and one using “per-cluster” locks (QPS-C). RUN uses a single global lock. The
implementations of RUN and QPS are due to Compagnin et al. [25, 26].

collecting overheads with Feather-Trace. In total, we collected
more than 100 million overhead samples (4.6 GiB).

Due to space constraints, we focus on scheduling and release
overheads. In Fig. 9(a), which shows scheduling overhead, it
is clearly apparent that RUN and QPS-G suffer from extreme
overheads, which are likely due to lock contention, as in the case
of G-EDF in Fig. 7(a). QPS-C performs much better, but still
incurs noticeably higher overhead than SP-RES. For example,
the 99th percentile scheduling overhead under SP-RES is 2,255
cycles, whereas it is more than twice as much under QPS-C
(4,993 cycles), and two orders of magnitude higher under QPS-
G and RUN (135,994 and 101,294 cycles, respectively).

Fig. 9(b) shows the distributions of release overhead. While
the trends are generally similar, the gap between SP-RES and
QPS-C is even wider (at the 99th percentile, 3,045 vs. 9,571
cycles, respectively), and RUN incurs even higher overhead
than QPS-G (158,397 cycles under QPS-G vs. 253,049 cycles
under RUN), which reflects RUN’s costly bookkeeping [25, 44].

In conclusion, we observe that our proposal exhibits (much)
lower overheads than recent implementations of optimal sched-
ulers, in particular compared to those using global locks.

C. Migration Rates

In our final experiment, we tested whether the dynamic
migration avoidance tweaks discussed in §IV-A do have a
measurable impact, provided there is some slack that can
be reclaimed. To this end, we reran all task sets from the
first experiment that contained at least one semi-partitioned
reservation while varying a configuration option that causes the
simulated real-time tasks to randomly under-run their WCET by,

TABLE I
OBSERVED TASK MIGRATIONS GIVEN VARYING AMOUNTS OF SLACK

average slack total migrations per sec. and core reduction

0% 412,637 8.23
10% 346,511 6.91 1.2x
25% 224,713 4.48 1.8x
33% 165,660 3.30 2.5x
50% 82,406 1.64 5.0x

in expectation, the configured amount. We recorded the resulting
schedules using LITMUSRT’s built-in sched-trace functionality
and then counted the number of observed migrations.

The results are summarized in Table I, which lists the total
number of observed migrations (across all task sets), the same
data normalized per second and core, and the improvement
relative to the zero-slack baseline. The rate of migration drops
significantly as the available slack increases due to more frequent
and larger under-runs. With just a 25% difference between
provisioned WCETs and average-case execution times (ACETs),
the migration rate is almost halved (8.23 to 4.48), and with 50%
slack available on average, a five-fold improvement is observed
(8.23 to 1.64). These results confirm that the proposed tweaks are
effective at lowering migration rates if WCETs exceed ACETs.

VIII. LIMITATIONS, EXTENSIONS, AND RELATED WORK

In the following, we discuss how to lift some of the limitations
imposed in §II, speculate about possible future extensions, and
highlight some related works and alternatives.
Identical processors. To match prior work, we have assumed
identical processors. However, none of the employed heuristics
(§IV-B) actually exploit this assumption. Support for uniform
or heterogeneous platforms can thus be easily added. Further-
more, this assumption affects only the task-placement phase,
as partitioned and semi-partitioned scheduling is oblivious
to non-identical platforms at runtime (in contrast to global
schedulers, which make placement decisions online). Optimal
multiprocessor real-time scheduling on uniform multiprocessors
is possible [33], but it is conceptually and implementation-wise
no less complicated than on identical multiprocessors.
Implicit deadlines. Since non-clairvoyant optimal multiproces-
sor schedulers do not support constrained deadlines [30], we
have restricted the scope to implicit deadlines. However, our
SP-PRES implementation already naturally supports arbitrary
(and hence constrained) deadlines (e.g., this is required to
realize constrained-deadline subtasks). Introducing constrained
deadlines hence affects only the placement phase.

With the exception of the RP meta-heuristic, all proposed
(meta-)heuristics are compatible with constrained deadlines.
Period transformation is not generally possible for constrained-
deadline tasks. However, recall from §V and Fig. 4 that the PAF
meta-heuristic, which is compatible with constrained deadlines,
is responsible for large parts of the observed performance.

A significant practical advantage is that constrained deadlines
can be introduced without any changes to the runtime system
(and without pessimistically truncating periods to deadlines). In
contrast, any attempt to add (non-optimal) runtime support for
constrained deadlines to optimal schedulers such as QPS, RUN,
or PD2 must overcome non-obvious integration challenges.

10

Independent tasks. We have not considered task synchroniza-
tion. In reality, some tasks are most likely going to have mutual-
exclusion or precedence constraints. Analytically, precedence
constraints can be supported with known uniprocessor tech-
niques (i.e., by accounting for precedence-induced release jitter).

Mutual exclusion requires an appropriate locking protocol.
Semi-partitioned reservations as proposed in this paper are
conceptually compatible with the MBWI protocol [29]; kernel-
level support in LITMUSRT could be added in future work.
Support for spin locks is another option worth exploring [14].

An interesting and largely unexplored research direction is the
challenge of finding effective semi-partitioning heuristics that
take resource-sharing and precedent constraints into account.
Self suspensions. We have not discussed self-suspensions (e.g.,
jobs waiting for I/O devices), as prior work on optimal schedul-
ing ignores them, too. Our implementation in LITMUSRT,
however, must deal with self-suspensions to function properly.

Fortunately, self-suspensions are simple to deal with since we
already employ slack reclamation: jobs in polling reservations
generate slack when they suspend, and they regain whatever of
their slack is left (if any) when they resume. In fact, from the
point of view of the runtime system, a (final) job completion is
no different from a (temporary) job suspension: when the job
of a periodic task completes, the corresponding process simply
suspends until the release of the next job, which is why process
wake-up cost factors into SP-RES release overhead in Fig. 7(c).

Furthermore, our implementation already supports deferrable
servers [49], a reservation type that is ideal for tasks that
exhibit long self-suspensions since a deferrable server’s budget
is independent of suspension length (i.e., there is no need to
over-provision the budget). It is easy to integrate partitioned
deferrable servers into the presented approach (i.e., to account
for them when placing or splitting tasks). In future work, it will
be interesting to study semi-partitioned deferrable servers.
Cache and bus interference. We have ignored any interference
effects due to caches and other shared parts of the memory
hierarchy, as such concerns are orthogonal to the main obser-
vations of this paper. Prior work on optimal scheduling also
ignores these issues. However, integrating existing interference-
management techniques (e.g., [34, 36, 38, 50]), which typically
assume partitioned scheduling, is likely much easier with a
simple approach such as ours, rather than with the quite intricate
scheduling and migration rules in optimal schedulers.

Additionally, Sarkar et al. [45, 46] and Shekhar et al. [47]
have developed architectural support for proactively migrating
(locked) cache lines among cores. Under semi-partitioned
scheduling, such an OS-initiated push migration of cache
lines [45, 46] can ensure that a subtask starts execution with
a hot cache [47], which reduces the cost of task migrations [45–
47]. Notably, predicting where and when a cache line will be
needed next is trivial under the adopted C=D scheme. Under
most optimal schedulers, this is considerably more difficult (with
QPS [39] being a notable exception).
Power management. We have not considered any resources
beside processor time. In practice, managing power and/or
energy consumption (e.g., by means of voltage scaling or deep

processor sleep states) is often an important requirement in
embedded systems. Again, we note that a simple approach such
as ours is much easier to extend when it comes to integrating
predictable power management. Case in point, most work to
date on energy-aware multiprocessor real-time scheduling—
Bambagini et al. [9] provide a recent survey—actually targets
partitioned scheduling [9]. Further, one can simply adopt any of
the many known uniprocessor solutions [9] on a per-core basis.

That said, there have been proposals for energy-aware schedul-
ing based on optimal scheduling [23, 31, 41]. However, these
(arguably quite involved) proposals have not been implemented
or evaluated in real systems. Intuitively speaking, global schedul-
ing may be beneficial for race-to-idle strategies due to its work-
conserving nature, especially if some cores cannot sleep (or slow
down) while others remain busy (at faster speeds).

Dynamic workloads. It’s important to acknowledge a key
advantage of global scheduling: as there is no explicit task-
placement phase, it is much easier to deal with dynamic
workloads [15]. That is, when tasks join or leave the system
at runtime, or adaptively adjust their parameters, explicit load-
balancing is required under semi-partitioned scheduling. In
contrast, global schedulers can react much more gracefully [15]
as they load-balance implicitly. (However, RUN and QPS forgo
this advantage, as they also rely on substantial offline phases.)

For similar reasons, some RTOSs designed for versatility
default to global scheduling (e.g., Linux and QNX), as it frees
users who are not interested in precise timing guarantees from
having to reason about task placement. Work-conserving global
schedulers can also offer average-case benefits [6, 27], such as
lower mean response times and faster recovery from intermittent
overload [27]. However, in context of the classic hard real-time
correctness criterion—all deadlines must be met, no more and
no less—considered here and in prior work on optimal hard real-
time scheduling, such average-case considerations are of lesser
relevance. Nonetheless, in future work, it will be interesting to
explore how to best handle dynamic and adaptive workloads
under semi-partitioned scheduling.

Malleable software. As a final remark, we note that this study
makes a simplifying assumption regarding task malleability. Our
experimental setup assumes—as virtually all prior comparative
evaluations of global and (semi-)partitioned scheduling—that
tasks are atomic, so that they must be placed as a whole.

In settings where it is possible to modify a system’s implemen-
tation, this assumption may be too restrictive. Specifically, since
most software is malleable to some degree, if no task partitioning
can found, it may still be possible to partition an application at
the level of functionalities. That is, if (semi-)partitioning fails, it
may still be possible to refactor tasks at the code level to move
specific functionalities to another core (e.g., in AUTOSAR, by
remapping “runnables”). In this view, our study could be seen
as biased against partitioned and semi-partitioned scheduling.

IX. CONCLUSION

Near-optimal multiprocessor real-time scheduling does not
require sophisticated scheduling approaches. Empirically speak-
ing, a schedulable utilization in excess of 99%, which is

11

arguably “good enough” for practical purposes, can be achieved
(§V and §VI) with a simple combination of reservation-based
scheduling, semi-partitioning, period transformation, and appro-
priate task-placement strategies (§IV). Such a simple approach is
eminently practical, incurs only low overheads (§VII), and lends
itself to extension to deal with other practical concerns (§VIII).

We draw two high-level conclusions from these observations:

• For static workloads consisting of independent, implicit-
deadline sporadic (or periodic) tasks, there is—from a
practical point of view—no compelling reason to favor
global schedulers over (much) simpler semi-partitioned
alternatives, such as the one presented herein.

• Future work on multiprocessor real-time systems should
move beyond such simple workloads, which are adequately
served by the state of the art, and instead target more
realistic models and challenges, including precedence con-
straints, self-suspensions, constrained deadlines, dynamic
and adaptive workloads, energy and power constraints, etc.

In summary, while there might be situations in which global
scheduling is still preferable in practice, to actually demonstrate
this, one needs to look beyond the simple workloads primarily
considered in the literature on global scheduling to date. As
discussed in §VIII, we believe that the proposed simple approach
can also be adapted to support many more-demanding workloads.
This conjecture provides ample opportunity for future work.

REFERENCES

[1] Companion page: https://www.mpi-sws.org/~bbb/papers/details/rtss16/.
[2] The LITMUSRT project: http://www.litmus-rt.org.
[3] The SchedCAT project: http://www.mpi-sws.org/~bbb/projects/schedcat.
[4] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard

real-time systems,” in RTSS ’98.
[5] J. Anderson, V. Bud, and U. C. Devi, “An EDF-based scheduling algorithm

for multiprocessor soft real-time systems,” in ECRTS’05.
[6] B. Andersson and J. Jonsson, “Fixed-priority preemptive multiprocessor

scheduling: to partition or not to partition,” in RTCSA’00.
[7] B. Andersson, S. Baruah, and J. Jonsson, “Static-priority scheduling on

multiprocessors,” in ECRTS’01.
[8] B. Andersson and K. Bletsas, “Sporadic multiprocessor scheduling with

few preemptions,” in ECRTS’08.
[9] M. Bambagini, M. Marinoni, H. Aydin, and G. Buttazzo, “Energy-aware

scheduling for real-time systems: A survey,” ACM TECS, vol. 15, no. 1,
2016.

[10] S. Baruah, A. Mok, and L. Rosier, “Preemptively scheduling hard-real-time
sporadic tasks on one processor,” in RTSS’90.

[11] S. Baruah, N. Cohen, C. Plaxton, and D. Varvel, “Proportionate progress:
A notion of fairness in resource allocation,” Algorithmica, vol. 15, 1996.

[12] A. Bastoni, B. Brandenburg, and J. Anderson, “An empirical comparison
of global, partitioned, and clustered multiprocessor EDF schedulers,” in
RTSS’10.

[13] ——, “Is semi-partitioned scheduling practical?” in ECRTS’11.
[14] A. Biondi, G. Buttazzo, and M. Bertogna, “Supporting component-

based development in partitioned multiprocessor real-time systems,” in
ECRTS’15.

[15] A. Block, J. Anderson, and G. Bishop, “Fine-grained task reweighting on
multiprocessors,” Journal of Embedded Computing, vol. 4, no. 2, 2010.

[16] B. Brandenburg, “Scheduling and locking in multiprocessor real-time
operating systems,” Ph.D. dissertation, UNC Chapel Hill, 2011.

[17] ——, “A synchronous IPC protocol for predictable access to shared
resources in mixed-criticality systems,” in RTSS’14.

[18] B. Brandenburg, J. Calandrino, and J. Anderson, “On the scalability of
real-time scheduling algorithms on multicore platforms,” in RTSS’08.

[19] A. Burns, R. Davis, P. Wang, and F. Zhang, “Partitioned EDF scheduling
for multiprocessors using a C=D task splitting scheme,” Real-Time Systems,
vol. 48, pp. 3–33, 2012.

[20] M. Caccamo, G. Buttazzo, and L. Sha, “Capacity sharing for overrun
control,” in RTSS’00.

[21] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson,
“LITMUSRT: A testbed for empirically comparing real-time multiprocessor
schedulers,” in RTSS’06.

[22] F. Cerqueira, M. Vanga, and B. Brandenburg, “Scaling global scheduling
with message passing,” in RTAS’14.

[23] H. Chishiro, M. Takasu, R. Ueda, and N. Yamasaki, “Optimal multipro-
cessor real-time scheduling based on RUN with voltage and frequency
scaling,” in ISORC’15.

[24] H. Cho, B. Ravindran, and E. D. Jensen, “An optimal real-time scheduling
algorithm for multiprocessors,” in RTSS’06.

[25] D. Compagnin, E. Mezzetti, and T. Vardanega, “Putting RUN into practice:
implementation and evaluation,” in ECRTS’14.

[26] ——, “Experimental evaluation of optimal schedulers based on partitioned
proportionate fairness,” in ECRTS’15.

[27] R. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Comput. Surv., vol. 43, no. 4, 2011.

[28] P. Emberson, R. Stafford, and R. Davis, “Techniques for the synthesis of
multiprocessor tasksets,” WATERS’10.

[29] D. Faggioli, G. Lipari, and T. Cucinotta, “The multiprocessor bandwidth
inheritance protocol,” in ECRTS’10.

[30] N. Fisher, J. Goossens, and S. Baruah, “Optimal online multiprocessor
scheduling of sporadic real-time tasks is impossible,” Real-Time Systems,
vol. 45, no. 1-2, pp. 26–71, 2010.

[31] S. Funk, V. Berten, C. Ho, and J. Goossens, “A global optimal scheduling
algorithm for multiprocessor low-power platforms,” in RTNS’12.

[32] S. Funk, G. Levin, C. Sadowski, I. Pye, and S. Brandt, “DP-Fair: a unifying
theory for optimal hard real-time multiprocessor scheduling,” Real-Time
Systems, vol. 47, no. 5, pp. 389–429, 2011.

[33] S. H. Funk and A. Meka, “U-LLREF: An optimal scheduling algorithm for
uniform multiprocessors,” in The 9th Workshop on Models and Algorithms
for Planning and Scheduling Problems, 2009.

[34] Y. Heechul, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “MemGuard:
Memory bandwidth reservation system for efficient performance isolation
in multi-core platforms,” in RTAS’13.

[35] S. Kato, N. Yamasaki, and Y. Ishikawa, “Semi-partitioned scheduling of
sporadic task systems on multiprocessors,” in ECRTS’09.

[36] H. Kim, A. Kandhalu, and R. Rajkumar, “A coordinated approach for
practical OS-level cache management in multi-core real-time systems,” in
ECRTS’13.

[37] J. Lelli, D. Faggioli, T. Cucinotta, and G. Lipari, “An experimental
comparison of different real-time schedulers on multicore systems,” J.
Syst. Softw., vol. 85, no. 10, pp. 2405–2416, 2012.

[38] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pellizzoni,
“Real-time cache management framework for multi-core architectures,” in
RTAS’13.

[39] E. Massa, G. Lima, P. Regnier, G. Levin, and S. Brandt, “Quasi-partitioned
scheduling: optimality and adaptation in multiprocessor real-time systems,”
Real-Time Systems, vol. 52, no. 5, pp. 566–597, 2016.

[40] C. Mercer, S. Savage, and H. Tokuda, “Processor capacity reserves: an
abstraction for managing processor usage,” in Proc. Fourth Workshop on
Workstation Operating Systems, 1993.

[41] G. A. Moreno and D. De Niz, “An optimal real-time voltage and frequency
scaling for uniform multiprocessors,” in RTCSA’12. IEEE.

[42] G. Nelissen, V. Berten, V. Nelis, J. Goossens, and D. Milojevic, “U-EDF:
An unfair but optimal multiprocessor scheduling algorithm for sporadic
tasks,” in ECRTS’12.

[43] R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa, “Resource kernels: a
resource-centric approach to real-time systems,” in CMCN’98.

[44] P. Regnier, G. Lima, E. Massa, G. Levin, and S. Brandt, “Multiprocessor
scheduling by reduction to uniprocessor: an original optimal approach,”
Real-Time Systems, vol. 49, no. 4, pp. 436–474, 2013.

[45] A. Sarkar, F. Mueller, and H. Ramaprasad, “Predictable task migration for
locked caches in multi-core systems,” in LCTES’11.

[46] A. Sarkar, F. Mueller, H. Ramaprasad, and S. Mohan, “Push-assisted
migration of real-time tasks in multi-core processors,” in LCTES’09.

[47] M. Shekhar, A. Sarkar, H. Ramaprasad, and F. Mueller, “Semi-partitioned
hard-real-time scheduling under locked cache migration in multicore
systems,” in ECRTS’12.

[48] A. Srinivasan and J. Anderson, “Optimal rate-based scheduling on
multiprocessors,” in STOC’02.

[49] J. K. Strosnider, J. P. Lehoczky, and L. Sha, “The deferrable server
algorithm for enhanced aperiodic responsiveness in hard real-time en-
vironments,” Trans. Comp., vol. 44, no. 1, pp. 73–91, 1995.

[50] B. Ward, J. Herman, C. Kenna, and J. Anderson, “Making shared caches
more predictable on multicore platforms,” in ECRTS’13.

[51] D. Zhu, X. Qi, D. Mossé, and R. Melhem, “An optimal boundary fair
scheduling algorithm for multiprocessor real-time systems,” Journal of
Parallel and Distributed Computing, vol. 71, no. 10, pp. 1411–1425, 2011.

12

https://www.mpi-sws.org/~bbb/papers/details/rtss16/
http://www.litmus-rt.org
http://www.mpi-sws.org/~bbb/projects/schedcat

	Introduction
	System Model and Assumptions
	Essential Background
	Reservation-based EDF Scheduling with Slack Reclamation
	Period Transformation
	Partitioned Scheduling
	Semi-Partitioned Scheduling

	Our Approach: Semi-Partitioned Reservations
	Runtime Tweaks
	Task Allocation Strategies

	Schedulability Evaluation
	Towards Practice
	Semi-Partitioned Reservations in LITMUSRT
	Comparison with Stock LITMUSRT Schedulers
	Comparison with RUN and QPS
	Migration Rates

	Limitations, Extensions, and Related Work
	Conclusion

