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Abstract—In mixed-criticality systems, highly critical tasks
must be temporally and logically isolated from faults in lower-
criticality tasks. Such strict isolation, however, is difficult to ensure
even for independent tasks, and has not yet been attained if
low- and high-criticality tasks share resources subject to mutual
exclusion constraints (e.g., shared data structures, peripheral I/O
devices, or OS services), as it is often the case in practical systems.

Taking a pragmatic, systems-oriented point of view, this pa-
per argues that traditional real-time locking approaches are un-
suitable in a mixed-criticality context: locking is a cooperative
activity and requires trust, which is inherently in conflict with
the paramount isolation requirements. Instead, a solution based
on resource servers (in the microkernel sense) is proposed, and
MC-IPC, a novel synchronous multiprocessor IPC protocol for
invoking such servers, is presented.

The MC-IPC protocol enables strict temporal and logical isola-
tion among mutually untrusted tasks and thus can be used to share
resources among tasks of different criticalities. It is shown to be
practically viable with a prototype implementation in LITMUSRT

and validated with a case study involving several antagonistic fail-
ure modes. Finally, MC-IPC is shown to offer analytical benefits
in the context of Vestal’s mixed-criticality task model.

I. INTRODUCTION

In a mixed-criticality system [11, 30], real-time tasks of differ-
ent criticalities share a common hardware platform. Intuitively,
a task’s criticality expresses its “importance” to the survival or
correct operation of the system. For instance, in an unmanned
aerial vehicle (UAV), tasks related to maintaining stable flight
conditions are undoubtedly more critical than mission-related
functionality such as long-term path finding. In a certification
context, this intuition is reflected by the fact that lower-criticality
tasks are subject to less stringent (and less costly) certification
requirements than higher-criticality tasks.

A commonsense requirement for such mixed-criticality sys-
tems is that high-criticality tasks must be isolated from faults
such as software defects or other anomalous behavior in tasks of
lower criticality. Besides the intuitive observation that faults in
“less important” subsystems should not cause crucial function-
ality to fail, economic incentives also favor strict isolation. For
example, a typical certification requirement is that (otherwise)
low-criticality tasks must be certified at the level of assurance of
the highest-criticality tasks they can interfere with (e.g., see the
ISO 26262 and DO-178B standards). It is thus essential that the
employed real-time operating system (RTOS) ensures freedom
from interference—that is, strict temporal and logical isolation.

Unfortunately, ensuring such strict isolation can be challeng-
ing in practice. While solutions for isolating and analyzing
independent tasks are readily available (e.g., see [3, 11, 15, 24]),
the problem of isolating tasks that (must) share resources (e.g.,
such as I/O devices, drivers, or OS services) has remained

largely open to date [11]. Prior work on real-time resource
sharing has focused mainly on lock-based and non-blocking
synchronization techniques, which we deem unsuitable for use in
mixed-criticality systems, as is argued in more detail in Sec. II-C.

A much more promising approach is to encapsulate shared
resources in resource servers, as it is commonly done in
microkernel OSs. Such servers protect shared resources from
direct access, and tasks seeking to use the encapsulated resource
must instead invoke the server via a synchronous inter-process
communication (IPC) protocol. Resource servers provide logical
isolation, but by themselves are insufficient in a mixed-criticality
context—in addition, a predictable IPC protocol resilient to task
failures is needed to ensure strict temporal isolation even if tasks
of different criticalities contend for the same server.

The main contribution of this paper is MC-IPC, the first such
protocol. Crucially, the MC-IPC protocol enforces strict logical
and temporal isolation among untrusted tasks even

• if tasks attempt to monopolize a resource,
• if resource-sharing tasks malfunction in arbitrary ways, and
• if the identity, number, and criticality of tasks sharing a

resource is unknown or untrusted at design time.

Consequently, when certifying high-criticality tasks, only the
resource access layer (i.e., the IPC primitives and the resource
servers) must be certified at the high assurance level, but not all
other tasks that may use the same resources as high-criticality
tasks. In fact, under the MC-IPC protocol, even non-critical, non-
real-time, best-effort tasks may share resources with the highest-
criticality real-time tasks, as cooperative and timely behavior is
neither assumed nor required.

The MC-IPC protocol, defined in Sec. IV, is flexible: it
can be applied on multiprocessors under clustered scheduling
with non-uniform clusters (Sec. III) and supports both dy-
namic event-driven and static table-driven scheduling (Secs. III
and V). Furthermore, it is practical: we have implemented a
prototype (Sec. V) in LITMUSRT [2], and have validated the
prototype experimentally with a case study on an Intel multicore
platform (Sec. VI). Finally, the MC-IPC protocol can also be
integrated with Vestal’s mixed-criticality task model [30] to
allow for reduced pessimism when analyzing the worst-case IPC
delays experienced by lower-criticality tasks (Sec. VII).

To the best of our knowledge, this work is the first to consider
resource sharing in multiprocessor mixed-criticality systems
(see Sec. VIII for related work), and the first to experimentally
validate a mixed-criticality resource-sharing approach in a real
OS. Additionally, no prior approach to multiprocessor real-time
synchronization ensures temporal and logical isolation in the
presence of an unknown number of untrusted tasks.
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We begin with a discussion of how interference arises and
how it may be mitigated, from which we derive the requirements
for our solution, which we describe in Sec. IV.

II. REQUIREMENTS, RISKS, AND MITIGATION TECHNIQUES

Many competing definitions of “mixed-criticality” workloads
have been offered in recent years (see [11] for a comprehensive
survey). Originally formalized by Vestal [30] as a means to
reclaim, at design time, system capacity lost to the widespread
pessimism inherent at the highest criticality levels, sophisticated
task models that explicitly incorporate a notion of criticality
have seen a rapid proliferation and evolution [11].

In contrast, our focus in this work is of a more pragmatic,
systems-oriented nature. Rather than targeting a specific analyti-
cal model, we seek to identify and mitigate the risks that arise
when mutually untrusted tasks of varying criticalities share a
common hardware platform, as such risks must be mitigated at
runtime regardless of the analysis employed at design time.

A. The Need for Isolation
It stands to reason that, as a lowest common denominator,

all reasonable definitions of a mixed-criticality environment
mandate or assume isolation as a key requirement: if low-
criticality tasks could potentially affect the logical or temporal
correctness of higher-criticality tasks, then it must be carefully
established that they in fact do not, at the level of assurance of the
tasks at risk. That is, a lack of isolation at the OS level translates
into an increased certification burden, which runs counter to
the very idea of mixed-criticality systems—to avoid the need to
uniformly apply the highest standards to all tasks.

In addition to shielding high- from low-criticality tasks, it
can also be desirable to isolate tasks of equal criticality from
each other. In fact, logically isolating all tasks from each other
regardless of criticality already is a universally accepted best
practice, as witnessed by the pervasive use of process-based
isolation even in non-critical systems.

Similarly, temporally isolating tasks of equal criticality has
significant benefits. For one, increased compartmentalization
and isolation generally benefits resilience. Moreover, isolated
subsystems are easier to reason about (and hence certify) than
subsystems that are exposed to potential sources of interference,
regardless of whether the interference stems from sources of
higher, equal, or lower criticality. And finally, it is simply a
sound engineering principle to minimize trust among safety-
critical components whenever possible.

We therefore consider isolation, or freedom from interference,
to be the central requirement of mixed-criticality systems (as
also previously argued by Petters et al. [27], among others). In
the following, we examine how interference may arise and how
it can be prevented with existing techniques, both to extract a
realistic system model and to identify where these techniques
fail when sharing resources. We first consider independent tasks.

B. State of the Art: Isolating Independent Tasks
OS-based isolation techniques seek to prevent failures that

arise from co-locating untrusted tasks on a shared platform, that
is, failures that cannot arise if tasks execute in physical isolation
on dedicated systems.

Logical isolation is violated if a task can cause other tasks to
malfunction (e.g., to crash or to hang) by corrupting their state.
As already pointed out, logical isolation of independent tasks can
be readily ensured by placing each task in a separate protection
domain (i.e., address space or segment). We thus assume that all
tasks are encapsulated in this fashion.

Temporal isolation is violated if the execution of one task
delays another task in ways that were not anticipated a priori, or
if the expected magnitude of such delays is exceeded.

Delays fundamentally arise because of resource contention,
which may arise at three principal levels. All tasks are affected
by (i) implicit contention for micro-architectural resources (e.g.,
processor caches, memory bandwidth, etc.) and by (ii) explicit
contention for preemptable resources (i.e., primarily processor
time). Further, tasks that are not independent are also subject to
(iii) explicit contention for non-preemptable, serially-reusable
resources such as peripheral devices (I/O ports, sensors, etc.),
OS services (e.g., drivers, file systems, the network stack), or
shared data structures in general.

Concerning (i), implicit contention for micro-architectural
resources is a serious concern, and especially so on multicore
platforms, but it is beyond the scope of this paper. Nonetheless,
we note that the OS can lessen the impact of such contention
on commodity hardware using techniques such as page color-
ing [23, 31], performance-counter-based rate-limiting [32, 33],
and interference-aware scheduling approaches [13, 18, 26]. We
assume that tasks are isolated from implicit contention, either
by the hardware itself or by using such mitigation techniques.

Contention for processor time is the most-studied resource
conflict in real-time systems; numerous suitable schedulers
exist, including many specifically designed for mixed-criticality
systems [11]. However, no matter the policy, tasks cannot be
trusted to stay below their specified worst-case execution time
(WCET), which must be policed instead. The standard mitigation
technique is to employ reservation-based scheduling [24], where
each task is encapsulated in a reservation with a pre-determined
budget. Once the budget is exhausted, the task is prevented from
executing until the reservation’s budget is replenished according
to the rules of a reservation algorithm (see Sec. III). We adopt
reservation-based scheduling for our solution as it is effective
and easy to implement, and assume familiarity with the concept
on behalf of the reader.

To summarize, independent tasks can be adequately isolated
using existing, well-established techniques. Tasks that explic-
itly share resources subject to mutual exclusion requirements,
however, are substantially more difficult to isolate.

C. The Challenge: Isolating Resource-Sharing Tasks

Mutual exclusion is typically implemented using either spin
locks or semaphores, and both types of locks have received
significant attention in recent years (e.g., see [6, 7] for recent
surveys). Unfortunately, locks are fundamentally inappropriate
in the context of mixed-criticality systems, as locks imply trust.
Specifically, when tasks use locks to coordinate access to a
shared resource, they (implicitly) trust that (i) no task accesses
the shared resource without first acquiring the lock; (ii) every
task ensures that the resource is in a consistent state when the
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lock is released; and (iii) all tasks release the lock in a timely
manner (e.g., tasks must not “forget” to unlock the resource).

If (i) and (ii) are not met, then logical isolation cannot be
guaranteed. Temporal isolation is at risk if (iii) is violated.
Non-blocking approaches such as wait-free or lock-free data
structures do not depend on assumptions (i)–(iii), but still
require trusting that the consistency of a shared data structure
is respected and maintained by all sharing tasks. In short,
when using locks or non-blocking data structures, no isolation
guarantees can be made if individual tasks fail to cooperate.

However, cooperation cannot be assumed if resources are
shared among untrusted tasks. Instead, as mentioned in Sec. I,
access to shared resources must be fully mediated by trusted
resource servers. Rather than accessing a shared resource’s state
directly (as with regular locks), tasks instead invoke the server
with a synchronous IPC protocol (i.e., tasks are blocked while
awaiting the server’s reply) to carry out operations on their
behalf. Provided the server implements each supported operation
correctly (i.e., according to its specification, while rejecting ill-
formed, non-sensical, or unauthorized requests), this approach
immediately restores logical isolation: only the server must be
trusted, but not other tasks accessing the same server.

This, however, leaves one pressing open question: how can
temporal isolation be ensured when invoking a resource server?
That is, how can it be ensured by the OS that a task will actually
receive a reply within a predictable time frame if the maximum
number of tasks invoking the same server is untrusted or simply
unknown in advance? For example, central OS resources such
as the network stack or device drivers are likely to be shared
among many tasks of different criticalities—some resources may
even be required by non-real-time background tasks. Predictable
sharing of such resources requires a synchronous IPC protocol
that ensures strict temporal isolation.

Prior work has focused on priority- and FIFO-ordered wait
queues (e.g., TU Dresden’s Fiasco.OC microkernel [19] uses
priority queues to order IPC requests, and the Multiprocessor
Bandwidth Inheritance Protocol (MBWI) [12], which can
be easily adapted into an IPC protocol, uses FIFO queues).
Unfortunately, both queue types require strong trust assumptions.
A FIFO queue is obviously problematic if the number of tasks
is unknown, and while priority queues isolate a task against
interference from best-effort and lower-priority tasks, they also
allow for starvation: unpredictable delays arise if two or more
higher-priority tasks saturate a server. In particular, note that
“higher priority” does not necessarily imply “higher criticality”
since low-criticality tasks may have tighter timing constraints
than high-criticality tasks [5]. Thus, on multiprocessors, strict
temporal isolation cannot be achieved with either approach.

To conclude, commonsense isolation requirements strongly
suggest that mixed-criticality workloads should be deployed
in reservation-based environments in which all resources are
encapsulated in resource servers, but to date there does not exist
a method to invoke such servers without trusting the runtime
environment. In this paper, we remove these trust assumptions.

III. SYSTEM MODEL AND ASSUMPTIONS

In accordance with the requirements analysis presented in the
preceding section, we formalize the system model as follows.

To avoid needlessly restricting generality, these definitions are
chosen to be as broad as possible. A concrete implementation
with specific choices is presented in Sec. V.

The system consists of m identical processors that are
organized into K disjoint clusters, denoted C1, . . . , CK , of
sizes m1, . . . ,mK , respectively, where m =

∑
k mk. We

assume clustered scheduling in the model even though our
implementation and many systems in practice are based on
partitioned scheduling (where K = m and mk = 1 for each
Ck) because the MC-IPC protocol easily generalizes to mk > 1.

The main schedulable entities are n reservations R1, . . . , Rn.
Associated with each reservation Rj is a current budget Bj and
a current priority Yj . We assume that priorities are unique (i.e.,
any ties in priority are broken arbitrarily but consistently).

Each Ri is statically assigned to one of the clusters; we let
C(Rj) denote the cluster to which Rj is assigned. A reservation
contains one or more sporadic tasks. We let ei denote the WCET
and pi the period of task Ti; however, the task parameters and
the number of tasks are not necessarily known in advance. A
reservation is active if (one of) the contained tasks has a pending
(i.e., incomplete) job, and inactive otherwise. An incomplete
job is considered pending regardless of whether it is ready to
execute, waiting for IPC, or suspended for other reasons.

In each cluster Ck, there is a top-level scheduler that, at
each point in time t, selects the (up to) mk highest-priority
reservations with non-zero budget (as determined by each
reservation’s Yj and Bj) active at time t. A reservation Rj that is
selected for scheduling is assigned to a processor by the top-level
scheduler and must then dispatch (one of) its client(s).

There are further nr serially-reusable shared resources
`1, . . . , `nr

. Each such resource `q is encapsulated in a corre-
sponding resource server Sq that may be invoked by potentially
any task in the system. (Access control is an orthogonal issue
beyond the scope of this paper.) Each server supports a resource-
specific set of operations, is sequential, and serves one request
at a time. We let Lq denote the maximum operation length of
server Sq, that is, Lq bounds the maximum amount of budget
that Sq consumes to satisfy any single request, accounting both
for its own execution and any self-suspensions.

Servers benefit from bandwidth inheritance [12, 21, 29]:
while a task Ti in a reservation Rj is waiting for a server Sq to
reply, Sq is dispatched using Rj’s budget whenever Ti would
have been dispatched (i.e., when Rj is selected by the top-level
scheduler and Rj in turn attempts to dispatch Ti), unless Sq is
suspended or already executing on another processor.

In principle, a server could invoke other servers as part of
handling a request (i.e., requests could be nested), in which case
bandwidth inheritance must take effect transitively. However, the
analysis presented in Sec. IV does not yet extend to the nested
case; we therefore require in this paper that servers do not invoke
other servers and leave the nested case to future work.

In the interest of generality, the employed scheduling policy—
how a reservation Rj’s current priority Yj is determined—and
reservation rules—how and when Rj’s current budget Bj is
replenished—are intentionally left underspecified. The MC-IPC
protocol’s analytical guarantees (Sec. IV-B) depend on only the
following two assumptions:
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A1 an active reservation’s current priority Yj changes only
when its budget is exhausted or replenished; and

A2 an active reservation’s current budget Bj drains at unit
speed whenever the reservation is selected for service by
the top-level scheduler, regardless of whether it has a ready
task or server to dispatch.

Note that Assumption A2 covers both the regular execution
of contained tasks as well as bandwidth inheritance. Further,
if an active reservation is selected by the top-level scheduler
and none of its client tasks are ready (i.e., there are pending
jobs, but they are all waiting for IPC or are suspended) and
no server is inheriting its budget, then the reservation idles: it
consumes budget at unit speed without dispatching a task or
server, and background tasks or tasks from other reservations
may be dispatched instead as a form of slack reclamation.

We make no further assumptions about the specific type
of reservations employed, but note that these assumptions are
consistent with (for example) constant-bandwidth servers1 [3]
and table-driven scheduling. In particular, each Yj may be either
static, determined by EDF, or set by any other prioritization rule.

As a concrete example, our prototype (discussed in Sec. V)
supports a combination of table-driven scheduling and EDF-
based sporadic reservations. A table-driven reservation, also
called a time partition, is simply a set of fixed-length intervals
in a cyclicly repeating static schedule. Given a cycle time (or
schedule length) H , a table-driven reservation Rt is defined by
a set of r disjoint intervals (or slots) {[t1, t2), . . . , [t2r−1, t2r)},
where 0 ≤ t1 < t2 < . . . t2r−1 < t2r ≤ H . Conceptually,
Rt’s budget is replenished to Bt = t2x − t2x−1 at each point
in time t = l ·H + t2x−1 for l ∈ {0, 1, 2, . . .} and 1 ≤ x ≤ r.
A table-driven reservation has a fixed priority Yt higher than
any sporadic reservations. The slots of different table-driven
reservations assigned to the same processor must not overlap.

A sporadic reservation [24] is simply a sporadic task subject
to budget and period enforcement. Suppose such a reservation
Rj encapsulates a sporadic task Ti with an untrusted WCET ei
and period pi, which are to be policed. If Rj is inactive at time
t and Ti releases a job Ji, then Bj is set to ej and, under EDF,
Yj is set to t + pi. If Ji completes before Bj is exhausted, Rj

discards the remaining budget. After t, Bj is not replenished
again until time t+ pi, which prevents undue interference.

With these definitions in place, we next introduce the MC-IPC
protocol and establish its analytical properties.

IV. THE MC-IPC PROTOCOL

The synchronous mixed-criticality IPC protocol described in
this section is simple in structure, consisting mainly of a few
queues (i.e., linked lists), which is desirable as it is intended to
be implemented in the OS kernel and because IPC performance
is generally performance-critical in microkernels.

The MC-IPC protocol achieves resilience against fluctuations
in the number of clients or attempts to monopolize a server by
channeling all IPC requests through a three-level, multi-ended

1The term “server” is unfortunately overloaded in the real-time and OS
literature, as it is used for both reservation algorithms and resource servers.
To avoid ambiguity, we use the term “reservation” to refer to the scheduling
abstraction, unless when referring to well-established algorithms.

queue. First, contention is resolved within each cluster using a
priority and a FIFO queue, and then contention among clusters
is resolved using a final global FIFO queue.2

Additionally, requests of tasks that exhaust their reservation’s
budget while queued are immediately pruned (and must be
reissued when the budget is replenished). To avoid interference
from best-effort background tasks, such tasks are queued in
a separate queue (of arbitrary order) that is served only if no
real-time tasks are present. We provide a precise definition next.

A. Protocol Definition

A pseudo-code definition of the MC-IPC protocol is given in
Fig. 1. The pseudo-code and the following discussion assume
that there is a single task per reservation. If a reservation contains
more than one task, then at most one of it may invoke Sq at any
time (i.e., reservation-internal contention should be resolved
before it reaches Sq’s IPC gate). However, this restriction can
be omitted in the common case of single-core clusters (i.e., if
mk = 1 as under partitioned scheduling).

For each resource server Sq, there exists an IPC gate that
supports four principal operations: mc invoke , called by clients
to submit a request to the server, mc wait , called by the server
to receive a new request, mc reply , called by the server to
report the result of a finished request, and finally mc abort ,
which is called by the top-level scheduler when the reservation
of a waiting task exhausts its current budget. For the sake of
simplicity, explicit synchronization has been omitted from Fig. 1;
each of these operations is assumed to be atomic.

Each IPC gate consists of 2K+2 queues, K+1 task pointers,
and K flags. We explain their purpose in the context of the
operations referencing them, beginning with mc invoke .

1) mc invoke: When a task Ti in a reservation Rj located in
cluster Ck invokes the server Sq, the task is first enqueued into
the appropriate queue (lines 8–18), then the server is allowed to
consume Rj’s budget (line 19), and finally the task is suspended
to await the server’s reply (line 20).

Into which queue Ti is enqueued depends on its type (i.e., real-
time or best-effort) and on the number of currently contending
tasks. Best-effort tasks are simply enqueued into a global queue
called background queue (line 9), which can be of any order
(e.g., a FIFO queue is assumed here for simplicity).

Real-time tasks are inserted into one of three queues, depend-
ing on the current contention in Ck. By design, it is irrelevant
how many tasks in clusters other than Ck are contending for Sq .

In the best case, Ti is the only task in Ck invoking Sq, in
which case it immediately may become the local head [k] in Ck

(lines 11–12). The task referenced by local head [k] is the only
task in Ck that may contend on a global level. To do so, Ti is
inserted into the global queue , unless the flag local wait [k] has
been set to block it (lines 13–14). The purpose of local wait [k]
is to ensure that at most one task from each cluster causes
contention at the global level at any time; it is set when best-
effort tasks are served (line 27) or when a reservation’s budget
is exhausted (line 56), as explained below.

2Readers familiar with suspensions-oblivious real-time locking protocols
will recognize a similarity with the O(m) Independence-Preserving Locking
Protocol (OMIP) [7]; see Sec. VIII for a discussion of related work.
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1 struct MC IPC GATE: // one for each server Sq

2 task ref t currently served, local head[K]
3 fifo queue t global queue, background queue, head queue[K]
4 prio queue t tail queue[K]
5 bool t local wait[K] // initially false

7 mc invoke(Ti, Rj , Ck): // called by the client
8 if is background task(Ti):
9 add tail(Ti, background queue)

10 else:
11 if local head[k] = null :
12 local head[k]← Ti

13 if ¬local wait[k]:
14 add tail(Ti, global queue)
15 else if length(head queue[k]) < mk − 1:
16 add tail(Ti, head queue[k])
17 else:
18 add sorted(Ti, tail queue[k], with priority=Yj )
19 setup bandwidth inheritance(Sq , Rj )
20 notify server and await reply(Sq)

22 mc wait(request buffer): // called by the server Sq

23 await ¬empty(background queue) ∨ ¬empty(global queue)
24 if empty(global queue):
25 currently served← dequeue head(background queue)
26 let Ck = cluster of(currently served)
27 local wait[k]← true
28 else:
29 currently served← dequeue head(global queue)
30 receive request from(currently served, request buffer)

32 mc reply(reply buffer): // called by the server Sq

33 let Ti = currently served, Rj = reservation of(Ti)
34 let Ck = cluster of(Rj )
35 currently served← null , local wait[k]← false
36 if local head[k] = Ti:
37 move head to tail(tail queue[k], head queue[k])
38 local head[k]← dequeue head or null(head queue[k])
39 if local head[k] 6= null :
40 add tail(local head[k], global queue)
41 stop bandwidth inheritance(Sq , Rj )
42 send reply and notify client(Ti, reply buffer)

44 mc abort(Ti, Rj , Ck): // called by the top−level scheduler
45 if Ti ∈ tail queue[k]:
46 remove(Ti, tail queue[k])
47 stop bandwidth inheritance(Sq , Rj )
48 else if Ti ∈ head queue[k]:
49 remove(Ti, head queue[k])
50 move head to tail(tail queue[k], head queue[k])
51 stop bandwidth inheritance(Sq , Rj )
52 else:
53 if Ti ∈ gobal queue: // is Ti still waiting?
54 remove(Ti, global queue)
55 else:
56 local wait[k]← true
57 if local head[k] = Ti:
58 local head[k]← dequeue head or null(head queue[k])
59 move head to tail(tail queue[k], head queue[k])

Fig. 1. Pseudo-code definition of the MC-IPC protocol

If at most mk tasks from Ck are waiting (including Ti), then
Ti may directly enter head queue[k], the FIFO queue in Ck

(lines 15–16). Due to the check in line 15, head queue[k]
contains at most mk − 1 tasks. Once a task has entered
head queue[k], it cannot be delayed by later-issued requests in
its cluster due to the strong progress properties of FIFO queues.
This is exploited in Lem. 1 in Sec. IV-B.

Finally, if more than mk tasks from Ck are waiting for the
server, then Ti is enqueued into tail queue[k], the priority

queue in cluster Ck (lines 17–18). As the name implies, tasks in
this queue are furthest removed from being served. Over time,
tasks in tail queue[k] are propagated to head queue[k] in order
of decreasing priority as mc reply or mc abort remove tasks
from head queue[k]. This fact forms the basis of Lem. 2.

2) mc wait: When the server is ready to service a request,
it simply waits for either a background or real-time task to be
enqueued (line 23). A background task will be served only if no
real-time tasks are present (lines 24–27). Otherwise, Sq simply
serves the first task in global queue (line 29), which ensures that
all clusters are served in a round-robin manner. Importantly, if a
background task is selected for service, the flag local wait [k]
in the client’s cluster is set (line 27) to prevent a later-arriving
real-time task to directly enter the global queue (recall line 13).
The selected task is stored in currently served .

3) mc reply: When a request has been carried out, the
server clears currently served and local wait [k] (line 35).
Unless local head [k] has already been updated (by mc abort ,
see below) in the mean time (line 36), Sq moves the task in
tail queue[k] stemming from the highest-priority reservation
(if any) to the end of head queue[k] (line 37) and promotes
the head of head queue[k] (if any) to local head [k]. The
new local head [k] (if any) is added to global queue (line 40).
Finally, before resuming the task Ti that issued the just-finished
request (line 42), Sq becomes ineligible to consume the budget
of Ti’s reservation Rj (line 41).

4) mc abort: Finally, the correct action to take when a
request must be pruned depends on how far the task has
already progressed in the queue. It can simply be removed
from tail queue[k] (lines 45–47). If it is removed from
head queue[k] instead, it may be necessary to propagate a task
from tail queue[k] (lines 48–51). This is also necessary if the
task is removed from global queue, in which case it is also
necessary to select a new local head [k] (lines 53–59). If the
to-be-pruned task is already being served, then it can no longer
be aborted and pruned, and instead the flag local wait [k] is
set to block subsequent tasks in the same cluster from entering
global queue . This added delay is accounted for in Lem. 3.

These operations are simple in structure and can be easily
implemented in an OS kernel. Importantly, the queue sizes, their
structure, and propagation rules are carefully chosen to enable
the main analytical property of MC-IPC: the maximum amount
of budget expended by Rj depends only on mk, K, and Lq , and
is independent of n or the rate of requests, as we establish next.

B. Bounding the Maximum Budget Consumption

In the following analysis, we denote the requesting task as Ti,
Ti’s reservation as Rj , and the cluster to which Rj is assigned as
Ck. For simplicity, we further assume that Ti is the only client of
Rj , and that Rj does not exhaust its budget during Ti’s request—
tasks that are pruned due to budget exhaustion lose all progress
and must reissue their request, which resets the analysis.

We trace Rj’s budget consumption as Ti progresses through
the IPC gate’s queue structure. To this end,
• let t1 denote the time at which Ti invokes Sq ,
• let t2 denote the first point in time (on or after t1) at which
local wait [k] = false , where t2 ≥ t1,
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• let t3 denote the time at which Ti enters head queue[k],
where t3 ≥ t1,

• define t′3 as t′3 , max(t2, t3), and
• let t4 denote the time that Ti’s request is completed.

We initially make the simplifying assumption that no task
contending for Sq exhausts its budget and begin with [t′3, t4).

Lemma 1. If no task contending for Sq exhausts its budget (i.e.,
if local wait [k] = false) while Ti is waiting, then Rj drains at
most mk ·K · Lq budget during [t′3, t4).

Proof: Since local wait [k] = false during [t′3, t4), and
due to the strong progress guarantee of the two FIFO queues
head queue[k] and global queue that Ti traverses during
[t′3, t4), at most mk ·K − 1 requests can precede Ti’s request
after time t′3. Since Sq makes progress when Rj expends budget
(ensured by bandwidth inheritance [12]), Ti’s request has been
served after Rj has expended at most mk ·K · Lq budget.

Next, we bound the budget drain while Ti is in tail queue[k].

Lemma 2. If no task contending for Sq exhausts its budget (i.e.,
if local wait [k] = false) while Ti is waiting, then Rj drains at
most mk ·K · Lq budget during [t2, t

′
3).

Proof: By contradiction. If t2 = t′3 the claim follows
trivially, so assume t2 < t′3. Suppose there exists a time
tb ∈ [t2, t

′
3) such that at least mk · K · Lq budget has been

used by Rj during [t2, tb) and Rj is draining budget at time tb.
Since mk ·K · Lq budget was consumed during [t2, tb) and

since Sq makes progress whenever Rj drains budget (due to
bandwidth inheritance), at least mk · K requests were com-
pleted during that time. Further, since local wait [k] = false
throughout the interval, this implies that none of the tasks
enqueued at time t2 still remains in head queue[k]. Since Ti

still resides in tail queue[k] at time tb (by the definition of
time t3), this implies that the reservations of all tasks enqueued
in head queue[k] at time tb, and the reservation of the task
referenced by local head [k], had a higher current priority than
Rj when they entered head queue[k]. And by Assumption A1,
their priority has not changed. Since Ti is still in tail queue[k],
there are mk higher-priority active reservations in cluster Ck

at time tb. Hence the top-level scheduler did not select Rj for
scheduling at time tb, which thus also does not drain budget at
time tb (Assumption A2). Contradiction.

Finally, we consider the initial interval during which
local wait [k] = true (if at all), thereby blocking tasks in cluster
Ck from entering global queue .

Lemma 3. Rj drains at most Lq budget during [t1, t2).

Proof: Let Tx = currently served denote the task being
served at time t1. If local wait [k] = false at time t1, the claim
follows trivially. If t1 < t2, then Tx is either a background task
or it exhausted its reservation’s budget. Since Sq makes progress
whenever Ti’s reservation expends budget (due to bandwidth
inheritance), Tx’s request is completed after Rj consumed at
most Lq , at which point local wait [k] is reset.

Finally, we observe that the MC-IPC protocol shields Ti from
other tasks that exhaust their reservation’s budget.

Lemma 4. Rj’s total budget consumption does not increase if
another task Tx exhausts its budget while Ti is waiting.

Proof: If Tx is pruned from the IPC gate’s queues, then Ti’s
relative position either remains unchanged (if Tx was logically
behind Ti) or it advances towards becoming the currently
served task, which obviously does not increase Rj’s budget
consumption. If Tx cannot be pruned because its request is
already being served, then it preceded Ti’s request and would
have contributed towards Ti’s budget consumption even if Tx

had not exhausted its reservation’s budget mid-request: due to
idling (Assumption A2), Rj’s reservation drains budget even
while Sq is inheriting budget from Tx’s reservation.

This allows us to state the main MC-IPC theorem.

Theorem 1. Rj consumes at most (1 + 2mk ·K) · Lq units of
budget during [t1, t4) (i.e., during a single invocation of Sq).

Proof: By Lems. 1–3, Rj consumes at most Lq , mk ·K ·Lq ,
and mk · K · Lq units of budget during [t1, t2), [t2, t′3), and
[t′3, t4), respectively, assuming no budget exhaustion occurs
while Ti is waiting. By Lem. 4, Rj’s budget consumption does
not increase if other tasks exhaust their budget while Ti is
waiting. Hence Rj drains at most (1 + 2mk · K) · Lq budget
during Ti’s invocation of Sq , regardless of the requests or other
actions of any tasks in any other reservation.

C. Discussion

Theorem 1 provides a strong isolation property: it allows
the budget of critical real-time tasks to be dimensioned such
that no deadline will be missed, even when sharing resources
with untrusted tasks. Suppose task Ti is isolated in a sporadic
reservation Rj located in cluster Ck with a replenishment period
pi, Ti’s true WCET is ei, and further suppose that any of its jobs
invokes each Sq at most Ni,q times. Then, assuming the set of
admitted reservations in Ck is schedulable (i.e., Rj can always
consume its entire budget by its deadline), no job of Ti will miss
its deadline provided Ti’s reservation Rj has a budget of at least
ei +

∑nr

q=1 Ni,q · (1 + 2mk · K) · Lq. Note that the required
budget is independent of the runtime behavior of any other task
(i.e., which resources it accesses, and how often), and also of
the total number of tasks or reservations. MC-IPC thus enables
strict temporal and logical isolation despite resource sharing.

An important point to clarify is that the MC-IPC protocol does
not abort a request once it’s being serviced (as aborting an in-
process request may be impossible for certain resources such as
I/O devices). The parameter Lq is hence not a budget, but rather
a bound on the true maximum operation length (analogous to a
task’s WCET). We discuss in Sec. VII how different Lq estimates
may be used in the analysis of high- and low-criticality tasks.

Conveniently, no additional scheduling rules are required for
the MC-IPC to work correctly if there is more than one task in a
reservation. While we have focused on the case of a single task
per reservation, the MC-IPC analysis and the bound on budget
consumption due to IPC still hold in this case. (Other tasks in
the same reservation may of course consume additional budget,
which can be bounded with regular schedulability analysis.)

Finally, we note that it is advantageous to choose a uniform
cluster size c: if m1 = m2 = . . . = mK = c, and if m is an
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integer multiple of c, then K = m
c , in which case the required

budget reduces to ei +
∑nr

q=1 Ni,q · (1 + 2m) · Lq .
Next, we discuss a concrete implementation of MC-IPC under

partitioned scheduling (c = 1 and K = m). Whereas so far
our goal was to define MC-IPC without loss of generality, the
following discussion pertains to a specific configuration that we
consider to be of particular practical relevance.

V. PROTOTYPE IMPLEMENTATION

We implemented the MC-IPC protocol and a reservation-
based scheduler satisfying Assumptions A1 and A2 in
LITMUSRT 2014.2 [2, 6], a real-time extension of the Linux
kernel. We chose LITMUSRT as the basis for our prototype
since it already provides much of the required multiprocessor
scheduling support and due to our familiarity with it.

Since Linux (and hence LITMUSRT) is not a microker-
nel, it did not yet provide suitable IPC system calls. We
therefore added two system calls, litmus ipc invoke and
litmus ipc reply wait , to expose the corresponding MC-IPC
operations to real-time and best-effort applications. Mimicking
the L4 API, the latter system call implements both the mc wait
and mc reply operations as they are called in immediate
succession in the main server loop anyway. In our prototype, the
maximum message size is limited to 4096 bytes.

We implemented a partitioned, reservation-based scheduler
as a new scheduler plugin and added support for three tiers
of service: table-driven reservations for high-criticality tasks,
denoted as RH

j , sporadic reservations for low-criticality tasks,
denoted as RL

j , and support for background best-effort tasks.
The sporadic reservations support configurations with either

fixed or EDF-based priorities. (In the case-study reported in
Sec. VI, we configured all low-criticality reservations to use
EDF-based priorities.) The best-effort support shares the same
implementation, as best-effort tasks are in fact supported by
sporadic reservations with an effectively infinite deadline.

The high-criticality reservations are realized as typical cyclic
time partitions, as defined in Sec. III. While the reservation
budget is conceptually replenished at the start of each scheduling
slot, the budget is not actually explicitly tracked in the implemen-
tation. Instead, the remaining budget is implicitly determined by
the time remaining until the end of the current slot. While no
high-criticality reservation is active, low-criticality reservations
or best-effort tasks are scheduled instead.

We believe our choice—table-driven scheduling for high-
criticality reservations and event-driven scheduling for low-
criticality reservations—to reflect tradeoffs commonly made
in practice, which is to favor predictability and ease of vali-
dation for high-criticality tasks, and efficiency and flexibility
for low-criticality tasks. In particular, note that low-criticality
reservations can consume any unused budget of higher-criticality
reservations, as assumed by Vestal’s model [30].

Inspired by Steinberg et al.’s proposal [29] for implementing
bandwidth inheritance (on a uniprocessor), bandwidth inher-
itance was implemented as follows. When a task Ti in a
reservation Rj blocks on an IPC gate serviced by Sq, Rj

remains active and is kept in the ready-queue, and a bandwidth
inheritance marker is added to Rj’s client list to indicate that Sq

is a potential client of Rj . Thereafter, whenever Rj is selected
for service by the top-level scheduler, Sq is dispatched instead,
if it is ready and not already executing elsewhere. Conveniently,
LITMUSRT transparently supports process migrations in its
layer interfacing with Linux, which frees the top-level scheduler
from explicitly migrating servers across cluster boundaries.

If Sq is already executing elsewhere or suspended when Rj

attempts to dispatch it, then another local ready task (if any) from
a lower-priority reservation is dispatched instead. To comply
with the budget idling requirement stipulated by Assumption A2,
Rj’s budget is drained at unit speed even in this case.

A challenging aspect of implementing bandwidth inheritance
on multiprocessors is the check that is required when a server
Sq is preempted. In the interest of minimizing overheads, the
scheduler needs to quickly determine if Sq is currently eligible to
be dispatched on another processor, which depends on whether
there are reservations from which Sq is inheriting, and on
whether any of those reservations are currently the highest-
priority reservation on their assigned core. However, in our
implementation, the server is not actually aware of which
reservations it may currently inherit from. Instead, each core
maintains a sequence number of scheduling decisions. Whenever
a reservation Rj from which Sq may inherit finds Sq to be
unavailable, it stores the current sequence number in Sq’s IPC
gate. When Sq is preempted, a quick comparison of the stored
with the current sequence numbers for all cores will reveal
possible scheduling candidates: Sq can be scheduled only on
cores on which the sequence numbers still match. Servers that
resume from self-suspensions are handled similarly.

A slight departure from the protocol specification in Sec. IV
is an opportunistic improvement that takes effect when a request
of a task Ti is aborted due to a budget overrun of its reservation
Rj . Instead of canceling the request and returning an error
code to Ti, the request is actually transferred to the best-
effort background queue, which may allow Ti’s request to be
processed earlier than otherwise possible (if the server runs out
of other clients before Rj’s budget is replenished). When Rj’s
budget is replenished, then its request, if it is still pending, is
automatically reissued with its proper priority.

In total, the implementation of the MC-IPC primitive and
the supporting reservation-based scheduler added ≈3,700 lines
of code to the LITMUSRT kernel, and ≈340 lines of code to
LITMUSRT’s user-space library. Next, we report on a case
study that we conducted to test whether temporal isolation is
maintained as expected in the presence of malfunctioning tasks.

VI. CASE STUDY

To assess the practical efficacy of the MC-IPC approach,
we required a plausible workload that nonetheless is fully
configurable (i.e., a dummy application that allows to freely
choose WCETs, periods, the number of tasks and requests, etc.).

For this purpose, suppose a system subject to high integrity
requirements needs to collect data and forward it for further
processing such that the data stream cannot be replayed or
tampered with. For instance, such requirements may arise in
cyber-physical systems in the context of real-time surveillance
applications or in sensor feeds for safety-critical control systems.
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Each sample must be time-stamped, given a unique sequence
number, and cryptographically signed to ensure integrity and
freshness. However, to prevent leaking sensitive key material
in the case of vulnerabilities, the private keys should not be
accessible to all tasks, and especially not to low-criticality tasks.
Instead, only a simple, central key server Skey that is not exposed
to the network may access the private keys and provides a
service to sign packets. (Recent events surrounding the so-called
“Heartbleed” OpenSSL vulnerability [1] suggest that it is good
practice to retain key material in a separate process.)

The server Skey is a shared resource that must be accessed
by all data-collecting tasks, regardless of their criticality. In our
experiments, we measured the cost of invoking Skey when using
the MC-IPC protocol and two IPC protocol variants representing
the baseline in current systems: one using a FIFO queue like the
MBWI [12], denoted FIFO-IPC, and one using a priority queue
as in the Fiasco.OC microkernel [19], denoted PRIO-IPC.

A. Setup

We used an Intel x86-64 multicore platform with a Xeon E5-
2665 processor clocked at 2.4 GHz, of which we used m =
4 cores for the experiment. Intel’s “Turbo Boost” and power-
management-related sources of unpredictability were disabled.
We implemented Skey with OpenSSL and measured that creating
a 2048-bit RSA signature requires roughly Lkey = 2ms of
processor time on our platform.

With a cycle time of H = 100ms , we created a total of 14
reservations as follows:
• on core C1, we created a single high-criticality reservation

RH
1 in the window [0ms, 50ms);

• on core C2, we created two high-criticality reservations
RH

2 and RH
3 in the respective windows [0ms, 50ms) and

[50ms, 100ms);
• on core C3, we created a high-criticality reservation

RH
4 in [0ms, 50ms) and five low-criticality reservations

RL
5 , . . . , R

L
9 with a budget of 20ms and periods 100ms ,

150ms , 250ms , 500ms , and 1000ms , respectively; and
finally,

• on core C4, another five low-criticality reservations
RL

10, . . . , R
L
14 with parameters identical to RL

5 , . . . , R
L
9 .

Each reservation contained initially a single (simulated) data
acquisition task. Each job of such a task first acquired new
sensor data (simulated by reading from /dev/urandom) and
carried out some processing by repeatedly iterating over the
array holding the “sample.” The “sample” was then submitted—
with the MC-IPC, FIFO-IPC, or PRIO-IPC protocol—to Skey

to have it timestamped, assigned a sequence number, and signed.
Finally, after receiving the server’s reply containing the signature,
the task assembled the final packet (consisting of the data itself,
the timestamp, a sequence number, and the signature) and wrote
it to a datagram socket (simulated with a write to /dev/null).

In the PRIO-IPC and MC-IPC configurations, each reservation
further requires a priority, which we assigned as follows: best-
effort background tasks had the lowest priority, low-criticality
reservations were EDF-ordered, and the four high-criticality
reservations had fixed priorities in the order RH

1 < RH
2 <

RH
3 < RH

4 , where RH
4 has the highest priority.

In the following, we focus on task T1 in reservation RH
1 ,

which we use as the vantage point in this case study.

B. Anticipated Worst-Case Delays

Each of the three considered IPC protocols is predictable, in
the sense that the maximum budget drain can be bounded in
advance—however, with the FIFO-IPC and PRIO-IPC protocols,
only in the absence of failures. Thus, based on the maximum
operation length Lkey we derived the following bounds on the
maximum delay encountered by T1:
• with the MC-IPC protocol, according to Theorem 1, T1

should be delayed for at most (1 + 2m) · Lkey = 18ms;
• with the FIFO-IPC protocol, since there are n = 14 tasks

in total, T1 should be delayed for at most n ·Lkey = 28ms ;
• and with the PRIO-IPC protocol, since only the tasks in

two higher-priority reservations can overlap with RH
1 , each

of which issue only a single request per cycle, T1 should be
delayed for at most (2 + 1 + 1) · Lkey = 8ms (including
T1’s own request and one blocking lower-priority request).

Note that for a high-criticality reservation, the encountered delay
corresponds exactly to the amount of budget drained since high-
criticality reservations are never preempted. In the following, we
compare the anticipated delays with the actual measured delays.

C. Observed Delay in the Presence of Failures

We executed the task set with each IPC primitive ten times and
measured the delay encountered by T1 when invoking Skey . The
resulting scatterplots are shown in Fig. 2, where each data point
corresponds to a job of T1 (note the logarithmic scale). Each run
lasted for eight minutes and transitioned through eight phases in
which the environmental conditions changed, as described next.

1) Phase 1 (0s-60s): In the first minute, the system operates
normally. As can be seen in Fig. 2, the observed delay stays be-
low the predicted maxima with each of the three IPC protocols.

2) Phase 2 (60s-120s): On core C4, a task in a low-criticality
reservation with period 100ms malfunctions by entering an
infinite loop, sending requests to Skey as quickly as possible.
The distribution of observed delays is affected visibly under each
protocol due to the added contention; however, the predicted
worst-case is not exceeded: the worst case with FIFO-IPC
and MC-IPC is independent of request rates, and PRIO-IPC
shields high-priority tasks against lower-priority tasks. The
malfunctioning task is terminated after one minute.

3) Phase 3 (120s-180s): In the third minute, the system
is flooded with low-utilization, low-criticality reservations: on
each of the four cores, 16 additional low-criticality reservations
with a budget of 100ms and a period of 3000ms are launched.
While this overloads the system at the level of low-criticality
reservations, the high-criticality reservations are expected to be
unaffected as they have statically higher priority than any of
the low-criticality and best-effort reservations. However, even
though the new tasks operate correctly (i.e., they invoke Skey

only once per job), the large number of unexpected tasks causes
the predicted FIFO-IPC delay bound to be violated, as seen in
Fig. 2(b): the high-criticality task T1 is unexpectedly delayed
by low-criticality tasks, owing to a lack of temporal isolation.
Worse, such violations still occur (although less frequently) even
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(a) Observed delay with MC-IPC vs. predicted delay bound (18ms)
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(c) Observed delay with PRIO-IPC vs. predicted delay bound (8ms)

Fig. 2. Delay incurred by task T1 in reservation RH
1 when invoking Skey .

if the utilization of the newly arrived reservations is scaled down
to avoid overload (i.e., in the absence of an admission control
failure). In contrast, the MC-IPC worst-delay is independent of
n, and PRIO-IPC isolates T1 against lower-priority activity.

4) Phase 4 (180s-240s): Next, the high-criticality, high-
priority task in RH

4 malfunctions, effectively launching a denial-
of-service (DoS) attack against Skey . However, this has no
immediate ill effects: the worst case with FIFO-IPC and MC-
IPC is independent of request rates, and with PRIO-IPC, a single
malfunctioning higher-priority task does not cause starvation by
itself because two consecutive requests are still separated by a
small gap due to the system call overhead.

5) Phase 5 (240s-300s): However, in the fifth minute, a
second high-criticality task in reservation RH

2 malfunctions and
joins the task in RH

4 in flooding Skey with requests. The FIFO-
IPC and MC-IPC protocols remain unaffected, but the PRIO-
IPC protocol suffers catastrophic consequences, as evident in
Fig. 2(c): the observed delays reach 100ms , which shows that T1

overran its budget due to being starved by the flood of requests.
6) Phase 6 (300s-360s): After killing and restarting both

malfunctioning tasks, another failure occurs: “accidentally,” RH
4

launches 15 additional (correctly operating) tasks. Since RH
4 has

the highest priority, this drives RH
1 ’s budget consumption up to

≈ 32ms , well in excess of the anticipated worst case of 8ms .
With 15 additional tasks, actually up to (15 + 2 + 1 + 1) · Lkey

= 38ms delay could be possible; however, the theoretical worst
case is not encountered in this case.

As expected, delays under the FIFO-IPC protocol are also
significantly elevated, but stay below the predicted worst case,
again simply because the worst case is actually not encountered.

7) Phase 7 (360s-420s): Phase 7 is a combination of phases 4
and 6: the 15 unexpected tasks in RH

4 are still present, and
the task in RH

2 malfunctions again. Delays under the MC-IPC
protocol remain largely unaffected, and the FIFO-IPC protocol
continues to be somewhat affected, but is isolated from changes
in request rates. The PRIO-IPC protocol, however, fails: many
jobs of T1 do not manage to complete within RH

1 ’s budget. This
shows that a single higher-priority task engaged in a DoS attack
can violate temporal isolation if there is a sufficiently large
number of correctly operating higher-priority tasks.

8) Phase 8 (420s-480s): Finally, in the last minute, the
additional tasks from phase 6 have been terminated and all
real-time tasks resume correct operations. However, the system
is hit with a wave of best-effort tasks: on each core, 20 best-
effort tasks start to operate correctly. Best-effort activity has no
negative impact on T1 when using the MC-IPC or the PRIO-
IPC, but the unexpectedly large number of tasks causes massive
budget overruns under the FIFO-IPC, as seen in Fig. 2(b).

To summarize the observed results, the FIFO-IPC protocol
is resilient to unexpectedly high request rates, but fails if it
encounters an unexpectedly large number of tasks. The PRIO-
IPC protocol is resilient to anomalous behavior in lower-priority
reservations, but requires trusting all higher-priority reservations.
Only the MC-IPC protocol has ensured strict temporal isolation
and remained below the predicted delay bound in all cases.

VII. INTEGRATION WITH VESTAL’S MODEL

While we have adopted a pragmatic, systems-oriented view of
mixed-criticality systems in this paper, the MC-IPC protocol is
in fact also applicable in the context of Vestal’s mixed-criticality
task model [30], as we briefly illustrate in the following.

The distinguishing feature in Vestal’s model is that instead of a
single WCET bound ei, each task has a WCET bound specific to
each criticality level. That is, assuming for simplicity that there
are only two criticality levels low (L) and high (H), each task has
a WCET bound at a lower level of assurance eLi and a WCET
bound at a higher level of assurance eHi , where eLi ≤ eHi , which
reflects that WCET bounds tend to become more pessimistic at
higher levels of assurance [11, 30].

Importantly, the temporal correctness condition for a task
system modeled in this fashion requires that all tasks meet all
their deadlines if all jobs of each task Ti (of either high or low
criticality) execute for at most eLi time units, whereas only high-
criticality tasks are required to meet their deadlines if a job of
any Ti executes for more than eLi time units.
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In the context of our system model, a concrete implementation
of this concept can be realized along the following lines [4, 15,
25]: a low-criticality sporadic reservation encapsulating a task
Ti is provisioned with a budget of eLi time units, whereas a high-
criticality temporal partition encapsulating a high-criticality task
Th would be dimensioned to allow for up to eHh time units of
execution, with the expectation that only up to eLh will be used.
This leaves eHh − eLh expected spare capacity to lower-criticality
tasks, which allows to statically reclaim, at design time, some of
the pessimism inherent in high levels of assurance [11, 30].

If all high-criticality reservations are table-driven (as in our
case study), no action at runtime is required. Otherwise, if
there exist high-criticality sporadic reservations, some runtime
monitoring is required: if any high-criticality reservation actually
consumes more than eLh time units of budget, which is trivial to
detect (but highly unlikely to occur), then the system switches
temporarily into a high-criticality mode. In this mode, some
or all of the low-criticality reservations are demoted to (just
above) best-effort status, until the overload (with respect to the
low-criticality analysis assumptions) has dissipated (e.g., until
an idle instant is reached), at which point normal operations
resume. No jobs are abandoned, and there is a good chance that
most low-criticality jobs will still finish before their deadline.

The MC-IPC protocol seamlessly integrates with this inter-
pretation of Vestal’s model. Instead of considering only a single
maximum operation length Lq for each server, we introduce
criticality-dependent maximum operation lengths LL

q and LH
q ,

which, just as it is the case with criticality-dependent WCET
bounds [11, 30], reflect different levels of uncertainty in the
bound on the true maximum operation length (where LL

q ≤ LH
q ).

Further, let KL
q and KH

q denote criticality-dependent upper
bounds on the number of clusters from which a server will be
invoked, where KL

q ≤ KH
q . A safe high-assurance assumption

is KH
q = K (i.e., in the worst case, Sq is invoked from every

cluster that exists), but for lower assurance levels, it may be
reasonable to exclude clusters which are known to not host any
clients of Sq under normal conditions such that KL

q < K.
Recall from Sec. IV that Ni,q denotes the maximum number

of times that a job of Ti invokes a server Sq . Then the budget of
a low-criticality reservation RL

j in cluster Ck encapsulating task
Ti should be eLi +

∑nr

q=1 Ni,q ·(1+2 ·KL
q ·mk) ·LL

q . In contrast,
the budget of a high-criticality reservation RH

j should be eHi +∑nr

q=1 Ni,q ·(1+2·KH
q ·mk)·LH

q .If the low-criticality estimates
LL
q and KL

q are accurate, that is, if no Sq ever takes more than
LL
q time units to process any request and if requests are issued

from at most KL
q clusters, then both low- and high-criticality

tasks will meet their deadlines. Otherwise, if either LL
q or KL

q are
exceeded at runtime, then there exists a remote possibility that
a low-criticality task is provisioned with insufficient budget to
meet its deadline. However, even in this case, the high-criticality
tasks are still guaranteed to meet their deadlines, which is in
agreement with the goals and spirit of Vestal’s model [30], and
a majority of the work on mixed-criticality scheduling [11].

Finally, in the case of a switch to high-criticality mode,
pending requests of demoted low-criticality reservations can
simply be aborted as if the reservations had exhausted their
budget. The fact that a resource server could be executing on

the budget of a demoted reservation at the time of the switch
to high-criticality mode does not cause further complications
since the MC-IPC protocol tolerates potential budget overruns
and requests by best-effort tasks anyway.

To conclude, with the strict temporal isolation provided by
MC-IPC, it is possible both to share resources among tasks
of different criticality without the loss of temporal or logical
isolation, and to statically reclaim part of the system capacity
lost to the pessimism inherent in the analysis of worst-case
contention. We therefore believe MC-IPC to be well-suited
for mixed-criticality workloads, from both a systems (Secs. V
and VI) and an analytical point of view (Secs. IV-B and VII).

VIII. RELATED WORK

This work resides at the intersection of mixed-criticality
systems, real-time resource sharing, microkernels and IPC, and
reservation-based scheduling, which are vast areas on their own
that each have received more attention in prior work than what
could be adequately surveyed in this limited space. We thus
focus on the most closely related prior works.

For a comprehensive overview of the field of mixed-criticality
real-time scheduling pioneered by Vestal’s 2007 paper [30], we
refer the reader to Burns and Davis’ authoritative survey [11].

As argued in Sec. II, from a systems perspective, strict
isolation is paramount in mixed-criticality systems, which makes
it natural to decompose such systems into untrusted components
running on a small, trusted executive, which, depending on con-
text and minor differences in APIs, is called either a microkernel,
hypervisor, or separation kernel. Prominent examples include
the L4 family [14, 17, 19], Quest-V [22], as well as commercial
products such as Sysgo’s PikeOS. Our work is well aligned with
these systems in both goals and assumptions, and the MC-IPC
protocol could be supported in any of them.

This paper pertains to the explicit sharing of resources subject
to mutual exclusion constraints at the software level, an area that,
in the context of real-time systems, dates back to Sha et al.’s
seminal work on priority inheritance [28]. In a hardware context,
the term “shared resources” is also used to describe architectural
elements such as the memory bus, bank controllers, or shared
caches. As mentioned in Sec. II-B, such shared hardware
resources also give rise to substantial interference, a problem
that has seen much recent attention [13, 18, 23, 26, 31, 32].

Central to our solution are the concepts of reservation-
based scheduling [24] and bandwidth inheritance [12, 21]. For
simplicity, we implemented simple sporadic reservations [24] in
our prototype; in a production system, more flexible reservation
techniques such as CBS [3] or RBED [9, 27] may be desirable.
The use of bandwidth inheritance in microkernel IPC primitives,
also known as “helping” or “timeslice donation,” dates back to
at least 2001 [16] and is now a standard technique. Steinberg
et al. [29] discuss an efficient implementation.

Our choice to realize high-criticality reservations with a table-
driven approach and low-criticality reservations as sporadic
servers was guided by UNC’s earlier work on RTOS support
for mixed-criticality systems [4, 15, 25], which is also based
on LITMUSRT. However, these earlier efforts did not consider
resource sharing and lacked bandwidth inheritance.
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Some initial progress has been made towards the analysis
of real-time locking protocols and priority inversions in the
context of mixed-criticality systems (e.g., see [10, 11, 20, 34]).
However, unlike this work, the just-cited approaches apply
only to uniprocessor systems, and as argued in Sec. II-C, we
consider locks to be fundamentally limited in a mixed-criticality
context. Nonetheless, there exists an obvious duality between
synchronous IPC and real-time locking, and it will be interesting
to explore if and how the analytical guarantees obtained in
[10, 20, 34] can be transferred into the IPC setting.

Finally, the MC-IPC protocol extends the queue structure first
developed for the OMIP [7], a locking protocol with an asymp-
totically optimal priority-inversion bound under suspension-
oblivious analysis [6, 8]. However, the work in [7] does not
support temporal isolation, requires mutual trust among resource-
sharing tasks, does not support non-uniform clusters, and does
not account for potential budget overruns. Nonetheless, the
OMIP is conceptually a predecessor of the MC-IPC protocol,
and a contribution of this paper is to bring to light a fundamental
connection between the idling rule (Assumption A2) and
suspension-oblivious blocking analysis [8].

IX. CONCLUSION

We have proposed the MC-IPC protocol, a synchronous
IPC protocol that enables the temporally and logically isolated
sharing of resources in mixed-criticality systems, and have
shown it to be effective both in a practical system (Sec. VI), and
in the context of Vestal’s mixed-criticality task model (Sec. VII).

This paper breaks new ground in two major directions: it is the
first work to consider explicit resource-sharing in multiprocessor
mixed-criticality systems, and second, it is the first solution to
eliminate trust assumptions concerning the number of tasks, the
number of admitted reservations, maximum request frequencies,
and the cooperation of other tasks, thus enabling stronger
temporal isolation than any prior proposal for multiprocessor
real-time synchronization in general.

In summary, with the MC-IPC protocol, a task’s temporal
and logical correctness depends only on (i) the kernel (for the
scheduler, logical isolation, and IPC), (ii) proper admission
control (to ensure that the set of admitted reservations is feasible),
and (iii) the correctness of the invoked servers—not, however,
on the correctness of other tasks invoking shared servers.

In future work, it would be interesting to evaluate MC-IPC in
a true microkernel. Additionally, we seek to extend the protocol
and its analysis to allow servers to invoke other servers.

REFERENCES

[1] “OpenSSL TLS heartbeat read overrun,” security advisory, https:
//www.openssl.org/news/secadv 20140407.txt, CVE-2014-0160.

[2] “The LITMUSRT project,” web site, http://www.litmus-rt.org.
[3] L. Abeni and G. Buttazzo, “Integrating multimedia applications

in hard real-time systems,” in RTSS ’98, 1998.
[4] J. Anderson, S. Baruah, and B. Brandenburg, “Multicore

operating-system support for mixed criticality,” in Workshop on
Mixed Criticality: Roadmap to Evolving UAV Certification, 2009.

[5] S. Baruah, A. Burns, and R. Davis, “Response-time analysis for
mixed criticality systems,” in RTSS’11, 2011.

[6] B. Brandenburg, “Scheduling and locking in multiprocessor real-
time operating systems,” Ph.D. dissertation, UNC Chapel Hill,
2011.

[7] ——, “A fully preemptive multiprocessor semaphore protocol for
latency-sensitive real-time applications,” in ECRTS’13, 2013.

[8] B. Brandenburg and J. Anderson, “Optimality results for multi-
processor real-time locking,” in RTSS’10, 2010.

[9] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson, “Dynamic
integrated scheduling of hard real-time, soft real-time, and non-
real-time processes,” in RTSS’03, 2003.

[10] A. Burns, “The application of the original priority ceiling protocol
to mixed criticality systems,” in ReTiMiCS’13, 2013.

[11] A. Burns and R. Davis, “Mixed criticality systems: A review,”
University of York, Department of Computer Science, Tech. Rep.

[12] D. Faggioli, G. Lipari, and T. Cucinotta, “Analysis and imple-
mentation of the multiprocessor bandwidth inheritance protocol,”
Real-Time Systems, vol. 48, no. 6, pp. 789–825, 2012.

[13] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele,
“Scheduling of mixed-criticality applications on resource-sharing
multicore systems,” in EMSOFT’13, 2013, pp. 1–15.

[14] G. Heiser, “Hypervisors for consumer electronics,” in CCNC’09.
[15] J. Herman, C. Kenna, M. Mollison, J. Anderson, and D. John-

son, “RTOS support for multicore mixed-criticality systems,” in
RTAS’12.
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