
Global Real-Time Semaphore Protocols:
A Survey, Unified Analysis, and Comparison

Maolin Yang†‡ Alexander Wieder† Björn B. Brandenburg†
†Max Planck Institute for Software Systems (MPI-SWS) ‡University of Electronic Science and Technology of China (UESTC)

Abstract—All major real-time suspension-based locking proto-
cols (or semaphore protocols) for global fixed-priority scheduling
are reviewed and a new, unified response-time analysis frame-
work applicable to all protocols is proposed. The newly proposed
analysis, based on linear programming, is shown to be clearly
preferable compared to all prior conventional approaches. Based
on the new analysis, all protocols are directly compared with
each other in a large-scale schedulability study. Interestingly, the
Priority Inheritance Protocol (PIP) and the Flexible Multiprocessor
Locking Protocol (FMLP), which are the two oldest and simplest
of the considered protocols, are found to perform best.

I. INTRODUCTION

When real-time applications synchronize access to shared
resources with binary semaphores (i.e., “mutexes” or suspension-
based locks), a scheduler-specific real-time locking protocol is
required to avoid unbounded priority inversions (i.e., uncon-
trolled delays arising from the preemption of lock-holding tasks,
discussed in detail in §III and §IV).

For global fixed-priority (G-FP) scheduling — the default
multiprocessor real-time scheduling policy of VxWorks, QNX,
Linux and many other RTOSs — several such protocols have
been proposed, namely the PIP [12, 24], FMLP [4], P-PCP [12],
OMLP [8], LB-PCP [19], and the FMLP+ [5–7]. Given that
virtually all practical systems have non-trivial synchronization
requirements (if not explicitly at the application level, then at
least implicitly at the kernel level, e.g., due to shared I/O devices,
communication buffers, or scheduler locks), a real-time locking
protocol is a crucial component in any RTOS.

Unfortunately, it is largely unclear how to choose among the
many available protocols. For one, most of the protocols have
been analyzed with various, now-outdated techniques, which
renders a direct comparison inconclusive. Further, while some
of the more recent proposals (e.g., the P-PCP and the FMLP+)
offer potentially improved blocking bounds (a mostly untested
promise), they also introduce considerable design complexity
and require sophisticated runtime mechanisms, which is highly
undesirable from a pragmatic implementor’s point of view.
Scope. To shed light on the bewildering array of choices, we
take a fresh look at the real-time locking problem under G-
FP scheduling. We first survey all major real-time semaphore
protocols for global scheduling (§III) and then identify, and
precisely define, six distinct types of delays (such as “direct” or
“indirect” blocking) that arise due to mutual exclusion (§IV).

In the next step, to enable a fair comparison, we re-analyze
all major protocols from first principles using a state-of-the-
art methodology based on linear optimization (§V). The result
is a unified response-time analysis framework for lock-using
sporadic tasks that is applicable to all considered semaphore
protocols. In particular, the proposed approach is sufficiently

general to be instantiated even in the presence of uncontrolled
(i.e., potentially unbounded) priority inversions that arise in the
absence of a proper real-time locking protocol.

Finally, we report on a large-scale, apples-to-apples compari-
son (§VI) of the available protocols based on the newly proposed
unified analysis across a wide range of scenarios.
Contributions. This work advances the field in several ways.
First, as shown in the evaluation (§VI), the newly proposed
unified analysis is substantially more accurate than prior ap-
proaches: for all tested workloads subject to significant resource
contention, the new analysis performed usually much better, and
never worse. Second, our analysis is the first that is sufficiently
general to characterize and quantify the effect of uncontrolled
priority inversions in the absence of a real-time locking protocol.
Third, our experiments are the first direct comparison of all
major semaphore protocols for G-FP scheduling — for instance,
the PIP and the FMLP have not been systematically compared
in prior work, nor have the PIP and the P-PCP. And finally, our
experiments paint a clear, although surprising picture: the PIP
and the FMLP, which are the two oldest and simplest of the con-
sidered protocols, always performed best in all tested scenarios.

In a nutshell, this paper clears up the confusion surrounding
the many available global locking protocol choices and makes
a clear recommendation in favor of the PIP and the FMLP. As
support for the former protocol is already specified by the POSIX
real-time standard, and since the latter protocol is just as simple
to support, this is a welcome outcome.

We begin with an overview of major protocols (§III) after
briefly establishing essential definitions and notation.

II. ASSUMPTIONS AND NOTATION

We assume the standard sporadic task model of recurrent real-
time processes executing upon a shared-memory multiprocessor.
Tasks. We consider a set of n constrained-deadline sporadic
tasks τ = {T1, . . . , Tn} scheduled upon m identical processors.
Each task Ti is characterized by a worst-case execution time
(WCET) ei, a minimum inter-arrival time (or period) pi, and
a relative deadline di, where di ≤ pi. Each task generates a
potentially infinite sequence of jobs; we let Ji,j denote the jth

job of Ti. We use τ i to denote the set of all tasks in τ except Ti.
A job Ji,j arrives at time ai,j and finishes at time fi,j ; its

response time is given by ri,j = fi,j − ai,j . During the interval
[ai,j , fi,j), Ji,j is pending, and while pending, it is either ready
(and available for execution) or suspended (i.e., blocked and not
available for execution). We assume that tasks suspend only to
wait for a lock. Jobs arrive at least pi time units apart (ai,j+1 ≥
ai,j + pi) and must finish within di time units (ri,j ≤ di).

The worst-case response time (WCRT) of Ti, given by ri =
maxj{ri,j}, is the maximum response time of any job of Ti. The

1

goal of a response-time analysis is to derive a safe response-time
bound Ri such that ri ≤ Ri ≤ di in any possible schedule of τ .
For brevity, we let Ji denote an arbitrary job of Ti.

For simplicity, we assume discrete time (i.e., all parameters
are multiples of a smallest quantum such as a processor cycle).
Scheduling. We consider G-FP scheduling, where jobs may
freely migrate among processors. Each task is assigned a unique,
fixed base priority shared by all jobs of the task. We assume
that tasks are indexed by decreasing base priority (i.e., lower
indices correspond to higher base priorities). For brevity, when
discussing a specific task Ti, we let τH and τL denote the sets of
tasks with base priority higher and lower than Ti, respectively.

At runtime, locking protocols may assign temporarily elevated
effective priorities. We let πi(t) denote the effective priority of
task Ti at time t. At any time, a G-FP scheduler dispatches the
(up to) m ready jobs with the highest effective priorities.
Resources. In addition to the processors, the tasks share nr
serially-reusable resources `1, . . . , `nr

. We use Ni,q to denote
the maximum number of times that a job Ji accesses `q , and use
Li,q to denote the maximum critical section length of Ti, i.e., the
maximum processor service required by Ti before it releases `q .
(A task’s WCET includes all its critical sections, i.e., each Li,q is
included in ei.) The priority ceiling Π(`q) , min{i |Ni,q > 0}
is the base priority (i.e., index) of the highest-base-priority (i.e.,
lowest-index) task using `q . Since most of the locking protocols
studied in this paper do not support nested critical sections, we
require that tasks use at most one resource at any time.

Finally, we let ηx(t) = d(Rx + t)/pxe denote the maximum
number of jobs of a task Tx that are pending in any contiguous
interval of length t, and let N i

x,q , ηx(Ri) · Nx,q denote an
upper bound on the maximum number of requests for a resource
`q that jobs of Tx can issue while a single job of Ti is pending.

With the essential definitions in place, we next review the
major global real-time locking protocols proposed to date.

III. SURVEY OF GLOBAL REAL-TIME LOCKING PROTOCOLS

A real-time locking protocol serves to avoid unpredictable
priority inversions [8, 24]. Intuitively, a priority inversion exists
when a high-priority job Jh that should be scheduled (according
to its base priority) is prevented from executing by a lower-base-
priority job Jl (e.g., if Jl holds a lock that Jh needs). Such a
priority inversion is considered predictable if its duration can be
bounded in terms of the maximum critical section length, and
unpredictable or uncontrolled if it depends on the WCET of any
task; we revisit this issue more formally in §IV.

In this paper, we focus on (binary) semaphore protocols (i.e.,
suspension-based locks), where blocked jobs suspend to yield
their processor to other ready jobs (if any).1 In recent years,
several such protocols have been proposed for global scheduling,
which we briefly summarize in order of their appearance.2

The Priority Inheritance Protocol (PIP) [24] is the classic
real-time locking protocol. It combines simple priority-ordered
wait queues (i.e., under contention, a lock is always granted to the

1 An alternative is spin locks, where blocked jobs execute a delay loop (often
with interrupts disabled). However, spinning and non-preemptive execution
require substantially different analysis that is beyond the scope of this paper.

2Supplementary example schedules that illustrate each protocol’s rules are
provided in an extended tech report [29] due to space constraints.

highest-priority waiter) with priority inheritance (PI), a progress
mechanism that prevents unpredictable priority inversion by
raising the effective priority of lock-holding jobs when they
block higher-base-priority jobs [24]. More precisely, a task’s
effective priority πi(t) is the maximum of its own base priority
and the effective priority of any job that it blocks at time t [24].

As mentioned in §I, the PIP has considerable practical rele-
vance: for instance, the POSIX real-time standard—supported by
Linux, QNX, VxWorks and many other RTOSs that implement
G-FP scheduling—specifies support for PI.

The PIP was originally designed for uniprocessors [24]. An
analysis of the PIP under G-FP scheduling assuming non-nested
critical sections, which we use as a baseline in our experiments
(§VI), was later presented by Easwaran and Andersson [12].

The Flexible Multiprocessor Locking Protocol (FMLP) [4] is
a suite of protocols for global and partitioned scheduling that was
designed with simplicity as the guiding principle [4]. The FMLP
variant relevant to this work is the global suspension-based
FMLP, which combines PI (like the PIP) with simple FIFO wait
queues (unlike the PIP), i.e., the FMLP satisfies conflicting lock
requests in first-come first-served order.

Only limited analyses of the FMLP under G-FP scheduling
exist [4, 5]. Specifically, both prior analyses are intended
for suspension-oblivious schedulability analysis [8]. In short,
suspension-oblivious analysis pessimistically models blocking
time as processor demand even if blocked tasks actually suspend,
whereas suspension-aware analysis [8] accurately reflects that
waiting tasks do not occupy processors. We revisit the analysis
of suspensions in §IV and present the first suspension-aware
analysis of the global FMLP in §V.

The Parallel Priority Ceiling Protocol (P-PCP) [12] is an
extension of the PIP that attempts to avoid certain unfavorable
blocking situations, albeit at the expense of additional effort
at both design- and runtime. In particular, the P-PCP requires
developers to configure a per-task parameter αi, which is used
by the runtime mechanism to restrict the maximum number of
critical sections concurrently in progress, as described next.

Let HPR(i , t) be the set of higher-base-priority jobs (relative
to Ti) holding locks at time t, and similarly let LPR(i , t) be the
set of lower-base-priority jobs holding resources with priority
ceilings exceeding the base priority of Ji. The P-PCP allows
a job Ji to lock a resource `q if and only if `q is available and
the following condition holds: |HPR(i , t)|+ |LPR(i , t)| < αi.
Otherwise, if `q is available but |HPR(i , t)|+|LPR(i , t)| ≥ αi,
then Ji suspends and the job in LPR(i, t) with the shortest
maximum critical section length inherits Ji’s base priority. If
`q is unavailable, the rules of the regular PIP take effect. An
analysis sketch for the P-PCP was given by Easwaran and
Andersson [12]; we derive a more accurate bound in §V.

Compared to the PIP and the FMLP, the P-PCP adds consid-
erable complexity as it imposes additional PI rules and requires
the RTOS to track the sets HPR(i, t) and LPR(i, t) at runtime.
Further, the developer must configure appropriate αi parameters,
which together with the Li,q bounds must be known at runtime.
Concerning the former, it is not obvious how to best choose
αi. The original P-PCP proposal [12] suggests to set αi = n if
i ≤ m, and αi = m otherwise; we follow this suggestion and
call the resulting setup an (m,n)-configuration.

2

The family of O(m) Locking Protocols (OMLP) [8, 9] is a
suite of suspension-based locking protocols that are asymptot-
ically optimal under suspension-oblivious analysis [8], in the
sense that the worst-case blocking incurred by any task is within
a (small) constant factor of the lower bound on blocking that
is inevitably incurred by some task under any protocol [8]. (A
detailed discussion of asymptotic blocking optimality is beyond
the scope of this paper; see [5, 7–9] for details.)

From a pragmatic point of view, the global OMLP [8, 9],
which is the OMLP variant relevant to this work, is a hybrid of
the PIP and the FMLP: it relies on PI, but uses hybrid FIFO-
priority queues. More precisely, for each resource, there is a
FIFO queue of bounded length m, and a priority-ordered tail
that feeds into the FIFO queue. Contending jobs enter the tail
queue only if the FIFO queue is already full [8, 9].

The OMLP is specifically designed for suspension-oblivious
analysis. We hence do not derive a new analysis of the OMLP,
but consider the existing analysis [5] as a baseline in §VI.

Like the OMLP, the design of the Generalized FIFO Multi-
processor Locking Protocol (FMLP+) [5, 7] is also driven by
optimality concerns. In particular, it was noted that the original
FMLP [4] is asymptotically suboptimal under suspension-aware
analysis due to its use of PI. (In fact, on multiprocessors,
generally no PI-based protocol is asymptotically optimal under
suspension-aware analysis [5, 7].)

The FMLP+ thus uses a novel progress mechanism called re-
stricted segment boosting (RSB). Under RSB, a job’s execution
is split into an alternating sequence of independent segments and
request segments. An independent segment starts when a job is
released or when it releases a lock, and ends when it completes
or issues a request; conversely, a request segment starts when
a job issues a lock request, and ends when it releases the lock.
To avoid unpredictable priority inversion, the lock-holding job
with the earliest request segment start time is priority-boosted,
i.e., it is assigned an effective priority higher than that of any
non-boosted job, which ensures that it is scheduled. Further, to
ensure asymptotic optimality in the case of certain pathological
scenarios [7], up tom−1 non-lock-holding jobs (in independent
segments) with higher base priorities are co-boosted, i.e., also
given an effective priority above that of non-boosted jobs.

Like the original FMLP, the FMLP+ uses simple per-lock
FIFO queues to order conflicting requests.

Unlike PI-based protocols, the FMLP+ supports clustered
multiprocessor scheduling, which is a generalization of both
global and partitioned scheduling. In prior work, the FMLP+ has
been evaluated under partitioned [6] and (non-global) clustered
scheduling [7] and was found to perform well compared to
alternatives [6, 7], despite asymptotic optimality having been
the primary design goal. This, however, does not imply that the
FMLP+ will necessarily perform well (relative to other choices)
under global scheduling, too—global scheduling allows for
simpler semaphore protocols than either partitioned or clustered
scheduling [5], which means that, from a purely empirical point
of view, RSB might not actually be beneficial under global
scheduling. We explore this question in our experiments (§VI).

For the sake of completeness, we also consider a new protocol
that combines RSB with per-resource priority queues. While the
choice of FIFO queues in the FMLP+ is deliberate and essential

0 5 10 15 20

T5

T4

T2

T1

T3

using usingjob release deadline job completion

Fig. 1: Example FMLP+ schedule (m = 3).

to asymptotic optimality [7], there is, from a pragmatic point of
view, no reason that precludes using priority queues with RSB
(PRSB). We hence consider this variant in our evaluation, too.

Finally, we also study locks without progress mechanism as a
base case. In the absence of either PI or RSB, all tasks execute
at their base priority at all times. As a result, lock-holders that
block high-priority tasks may be preempted at any time, which
can cause prolonged priority inversion [24]. While long priority
inversions are obviously detrimental to a system’s ability to meet
tight deadlines, prior work has not attempted to quantify the
negative effects of locks without associated progress mechanism.
Our unified analysis approach, introduced in the following two
sections, is sufficiently general to cover this case as well, which
we study as a lower bound on reasonable performance that any
real-time locking protocol should exceed.

IV. PRIORITY INVERSION AND INTERFERENCE

Under G-FP scheduling, at any time, the (up to) m pending
jobs with the currently highest (base) priorities are expected to be
scheduled. Correspondingly, jobs are expected to be delayed only
if all processors are busy executing higher-base-priority jobs.
Any deviation from this expectation — that is, any disturbance
of the normal G-FP schedule — is called a priority inversion,
whereas expected delays due to the execution of higher-base-
priority jobs are called regular interference.

If all tasks are independent, i.e., in the absence of resource
conflicts, jobs are delayed only by regular interference [3].
However, when jobs compete for semaphores, priority inver-
sions arise due to two principal sources: task self-suspensions
(i.e., resource unavailability) and negative side effects of the
employed progress mechanism (if any).

For example, Fig. 1 shows an FMLP+ schedule that exhibits
both effects: task T5 locks resource `1 at time 1, thus starting to
execute a request segment. Since T5 executes the only (and thus
earliest) request segment, it is priority-boosted, and since T4
executes an earlier-started independent segment, it is co-boosted
while T5 holds `1. This has no effect as long as there are at most
m = 3 jobs pending, but at time 4, when T1 releases a job, the
usual G-FP scheduling order is disrupted: T3 is preempted (it is
not co-boosted), whereas the lower-base-priority tasks T4 and T5
have an elevated effective priority and continue to execute—an
RSB-induced priority inversion. A priority inversion due to a
resource conflict occurs at time 5: T1 attempts to lock `2, which
T3 already locked at time 3; consequently, T1 self-suspends and
the lower-base-priority jobs T3–T5 are scheduled instead.

To derive a safe response-time bound Ri, a precise definition
of “priority inversion” is required. The exact definition, however,

3

depends on how task self-suspensions are analyzed [8]. Un-
der suspension-aware (s-aware) response-time analysis (e.g.,
[6, 16, 17]), suspended jobs are accurately modeled to not
occupy a processor. In contrast, under suspension-oblivious (s-
oblivious) analysis, each task’s execution time is inflated to
account for suspensions, which is safe but pessimistic, as it over-
approximates each task’s processor demand. On the flip side, the
s-oblivious approach allows reusing existing response-time anal-
yses that do not take self-suspensions or semaphores into account
(e.g., [2, 3]). Furthermore, since a part of the locking-related
delays is implicitly accounted for as (inflated) interference,
asymptotically lower bounds on maximum priority inversion
lengths can be found under s-oblivious analysis [5, 8, 9].

In this work, we focus on the more precise s-aware approach,
in which case “priority inversion” is defined as follows [8].

Def. 1: A job Ji is subject to priority inversion at time t iff
Ji is pending but not scheduled, and fewer than m higher-base-
priority jobs are scheduled at time t (i.e., at least one processor
is idle or occupied by a lower-base-priority job).

To analyze the individual causes of priority inversion, we
further split Def. 1 into five different cases.

A. A Precise Categorization of Locking-Related Delays
For brevity, we denote any priority inversion induced by the

execution of critical sections as pi-blocking. We distinguish
among three types of pi-blocking. Let Jx denote a job scheduled
at time t that is holding a resource `q, and suppose job Ji is
pending but not scheduled at time t. Then Jx causes Ji to incur
• direct pi-blocking iff Ji is waiting for `q while fewer than
m higher-base-priority jobs are scheduled at time t;

• indirect pi-blocking iff x > i > πx(t) and Ji is suspended
and waiting for another resource `u (`u 6= `q) that is held
by a job Ja and Ja is not scheduled at time t; and

• preemption pi-blocking iff x > i > πx(t), and Ji is ready
but not scheduled at time t.

In addition, we define three types of the interference that Ji
may incur due to a job Jx. In the following, Jx is assumed to be
scheduled and Ji is assumed to be pending, not scheduled, and
to not incur direct pi-blocking at time t. Then Jx causes
• regular interference at time t iff x < i;
• co-boosting interference at time t iff x > i > πx(t) and Jx

is not holding any resource at time t; and
• stalling interference at time t iff x > i and πx(t) ≥ i.

Despite their names, co-boosting and stalling interference are
in fact cases of priority inversion according to Def. 1. We
nonetheless use the term “interference” for these two cases since
they are accounted for similarly to regular interference.

The FMLP+ example depicted in Fig. 1 exhibits each type of
delay. Consider task T1. During [5, 7), and again during [12, 13),
while T1 waits for T3 to release `2 and T3 is scheduled, T3 causes
T1 to incur direct pi-blocking. During [7, 12), T5 is scheduled
and holds `1, while T1 is still waiting for `2, which is held by the
preempted T3; T5 thus causes T1 to incur indirect pi-blocking
during the interval. At the same time, T4 is scheduled due to its
elevated effective priority (recall that T4 is co-boosted since it
started its current independent segment before T5 requested `1);
as T4 does not hold a resource, it causes T1 to incur co-boosting
interference during [7, 12). In contrast, T2 is not co-boosted and

PI-Blocking Interference Prior
AnalysisProtocol D I P R C S

PIP yes yes yes yes — — [12, 24]
FMLP yes yes yes yes — — [4, 5]
P-PCP yes yes yes yes — yes [12]
FMLP+ yes yes yes yes yes yes [5, 7]
PRSB yes yes yes yes yes yes —
no progress yes — — yes — yes —

TABLE I: The types of pi-blocking (Direct, Indirect, Preemption) and
interference (Regular, Co-boosting, Stalling) caused by each protocol.

does not hold a resource, but is still scheduled while T1 incurs
priority inversion during [7, 12); T2 is thus considered to cause
stalling interference. Finally, preemption pi-blocking is incurred
by T3 and caused by T5 during [4, 5) and [7, 12). During the
same two intervals, T1 and T2 are considered to cause regular
interference since the two tasks have higher base priority.

Not all protocols cause all types of delay; Table I summarizes
the types of pi-blocking and interference that a job may be
exposed to under each of the studied protocols.

B. Basic Properties
With the precise definitions in place, we are now ready to

begin our analysis of the individual types of delay. We start with
three basic lemmas characterizing how each type occurs.

Lemma 1: If a job Ji incurs direct pi-blocking at time t, then
it does not incur any other type of delay at time t.

Proof: By definition, when Ji incurs direct pi-blocking, it
does not incur any type of interference. Further, Ji is suspended
and waiting for some resource `q at time t while the job Jx
holding `q is scheduled. Since Ji is suspended, it cannot incur
preemption pi-blocking at time t. Since Ji requests at most one
resource at a time, and since each resource is held by at most
one job at any time, Ji is only waiting for `q at time t. Since Jx
is scheduled, Ji cannot incur indirect pi-blocking at time t.

We next note that the different types of delays are intentionally
defined to be mutually disjoint: while Ji may incur various type
of delays due to different jobs at the same time, each delaying
job causes Ji to incur at most one type of delay at a time.

Lemma 2: At any point in time, a job Jx causes a job Ji to
incur at most one type of delay.

Proof: By exhaustive case analysis. If Jx causes Ji to incur
direct pi-blocking at time t, then by Lemma 1 Ji will not incur
any other type of delay due to any other job, including Jx, at
time t. If Jx causes Ji to incur regular interference at time t, then
x < i. Thus Jx cannot cause Ji to incur co-boosting interference,
stalling interference, indirect pi-blocking, or preemption pi-
blocking, which all require x > i. If instead Jx causes Ji to
incur co-boosting interference at time t, then (i) πx(t) < i, and
(ii) Jx is not holding any resource at time t. Thus Jx cannot
cause Ji to incur stalling interference due to (i), or any type of
pi-blocking due to (ii). Further, if Jx causes Ji to incur stalling
interference at time t, then πx(t) ≥ i. Thus Jx cannot cause Ji
to incur indirect or preemption pi-blocking. Finally, if Jx causes
Ji to incur preemption pi-blocking at time t, then Ji is ready at
time t. Thus Jx cannot cause Ji to incur indirect pi-blocking.

Lemma 2 is essential to our analysis as it allows us to avoid
double-counting the impact of individual critical sections. Lastly,

4

we observe that all m processors are busy whenever a job is
delayed without incurring direct pi-blocking.

Lemma 3: Under all considered protocols, and also in the
absence of a progress mechanism, there are m jobs scheduled
while a job incurs indirect pi-blocking, preemption pi-blocking,
or any type of interference.

Proof: Suppose not. Then there exists a time t at which fewer
than m jobs are scheduled while a job Ji incurs indirect pi-
blocking, preemption pi-blocking, or any type of interference.
Since G-FP scheduling is work-conserving, if Ji is not scheduled
while there are fewer than m jobs scheduled at time t, then Ji is
suspended at time t. There are two cases to consider.

Case 1: Ji is waiting for a resource that is held by another job
Ja (a 6= i) at time t. Then Ja is ready at time t. Since there are
fewer than m jobs scheduled at time t, Ja is scheduled at time t.
Then, by definition, Ji incurs direct pi-blocking. By Lemma 1,
Ji will not incur any other delay at time t. Contradiction.

Case 2: Ji is waiting for a resource `q not held by any job at
time t. Among the considered protocols, this is possible only
under the P-PCP, and only if |HPR(i , t)|+ |LPR(i , t)| ≥ αi,
where αi ≥ m in the considered (m,n)-configuration. There-
fore, there are at least m resource-holding, ready jobs that can
be dispatched at time t. However, by initial assumption, at least
one processor is idle. Contradiction.

Next, we introduce our main contribution: a unified G-FP
response-time analysis for tasks with shared resources.

V. A UNIFIED ANALYSIS FRAMEWORK

In contrast to conventional blocking analysis (e.g., [4, 12]),
we do not seek to manually identify and analyze an actual
worst-case scenario. Rather, we model the problem of finding
a safe response-time bound as a linear optimization problem
that can be solved using linear programming (LP). As part of
this LP formulation, we do not aim to identify a worst case, but
rather identify (and rule out) impossible scenarios. The resulting
optimal solution to our LP formulation is a safe upper bound on
the maximum response time across all schedules not shown to
be impossible, which includes any actually possible worst case.

To rule out impossible scenarios, we impose a number of
constraints that encode invariants that hold in any schedule under
G-FP scheduling and the respective analyzed locking protocols.
Although most of the constraints are simple, together they are
effective at eliminating pessimism. We begin by deriving a linear,
locking-protocol-agnostic response-time model for resource-
sharing tasks under G-FP scheduling, and then introduce the
constraints that form the core of our analysis in §V-B

A. Response Time in a Fixed Schedule

Consider an arbitrary, but fixed job Ji in an arbitrary, but fixed
G-FP schedule. To account for the delay that Ji incurs due to
different types of interference, we let IRx , ICx , and ISx denote the
total cumulative regular, co-boosting, and stalling interference,
respectively, that Ji incurs due to jobs of task Tx. To express
delays due to pi-blocking, we adopt the recently introduced
notion of “blocking fractions” [6].

Def. 2: Let <x,q,v be the vth request for resource `q by jobs
of Tx while Ji is pending, and let bx,q,vi be the actual amount

of pi-blocking incurred by Ji due to <x,q,v. The corresponding
blocking fraction is defined as Xx,q,v , bx,q,vi /Lx,q .

In other words, a blocking fraction Xx,q,v relates the actual
delay incurred by Ji to the maximum critical section length Lx,q ,
where Xx,q,v ≤ 1. For a given schedule, all blocking fractions
can be easily calculated, but they are generally unknown a priori.

As defined in §IV-A, there are different ways in which
a request causes pi-blocking. We hence introduce blocking
variables specific to each type of pi-blocking: we let XD

x,q,v,
XI
x,q,v , and XP

x,q,v denote the blocking fractions corresponding
to only direct, indirect, and preemption pi-blocking, respectively.
We further let BDx ,

∑
`q

∑Ni
x,q

v=1 Lx,q ·XD
x,q,v denote the total

direct pi-blocking that Ji incurs due to jobs of Tx, where N i
x,q

denotes the maximum number of requests for resource `q that
tasks of Tx can issue while Ji is pending. Analogously, we
define BIx and BPx to denote the total indirect and preemption
pi-blocking, respectively, incurred by Ji due to jobs of Tx.

Based on these definitions, Ji’s response time can be ex-
pressed as a simple linear function of the total pi-blocking and
interference parameters of all tasks.

Lemma 4: The cumulative length of all intervals during
which Ji is pending, not scheduled, and not incurring direct
pi-blocking is given by

ODi =
1

m
·

 ∑
Th∈τH

IRh +
∑
Tl∈τL

(
ICl + ISl +BIl +BPl

) .

Proof: Consider any job Jx that is scheduled at a time t at
which Ji is pending, not scheduled, and not subject to direct pi-
blocking. The following cases exist: either (a) x < i, or x > i. If
x > i, then either (b) πx(t) ≥ i, or πx(t) < i. And if πx(t) < i,
then either (c) Jx is not holding any resource at time t, or (d) Jx
is holding a resource at time t.

By definition, Jx causes Ji to incur regular interference in
case (a), stalling interference in case (b), co-boosting interfer-
ence in case (c), preemption pi-blocking in case (d) if Ji is ready,
and indirect pi-blocking in case (d) if Ji is suspended.

Therefore, while Ji is pending, not scheduled, and not subject
to direct pi-blocking at time t, other jobs are scheduled for a total
of
∑
Th∈τH IRh +

∑
Tl∈τL(ICl + ISl +BIl +BPl) time units. By

Lemma 3, there are m tasks scheduled while Ji incurs indirect
or preemption pi-blocking, or any type of interference. Thus∑
Th∈τH IRh +

∑
Tl∈τL(ICl + ISl +BIl +BPl) = m ·ODi .

Lemma 4 allows us to characterize Ji’s response time.
Lemma 5: Ji’s response time is bounded by

Ri = ei + ODi +
∑
Tx∈τ i

BDx . (1)

Proof: At any point in time while Ji is pending, Ji is either
(i) scheduled, (ii) not scheduled and not incurring direct pi-
blocking, or (iii) not scheduled and incurring direct pi-blocking.
By definition, ei bounds the duration of (i). By Lemma 4, ODi

bounds the duration of (ii). Further
∑
Tx∈τ i BDx bounds the

duration of (iii). The claim follows.

B. An LP-based Response-Time Bound
Eq. (1) does not immediately yield a practical schedulability

test since the interference bounds and blocking fractions are

5

unknown a priori. We close this gap by formulating the problem
of finding a response-time bound as a linear optimization
problem. In particular, we use Eq. (1) as the maximization
objective and interpret all blocking fractions XD

x,q,v, XI
x,q,v,

and XP
x,q,v as variables with domain [0, 1], and all interference

bounds IRx , ICx , and ISx as variables with domain [0,∞).
In the following, we establish constraints that encode invari-

ants valid in any possible schedule, thereby guiding the LP
solver to disregard variable assignments that reflect impossible
schedules. We first present generic constraints valid under
any protocol, followed by PI-, queue-, and protocol-specific
constraints required for the analysis of the PIP and the FMLP,
the two best-performing protocols in our evaluation (§VI). We
further present the analysis of uncontrolled priority inversion,
which has not been studied in prior work. Due to space con-
straints, the full analysis of the remaining protocols is provided
as an extended tech report [29].
Generic constraints. A task’s workload, i.e., the gross amount
of processor cycles used by its jobs while Ji is pending, implies
an upper bound on the total delay that it causes. In prior work [3],
Bertogna and Cirinei derived the following upper bound on the
workload of any sporadic task, which we use in Constraint 1.

Def. 3 (Bertogna et al.’s slack-aware workload bound [3]):
During an interval of length Ri, task Tx’s workload bound is

Wx(Ri) = Nx(Ri) · ex +

min(ex, Ri + dx − ex − sx −Nx(Ri) · px),

where sx = dx −Rx and Nx(Ri) =
⌊
Ri+dx−ex−sx

px

⌋
.

Since a task causes pi-blocking or interference only when
scheduled, Def. 3 implies the following constraint.

Constraint 1: In any G-FP schedule of τ :

∀Tx ∈ τ i : IRx + ICx + ISx +BDx +BIx +BPx ≤Wx(Ri).

Proof: By Lemma 2, Tx causes Ji to incur at most one type
of delay at any point in time. By definition, any Tx causes pi-
blocking or interference only while executing. By Def. 3, Tx
executes for at most Wx(Ri) time units while Ji is pending.

Next, we bound the contribution of any single task to ODi .
Constraint 2: In any G-FP schedule of τ :

∀Tx ∈ τ i : IRx + ICx + ISx +BIx +BPx ≤ ODi .

Proof: By Lemma 4, ODi characterizes the cumulative
duration while Ji is pending, not scheduled, and not subject
to direct pi-blocking. By Lemma 2, any job causes at most one
type of delay at a time. Therefore, for the inequality to be invalid,
there must exist a time t at which a job Jx causes Ji to incur
some type of interference, indirect pi-blocking, or preemption pi-
blocking while Ji is either scheduled, not pending, or incurring
direct pi-blocking at time t. Clearly, Ji does not incur any delay
if it is scheduled or not pending at time t. By Lemma 1, a job that
incurs direct pi-blocking cannot incur any other type of delay at
the same time. The claim follows.

Recall from §IV-B that the different types of pi-blocking are
mutually exclusive. We express this property as follows.

Constraint 3: In any G-FP schedule of τ :

∀Tx ∈ τ i, ∀`q, ∀v : XD
x,q,v +XI

x,q,v +XP
x,q,v ≤ 1.

Proof: Suppose not: then there exists a schedule in which a
request causes multiple types of pi-blocking at the same time.
By Lemma 2, this is impossible.

Constraint 3 is instrumental in limiting pessimism because it
prevents counting any request more than once. Next, we rule out
stalling interference for tasks that do not share resources.

Constraint 4: In any G-FP schedule of τ :∑
∀`q

Ni,q = 0 =⇒
∑
Tx∈τL

ISx = 0.

Proof: Recall that Ji incurs stalling interference due to a job
Jx if both Jx has an equal or lower effective priority and Jx
is scheduled while Ji is pending but not scheduled (and not
directly blocked), which under G-FP scheduling is possible only
if Ji is suspended. Since Ji does not request any resources, it
does not suspend, and hence cannot incur stalling interference.

Finally, we impose a trivial constraint to encode that no task
is directly pi-blocked due to a resource that it does not request.

Constraint 5: In any G-FP schedule of τ :

∀`q s.t. Ni,q = 0 :
∑
Tx∈τ i

Ni
x,q∑
v=1

XD
x,q,v = 0.

Constraints 1–5 apply to all considered protocols. Next, we
establish constraints that apply only to PI-based protocols.
PI-specific constraints. First, we note that co-boosting inter-
ference, which is specific to RSB, does not arise under PI.

Constraint 6: In any G-FP schedule of τ under PI:

∀Tx ∈ τL : ICx = 0.

Proof: Under PI, the effective priority of a job is elevated
only if it is holding a (contested) resource. By definition, a
job causes co-boosting interference only if it has an elevated
effective priority while not holding a resource (recall §IV-A).

In preparation of the next constraint, we first make two simple
observations about the effective priorities of scheduled jobs.

Lemma 6: The effective priorities of ready jobs are unique
under all considered PI-based protocols.

Proof: Follows from the fact that base priorities are unique:
for two ready jobs to have the same effective priority under PI,
they both must hold a resource requested by the same job. Since
jobs request at most one resource at a time, this is impossible.

Lemma 6 implies that only jobs with higher effective priority
are scheduled when Ji incurs indirect or preemption pi-blocking.

Lemma 7: Under PI, if Ji incurs indirect or preemption pi-
blocking at time t, then each of the m jobs scheduled at time t
has an effective priority exceeding the base priority of Ji.

Proof: If Ji incurs indirect pi-blocking at time t, then it
is directly delayed by another job Ja that is ready, but not
scheduled. Thus no job with effective priority lower than πa(t)
is scheduled. Due to PI, πa(t) ≤ i. By Lemma 6, the effective
priorities of ready jobs are unique. There are thus m jobs with
effective priority exceeding πa(t) ≤ i scheduled at time t.

If Ji incurs preemption pi-blocking at time t, then it is ready
and not scheduled at time t. Thus no job with effective priority
lower than i can be scheduled at time t. Since by Lemma 6

6

effective priorities of ready jobs are unique, there are m higher-
effective-priority jobs scheduled at time t.

From Lemmas 6 and 7, we can infer that the m tasks
with highest base priorities do not incur indirect pi-blocking,
preemption pi-blocking, or any type of interference under PI.

Constraint 7: In any G-FP schedule of τ under PI:

i ≤ m =⇒ ∀Tx ∈ τ i : IRx + ICx + ISx +BIx +BPx = 0.

Proof: Suppose not. Then there exists a time t at which Ji is
pending, not scheduled, and not subject to direct blocking.

Case 1: If Ji is ready at time t, then under G-FP scheduling
there must exist m ready jobs with effective priorities exceeding
Ji’s base priority; however, this is impossible because effective
priorities are unique (Lemma 6) and since i ≤ m.

Case 2: If Ji is suspended and waiting for a resource held
by a job Ja, then Ja is ready, but not scheduled (otherwise Ji
would incur direct pi-blocking), and hence Ji incurs indirect
pi-blocking at time t. By Lemma 7, this requires the presence
of m ready jobs with effective priorities exceeding Ji’s base
priority; as in Case 1, this is impossible.

Case 3: Finally, if Ji is suspended and waiting for a resource
not held by any job, which among the considered protocols
is possible only under the (m,n)-configured P-PCP, then
|HPR(i , t)| + |LPR(i , t)| ≥ n (recall that αi = n if i ≤ m).
Then all tasks, including Ti, are holding resources and Ji is thus
ready at time t. Contradiction.

A constraint for FIFO queues. We first consider FIFO queues,
which are simpler to analyze as they provide starvation freedom.

Constraint 8: When using FIFO queues:

∀`q, ∀Tx ∈ τ i :

Ni
x,q∑
v=1

XD
x,q,v ≤ Ni,q.

Proof: In a FIFO queue, a request is directly delayed only by
earlier-issued requests. Consequently, since jobs issue at most
one request at a time, each time that Ji requests a resource, each
other task can directly block Ji at most once.

Next, we consider direct blocking in priority queues.

Constraints for priority queues. To begin with, we constrain
direct blocking due to lower-priority tasks, which is trivially
bounded by the number of requests issued by Ji.

Constraint 9: When using priority queues:

∀`q :
∑
Tx∈τL

Ni
x,q∑
v=1

XD
x,q,v ≤ Ni,q.

Proof: When conflicting requests are satisfied in priority order,
each time Ji requests a resource `q, at most one request from
lower-base-priority tasks directly delays Ji. Hence, for each
resource `q , at most Ni,q requests for `q of tasks with lower base
priority cause Ji to incur direct pi-blocking.

Constraining direct pi-blocking by higher-priority tasks is
considerably more involved since priority queues permit star-
vation of lower-priority requests. As a result, the analysis of
higher-priority blocking resembles uniprocessor response-time
analysis: a starving low-priority lock request will be satisfied

only when there is no more higher-priority contention. To this
end, we require a bound on the maximum resource-holding time.

Def. 4: We let Hx,q denote a bound on the maximum con-
tested resource-holding time of Tx, which is the maximum
duration that any job Jx holds a resource `q while Ji is waiting
to acquire `q. If Nx,q = 0, then trivially Hx,q = 0; otherwise,
Hx,q depends on the employed progress mechanism.

We begin by boundingHx,q under PI. Let sr ix denote the set of
resources used by task Tx that have priority ceilings higher than
the base priority of Ti, i.e., sr ix = {`q|Nx,q 6= 0 ∧Π(`q) < i}.

Lemma 8: Under PI, the maximum contested resource-
holding time is bounded by Hx,q = Lx,q if x ≤ m, and by
the least positive solution (if any) of the equation

Hx,q = Lx,q +
1

m

∑
h<y

Wh(Hx,q) +
∑

l>y∧l 6=z

∑
`u∈sry

l

Lx,ql,u


if x > m, where y = min(x, i), z = max(x, i), and Lx,ql,u =
ηl(Hx,q) ·Nl,u · Ll,u.

Proof: While holding `q, Jx is ready. If x ≤ m, Jx is
scheduled as it has one of the m highest effective priorities and
since effective priorities of ready jobs are unique (Lemma 6). Jx
thus holds `q for at most Lx,q time units.

If x > m, then Jx can be preempted while holding `q, either
due to regular interference or due to preemption pi-blocking.
Since Ji is waiting for `q , πx(t) ≤ min(x, i) = y due to PI.

Thus, while Ji is waiting for Jx to release `q, (i) only tasks
with base priority higher than y cause regular interference for Jx,
and (ii) only tasks with base priority lower than y and effective
priority higher than y cause preemption pi-blocking.

Regarding (i), by Def. 3, jobs with base priorities higher than
y execute for at most

∑
h<yWh(Hx,q) time units during an

interval of length Hx,q .
Regarding (ii), jobs other than Ji and Jx with base priorities

lower than y execute — while holding resources with priority
ceilings higher than y — for at most

∑
l>y∧l 6=z

∑
`u∈sry

l
Lx,ql,u

time units during an interval of length Hx,q .
By Lemma 3, there are m jobs scheduled whenever Jx

incurs regular interference or preemption pi-blocking. Thus,
1
m

(∑
h<y E

x,q
h +

∑
l>y∧l 6=z

∑
`u∈sry

l
Lx,ql,u

)
bounds the time

in which Jx is not scheduled while Ji is waiting for Jx to release
`q . In addition, Jx uses `q for at most Lx,q time units.

Next, we establish a bound Hx,q under RSB, where resource-
holding jobs are priority-boosted in FIFO order.

Lemma 9: Under RSB, Hx,q is bounded by

Hx,q = Lx,q +
∑

Ta∈τ\{Tx,Ti}

max
`u 6=`q

{La,u}.

Proof: Under RSB, resource-holding jobs are priority-boosted
in order of request-segment start time. A job Jx holding a
resource `q that Ji is waiting for is thus priority-boosted after
each task in τ \ {Tx, Ti} has completed a critical section (not
pertaining to `q, which is held by Jx). Since under RSB the
priority-boosted resource holder is always scheduled, Jx is
delayed for at most

∑
Ta∈τ\{Tx,Ti}max`u 6=`q{La,u} time units

before using `q for at most Lx,q time units itself.

7

Finally, we bound Hx,q in the absence of a progress mech-
anism. In the absence of a progress mechanism, lock-holders
may be preempted at any time by newly released higher-priority
jobs regardless of the priority of any waiters, which can cause
prolonged contested resource-holding times.

Lemma 10: In the absence of a progress mechanism, the
maximum contested resource-holding time is bounded by
Hx,q = Lx,q if x ≤ m, and, if x > m, by the least positive
solution (if any) of the equation

Hx,q = Lx,q +
1

m
·
∑

h<x∧h6=i

Wh(Hx,q).

Proof: In the absence of a progress mechanism, πx(t) = x
at all times that Jx is pending. If x ≤ m, Jx is scheduled as it
has one of the m highest base priorities. Jx thus holds `q for
at most Lx,q time units. If x > m, then Jx can be preempted
while holding `q , but only due to regular interference by higher-
priority jobs (other than Ji, which is suspended). By Def. 3, jobs
(other than Ji) with base priorities higher than x execute for
at most

∑
h<x∧h6=iWh(Hx,q) time units during an interval of

length Hx,q . The claim follows analogously to Lemma 8.
Under RSB, each Hx,q can be computed directly. Under PI

and in the absence of a progress mechanism, fixed-point searches
are required to determine Hx,q for all but the m highest-priority
tasks. If all bounds can be determined, the maximum time that
Ji waits due to a single request can be bounded as follows.

Lemma 11: Suppose Ji issues a request for resource `q at
time t0, and acquires `q at time t1. If access to `q is serialized
with a priority queue, then t1 − t0 < Wi,q,, where Wi,q is the
least positive solution less than di (if any) of the equation:

Wi,q = 1 + max
Tl∈τL

{Hl,q}+
∑

Th∈τH

ηh(Wi,q) ·Nh,q ·Hh,q.

Proof: When using priority queues, each time Ji issues a re-
quest for `q , it is delayed by at most one request for `q issued by
a job with lower base priority. Thus, maxTl∈TL{Hl,q} bounds
the delay Ji incurs when requesting `q due to requests from
lower-priority jobs. For each higher-base-priority task Th, there
are further at most ηh(Wi,q) jobs while Ji is waiting to access
`q , each of which issues at most Nh,q requests for `q . Such jobs
thus hold `q for at most

∑
Th∈τH ηh(Wi,q) ·Nh,q · Hh,q time

units in an interval of length Wi,q . The claim follows.
If a wait-time bound Wi,q < di can be found via a fixed-point

search, it is possible to constrain direct pi-blocking.
Constraint 10: When using priority queues:

∀Tx ∈ τH , ∀`q :

Ni
x,q∑
v=1

XD
x,q,v ≤ Ni,q · ηx(Wi,q) ·Nx,q.

Proof: By Lemma 11, the maximum per-request delay of Ji
is bounded by Wi,q. Thus, at most ηx(Wi,q) jobs of task Tx
compete for `q while Ji is waiting to acquire `q once. Hence,
across all of Ji’s Ni,q requests for `q, Ji is directly blocked by
at most Ni,q · ηx(Wi,q) ·Nx,q requests by jobs of Tx.

Since Wi,q is typically short (relatively to typical period
lengths), quite often ηx(Wi,q) = 1, which limits the pessimism
arising from the potential for starvation in priority queues.

Protocol-specific constraints. We first observe that stalling
interference arises neither under the PIP nor the FMLP.

Constraint 11: In any PIP or FMLP schedule of τ :

∀Tx ∈ τL : ISx = 0.

Proof: Suppose not. Then there exists a schedule and a time
t such that a job Jx, where πx(t) ≥ i, is scheduled while Ji is
pending, not scheduled, and not subject to direct pi-blocking.

If Ji is ready and not scheduled, then no job with effective
priority lower than Ji’s effective priority is scheduled under G-
FP scheduling. Further, according to Lemma 6, while Ji is ready,
no other job has the same effective priority. Thus Jx will not
cause Ji to incur any delay while Ji is ready and not scheduled.

If Ji is suspended and not subject to direct pi-blocking, then,
under the PIP or FMLP, Ji incurs indirect pi-blocking. Thus, by
Lemma 7, there are m jobs with effective priorities higher than
Ji scheduled at time t. Contradiction.

The next two constraints limit indirect and preemption pi-
blocking under the PIP and the FMLP. We begin with the PIP.

Constraint 12: In any G-FP schedule of τ under the PIP:

∀`q :
∑
Tx∈τL

Ni
x,q∑
v=1

XI
x,q,v +XP

x,q,v ≤
∑

Th∈τH

N i
h,q.

Proof: Under the PIP, to cause indirect or preemption pi-
blocking, a lower-base-priority job must inherit the priority of
(and thus directly block) a job of a task with base priority higher
than Ji. Since priority queues are used, each request of a higher-
priority task is directly blocked by at most one lower-priority
request. Thus, at most

∑
Th∈τH N i

h,q lower-priority requests for
`q cause Ji to incur indirect or preemption pi-blocking.

Analogous to Constraint 12, we impose a constraint for the
FMLP based on the combination of PI and FIFO queuing.

Constraint 13: In any G-FP schedule of τ under the FMLP:

∀Tx ∈ τL, ∀`q :

Ni
x,q∑
v=1

XI
x,q,v +XP

x,q,v ≤
∑

Th∈τH

N i
h,q.

Proof: Under the FMLP, in order to cause Ji to incur indirect
or preemption pi-blocking, a lower-base-priority job must inherit
the priority of a job of a task with base priority higher than Ji.
Since FIFO queues are used, each request of a higher-priority
task is directly blocked at most once by each lower-priority
task. As there are at most

∑
Th∈τH N i

h,q higher-base-priority
requests, each lower-priority task causes Ji to incur indirect or
preemption pi-blocking at most

∑
Th∈τH N i

h,q times.
Finally, we consider the case of priority- and FIFO-ordered

locks without any progress mechanism.
Constraints for uncontrolled priority inversion. By design,
the unified analysis framework introduced in §IV and §V-A does
not make any assumptions regarding protocol-specific rules. In
particular, it does not assume that a progress mechanism such as
PI or RSB is employed. Our analysis can hence be instantiated
even in the absence of a progress mechanism simply by leaving
out all PI-, RSB-, and protocol-specific constraints.

Furthermore, any delays that arise under PI and RSB as a side
effect of raised effective priorities can be ruled out.

8

Constraint 14: In any G-FP schedule of τ in the absence of a
progress mechanism: ∀Tx ∈ τL : BIx +BPx + ICx = 0.

Proof: Recall from §IV-A that, to cause indirect pi-blocking,
preemption pi-blocking, or co-boosting interference, a lower-
priority task Tx ∈ τL must have an elevated effective priority.
However, in the absence of a progress mechanism, the effective
priority of a job is always equal to its base priority.

In our analysis, uncontrolled priority inversion manifests as
stalling interference: while Ji is waiting to acquire a resource
that is held by a lower-priority, preempted job Jl, jobs of tasks of
priority higher than l, but lower than i, may be scheduled for an
extended duration. Conversely, uncontrolled priority inversion
(and hence stalling interference) cannot be caused by tasks that
cannot preempt jobs that share resources with Ji.

Constraint 15: In any schedule of τ in the absence of a
progress mechanism:

∀Tx ∈ τL s.t.
∑
l>x

∑
Ni,q>0

Nl,q = 0 : ISx = 0.

Proof: By contradiction. Suppose a lower-priority job Jx
causes stalling interference although

∑
l>x

∑
Ni,q>0Nl,q = 0.

To cause stalling interference at time t, Jx must be scheduled
while Ji is pending but not scheduled. Since all jobs execute at
their base priority in the absence of a progress mechanism, this
is possible only if Ji is suspended while it waits to acquire a
resource `q held by another job Ja.

Since
∑
l>x

∑
Ni,q>0Nl,q = 0, it follows that a < x, and

since Ja holds `q, it is ready at time t. By initial assumption,
Jx causes stalling interference and hence is scheduled at time t.
Under G-FP scheduling, the higher-priority, ready job Ja is thus
scheduled at time t, too. However, this implies that Ji incurs
direct pi-blocking at time t, and hence, by Lemma 1, Ji does not
incur stalling interference at time t. Contradiction.

This concludes our analysis of the PIP, the FMLP, and
locks without a progress mechanism. Due to space constraints,
analogous constraints for the P-PCP, the FMLP+, and the PRSB
are provided in an extended tech report [29].

C. Instantiating the Response-Time Analysis
A response-time bound Ri for a task Ti ∈ τ can be obtained

with an LP solver by maximizing Eq. (1) subject to all applicable
constraints, as listed in Table II. However, a circular dependency
exists as the maximum number of possible requests N i

x,q , which
is required for each task Tx ∈ τ i, depends on both Ri and Rx.

This dependency can be resolved with an iterative fixed-point
search. Starting from initial values R(0)

j = ej for each Tj ∈ τ ,
an updated response-time bound R

(k+1)
j is repeatedly deter-

mined for each task by solving the LP based on the estimates
R

(k)
1 , . . . , R

(k)
n determined in the previous iteration. The fixed-

point search proceeds until either (i) a consistent fixed-point for
all response-time bounds is found, i.e., R(k+1)

j = R
(k)
j ≤ dj

for each Tj ∈ τ , or (ii) the preliminary response-time bound
for some task exceeds its deadline, i.e., after some iteration,
Rj > dj for some Tj ∈ τ . In case (i), the task set is deemed
schedulable; in case (ii), failure is reported.

The fixed-point search is guaranteed to terminate because
the analysis is monotonic with regard to response times: if the

Applicable Constraints

Protocol Generic Progress Queue Protocol

PIP 1–5 6, 7 9, 10 11, 12
FMLP 1–5 6, 7 8 11, 13
Priority (no progress) 1–5 14–15 9, 10 —
FIFO (no progress) 1–5 14–15 8 —

FMLP+ 1–5 16–22 8 23–25
PRSB 1–5 16–22 9, 10 26
P-PCP 1–5 6, 7 9, 10 27–31

TABLE II: Overview of constraint applicability. Constraints 16–31 are
provided in an extended tech report [29] due to space constraints.

response-time estimate Rx of any task Tx ∈ τ i increases, the
resulting bound Ri may grow as a result, but it cannot decrease
since Def. 3 and the bound ηx(Ri) = d(Rx +Ri)/pxe in the
definition of N i

x,q are monotonic in Rx.

D. Accuracy of the Analysis

It is worth to consider two notions of accuracy. First, the
LP variables (i.e., blocking fractions and interference bounds)
have continuous domains, whereas we assume discrete time
in our system model (e.g., typically processor cycles). Using
real-valued variables is a valid relaxation that always results
in safe bounds, but it can theoretically also result in an over-
approximation of a few time units — since the objective is to
maximize Eq. (1), adding integer constraints can result only in
lowered response-time bounds. Any negative impact from this
relaxation, however, is negligible compared to the pessimism
inherent in current global schedulability analysis techniques.

A second potential concern pertains to the “completeness”
of our analysis — we cannot preclude the possibility that
the discovery of additional constraints could result in further
improved blocking bounds. (In fact, the extensibility of the LP-
based analysis approach is one of its key features [6].) However,
the presented constraints encode invariants derived from the
mechanisms employed by the respective protocols, and we
strongly believe to have captured all major invariants.

Instead, we expect future improvements to come from refined
task models (e.g., the integration of control-flow information
such as critical sections on conditional branches or minimum
separation bounds between requests), from the integration of
workload-specific information (e.g., if only every second job
of a task accesses a certain resource), and from the analysis of
known arrival times of periodic tasks (e.g., where offsets could
be chosen such that jobs of certain tasks cannot conflict).

Finally, we note that the proposed unified analysis — with the
presented constraints, and despite the use of continuous variables
— is already more accurate than any of the prior approaches, as
demonstrated by our experiments, which we discuss next.

VI. EMPIRICAL COMPARISON

We implemented the presented LP-based analysis in Sched-
CAT [23], using the GNU Linear Programming Kit (GLPK) as
the underlying LP solver. Based on SchedCAT, we conducted
a schedulability study to (i) assess to which extent our new LP-
based analysis improves upon prior analyses and to (ii) identify
the protocols that perform best across a wide range of scenarios.

9

A. Experimental Setup
Our experimental setup resembles in large parts the design of

prior locking-related schedulability studies [5, 6, 16].
We considered two platforms with m ∈ {4, 8} processors.

For a given n ≥ m, we randomly generated n implicit-deadline
tasks according to the following procedure. A task’s period pi
was randomly chosen from log-uniform distributions ranging
over [10ms, 100ms] (homogeneous periods) or [1ms, 1000ms]
(heterogeneous periods). For each task, a utilization ui ∈ (0, 1]
was chosen according to an exponential distribution with a mean
value of either 0.1 (light) or 0.25 (medium), and the task’s WCET
ei was set to ei = pi ·ui (rounded to the next microsecond). Task
priorities were assigned using the DkC heuristic [10] and three
earlier heuristics recommended by Easwaran and Andersson for
use with the P-PCP [12]; a task set was deemed schedulable if it
was shown to be schedulable using any of the four heuristics.

The number of shared resources was varied across nr ∈
{m/4,m/2,m, 2m}. Critical sections were generated as fol-
lows: each task Ti requires each resource `q with probability
pacc ∈ {0.1, 0.25, 0.5}, and if Ti was chosen to access `q, then
Ni,q was chosen uniformly at random from {1, . . . , Nmax},
where the maximum number of critical sections per job was
varied across Nmax ∈ {1, 3, 5, 7, 10}. The maximum critical
section length Li,q was chosen uniformly from [1µs, 25µs]
(short), [25µs, 100µs] (medium), or [100µs, 500µs] (long). To
ensure that each task’s WCET is plausible, we ensured that
ei ≥

∑
`q
Ni,q · Li,q by increasing ei if necessary.

While these parameter choices admittedly do not represent
any specific workload, they were chosen to cover a wide configu-
ration space, including both high- and low-contention scenarios,
that is likely to encompass many real-world workloads.

For each of the 1,440 possible combinations of the considered
configuration parameters, we varied n ∈ {m, 12m} and, for
each n, generated at least 1,000 task sets. The schedulability
metric of each protocol and analysis combination is simply the
fraction of task sets that could be claimed schedulable under it.

We evaluated 12 different analyses: the seven LP-based
analyses proposed in this work, respectively for the PIP, P-
PCP, FMLP, FMLP+, PRSB, and two cases without progress
mechanism using either FIFO or priority queues (labeled “NP-
FIFO” and “NP-priority,” respectively); two prior analyses [12]
of the PIP and P-PCP (labeled “PIP-prior” and “P-PCP-prior,”
respectively); and two s-oblivious analyses of the FMLP [4, 5]
and OMLP [5, 8] (labeled “s-ob FMLP” and “s-ob OMLP,”
respectively). Finally, as an upper bound on achievable perfor-
mance, we included a hypothetical case in which no blocking
occurs (labeled “no blocking”) based on Guan et al.’s response-
time analysis for independent tasks [15]. Guan et al.’s test was
also used as the underlying test in the two s-oblivious analyses.

B. Results
Due to the large number of tested configurations, we focus

here on major trends. Figs. 2–5 show representative graphs that
exemplify our findings; the full data set is available online.3 To
reduce clutter, RSB results have been omitted in Figs. 2 and 3
and only LP-based analysis results are shown in Figs. 4 and 5.
All four graphs show results for the light utilization distribution.

3All results are available at http://www.mpi-sws.org/∼bbb/papers/data/rtss15.

Real-time locking protocols matter. Our results clearly show
that real-time locking protocols are essential under non-trivial
load, as evident in Figs. 2–5 by the wide gap between the no-
blocking upper bound and the two NP-FIFO and NP-priority
curves, which reflect uncontrolled priority inversion. In total,
the use of a progress mechanism shifts schedulability closer
to the no-blocking upper bound in 1,427 of the 1,440 tested
configurations, whereas uncontrolled priority inversion often
endangers temporal correctness even at low task counts (i.e.,
low system load and light contention). (In the other 13 cases,
schedulability is low anyway due to excessive contention.) While
this result is perhaps not surprising, to the best of our knowledge,
our work is the first to quantify the effect and to provide response-
time bounds despite uncontrolled priority inversion.
S-aware, LP-based analysis dominates. In 1,437 out of all
1,440 tested configurations, our LP-based analyses of the PIP and
the P-PCP outperform their respective conventional counterparts.
(In the remaining 3 cases, the workload is infeasible under
all analyses due to excessive contention.) For example, in
Fig. 3, more than 60% of the task sets with n = 20 tasks are
schedulable under the new PIP analysis, whereas less than 40%
are schedulable under the prior PIP analysis. Similarly, the new
P-PCP analysis outperforms the baseline in Figs. 2 and 3.

The improvement is equally apparent with regard to the
OMLP and the FMLP: in 1,323 out of 1,440 tested config-
urations, our s-aware analysis of the FMLP claimed (often
substantially) more task sets schedulable than either of the two
prior s-oblivious analyses. For example, in Figs. 2 and 3, the new
analysis for FMLP increases the supported task count by more
than 50%, compared to the prior s-oblivious FMLP analysis.

Interestingly, in 63 scenarios with very low contention, the
prior s-oblivious analyses still perform marginally better because
blocking is negligible in these cases, i.e., schedulability is
dominated by the underlying schedulability test. The s-oblivious
approach thus benefits from Guan et al.’s improved s-oblivious
analysis [15], whereas our LP-based analysis builds on Bertogna
and Cirinei’s earlier, less-accurate response-time analysis [3].

Finally, there even exist extreme cases (not shown here) in
which our LP-based analysis of uncontrolled priority inversion
performs (slightly) better than the prior analyses of the PIP (in
329 scenarios), the P-PCP (in 385 scenarios), and the FMLP and
OMLP (in 132 scenarios), which all benefit from PI.
PIP and FMLP perform best. Given that the proposed unified
analysis provides the most accurate results for all considered
protocols (if there is non-negligible contention), it enables a fair
comparison reflecting the best available analysis. And the results
are clear: in 1,427 out of 1,440 scenarios, either the PIP or the
FMLP is the best-performing protocol, often by a wide margin,
as evident in Figs. 2–5. Conversely, we found no configuration
in which any protocol exceeds the better of the two.

Whether the PIP or the FMLP performs best depends on the
type of task sets. Generally speaking, FIFO-based protocols
(e.g., the FMLP), which due to their starvation-free nature
enable tighter bounds for lower-priority tasks, perform better
than priority-based protocols (e.g., the PIP) if timing constraints
are mostly homogeneous, i.e., if the ratio of the maximum to
the minimum period is relatively small. Conversely, priority-
based protocols, which ensure lower bounds for higher-priority

10

http://www.mpi-sws.org/~bbb/papers/data/rtss15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

ra
ti

o
 o

f
sc

h
e
d
u
la

b
le

 t
a
sk

 s
e
ts

number of tasks

PIP
PPCP
FMLP

PIP-prior
PPCP-prior
s-ob FMLP
s-ob OMLP

no blocking
NP-FIFO

NP-priority

Fig. 2: Classic vs. LP-based analysis for m = 8, homogeneous
periods, short CS lengths, nr = 16, pacc = 0.5, and Nmax = 5.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

ra
ti

o
 o

f
sc

h
e
d
u
la

b
le

 t
a
sk

 s
e
ts

number of tasks

PIP
PPCP
FMLP

PIP-prior
PPCP-prior
s-ob FMLP
s-ob OMLP

no blocking
NP-FIFO

NP-priority

Fig. 3: Classic vs. LP-based analysis for m = 4, homogeneous
periods, medium CS lengths, nr = 4, pacc = 0.5, and Nmax = 5.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

ra
ti

o
 o

f
sc

h
e
d
u
la

b
le

 t
a
sk

 s
e
ts

number of tasks

PIP
PPCP
FMLP

FMLP+
PRSB

no blocking
NP-FIFO

NP-priority

Fig. 4: LP-based protocol comparison for m = 8, heterogeneous
periods, short CS lengths, nr = 8, pacc = 0.25, and Nmax = 5.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100
ra

ti
o
 o

f
sc

h
e
d
u
la

b
le

 t
a
sk

 s
e
ts

number of tasks

PIP
PPCP
FMLP

FMLP+
PRSB

no blocking
NP-FIFO

NP-priority

Fig. 5: LP-based protocol comparison for m = 8, homogeneous
periods, short CS lengths, nr = 8, pacc = 0.25, and Nmax = 5.

tasks, are preferable if the ratio is large. For example, the FMLP
performs best in Figs. 2, 3, and 5, where pi ∈ [10ms, 100ms],
while the PIP exceeds in Fig. 4, where pi ∈ [1ms, 1000ms].

In our experiments, the FMLP performed better than the PIP
more often than not: in the case of homogeneous (respectively,
heterogeneous) periods, the FMLP outperformed the PIP in 642
(respectively, 245) scenarios (out of 720 each), whereas the PIP
outperformed the FMLP in only 68 (respectively, 471) scenarios.
However, this may be an artifact of our task set generation
method and should not be understood as an absolute ranking.
Overall, our data shows both protocols to be competitive in a
wide range of scenarios, and to complement each other well.

P-PCP results do not justify the added complexity. Inter-
estingly, the PIP and the FMLP, which are the oldest and
the simplest considered protocols, dominate later proposals
designed to improve upon them. In particular, whereas the P-
PCP sometimes performs marginally better than the PIP under
the prior analysis (in 157 scenarios), under the new LP-based
analysis, the P-PCP never improves upon the PIP. In fact, the PIP
actually outperforms the P-PCP in 1,195 of the 1,440 tested cases
(e.g., in Figs. 2–5). The P-PCP’s added complexity, in terms of
analysis challenges and the required runtime mechanism, are
thus not justified. (To the best of our knowledge, the P-PCP has
not been empirically compared to the PIP in prior work.)

PI performs better than RSB. Finally, our data also clearly
shows that the FMLP+’s good performance under partitioned
scheduling [5–7] does not extend to G-FP scheduling: the
FMLP+ never outperformed the FMLP in our experiments.
The primary design goal of the generalized FMLP+ [7] for
global and clustered scheduling was asymptotic optimality [7];
however, given that it is empirically one of the best-performing
protocols under partitioned scheduling [5–7], we expected the

FMLP+ to perform better in our experiments. We attribute the
FMLP+’s relative weakness under G-FP scheduling to stalling
and co-boosting interference, which arise neither under the
simpler PI-based protocols PIP and FMLP (recall Table I),
nor under partitioned scheduling (as each core is scheduled
and analyzed individually, there is no parallelism). Intuitively
speaking, the partitioned locking problem requires more “heavy-
weight” solutions (the PI-based PIP and FMLP are ineffective
under partitioned scheduling), which, however, do not pay off
under G-FP scheduling. Given the challenges faced by the
FMLP+, it is no surprise that the other RSB-based protocol, the
PRSB, also failed to perform well (e.g., see Figs. 4 and 5).

In summary, from a pragmatic point of view, the PIP and the
FMLP warrant primary consideration under G-FP scheduling.

VII. RELATED WORK

Our basic analysis framework builds directly on Bertogna
and Cirinei’s classic multiprocessor response-time analysis [3]
for independent tasks and adds support for self-suspensions,
which is a straightforward extension since Bertogna and Cirinei’s
workload bound (Def. 3) trivially holds even if tasks self-suspend
(as previously realized by Easwaran and Andersson [12]). While
Guan et al. [15] later significantly improved upon Bertogna and
Cirinei’s analysis, using a technique developed by Baruah [2],
we unfortunately cannot incorporate Guan et al.’s refined bounds
in our framework as their analysis is inherently s-oblivious (i.e.,
Guan et al.’s analysis holds only if tasks never self-suspend [15]).

Liu and Anderson [17] recently proposed an s-aware anal-
ysis for global scheduling that realizes improved interference
bounds for computation tasks (that do not suspend) while still
permitting other tasks to suspend. However, their analysis is
computationally involved [17] and cannot be easily incorporated
into an LP; further, prior experiments [7, 17] have shown

11

Liu and Anderson’s analysis to perform well only for long
self-suspension times [17], but actually worse than s-oblivious
analysis in the context of semaphore protocols [7]. The problem
of integrating substantially better interference bounds [2, 15] into
our unified analysis framework remains an interesting challenge.

The first real-time locking protocols for uniprocessors, in-
cluding the PIP, are due to Sha et al. [24]. Subsequently, much
related work has targeted partitioned multiprocessor scheduling,
including the first multiprocessor real-time locking protocols,
namely the MPCP [21] and the DPCP [22] by Rajkumar et al.
A recent survey and comparison of semaphore protocols for
partitioned scheduling may be found in [6].

A review of all major real-time suspension-based locking
protocols for G-FP scheduling is provided in §III. One recent
protocol that we did not consider in detail is the LB-PCP [19], an
extension of the P-PCP. Upon closer analysis, we observed that
the LB-PCP does not rule out uncontrolled priority inversion in
certain corner cases (i.e., in the worst case, tasks are exposed
to extended stalling interference as in the absence of a progress
mechanism), which has since been confirmed [18].

Spin locks, a popular alternative to semaphores, have been
studied under partitioned [14, 28], global [4, 11], and clustered
scheduling [5]. Since tasks do not yield their processors while
waiting to acquire a spin lock, the resulting loss of processor
service and transitive delays must be accounted for, either
implicitly by WCET inflation [4, 5, 11, 14], which resembles
s-oblivious analysis, or explicitly [28], which resembles s-aware
analysis. In future work, it would be beneficial to explicitly
integrate busy-waiting (as in [28]) into our analysis (§V).

Several protocols for reservation-based scheduling [13]
and hybrid approaches such as clustered [20] and semi-
partitioned [1] scheduling have been proposed in recent years;
developing an LP-based analysis similar to our framework (§V)
for such hybrid approaches would be a useful extension.

Prior analyses of the PIP [12], FMLP [4, 5], and P-PCP [12]
have not considered nested critical sections; we have adopted
the same limitation in this work. Ward and Anderson [25, 26] re-
cently introduced the real-time nested locking protocol (RNLP),
a meta-protocol that adds support for fine-grained locking on
top of certain underlying non-nested protocols [25, 26]. To
our knowledge, of the analyzed protocols, only the FMLP+

is compatible with the RNLP, i.e., only the FMLP+ can be
integrated with the RNLP to support nested critical sections [7].

Most closely related to this paper are two prior LP-based
blocking analyses [6, 28]. While our unified analysis (§V)
follows roughly the same approach, it extends the technique
in several novel ways. In particular, our analysis is the first
to explicitly consider interference, the first to address global
scheduling, which requires a much more careful definition of
pi-blocking and interference (§IV-A), and the first of sufficient
generality to analyze uncontrolled priority inversion (§VI-B).

VIII. CONCLUSION

We have summarized the current state of the art in the area
of real-time semaphore protocols for G-FP scheduling (§III),
identified and carefully defined six distinct types of delay (§IV),
and proposed a novel, unified, LP-based, s-aware response-time
analysis applicable to all protocols (§V), which we have used

to conduct a large-scale, apples-to-apples comparison of all
major protocols (§VI). Interestingly, we found the two oldest
and simplest protocols, namely the PIP [24] and the FMLP [4],
to consistently perform best across a wide range of scenarios.

Numerous interesting avenues for future work exist, as
already mentioned in §V-D and §VII. Most pressingly, we
seek to support nested critical sections under the PIP and the
FMLP, which, however, is a fundamentally more challenging
problem [27] that will require new analysis approaches.

REFERENCES
[1] S. Afshar, F. Nemati, and T. Nolte, “Resource sharing under multi-

processor semi-partitioned scheduling,” in RTCSA, 2012.
[2] S. Baruah, “Techniques for multiprocessor global schedulability anal-

ysis,” in RTSS, 2007.
[3] M. Bertogna and M. Cirinei, “Response-time analysis for globally

scheduled symmetric multiprocessor platforms,” in RTSS, 2007.
[4] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson, “A flexible

real-time locking protocol for multiprocessors,” in RTCSA, 2007.
[5] B. Brandenburg, “Scheduling and locking in multiprocessor real-

time operating systems,” Ph.D. dissertation, The University of North
Carolina at Chapel Hill, 2011.

[6] ——, “Improved analysis and evaluation of real-time semaphore
protocols for P-FP scheduling,” in RTAS, 2013.

[7] ——, “The FMLP+: An asymptotically optimal real-time locking
protocol for suspension-aware analysis,” in ECRTS, 2014.

[8] B. Brandenburg and J. Anderson, “Optimality results for multipro-
cessor real-time locking,” in RTSS, 2010.

[9] ——, “The OMLP family of optimal multiprocessor real-time lock-
ing protocols,” Design Automation for Embedded Systems, vol. 17,
no. 2, pp. 277–342, 2013.

[10] R. Davis and A. Burns, “Improved priority assignment for global
fixed priority pre-emptive scheduling in multiprocessor real-time
systems,” Real-Time Systems, vol. 47, no. 1, pp. 1–40, 2011.

[11] U. Devi, H. Leontyev, and J. Anderson, “Efficient synchronization
under global EDF scheduling on multiprocessors,” in ECRTS, 2006.

[12] A. Easwaran and B. Andersson, “Resource sharing in global fixed-
priority preemptive multiprocessor scheduling,” in RTSS, 2009.

[13] D. Faggioli, G. Lipari, and T. Cucinotta, “The multiprocessor band-
width inheritance protocol,” in ECRTS, 2010.

[14] P. Gai, G. Lipari, and M. Di Natale, “Minimizing memory utilization
of real-time task sets in single and multi-processor systems-on-a-
chip,” in RTSS, 2001.

[15] N. Guan, M. Stigge, W. Yi, and G. Yu, “New response time bounds
for fixed priority multiprocessor scheduling,” in RTSS, 2009.

[16] K. Lakshmanan, D. De Niz, and R. Rajkumar, “Coordinated task
scheduling, allocation and synchronization on multiprocessors,” in
RTSS, 2009.

[17] C. Liu and J. Anderson, “Suspension-aware analysis for hard real-
time multiprocessor scheduling,” in ECRTS, 2013.

[18] G. Macariu, personal communication, April, 2015.
[19] G. Macariu and V. Cretu, “Limited blocking resource sharing for

global multiprocessor scheduling,” in ECRTS, 2011.
[20] F. Nemati, M. Behnam, and T. Nolte, “Independently-developed real-

time systems on multi-cores with shared resources,” in ECRTS, 2011.
[21] R. Rajkumar, “Real-time synchronization protocols for shared mem-

ory multiprocessors,” in ICDCS, 1990.
[22] R. Rajkumar, L. Sha, and J. Lehoczky, “Real-time synchronization

protocols for multiprocessors,” in RTSS, 1988.
[23] “SchedCAT: Schedulability test collection and toolkit,” http://www.

mpi-sws.org/∼bbb/projects/schedcat.
[24] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance protocols:

an approach to real-time synchronization,” IEEE Transactions on
Computers, vol. 39, no. 9, pp. 1175–1185, 1990.

[25] B. Ward and J. Anderson, “Supporting nested locking in multiproces-
sor real-time systems,” in ECRTS, 2012.

[26] ——, “Fine-grained multiprocessor real-time locking with improved
blocking,” in RTNS, 2013.

[27] A. Wieder and B. Brandenburg, “On the complexity of worst-case
blocking analysis of nested critical sections,” in RTSS, 2014.

[28] ——, “On spin locks in AUTOSAR: blocking analysis of FIFO,
unordered, and priority-ordered spin locks,” in RTSS, 2013.

[29] M. Yang, A. Wieder, and B. Brandenburg, “Global real-time
semaphore protocols: A survey, unified analysis, and comparison (ex-
tended version),” available at https://www.mpi-sws.org/∼bbb/papers,
MPI-SWS, Tech. Rep. MPI-SWS-2015-003, 2015.

12

http://www.mpi-sws.org/~bbb/projects/schedcat
http://www.mpi-sws.org/~bbb/projects/schedcat
https://www.mpi-sws.org/~bbb/papers

	Introduction
	Assumptions and Notation
	Survey of Global Real-time Locking Protocols
	Priority Inversion and Interference
	A Precise Categorization of Locking-Related Delays
	Basic Properties

	A Unified Analysis Framework
	Response Time in a Fixed Schedule
	An LP-based Response-Time Bound
	Instantiating the Response-Time Analysis
	Accuracy of the Analysis

	Empirical Comparison
	Experimental Setup
	Results

	Related Work
	Conclusion

