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Abstract—Accurately bounding the worst-case blocking for fi-
nite job sets, a special case of the classic sporadic task model of
recurrent real-time systems, using either nested FIFO- or priority-
ordered locks on multiprocessors is NP-hard. These intractability
results are obtained with reductions from the Multiple-Choice
Matching problem. The reductions are quite general and do not
depend on (1) whether the locks are spin- or suspension-based, or
(2) whether global or partitioned scheduling is used, or (3) which
scheduling policy is employed (as long as it is work-conserving).

Further, we show that, for a special case in which the blocking
analysis problem is NP-hard for FIFO- and priority-ordered locks,
the problem for unordered spin locks with nested critical sections
can be answered in polynomial time by solving a reachability prob-
lem on a suitably constructed graph, although (or rather, because)
unordered locks do not offer any acquisition-order guarantees.

Finally, we identify several challenging open problems, pertain-
ing both to circumventing the hardness results and to classifying
the inherent difficulty of the problem more precisely.

I. INTRODUCTION

The classic mechanism used in real-time systems to ensure
mutually exclusive access to shared resources such as shared
storage, data structures, or I/O devices is locking, where conflict-
ing accesses are serialized and jobs wait until it is their turn to
access a contended resource. As a result, jobs are blocked upon
requesting access to a resource that is already in use. Depending
on the type of lock, blocked jobs either busy-wait (in the case
of spin locks) or self-suspend (in the case of suspension-based
locks, or semaphores) until access to the resource is granted.

Regardless of whether jobs spin or suspend, in the context
of hard real-time systems, it is paramount that the worst-case
duration of blocking incurred by any job is bounded a priori, lest
the temporal correctness of the system is violated at runtime by
unanticipated delays. The resulting worst-case blocking analysis
problem is thus of fundamental importance to real-time systems
that use locks—which is to say virtually any practical real-time
system of non-trivial engineering complexity.

Case in point, our specific interest in the blocking analysis
problem is motivated by the fact that, on multicore platforms, the
AUTOSAR OS standard for automotive systems [1] mandates
spin locks for inter-core synchronization. In recent work [28],
we presented worst-case blocking analysis for various types of
non-nested spin locks, including FIFO- and priority-ordered spin
locks as well as unordered spin locks.

As the logical next step, we sought to extend our work to
support accurate analysis of nested locks; however, this turned
out to be much more challenging than anticipated. In fact, as we
report in this paper, the analysis of FIFO- and priority-ordered
locks is NP-hard if nested critical sections are allowed, and hence
the problem is computationally intractable, unless P = NP .
We obtained these results with reductions using only a single
job per processor, and hence our findings are independent of

the employed scheduler, whether preemptions are allowed, and
whether blocking is realized with spinning or suspending.

Interestingly, in the same setting of job sets with dedicated
processors, we find that the worst-case blocking analysis prob-
lem for the less desirable class of unordered locks—undesirable
for use in practical systems because urgent jobs may incur
significant delays due to starvation effects—can be solved in
time polynomial in the number of jobs and critical sections.

In short, the hardness results presented herein show that non-
pessimistic blocking bounds for the types of locks favored
in practical multiprocessor real-time systems may have pro-
hibitively high costs. This observation is a perhaps unpleas-
ant surprise, as the economic incentives and severe resource
constraints typically encountered in embedded applications
generally make any pessimism highly undesirable. More easily
analyzed, yet still well-performing alternatives to FIFO- and
priority-ordered locks would thus arguably be desirable. To this
end, we identify several interesting open problems, pertaining
both to circumventing the hardness results and to classifying the
inherent hardness more precisely, which we discuss in Sec. VI
after formally establishing the claimed results in Secs. III–V.

We begin by introducing essential notation and defining our
system model and assumptions.

II. DEFINITIONS AND ASSUMPTIONS

We next present the model that we assume throughout this
work, review the multiple-choice matching problem used in our
reductions, and precisely define the blocking analysis problem.

A. Jobs and Shared Resources
In this work, we consider a simplified variant of the sporadic

task model. The sporadic task model considers a set of tasks
that release jobs to be executed. For the sake of simplicity, we
consider only a finite set of jobs, as the concept of tasks is not
required to obtain the results presented in this paper. Analytically,
the finite set of jobs can be considered as a special case of the
sporadic task model and hence our results trivially extend to
more expressive task models.

We denote the jobs in the system as J1, . . . , Jn and consider
their release times to be unknown (i.e., as in the sporadic task
model, the exact release times are discovered only at runtime).
With multiple jobs, a scheduling policy has to decide which job
is executed at any time. Since our reductions use only a single
job per processor, we do not make any assumptions about the
scheduling policy as long as each job is scheduled upon release
until completion. We also do not make any assumptions on
whether job preemptions are allowed (since no preemptions can
occur with a single job per processor). Although our reductions
generalize to other scheduling policies as well, we assume
partitioned scheduling for the sake of simplicity.
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Each job may access shared resources, which can be shared
data structures, sensors, or other peripheral devices. The shared
resources are serially reusable, that is, any resource can be
accessed by at most one job at any time. We denote the shared
resources in the system as `1, . . . , `nr , the set of all resources as
Q, and their number as nr. A request for resource `q issued by
job Jx is denoted as Rx,q,s, where s is an index to distinguish
multiple requests for `q issued by Jx. Note that s does not imply
any particular order in which Jx is assumed to issue its requests.
When the request Rx,q,s for `q is granted, the job Jx executes
a critical section of length at most Lx,q,s. We further let Lx,q

denote the maximum length of any request that Jx issues for
`q, that is, Lx,q = maxs{Lx,q,s}. For simplicity, we assume
discrete time, and hence all time intervals and all bounds on
critical section lengths have an integral length.

Requests can be nested, that is, a job holding a resource `q can
issue a request for a different resource `p (where p 6= q) within
the critical section accessing `q . All requests are properly nested,
that is, at any time, only the resource that was acquired last and
is still held can be released. To denote the nesting relation of
requests we introduce the following notation: Rx,q,s . Rx,q′,s′

denotes that the request Rx,q′,s′ for `q′ is directly nested (i.e.,
not transitively) within the request Rx,q,s for `q. For requests
containing multiple nested requests, we use the following set
notation: Rx,q,s . {Rx,q′1,s

′
1
, . . . , Rx,q′w,s′w

} ⇔ ∀1 ≤ j ≤
w : Rx,q,s . Rx,q′j ,s

′
j
. For example, we express that two

requests Rx,p,t and Rx,p′,t′ are nested within the request Rx,q,s

as Rx,q,s . {Rx,p,t, Rx,p′,t′}.
We do not make any assumptions about the order of nested

requests as long as the nesting relation as described above
is preserved. To rule out deadlock, we assume the existence
of a partial order < on resources such that, for any two
nested requests Rx,q,s and Rx,q′,s′ , if Rx,q,s . Rx,q′,s′ then
`q < `′q. We assume that the critical section length of each
request accounts for nested requests, but not for any blocking
that might be incurred on resource contention. That is, the
critical section length includes the lengths of all nested requests:
∀Rx : Lx ≥

∑
Ry,Rx.Ry

Ly .
Since access to the shared resources can only be granted in

mutual exclusion, a job issuing a request can be blocked by
concurrent requests for the same resource. In this work, we
consider locks in which jobs waiting for a contended resource
may either busy-wait or suspend until gaining access. Since
we assign only a single job to each processor, both options are
analytically equivalent and our results apply to both types of
locks. The way in which competing requests are served is defined
by an ordering policy specific to the lock type used to protect
the shared resources. In this work, we consider FIFO-ordered,
priority-ordered, and unordered locks.

With FIFO-ordered locks, requests are served in the order
in which they are issued (with ties broken arbitrarily), which
ensures a straightforward property that is key to our reduction.

Lemma 1. If a resource `q is protected by a FIFO-ordered lock,
then a request Rx,q,s issued by a job Jx for `q can be blocked
by at most one request for `q from each other job in the system.

Proof. Follows trivially since jobs are sequential and since later-
issued requests cannot block in a FIFO queue.

In our reductions, we assign only a single job to each

processor. In this setting, Lem. 1 also implies that each request
can be blocked by at most one request from each other processor.

Priority-ordered locks consider a locking priority for each
request and ensure that each request is blocked by at most one
request for the same resource with lower locking priority.

Finally, unordered locks do not ensure any specific ordering
of requests, and hence a request can be blocked by all concurrent
requests for the same resource when unordered locks are used.

Next, we briefly introduce the Multiple-Choice Matching
Problem, which we use in our reductions.

B. The Multiple-Choice Matching Problem

We show that the blocking analysis problem for task sets
with shared resources and nested critical sections using a work-
conserving partitioned scheduler is NP-hard. To this end, we
reduce the multiple-choice matching (MCM) [13] problem,
which is known to be NP-complete [13], to an instance of the
blocking analysis problem studied herein.

For simplicity, we represent an undirected edge e between
two vertices v1 and v2 as the set of its endpoints: e = {v1, v2}.
The MCM problem is then defined as follows: given a positive
integer k and an undirected graph G = (V,E), where the set
of edges E is partitioned into t pairwise disjoint subsets (i.e.,
E = E1 ∪ · · · ∪ Et), does there exists a subset F ⊆ E with
|F | ≥ k such that
• no two edges in F share the same endpoint: ∀e1, e2 ∈

F, e1 6= e2 : e1 ∩ e2 = ∅; and
• F contains at most one edge from each edge partition:
∀i, 1 ≤ i ≤ t : |F ∩ Ei| ≤ 1?

Note that a solution exists only if k ≤ t. In Appendix A, we
show that instances of the MCM problem with k < t can be
reduced to instances with k = t without loss of generality. In the
following, we hence use instances of the MCM problem with
k = t unless noted otherwise. Next, we formalize the problem
of bounding the blocking that a job incurs in the worst case.

C. The Worst-Case Blocking Analysis Problem

For real-time tasks with strict timing requirements, the worst-
case blocking duration of each task must be bounded a priori
to ensure that all timing requirements are met. Such worst-case
blocking bounds can be derived with a blocking analysis.

A trivial bound can easily be obtained by assuming that all
requests issued while a job is pending can contribute to its
blocking. Albeit valid, such a bound is clearly pessimistic and
of limited use in practice. Therefore, we require the blocking
analysis to yield tighter bounds that are more meaningful for
actual applications. In particular, we require that:
• There exists no job arrival sequence and resulting schedule

in which more blocking than determined by the analysis is
incurred. (The bound is safe.)

• There exists a job arrival sequence and resulting schedule
in which the blocking duration determined by the analysis
is incurred. (The bound is tight.)

We denote the problem of computing blocking bounds as the
the blocking analysis optimization problem BO and the outcome
of the blocking analysis for a job Ji as Bi = BO(Ji). The
corresponding blocking analysis decision problem is denoted as
BD(Ji, Bi), which is the problem of deciding if there exists a
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job arrival sequence and resulting schedule in which Ji can be
blocked for at least Bi time units.

The blocking analysis optimization problem can be reduced
to the decision variant within polynomial time, and vice versa.
Given the solution to the optimization problem BO(Ji), so-
lutions to the decision problem BD(Ji, Bi) can be trivially
obtained by returning yes if and only if BO(Ji) ≥ Bi.

Given an oracle for the blocking analysis decision problem
BD(Ji, Bi), the solution to the optimization problem can be
obtained by finding the maximal integral value of B′i for which
BD(Ji, Bi) evaluates to yes. This can be achieved by repeatedly
evaluating BD(Ji, Bi) within a binary search over the interval
[0, Bmax

i ], where Bmax
i is a trivial upper bound on the blocking

that Ji can incur (e.g., the sum of all critical section lengths).
Note that Bmax

i grows exponentially with respect to the size
of the problem instance c: Bmax

i = O(2c). Here, c denotes
the size of the binary representation of the problem instance.
Since the binary search terminates after O(log2 B

max
i ) steps,

computing the solution to the optimization problem takes overall
O(log2 B

max
i ) = O(log2 2c) = O(c) steps with respect to the

size of the problem instance c.
On uniprocessors, the blocking analysis optimization problem

is trivial for many practical lock types: when using either
non-preemptive critical sections, the priority ceiling proto-
col (PCP) [25], or the stack resource policy (SRP) [2], the worst-
case blocking incurred by any job is generally limited to the
length of one outermost critical section, and tight per-job bounds
are easy to find. Similarly, appropriate blocking bounds under
the priority inheritance protocol (PIP) [25] can be found using a
simple dynamic programming approach (e.g., see [18]).

On multiprocessors, however, the blocking analysis optimiza-
tion problem for FIFO- or priority-ordered locks is NP-hard in
the presence of nested critical sections, as we show in this paper.
For brevity, we denote the blocking analysis decision problems
for FIFO-ordered and priority-ordered locks as BDF and BDP ,
respectively. Further, we denote the blocking that a job Jx incurs
in a particular schedule S (resulting from a particular job arrival
sequence) as Bx(S). We begin by reducing instances of the
MCM problem to the BDF problem.

III. REDUCTION OF MCM TO BDF

In this section, we show that an algorithm that solves the
blocking analysis problem for FIFO-ordered locks can be used to
solve the MCM problem. Given an MCM problem, we construct
a set of jobs issuing nested requests such that the worst-case
blocking duration Bi encodes the answer to the MCM problem.
Next, we define the jobs and requests used in the reduction.

A. An example BDF instance

At a high level, the construction of the BDF instance is best
illustrated with an example. Consider the graph G1 in Fig. 1.
The corresponding BDF instance is shown in Fig. 2(a).

We model vertices as shared resources and edges as nested
requests. More specifically, edges are encoded as a request to a
“dummy resource” `D that contains two nested requests to the
resources representing the endpoints of the edge.

The two edge partitions in G1 (shown as dashed or solid edges
in Fig. 1) correspond to processors p1 and p2 on which two jobs
J1 and J2 issue the requests that model the edges in G1.

1

3

2

4

1

3

2

4

G1 : G2 :

graph vertex

graph edge 
from edge 
partition

E1

E2

Fig. 1. Two example graphs of MCM problem instances. With k = t = 2, a
matching solving the MCM problem for G1 exists: {{1, 2}{3, 4}}. For G2 no
such matching exists.

The job J3 on processor p3 serves as a “probe”: by solving the
BDF problem for J3, which accesses only the dummy resource
`D, we can infer whether G1 admits an MCM of size two.
Finally, the job J4 on processor p4 serves to transitively block
J3 by creating contention for all resources corresponding to
vertices in G1, as explained in more detail below.

B. Construction of the BDF instance

Formally, given an MCM instance that consists of a graph
G = (V,E), t disjoint edge partitions E1, . . . , Et such that
E1 ∪ · · · ∪ Et = E, and k = t (without loss of generality, see
Appendix A), we construct a BDF instance as follows.

For each vertex v ∈ V , there is one shared resource `v. In
addition, there is a single dummy resource `D. We consider t+ 2
processors, p1, . . . , pt+2, and t + 2 jobs, J1, . . . , Jt+2, where
each job Jj with 1 ≤ j ≤ t + 2, is assigned to processor pj .

We construct requests with two basic critical section lengths:
there are short and long critical sections, with the corresponding
lengths of ∆S , 1 and ∆L , 2 · |V |, respectively.

The jobs J1, . . . , Jt issue requests for the dummy resource `D
with nested requests to model edges, Jt+1 issues a single request
for `D, and Jt+2 issues a short request (of length ∆S) and a long
request (of length ∆L) for each resource `v corresponding to a
vertex v ∈ V . More formally, the jobs issue requests as follows.
• Jobs J1, . . . , Jt: For each edge ei = {v, v′} in the edge par-

tition Ej , job Jj issues three requests: one request Rj,D,i

for `D, one request Rj,v,i for `v, and one request Rj,v′,i

for `v′ . The critical section lengths are Lj,D = 2 · ∆L,
Lj,v = ∆L, and Lj,v′ = ∆L, respectively. The requests
are nested such that Rj,D,i . {Rj,v,i, Rj,v′,i}.

• Job Jt+1 issues one non-nested request Rt+1,D,1 for `D
with critical section length Lt+1,D = 1.

• Job Jt+2 issues for each resource `v with v ∈ V two
non-nested requests: Rt+2,v,1 and Rt+2,v,2. The critical
section lengths are Lt+2,v,1 = ∆L and Lt+2,v,2 = ∆S ,
respectively.

As the number of constructed jobs is linear in t ≤ |E| and the
number of constructed requests is linear in |V |, the reduction of
the MCM instance to an BDF instance requires only polynomial
time with respect to the size of the input graph.

C. Basic idea: Jt+1’s maximum blocking implies MCM answer

Recall that for a solution to the MCM problem to exist, there
must be k matched edges, and each vertex in the graph must be
adjacent to at most one matched edge. As we illustrate next with
an example, this is equivalent to requiring that, in a schedule
S in which Jt+1 incurs the maximum blocking possible (i.e.,
Bt+1(S) = Bt+1), Jt+1 is transitively blocked in S by Jt+2
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(a) BDF problem constructed from G1 and k = t = 2.
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(b) BDF problem constructed from G2 and k = t = 2.

Fig. 2. BDF problems constructed from G1 and G2.

with exactly 2k of its long critical sections and none of its short
critical sections. Whether this is in fact the case can be inferred
from Bt+1 due to the specific values chosen for ∆S and ∆L.

Returning to the example BDF instance shown in Fig. 2(a),
note how the vertices v1, . . . , v4 in G1 correspond to the shared
resources `1, . . . , `4 in Fig. 2(a), and how edges in G1 map to
nested requests issued by J1 and J2. For instance, the dashed
edge {1, 2} in G1 is represented as a request for `D issued by
J1 (which corresponds to E1) that contains nested requests for
`1 and `2. Similarly, the remaining dashed edges {1, 3} and
{2, 4} are also represented by nested requests issued by J1. The
solid edges {2, 3} and {3, 4} are represented by similar requests
issued by J2 (which corresponds to E2).

Crucially, all requests for the resources `1, . . . , `4 issued by
J1 and J2 are nested within a request for `D. This ensures that
(i) J3 can be transitively delayed by J4’s requests and that (ii) J1
and J2’s requests for `1, . . . , `4 cannot block each other since
`D must be held in order to issue these requests.

Consider the worst case for J3, which is also illustrated in
Fig. 3(a): J3’s request for `D is delayed by one (outer) request
for `D from both J1 and J2 each, and the nested requests issued
by J1 and J2 are in turn blocked by requests issued by J4, which
transitively delays J3. Importantly, the total delay incurred by
J3 in the worst case is determined by which requests of J4 cause
transitive blocking—since J4 accesses each `1, . . . , `4 with a
long critical section only once, J4 can transitively delay J3 for
4 · ∆L time units only if J4 (indirectly) conflicts with J3 via
four (i.e., 2 · k) distinct resources.

In other words, if B3 indicates that J4 can transitively delay
J3 for 4 ·∆L time units, then there exists a way to choose one
outer request of J1 (i.e., an edge from E1) and one outer request
of J2 (i.e., an edge from E2) such that the nested requests of J1
and J2 access four distinct resources (i.e., no vertex is adjacent
to both edges), which implies the existence of a valid MCM.

We illustrate this correspondence with two examples. For
G1 and k = t = 2, a valid MCM F indeed exists: F =
{{1, 2}, {3, 4}}. Therefore, as shown in Fig. 3(a), there exists
a schedule such that J3 is blocked for a total of B3 = 8 · ∆L

time units, which includes 2 · k · ∆L = 4 · ∆L time units of
transitive blocking due to J4. (The remaining 4 ·∆L time units
are an irrelevant artifact of the construction and due to J1 and
J2’s nested requests.) Hence, BDF (J3, 8 ·∆L) = yes.

For G2 with k = t = 2, no MCM exists: any combination
of one dashed and one solid edge necessarily has one vertex in
common. This is reflected in the derived BDF instance, which is
shown in Fig. 2(b). Job J3 can be blocked for at most 7·∆L+∆S

time units in total, as Fig. 3(b) illustrates, but not for 8 ·∆L time
units. In particular, J3 is transitively delayed by J4 for only
3 ·∆L + ∆S time units in the depicted schedule since J4 blocks
J3 twice with a request for `1. Hence, BDF (J3, 8 ·∆L) = no.

In general, we observe that BDF (Jt+1, 4 · k ·∆L) = yes if
and only if a valid MCM exists. We formalize this argument in
Theorem 1 below and begin by establishing essential properties
of the constructed set of jobs and requests.

D. Properties of the constructed job set

First, we observe that the lengths of Jt+2’s critical sections
enable us to infer from Jt+1’s blocking bound whether any short
requests block Jt+1 in a worst-case schedule.

Lemma 2. Consider a schedule S in which Jt+1 is blocked for
Bt+1(S) = Bt+1 time units. If Bt+1 is an integer multiple of
∆L, then Jt+1 is not blocked by any short request in S.
Proof. By construction, only Jt+2 issues short requests. In total,
Jt+2 issues |V | short requests, each with a critical section length
∆S = 1. Therefore, Jt+1 can be blocked for at most |V | ·∆S =
|V | time units by these requests. Hence, if one or more short
requests block Jt+1 in S, then Bt+1(S) is not an integer multiple
of ∆L as ∆L = 2 · |V | > |V | ·∆S .

Next, we establish a straightforward bound on the duration
that any request for `D issued by a job J1, . . . , Jt blocks Jt+1.

Lemma 3. Each request for `D issued by a job Jj , where 1 ≤
j ≤ t, blocks Jt+1 for at most 4 ·∆L time units.
Proof. By construction, each request for `D from such a job Jj
has a length of 2·∆L time units and contains two nested requests
for two resources `v1 and `v2 , where {v1, v2} ⊆ V . Also by
construction, while Jj holds `D, it can encounter contention
only from Jt+2 (since all requests issued by jobs J1, . . . , Jt are
serialized by `D). In the worst case, each of Jj’s nested requests
is hence blocked only by Jt+2’s matching long request of length
∆L. Jj thus releases `D after at most 4 ·∆L time units.

From Lem. 3, we obtain an immediate upper bound on the
total blocking incurred by Jt+1 in any schedule.

Lemma 4. Bt+1 ≤ 4 · k ·∆L.
Proof. By construction, Jt+1 issues only a single request for
`D. By Lem. 1, Jt+1 is blocked by at most one request for `D
from each job Jj with 1 ≤ j ≤ t. (Jt+2 does not access `D.) By
Lem. 3, each of these t = k requests blocks Jt+1 for at most
4 ·∆L time units. Hence, Bt+1 ≤ 4 · k ·∆L.

Fig. 3(a) illustrates Lem. 4 for the BDF instance constructed
for G1. In the depicted schedule, J3 is blocked in total for 4 · k ·
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Fig. 3. Example schedules for the constructed BDF problems

∆L = 8 ·∆L time units, and no other request can further block
J3. Note that none of the resources `1, . . . , `4 is requested more
than once within a request for `D from J1 or J2 that blocks J3.
In fact, as we show with the next lemma, this is generally the
case if the job J3 is blocked for 4 · k ·∆L time units.

Lemma 5. Let S denote a schedule of the constructed job set.
If Bt+1(S) = 4 · k ·∆L, then each resource `v with v ∈ V is
requested within at most one request for `D that blocks Jt+1.
Proof. From Lem. 4, it follows that S is a worst-case schedule
for Jt+1. Hence, if a job Jj with 1 ≤ j ≤ t blocks Jt+1 with
a request for `D, then each nested request therein encounters
contention from Jt+2. (Otherwise, S would not be a worst-case
schedule.) By Lem. 2, since Bt+1(S) is an integer multiple
of ∆L, Jt+1 is (transitively) blocked only by long requests in
S. Since Jt+2 issues only a single long request for each `v
(with v ∈ V ), this implies that each resource `v with v ∈ V is
requested within at most one request for `D that blocks Jt+1.

With Lem. 5 it can be shown that, if BDF (Jt+1, 4 ·k ·∆L) =
yes, then there is a matching such that no vertex is adjacent to
more than one matched edge. To solve the MCM problem, we
additionally have to show that such a matching contains exactly
one edge from each edge partition. To this end, we next show
that, if Bt+1(S) = 4 · k ·∆L, then exactly one request for `D
(corresponding to an edge) from each of the jobs J1, . . . , Jt
(each corresponding to an edge partition) blocks Jt+1.

Lemma 6. Let S denote a schedule of the constructed job set.
If Bt+1(S) = 4 · k ·∆L, then each Jj with 1 ≤ j ≤ t blocks
Jt+1 with exactly one request for `D.
Proof. By Lem. 1, each of the t jobs J1, . . . , Jt can block Jt+1

in S with at most one request for `D. (Jt+2 does not access `D.)
Further, by Lem. 3, a request for `D by a job Jj with 1 ≤ j ≤ t
blocks Jt+1 for at most 4·∆L time units. Hence, Jt+1 is blocked
by at least Bt+1(S)/4 ·∆L = k = t such requests in S. Hence,
each Jj with 1 ≤ j ≤ t blocks Jt+1 exactly once in S.

With these lemmas in place, we next show that solving the
BDF problem for the constructed instance is equivalent to
solving the MCM problem for the input instance.

Theorem 1. A matching F solving the MCM problem exists if
and only if BDF (Jt+1, 4 · k ·∆L) = yes.
Proof. We show the following two implications to prove equiva-
lence:
• =⇒: If BDF (Jt+1, 4 · k · ∆L) = yes, then there exists a

matching F solving the MCM problem.

• ⇐=: If there exists a matching F solving the MCM
problem, then BDF (Jt+1, 4 · k ·∆L) = yes.

=⇒: By the definition of BDF , it follows from BDF (Jt+1, 4·
k ·∆L) = yes that there exists a schedule S such that Bt+1(S) =
4 · k · ∆L. We construct a matching F that solves the MCM
problem from the requests for `D that block Jt+1 in S.

For each job Jj with 1 ≤ j ≤ t, let Rj,D,s denote the
request for `D issued by Jj that blocks Jt+1 in S. For brevity, let
edge(Rj,D,s) denote the edge {v1, v2} corresponding to Rj,D,s,
and let F contain all edges represented by requests for `D that
block Jt+1: F ,

⋃
1≤j≤t{edge(Rj,D,s)}.

By Lem. 6, exactly one request for `D from each job
J1, . . . , Jt blocks Jt+1; F hence contains |F | = t edges in
total and exactly one edge per edge partition. Further, by Lem. 5,
for each resource `v with v ∈ V at most one request for `v
is nested within a blocking request for `D from any processor.
Hence, each vertex v ∈ V is adjacent to at most one edge in F .
Therefore F is a matching solving the MCM problem.
⇐=: Let F be a matching solving the MCM problem for

a graph G = (V,E), edge partitions E1, . . . , Et, and k = t.
Consider a schedule S in which Jt+1 is maximally (i.e., for
the full critical section length) blocked by each request for `D
that corresponds to an edge in F . Since F is an MCM in G, F
contains exactly one edge from each edge partition. Then, by
construction, Jt+1 is blocked by exactly one request for `D from
each processor pj , 1 ≤ j ≤ t.

As F is a matching, each vertex v ∈ V is adjacent to at most
one edge in F . Since vertices in the MCM instance correspond
to resources in the BDF instance, each resource `v with v ∈ V is
requested within at most one request for `D that blocks Jt+1 in
S. Then each request for `v with v ∈ V nested within a blocking
request for `D can be blocked by the long request for `v issued
by Jt+2, and thus each blocking request for `D can block Jt+1

for 4 ·∆L time units. Since k = t requests for `D in total block
Jt+1, there exists a schedule S such that job Jt+1 is blocked for
4 · k ·∆L time units. Then BDF (Jt+1, 4 · k ·∆L) = yes.

As described in Sec. III-B, the construction of the BDF

instance requires only polynomial time with respect to the MCM
instance size. Since instances of the MCM decision problem can
be solved via reduction to BDF , and since the MCM problem
is NP-complete, it follows that BDF is NP-hard.

Next, we show that the blocking analysis decision problem for
priority-ordered locks in the presence of nested critical sections
on multiprocessors is NP-hard as well.
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Fig. 5. (a) Schedule for the BDP problem instance for G1 in which J3 is
blocked for 4 · k ·∆L = 8 ·∆L time units. (b) Schedule for the BDP problem
instance for G2 in which J3 is blocked for 7 ·∆L + ∆S time units.

IV. REDUCTION OF MCM TO BDP

The reduction to BDP follows in large parts the same structure
as the one for BDF , but must deal with the slightly weaker
progress guarantees offered by priority-ordered locks. With
FIFO-ordered locks, each request can be blocked at most once
by a request from each other processor (Lem. 1). This fact was
exploited to ensure that exactly one edge in each edge partition
of a given MCM instance is contained in a matching. Priority-
ordered locks, however, do not have this ordering property, and
hence the previous approach cannot be used directly. To ensure
that one edge per partition is matched, we instead use multiple
different dummy resources and an appropriate assignment of
request priorities. Next, we explain the approach in detail.

A. Main differences to BDF reduction
At a high level, the constructed BDP instance is similar to

the BDF reduction, with the following exceptions.
• We use one dummy resource `jD for each processor pj with

1 ≤ j ≤ t (instead of the single global `D in BDF ).
• The job Jt+1 issues a request for each dummy resource `jD

(instead of a single request for `D in BDF ).
• Each job Jj with 1 ≤ j ≤ t issues requests for the “local”

dummy resource `jD (instead of for the global `D in BDF ).
• An additional resource `U serializes requests of the jobs

J1, . . . , Jt: each job Jj’s requests for the dummy resource
`jD (with 1 ≤ j ≤ t) are nested in a request for `U .

Figs. 4(a) and 4(b) show the BDP instances constructed for
the graphs G1 and G2, respectively, as given in Fig. 1.

The basic idea of the reduction of MCM to BDP is the same
as for the reduction to BDF : the solution to the MCM problem
can be inferred from Jt+1’s blocking bound. We illustrate the
reduction of MCM to BDP with two examples.

Recall that for graph G1 and k = t = 2, a matching F solving
the MCM problem exists: F = {{1, 2}, {3, 4}}. In the BDP

instance constructed for G1 shown in Fig. 4(a), J3 is blocked
for 8 ·∆L in the worst case, just as it is the case in the reduction
to the BDF problem presented in the previous section. Fig. 5(a)
depicts a schedule in which J3 incurs the worst-case blocking of
8 ·∆L. Notably, J3 is not blocked by any short requests issued
by J4. As in the reduction to the BDF problem, J3 can only
be blocked for 8 ·∆L time units if no short requests block J3,
and no solution to the given MCM problem exists if any short
requests block J3 in a worst-case schedule.

We illustrate this property with the MCM problem for G2 and
k = t = 2, for which no solution exists. In the constructed BDP

instance for G2 (shown in Fig. 4(b)), J3 can thus be blocked for
at most 7 ·∆L + ∆S time units, as illustrated in Fig. 5(b).

In general, as we argue in the following, a matching solving
an MCM problem exists if and only if, in the constructed BDP

instance, job Jt+1 can be blocked for 4 · k ·∆L time units, and
hence BDP (Jt+1, 4 · k ·∆L) = yes.

B. Construction of the BDP instance

Formally, given an MCM instance consisting of a graph G =
(V,E) and k = t pairwise disjoint edge partitions E1, . . . , Et

we construct a BDP instance as follows.
There is one shared resource `v for each vertex v ∈ V . Instead

of the single dummy resource in the construction for BDF ,
there is one dummy resource `jD for each processor pj with
1 ≤ j ≤ t, and an additional dummy resource `U . As in the
BDF reduction, there are t+2 processors p1, . . . , pt+2 and t+2
jobs J1, . . . , Jt+2, where each such job Jj (with 1 ≤ j ≤ t + 2)
is assigned to the corresponding processor pj .

As in the BDF reduction, the critical sections of these jobs
are either short (i.e., of length ∆S , 1) or long (i.e., of length
∆L , 2 · |V |), and graph edges are modeled as nested requests.
In contrast to the reduction to BDF , where all of these requests
were nested within a request for the single dummy resource
`D, the requests modeling an edge from edge partition Ej are
nested within a request for the dummy resource `jD. Further,
each request for `jD issued by a job Jj with 1 ≤ j ≤ t is nested
within a request for `U . The jobs issue requests as follows.
• Jobs J1, . . . , Jt: For each edge ei = {v, v′} in the

edge partition Ej , the job Jj issues four requests: one
request Rj,U,i for `U , one request Rj,Dj ,i for `jD, one
request Rj,v,i for `v , and one request Rj,v′,i for `v′ , where
Rj,U,i . Rj,Dj ,i . {Rj,v,i, Rj,v′,i}, and Lj,U = 2 · ∆L,
Lj,Dj = 2 ·∆L, Lj,v = ∆L, and Lj,v′ = ∆L.

• Job Jt+1 issues one non-nested request Rt+1,Dj ,1 for each
dummy resource `jD (where 1 ≤ j ≤ t) with Lt+1,Dj = 1.

• Job Jt+2 issues for each resource `v (where v ∈ V )
two non-nested requests Rt+2,v,1 and Rt+2,v,2, where
Lt+2,v,1 = ∆L and Lt+2,v,2 = ∆S .

Since we use priority-ordered locks in the construction of the
BDP instance, a priority has to be assigned to each request. We
use three priority levels: high, medium, and low. The requests
issued by job Jt+1 all have high priority, while the requests
issued by J1, . . . , Jt all have medium priority (which is strictly
lower than high priority). The requests issued by Jt+2 all have
low priority (which is strictly lower than medium priority).

As with the BDF reduction, reducing an MCM instance to
the BDP problem requires only polynomial time with respect
the input size as the number of constructed jobs is linear in
t ≤ |E| and the number of constructed requests is linear in |V |.

C. Properties of the constructed job set

The choice of critical section length of the requests issued
by Jt+2 allows us to infer from Jt+1’s blocking bound whether
Jt+1 is blocked by any short requests in a worst-case schedule.

Lemma 7. Consider a schedule S in which Jt+1 is blocked for
Bt+1(S) = Bt+1 time units. If Bt+1 is an integer multiple of
∆L, then Jt+1 is not blocked by any short request in S.

6



p1 p2 p3 p4

J1 J2 J3 J4

`2`1 `3 `4`1 `2 `2 `3
`3

`2

`1

`4

`3

`2

`1

`4

sh
ortlon
g

requests

`1D `2D

`U

`1D

`U `U `U

`1D `2D

`U

`3 `4

`2D

`1D

processor

assigned
job

issued
requests

(a) BDP problem constructed from G1 and k = t = 2.

p1 p2 p3 p4

J1 J2 J3 J4

`2`1 `3`4 `1`2 `2 `3
`3

`2

`1

`4

`3

`2

`1

`4

sh
ortlon
g

requests

`1D `2D

`U

`1D

`U`U `U `1D

`2D

processor

issued
requests

assigned
job

`2D

(b) BDP problem constructed from G2 and k = t = 2.

Fig. 4. BDP problems constructed from G1 and G2.

We provide a proof of this and the following lemmas in
Appendix B, as they are structurally analogous to those discussed
in the previous section. In the next lemma, we state a bound on
the blocking duration that Jt+1 can incur due to any single
request for `D issued by one of the jobs J1, . . . , Jt.

Lemma 8. Each request for `jD issued by a job Jj , where 1 ≤
j ≤ t, blocks Jt+1 for at most 4 ·∆L time units.

We provide a proof in Appendix B. Lem. 8 leads to a
straightforward upper bound on the total blocking incurred by
Jt+1 in any schedule.

Lemma 9. Bt+1 ≤ 4 · k ·∆L.
We provide a proof in Appendix B. Lem. 9 is illustrated in

Fig. 5(a) for the BDP instance constructed from G1. In this
schedule, J3 is blocked for 4 · k · ∆L = 8 · ∆L time units in
total, and J3 cannot be further blocked by any other request. Just
as it is the case with the BDF reduction (recall Fig. 3(a)), none
of the resources `1, . . . , `4 is requested more than once within
the requests for `1D and `2D issued by J1 and J2 that block J3.
As stated next, this is generally the case if J3 is blocked for
4 · k ·∆L time units.

Lemma 10. Let S denote a schedule of the constructed job set.
If Bt+1(S) = 4 · k ·∆L, then each resource `v with v ∈ V is
requested within at most one request for any resource `jD with
1 ≤ j ≤ t that blocks Jt+1.

The proof, similar to the proof of Lem. 5 for BDF , is given
in Appendix B. If BDP (Jt+1, 4 · k ·∆L) = yes, then Lem. 10
allows inferring the existence of a matching such that no two
matched edges share a vertex, and that exactly one edge from
each edge partition is contained in the implied matching.

Lemma 11. Let S denote a schedule of the constructed job set.
If Bt+1(S) = 4 · k ·∆L, then each Jj with 1 ≤ j ≤ t blocks
Jt+1 with exactly one request for `jD.

We provide a proof in Appendix B. With the stated lemmas, it
can be shown that solving the provided MCM problem instance
is equivalent to solving the constructed BDP instance.

Theorem 2. A matching F solving the MCM problem exists if
and only if BDP (Jt+1, 4 · k ·∆L) = yes.

We provide a proof in Appendix B.
Since instances of the MCM problem with k = t can be

solved by solving the constructed BDP instance, and since the
MCM problem is NP-complete, BDP is NP-hard.

V. UNORDERED LOCKS: A TRACTABLE SPECIAL CASE

In contrast to priority-ordered and FIFO-ordered locks, un-
ordered locks do not ensure any specific ordering of requests.

As a consequence, each request can be blocked by any remote
request for the same resource, unless both requests are issued
within outer critical sections accessing the same resource.
Interestingly, this rules out reductions similar to those given
in Secs. III and IV. To demonstrate this, we establish in this
section that, in a special case that matches the setup used to
establish the hardness results in the preceding two sections, the
blocking analysis optimization problem for unordered spin locks
can be solved in polynomial time.

Our reductions in Secs. III and IV are oblivious to the
scheduling policy employed since at most one job is assigned
to each processor. In this section, we consider a similar setting
for the analysis of unordered nested locks to rule out any effects
related to the scheduling policy. Specifically, we assume that
• job release times are unknown (just as before),
• each job is assigned to its own dedicated processor,
• jobs can issue their requests at any point in their execution

and in any order, and
• no minimum nor maximum separation between the releases

of any two jobs or any two critical sections can be assumed.
Note that the reductions given in Secs. III and IV match these

assumptions, that is, this restricted special case suffices to show
NP-hardness of the blocking analysis problem for FIFO- and
priority-ordered locks in the presence of nested critical sections.

In the following, we show that, with unordered locks, this
special case can be solved in polynomial time, which establishes
that reductions similar to those given in Secs. III and IV are
inapplicable to this class of locks.1 Without loss of generality,
we focus on computing the blocking bound for job J1.

Our approach relies on constructing a “blocking graph”
in which requests are encoded as vertices, and the nesting
relationship as well as the potential blocking between two
requests are encoded as edges. In the following, we show how to
construct the blocking graph such that the blocking optimization
problem reduces to a simple reachability check.

A. An example blocking graph
We first consider the illustrative example provided in Fig. 6(a).

Job J1 issues two requests for the resource `2, one of which
is nested within a request for `1. The jobs J2 and J3 issue
nested and non-nested requests for `1, `2, `3, and `4 as shown
in Fig. 6(a). The solid edges in Fig. 6(a) are nesting edges that
encode the nesting relationship of requests.

To connect in the blocking graph all requests that can block
each other, we iteratively consider each resource one by one.

1To be clear, it does not establish a tractability result for the unrestricted
general case, as the general case requires addressing further issues unrelated
to locking per se (e.g., precisely characterizing the possible interleavings of
multiple jobs on each processor) that we chose to exclude here.
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First, we consider all requests for resource `1.
Requests for `1: In the example shown in Fig. 6(a), J1’s

request for `1 can be blocked by all of J2’s and J3’s requests
for `1. This is indicated by the dashed edges in Fig. 6(a) that
point from J1’s request for `1 to J2 and J3’s requests for `1. The
resulting blocking graph now incorporates all blocking effects
caused by requests for resource `1.

Requests for `2: In the next step, we extend the blocking
graph by including edges to encode blocking due to requests for
`2. J1’s non-nested request for `2 can be blocked by all other
requests for `2 issued by J2 and J3, that is, J2’s nested request
for `2 and J3’s nested and non-nested request for `2. J1’s nested
request for `2 can be blocked by J3’s non-nested requests for `2,
but cannot be blocked by the nested requests for `2 issued by
J2 or J3. The reason is that J1’s nested request for `2 is nested
within a request for `1, and hence it cannot be blocked by any
other request for `2 also nested within a request for `1. Note that
J3’s non-nested request for `2 can block J2’s nested request for
`2, and hence transitively block J1. Fig. 6(b) shows the blocking
graph that encodes all blocking due to requests for `1 and `2.

Requests for `3: Although J1 does not access `3, jobs J2 and
J3 do, and their requests can cause transitive blocking for J1. In
particular, the nested request for `3 issued by J2 is nested within
a request for `1 that can block J1. This nested request for `3 can
be blocked by J3’s request for `3, which can then transitively
block J1. In Fig. 6(c), this is illustrated with an additional dashed
arrow from J2’s nested request for `3 to J3’s request for `3.

Note that J2’s non-nested request for `3 cannot block J1: it
is not issued within a request that already blocks J1, nor can it
transitively delay a request that blocks J1. In particular, if J3’s
request for `3 blocks J1, then it does so transitively by blocking
J2’s request for `3 that is nested within a request for `1 (which
in turn blocks J1). In this case, however, J2’s non-nested request
for `3 is either already completed or not issued yet, as otherwise
two of J2’s outermost requests would be pending at the same
time, which is not possible.

Requests for `4: The requests for `4 cannot block J1 as they
are not nested within any request that can block J1, nor does J1
issue any requests for `4. Hence, although the requests for `4
issued by J2 and J3 can block each other, they cannot block J1.

We denote the resulting graph as blocking graph, since by
construction it has the property that a vertex is reachable from
J1 if and only if the corresponding request can block J1. We
formalize this property in Lemmas 12 and 13.

B. Blocking graph construction

In the following, we let e = (v1, v2) denote a directed edge
from vertex v1 to vertex v2. Recall that we require the existence
of a partial order < such that if a request Rx,q′,s′ issued by Jx
is nested within a request Rx,q,s, then q < q′. Let `1, . . . , `nr

denote a sequence of shared resources that satisfies the partial
order on requests. That is, a request for `i cannot be nested in
any requests for `j with j > i.

The blocking graph is a directed, acyclic graph G = (V,E)
that is constructed as follows. The set of vertices V consists of
one vertex for each request Rx,q,r issued by any job Jx in the
system: V = {vx,q,r| ∃Rx,q,r}.

As shown in Fig. 6(c), we construct G with two kinds of edges:
nesting edges En (shown as solid arrows) and interference edges

Ei (shown as dashed arrows). With nesting edges we model the
nesting relation among requests in G, and with interference
edges we model direct or transitive blocking of J1’s requests.
The set of nesting edges is defined as follows:

En = {(vx,p,w, vx,q,r)|Rx,p,w . Rx,q,r}.

The set of interference edges is defined inductively by
considering requests for only one resource in each step, as
we did in the example in Sec. V-A. We first define the subset
Ei

1 of Ei that contains only edges to requests for `1. (Ei
1

corresponds to the dashed edges in Fig. 6(a).) Formally, an
edge (Rx,q,v, Ry,q,w) is in Ei

1 if and only if Rx,q,v is a request
for `1 issued by J1 and Ry,q,w is a remote request (because J1
cannot block itself) for `1:

(v1,1,v, vy,1,w) ∈ Ei
1 ⇐⇒ ∃R1,1,v ∧ ∃Ry,1,w ∧ y 6= 1.

Based on Ei
1, we define G1 = (V,E1) to be the blocking graph

with the edges E1 = Ei
1 ∪ En, similar to Fig. 6(a). Recall that

nr denotes the number of shared resources. We define Ei
t with

1 ≤ t ≤ nr to be the set of all interference edges among requests
for the resources `1 up to `t. We define the respective blocking
graph Gt with 1 ≤ t ≤ nr accordingly: Gt = (V,En ∪ Ei

t).
Intuitively, the (partial) blocking graph Gt considers all requests
for the resources `1, . . . , `t and the resulting potential blocking.

Before we show how the set Ei
t+1 can be constructed from

Ei
t , we introduce the following notation and definitions.
• The predicate reachable(G, Jx, vx,q,r) holds if and only

if a path in G from a request issued by Jx to the request
Rx,q,r exists. All requests of Jx are defined to be reachable.

• The set of resources that job Jx must hold when it issues
the request Rx,q,v is given by held(Rx,q,v). For instance,
in the example illustrated in Fig. 6, job J2 must already
hold a lock on the resource `1 when it requests `2,

• Given a partial blocking graph G′ and a set of requests
W , G′ \W denotes the graph that results from removing
(from G′) all vertices corresponding to requests in W or
(transitively) nested within requests in W .

• The conflict set of a request Ry,t,s is given by
conf (Ry,t,s) = {Rz,u,v | `u ∈ held(Ry,t,s) ∨ z = y},
that is, the conflict set contains requests that either are also
issued by the same job or that pertain that to a resource that
Jy must already hold to issue Ry,t,s.

Based on the notion of the conflict set, we define the set of
non-conflicting edges Ei,NC

t for a resource `t with 2 ≤ t ≤ nr:

Ei,NC
t = {(vx,t,r, vy,t,s) | x 6= y ∧

reachable(Gt−1 \ conf (Ry,t,s), J1, vx,t,r)}.

In other words, Ei,NC
t is the set of all edges (vx,t,r, vy,t,s) such

that Rx,t,r and Ry,t,s are issued by different jobs and vx,t,r is
reachable without visiting any vertices corresponding to requests
conflicting with Ry,t,s.

With the definition of Ei,NC
t in place, the inductive construc-

tion of the set of interference edges Ei
t for 2 ≤ t ≤ nr is

straightforward: Ei
t = Ei

t−1 ∪ Ei,NC
t . First, Ei

t contains all
edges also in Ei

t−1, as considering the resource `t can only
add interference edges. Second, Ei

t contains all non-conflicting
edges Ei,NC

t that make non-conflicting requests for `t reachable.
In particular, all of J1’s requests are reachable by definition,
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Fig. 6. Construction of the blocking graph for jobs J1, . . . , J3. Dashed arrows indicate how J1 can be directly or transitively blocked by remote requests.

and hence Ei,NC
t also contains all edges connecting J1’s

requests for `t with requests for `t issued by other jobs.
Since Gt reflects possible blocking due to all requests for

`1, . . . , `t, Gnr
= G is actually the full blocking graph. By

construction, G yields a blocking bound for J1, as argued next.

C. Blocking analysis
To start with, we argue that all requests reachable in G can

contribute to the delay experienced by J1.

Lemma 12. Under the assumed job model, there exists a
schedule in which J1 waits (i.e., is blocked) while any request
Rx,q,r (with x 6= 1) that is reachable in G is executed.
Proof. We construct a schedule that is possible under the assumed
job model in which J1 waits while each such request is executed.

Consider the graph G′ that extends G with an additional vertex
vS that connects to all of J1’s outermost requests (and to no other
requests). Using vS as the root, we construct a spanning tree T in
G′ (or, rather, the connected component that includes vS), with
the following property: each path in T from a request issued by
J1 to a reachable request Rx,q,r contains at most one request, or
a consecutive subsequence of nested requests, from each other
job. (Such a path exists for each reachable Rx,q,r since multiple
non-nested requests from the same job are in conflict, i.e., not
included in Ei,NC

t .)
Let p = vS , v1, . . . , vk denote the sequence of vertices in

T visited by a pre-order traversal of T . Consider a schedule
in which the requests are issued in the order v1, . . . , vk. The
request corresponding to v1 is issued at time 0, and the other
requests are issued as follows: if an interference edge between
a request vi and a request vi+1 exists, then vi+1 is issued at the
same time as vi; if a nesting edge between a request vi and a
request vi+1 exists, then vi+1 is issued as soon as all previously
issued requests nested within vi completed (or immediately
after issuing vi if no other requests nested in vi were issued
previously). In the resulting schedule, assuming that requests
that are issued at the same time are serialized such that J1’s
waiting time is maximized, J1’s requests wait while all other
requests are being executed. Finally, such a schedule is legal
under the assumed job model (and hence must be accounted for
by an answer to the blocking analysis optimization problem)
since neither a minimum nor a maximum separation between
any two requests can be assumed.

Conversely, each request Rx,q,r that can block J1 is reachable
in G, as we show next.

Lemma 13. If there exists a schedule S in which J1 cannot
proceed until a request Rx,q,r (with x 6= 1) is complete (i.e., if
Rx,q,r blocks J1), then vx,q,r is reachable in G.
Proof. By contradiction. Suppose Rx,q,r is the first request to
block J1 that is not reachable in G. There are three cases.

Case 1: Rx,q,r directly blocks J1 (i.e., J1 requested `q
concurrently with Rx,q,r). Then there exists a request R1,q,s

issued by J1, and hence the edge (v1,q,s, vx,q,r) is included in
G by the definition of Ei,NC

q .
Case 2: Rx,q,r transitively blocks J1 (i.e., there exists a job

Jy with y 6= x that requested `q concurrently with Rx,q,r and
Jy blocks J1 either directly, transitively, or due to nesting).
Then there exist two requests Ry,q,s and Ry,u,v issued by Jy,
where Ry,u,v blocks J1 and Ry,u,v . Ry,q,s. Since, by initial
assumption, Rx,q,r is the first request that both blocks J1 and
is not reachable in G, vy,u,v is reachable in G. Further, since
nesting is well-ordered according to >, vy,u,v is also reachable
in Gq−1. The edge (vy,q,s, vx,q,r) is hence included in G by the
definition of Ei,NC

q . (The fact that Ry,q,s and Rx,q,r are issued
concurrently implies that `u /∈ held(Rx,q,r).)

Case 3: Rx,q,r blocks J1 due to being nested in a blocking
request (i.e., there exists a request Rx,u,v that blocks J1 either
directly, transitively, or due to nesting, and Rx,u,v.Rx,q,r). Then,
by the definition of En, there exists an edge (vx,u,v, vx,q,r) in
G. Further, since, Rx,q,r is the first request that both blocks J1
and is not reachable in G, vx,u,v is reachable in G.

In each case, there exists an edge from a reachable vertex to
vx,q,r, which is thus reachable, too. Contradiction.

From Lemmas 12 and 13, we immediately obtain that, under
the assumed job model, the solution to the blocking analysis
optimization problem for J1, namely B1, is given by the sum
of the lengths of all outermost reachable requests in G (i.e.,
reachable requests not nested within other reachable request).
Further, B1 can be computed in polynomial time.

Theorem 3. The construction of the blocking graph and the
computation of the blocking bound B1 can be carried out in
polynomial time with respect to the size of the input.
Proof. Clearly, V and En can be constructed in polynomial
time with respect to the number of requests. The computation
of the interference edges Ei is performed iteratively for each
resource, hence |Q| = nr partial blocking graphs are computed.
In each iteration, each possible edge in the graph (i.e., at most
O(|V |2) edges) has to be considered, and for each of them,
the reachability of a set of vertices has to be checked, which
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takes at most O(|V |3) steps. Hence, the blocking graph can be
constructed in polynomial time with respect to the input size.

Given the blocking graph, computing the set of reachable
requests takes at most O(|V |3) steps, and determining whether
a request is outermost with respect to the set of reachable
requests requires only polynomial time as well. Hence, under the
assumed job model, the blocking analysis optimization problem
for unordered spin locks can be solved in polynomial time, even
in the presence of nested critical sections.

As a final remark, note that the job model restrictions stated at
the beginning of Sec. V (in particular, the absence of minimum
and maximum separation constraints and the assumption of ded-
icated processors) are required for Lem. 12 (which establishes
tightness), but not for Lem. 13 (which establishes soundness).
The analysis remains thus sufficient (but not necessary) if said
job model restrictions are lifted (e.g., by considering the sporadic
task model with minimum job inter-arrival times).

VI. IMPLICATIONS, CONTEXT, AND RELATED WORK

We did not set out to find intractability results. Rather, our mo-
tivation at the start of this project, intended as a continuation of
our prior work on the analysis of spin locks in AUTOSAR [28],
was to derive “reasonably fast” and “reasonably accurate”
blocking analysis for nested spin locks. However, such analysis
proved hard to find, which led us to the present results.

Nonetheless, with the continued adoption of embedded multi-
core platforms, solving the original problem remains important.
To this end, we comment on the context, implications, and
related and future work in this section.

A. Synchronization, Scheduling, and Complexity
The intersection of the fields of real-time systems and

computational complexity has received substantial attention in
the past decades (e.g., see [26] for a survey of classic results),
and intractability results for a variety of feasibility problems
(e.g., [5, 11, 17, 20, 24]) and commonly used schedulability
analysis methods have been established (e.g., [5, 9, 10]).2 For
instance, it is well known that the feasibility problem for periodic
task sets is intractable [17]. Similarly, it has long been known
that the feasibility problem in the presence of semaphores that
ensure mutual exclusion constraints is intractable as well [20].

In this context, it is important to note that this paper pertains
to a conceptually much simpler problem: rather than posing the
difficult optimization problem of finding a feasible schedule
(i.e., a resource allocation policy under which no deadlines
are missed), we are considering the much more restricted
problem of determining the maximum blocking (i.e., not overall
schedulability) for a given lock type (i.e., resource allocation
policy). And indeed, on uniprocessors, the maximum blocking
problem is simple for all of the commonly used real-time locking
policies [2, 25], as already pointed out in Sec. II-C. The (at least
to us) surprising observation made in this paper is that even this
highly simplified problem is intractable on multiprocessors for
FIFO- and priority-ordered locks if nesting is allowed.

However, we are certainly not the first to report intractability
results related to multiprocessor real-time locking protocols. For

2Given task or job set, the feasibility problem asks whether there exists a
schedule such that all deadlines are met, whereas the schedulability problem
asks whether a specific scheduling (or resource allocation) policy will yield a
schedule such that all deadlines are met (see e.g. [4] for a concise introduction).

example, Lortz and Shin [19] considered priority-ordered locks
and studied the problem of assigning locking priorities to tasks
such that no deadlines are missed (i.e., feasible priorities), which
they found to be intractable. Further, in recent work more closely
related to bin packing, Hsui et al. [14] showed the problem of
mapping critical sections to cores on many-core platforms to be
intractable for several different objective functions.

Finally, in other related work on the complexity of synchro-
nization, various hardness results have been obtained in the con-
text of locking in database systems (e.g., [21, 22, 29]). However,
to the best of our knowledge, the problem of determining the
maximum possible blocking on multiprocessors in the presence
of nested critical sections has not been studied to date.

B. Practical Implications and Future Work
From a practical point of view, it may admittedly seem that

the intractability results established in this paper do not provide
a major stumbling block, as after all many commonly employed
schedulability analyses—such as fixed-priority response-time
analysis [10, 15] and processor-demand analysis [5, 9]—are
strictly speaking intractable [9, 10]. However, these techniques
exhibit their inherent hardness only in rare cases that are
usually not encountered in the real world, so that their formally
intractable nature is practically speaking less relevant.

In contrast, we have to date been unable to extend our prior
analysis [28] in such a way that both our performance and
accuracy expectations are met, which could be taken to suggest
that the blocking analysis problem is not “for practical purposes
still easy.” Another supporting fact for this conjecture is that
the runtime of the blocking analysis for the Multiprocessor
Bandwidth Inheritance protocol [12] is super-exponential in
the task set and resource model size if nesting is permitted [12].

However, obviously not all possible approaches have yet
been exhausted. For instance, satisfiability (SAT) [13] and
satisfiability modulo theories (SMT) [3] are examples of hard
problems for which mature, highly optimized solvers have been
engineered (due to their relevance in software verification) that,
in many cases, can solve large instances quickly [6]. For this
reason, it will be interesting to attempt leveraging SAT/SMT
solvers for the blocking analysis problem, which we identify as
the first open problem that we seek to highlight.
P1 Is it possible to reduce the nested critical section blocking

analysis problem to SAT or SMT such that the resulting
SAT or SMT instances are “easy” for existing solvers?

More formally, the challenge to derive blocking analysis for
nested critical sections that strikes a balance between accuracy
and speed might hint at inherent approximation hardness.
P2 Does there exist a polynomial time approximation scheme

(PTAS) for the blocking analysis of nested critical sections?
As a starting point, we note that the MCM problem itself is APX-
complete [16] (i.e., no PTAS for the MCM exists). However, it
is still unclear whether this applies to the blocking analysis of
nested FIFO- and priority-ordered locks as well.

In a more practical direction, in some contexts such as safety-
critical systems, it may be desirable to strike different tradeoffs
than those reflected by FIFO- or priority-ordered spin locks
or suspension-based locking protocols. For instance, it may be
preferable to accept locking protocols that permit less concur-
rency if as a result accurate analysis becomes tractable. This
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raises the interesting challenge of designing locking protocols
tailored to enable accurate worst-case blocking analysis.
P3 Is it possible to design a locking protocol with strong

ordering guarantees that permits tractable analysis of nested
critical sections?

In other words, what exactly are the properties that make a
locking protocol “hard” to analyze? To this end, it may be
illuminating to observe that our reductions from the MCM to
the blocking decision problem for FIFO- and priority-ordered
locks make use of two encoding tricks. First, by grouping two
nested requests within an outer critical section that can block
the job under analysis, we encode a “both or none” constraint,
which is essential to our encoding of edges. Second, the FIFO-
and priority order are used to encode “at most one” constraints.

Interestingly, the analysis of nested critical sections assuming
unordered spin locks with a dedicated processor for each job
seems to be tractable precisely because we cannot encode
an “at most one” constraint. Similarly, the analysis of non-
nested critical sections under any of the considered lock types
seems to be tractable because we cannot encode “both or none”
constraints without nesting. Formalizing the exact dividing
line in this spectrum and investigating the impact of allowing
multiple jobs per processor on the analysis complexity of
unordered spin locks are interesting challenges.

In a similar vein, it will be interesting to study more closely the
real-time nested locking protocol (RNLP) [27], which supports
nested critical sections with explicit nesting rules. The RNLP,
which has been proposed by Ward and Anderson [27] in the
context of asymptotic blocking optimality [8], a concept that is
intuitively related to the accurate analysis problem, serializes
requests in FIFO order, but also delays certain nested requests
under contention, and is hence not work-conserving (i.e., jobs
may block on available locks). This reduces concurrency and
makes it difficult to encode “both or none” constraints, which
makes the RNLP an interesting starting point for future studies.
P4 Does the RNLP permit accurate, yet tractable worst-case

blocking analysis of nested critical sections?
Finally, an interesting question arises in the context of

Ridouard et al.’s intractability results concerning the analysis of
self-suspensions [24]. Their results state that the feasibility prob-
lem for implicit-deadline periodic tasks with self-suspensions,
as they arise under partitioned scheduling when employing
suspension-based real-time locking protocols such as the FIFO-
ordered FMLP+ [7] or the priority-ordered MPCP [23], is
NP-hard. The exact feasibility analysis of suspension-based
multiprocessor real-time locking protocols is thus intractable,
even in the absence of nested critical sections. In future work,
it would be interesting to explore if the same holds true for the
analysis of spin-based locking protocols.
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APPENDIX

A. Generality of the k = t MCM Problem

We establish that instances of the MCM problem with k < t
can be reduced to instances with k = t, which allows us to focus
on the latter case in Secs. III and IV without loss of generality.

Let G = (V,E) be an undirected graph with t disjoint edge
partitions E = E1 ∪ · · · ∪ Et, and let k be a positive integer.
In the general MCM problem, we have k ≤ t (the problem is
trivial if k > t). If k = t, the two problems are identical. If
k < t, we construct a complete bipartite graph GD = (VD, ED)
as follows. Let g = t − k. We introduce g + t new vertices
VD = {vp1 , . . . , vpg , vh1 , . . . , vht } and g · t new edges ED =
{{vpi , vhj }|1 ≤ i ≤ g ∧ 1 ≤ j ≤ t}. Note that, since V and
VD are disjoint, the constructed graph GD is unconnected to
G. Further, by definition of ED, GD is bipartite as no edge
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Fig. 7. Construction of the graph GD for an instance of the MCM problem for
graph G with k = 1 and t = 3 edge partitions (indicated by edge pattern).

between any two vertices {vpi , v
p
i′} ⊆ {v

p
1 , . . . , v

p
g} exists and

no edge between any two vertices {vhi , vhi′} ⊆ {vh1 , . . . , vht }
exists. We let G′ = (V ′, E′) denote the graph that results from
merging the sets of vertices and edges of G and GD, respectively:
V ′ = V ∪ VD and E′ = E ∪ ED. Further, we define edge
partitions E′1, . . . , E

′
t as follows:

∀j, 1 ≤ j ≤ t : E′j = Ej ∪ {{vpi , v
h
j }|1 ≤ i ≤ g}.

The construction of the graph GD = (VD, ED) is illustrated
with an example in Fig. 7. Note that GD by construction always
permits a matching of size g. Due to this property, a solution
to the original MCM instance in G with k < t is implied by
a solution to the MCM problem in G′ assuming k = t, as we
show in the following lemma.
Lemma 14. A solution to the MCM problem for G′ with k′ = t
exists if and only if a solution to the original MCM problem for
G with k exists.
Proof. Let F ′ be a matching solving the MCM problem for G′
with k′ = t. By construction of the edge partitions, a matching
FD with |FD| = g solving the MCM problem in GD always
exists. Further, g is the maximum size of any valid matching
in GD. Hence, if F ′ solves the MCM problem for G′ with
k′ = k+g, F ′ contains at most g edges from ED, and removing
them from F ′ leads to a matching F in G with size |F ′| − g =
k + g − g = k, solving the original MCM problem.

Similarly, let F be a matching solving the MCM problem
for G with k. Since a matching of size g on GD always exists
and a matching of size k on G exists by assumption, it follows
from the construction of G′ that a matching of size k′ solving
the MCM problem for G′ with k′ = t exists.

B. Reduction of MCM to BDP

Here we provide proofs for the lemmas stated in Sec. IV.
Proof of Lem. 7. Analogous to Lem. 2. By construction, there
exist only |V | short requests (issued by Jt+2), each of length
∆S = 1. Since ∆L = 2 · |V | > |V | · ∆S , if any of the short
requests block Jt+1 in S, then Bt+1(S)/∆L is not integer.
Proof of Lem. 8. Analogous to Lem. 3. By construction, each
request for `jD from such a job Jj has a length of 2 ·∆L time
units and contains two nested requests for two resources `v1
and `v2 , where {v1, v2} ⊆ V . Also by construction, while Jj
holds `jD, it can encounter contention only from Jt+2 (since all
requests issued by jobs J1, . . . , Jt are serialized by `U ). In the
worst case, each of Jj’s nested requests is hence blocked only
by Jt+2’s matching long request of length ∆L. Jj thus releases
`jD after at most 4 ·∆L time units.
Proof of Lem. 9. Analogous to Lem. 4. By construction, Jt+1

issues only a single request for each resource `jD with 1 ≤ j ≤ t.
Since Jt+1’s requests have higher priority than the requests
issued by the jobs J1, . . . , Jt, each of the requests for `jD with
1 ≤ j ≤ t issued by Jt+1 can be blocked by at most one request

for `jD from Jj . By Lem. 8, each of these t = k requests blocks
Jt+1 for at most 4 ·∆L time units. Hence, Bt+1 ≤ 4 · k ·∆L.
Proof of Lem. 10. Analogous to Lem. 5. From Lem. 9, it

follows that S is a worst-case schedule for Jt+1, and thus if a
job Jj with 1 ≤ j ≤ t blocks Jt+1 with a request for `jD, then
each nested request therein encounters contention from Jt+2.

By Lem. 7, since Bt+1(S) is an integer multiple of ∆L, Jt+1

is blocked only by long requests in S. Since Jt+2 issues only a
single long request for each `v (with v ∈ V ), this implies that
each resource `v with v ∈ V is requested within at most one
request for any `jD with 1 ≤ j ≤ t that blocks Jt+1.
Proof of Lem. 11. Analogous to Lem. 6. Since Jt+1’s requests

have higher priority than the requests of jobs J1, . . . , Jt, each of
Jt+1’s requests for a resource `jD with 1 ≤ j ≤ t can be blocked
at most once by a request for `jD issued by Jj . By Lem. 8, each
request for `jD from Jj with 1 ≤ j ≤ t can block Jt+1 for at
most 4 ·∆L time units. Hence, Jt+1 is blocked by exactly one
request from each processor p1, . . . , pt.
Proof of Thm. 2. Analogous to Theorem 1. We show the
following two implications to prove equivalence:
• =⇒: If BDP (Jt+1, 4 · k · ∆L) = yes, then there exists a

matching F solving the MCM problem.
• ⇐=: If there exists a matching F solving the MCM

problem, then BDP (Jt+1, 4 · k ·∆L) = yes.
=⇒: It follows from BDP (Jt+1, 4 · k ·∆L) = yes that there

exists a schedule S such that Bt+1(S) = 4 ·k ·∆L. We construct
an MCM F from the requests that block Jt+1 in S.

For each job Jj with 1 ≤ j ≤ t, let Rj,Dj ,s denote the request
for `jD issued by Jj that blocks Jt+1 in S. Let edge(Rj,Dj ,s)
denote the edge {v1, v2} corresponding to Rj,Dj ,s, and let F
contain all edges represented by requests for the resources `jD
with 1 ≤ j ≤ t that block Jt+1: F ,

⋃
1≤j≤t{edge(Rj,Dj ,s)}.

By Lem. 11, each job Jj with 1 ≤ j ≤ t blocks Jt+1 with
exactly one request for `jD; F hence contains |F | = t edges in
total and exactly one edge per edge partition. By Lem. 10, for
each resource `v with v ∈ V at most one request for `v is nested
within a blocking request for any resource `jD with 1 ≤ j ≤ t.
Hence, each vertex v ∈ V is adjacent to at most one edge in F .
F is thus a matching solving the MCM problem.
⇐=: Let F be a matching solving the MCM problem for

a graph G = (V,E), edge partitions E1, . . . , Et and k = t.
Consider a schedule S in which Jt+1 is blocked by each request
for `jD with 1 ≤ j ≤ t that corresponds to an edge in F . Since
F is an MCM in G, F contains exactly one edge from each
edge partition. Then, by construction, Jt+1 is blocked from each
processor pj , 1 ≤ j ≤ t by exactly one request for `jD.

As F is a matching, each vertex v ∈ V is adjacent to at most
one edge in F . Since vertices in the MCM instance correspond
to resources in the BDP instance, each resource `v with v ∈ V
is requested within at most one request for any of the resources
`1D, . . . , `tD that blocks Jt+1 in S. Then each request for `v with
v ∈ V nested within a blocking request for a resource `jD with
1 ≤ j ≤ t can be blocked by the long request for `v issued
by Jt+2, and thus each blocking request for a resource `jD with
1 ≤ j ≤ t can block Jt+1 for 4 · ∆L time units. Since k = t
requests for the resources `1D, . . . , `tD in total block Jt+1, there
exists a schedule S such that job Jt+1 is blocked for 4 · k ·∆L

time units, and hence BDP (Jt+1, 4 · k ·∆L) = yes.
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