
Multiprocessor feasibility analysis of recurrent task
systems with specified processor affinities

Sanjoy Baruah
The University of North Carolina

baruah@cs.unc.edu

Björn Brandenburg
Max Planck Institute for Software Systems

bbb@mpi-sws.org

Abstract—In many current multiprocessor real-time operating
systems, programmers have the ability to set affinity masks that
pin a process to a specified subset of the processors in the
system. Given a real-time task system consisting of a collection of
implicit-deadline sporadic tasks with an affinity mask specified
for each task that is to be implemented upon an identical
multiprocessor platform, this paper addresses the question of
determining whether the task system can be implemented upon
the platform to always meet all deadlines, while respecting the
affinity mask restrictions. An algorithm is derived that answers
this question efficiently in run-time that is polynomial in the
representation of the task system.

I. INTRODUCTION

Many current multiprocessor operating systems provide
facilities that allow programmers to set affinity masks
for processes or threads, specifying the processor[s] upon
which the process is permitted to execute – examples in-
clude SetThreadAffinityMask in Windows and the
sched_setaffinity function in Linux. The programmer
may set these affinity masks to achieve a wide variety of
goals including improved performance (by, e.g., co-locating
processes that communicate a lot or are likely to share cache),
load balancing, inter-component isolation, spatial separation of
replicated components for fault tolerance, etc. These affinity
masks are finding use in soft and hard real-time systems as
well, and are now supported by many contemporary multipro-
cessor real-time operating systems such as VxWorks, LynxOS,
QNX, and real-time variants of Linux — see, e.g., [4] for a
discussion on the use of this feature in real-time systems. The
ready availability of affinity mask functionality in RTOSes,
and their increasing use in real-time systems, indicate that
real-time scheduling theory should devote some attention to
studying the problem of scheduling systems with affinity
masks specified.

In this research, we address the issue of feasibility analysis
of such systems upon identical multiprocessor platforms. We
assume that the real-time system under analysis may be
modeled as a collection of simple recurring (periodic/ spo-
radic) preemptive tasks [9], and seek algorithms to determine
whether the system can be executed on the processors in such
a manner that all timing constraints are met, while respecting
the affinity mask constraints. We make the assumptions that
processor preemption is permitted and incurs no cost, and
that global scheduling within the restrictions imposed by the
affinity masks is allowed (i.e., a preempted job of a task

may resume execution on a different processor upon which
it is permitted to execute according to its affinity mask). We
have two significant contributions to report: (i) a polynomial-
time algorithm that solves this problem (and in fact, actually
constructs a preemptive schedule); and (ii) a proof that the
schedules so produced in fact end up executing most tasks on
just a single processor, with relatively few tasks needing to
migrate from one processor to another.

Organization. The remainder of this paper is organized as
follows. In Section II, we formally define the problem that
we wish to solve, and briefly describe related research. In
Section III we show that our problem may be considered to be
a special case of a more general problem – global scheduling
on unrelated multiprocessors – that is known to be solvable in
polynomial time; this immediately implies that our problem,
too, is solvable in polynomial time. In Section IV we derive
an algorithm for directly solving our problem (rather than by
transforming it to a problem of global scheduling on unrelated
multiprocessors); we show that this is a simpler algorithm,
and further yields a scheduling strategy that can be used
as a dispatcher during run-time. We will see that the run-
time efficiency of this dispatcher depends upon the number
of tasks that execute upon multiple processors; accordingly in
Section V we derive a bound on the number of such tasks in
the scheduling strategies that are generated by our algorithm.
We conclude in Section VI, with a summary of the results
presented here and a brief discussion on ongoing research into
extensions to these results.

II. TASK MODEL AND RELATED WORK

We restrict our attention to systems of implicit-deadline
sporadic tasks [9]. That is, we assume that the real-time
workload can be modeled as a finite collection of sporadic
tasks, with each task characterized by a worst-case execution
requirement (WCET) and a period. Such a sporadic task τi
with WCET Ci and period Ti is assumed to generate a
potentially infinite sequence of jobs that need to be executed,
with each job needing at most Ci units of execution within Ti
time-units of the job’s generation, and successive jobs being
generated at least Ti time-units apart. We assume that different
jobs, whether generated by the same or different tasks, are
completely independent of one another in the sense that they
do not share resources, nor do they have data dependencies.

We also assume that our execution model allows for processor
preemption, i.e., a job executing on a processor may be
interrupted at any instant in time, and its execution resumed
later, at no cost or penalty.

Let τ denote an implicit-deadline sporadic task system com-
prised of the n tasks τ1, τ2, . . . , τn, that is to be implemented
upon a multiprocessor platform π consisting of the m identical
processors π1, π2, . . . , πm. In addition to its WCET Ci and its
period Ti, we assume that task τi is further characterized by
a processor affinity set αi ⊆ {1, 2, . . . ,m}, denoting that τi
may execute on the processors with index in αi. We further
let ui denote the utilization of τi, where ui = Ci/Ti.

Restrictions may be placed on the form of the processor
affinity sets. For instance, it may be required that, for each
task τi, αi = {1, 2, . . . ,m} in which case we have the standard
global schedulability constraint; it may be required that, for
each task τi, |αi| ≤ k for some constant k (if k = 1 then we
have standard partitioned scheduling with the task partitioning
already specified); it may be mandated that, for all i, j, it is
the case that either (i) αi = αj , or (ii) αi ∩ αj = ∅ (i.e.,
we are specifying clustered scheduling); etc. In this paper we
assume for the most part that the processor affinity sets are not
restricted in any manner: i.e., we consider arbitrary processor
affinity (APA) scheduling.

An APA scheduling instance is specified as an ordered pair
(τ, π); given such an instance, the APA feasibility analysis
problem asks whether it is possible to schedule τ upon π in
a manner that respects the processor affinity restrictions, such
that all jobs of all the tasks in τ meet all their deadlines, for all
sequences of jobs that may legally be generated by the tasks
in τ .

Related work. While there has been considerable work ad-
dressing the use of affinity masks to achieve programmer goals
(e.g., [3] explores their use in boosting TCP performance on
multiprocessor servers), we are not aware of any prior research
on the subject of this paper, which is providing scheduling
support for affinity masks that are already specified by the
programmer. Previous work in real-time scheduling theory that
addresses processor affinity at all (such as [12], [13], [11])
instead seem to be primarily centered on attempts at assigning
jobs to processors upon which they had executed previously.

In our opinion, the work discussed in [4], which describes
itself as an initial step in the development of real-time schedul-
ing theory for APA scheduling, is closest in spirit to the
work discussed in this paper – we look upon the current
paper as a further step in this development of a theory for
APA scheduling. However, [4] does not consider feasibility
analysis; instead, an interesting aspect to the use of affinity
masks is considered: is it possible to enhance schedulability
– i.e., render an otherwise unschedulable system schedulable
– by appropriately setting affinity masks? Results in [4] show
that for job-level fixed priority scheduling policies (such as
EDF), there are task systems that are not partitioned or global
schedulable, but that can be made schedulable by appropriately
setting affinity masks.

III. APA FEASIBILITY ANALYSIS

All the processors in an identical multiprocessor platform
are assumed to have the same computing capacity, in the sense
that the amount of execution completed by executing a job on
a processor for a given amount of time is exactly the same on
all the processors. By contrast in an unrelated multiprocessor
platform, there is an execution rate ri,j associated with each
task-processor pair with the interpretation that a job of the
i’th task completes (ri,j × δ) units of execution by executing
on the j’th processor for a duration δ. It is evident that
APA feasibility analysis is a special case of global feasibility
analysis on unrelated multiprocessors: given an instance (τ, π)
of the APA feasibility analysis problem, we can obtain an
instance of the problem of global feasibility analysis on
unrelated multiprocessors by having the same set of tasks and
processors, and for each (i, j) setting the execution rate ri,j
for task τi on processor πj according to the following rule:

rij =

{
1, if j ∈ αi
0 otherwise

It has been shown [8] that the problem of determining
whether a given implicit-deadline sporadic task system is feasi-
ble under global scheduling upon an unrelated multiprocessor
platform can be solved in polynomial time1. Since (as we saw
above) APA scheduling is a special case of scheduling on
unrelated processors, this immediately leads to the conclusion
that

Theorem 1: Determining whether a given APA scheduling
instance (τ, π) is APA-feasible can be determined in time
polynomial in the representation of (τ, π).

IV. A SCHEDULING ALGORITHM

Theorem 1 above showed that APA feasibility analysis
is a polynomial-time problem, by transforming APA fea-
sibility analysis to global feasibility analysis on unrelated
multiprocessors. One could therefore obtain a polynomial-time
algorithm for APA feasibility analysis by simply applying this
transformation. In this section, we describe a more efficient al-
gorithm that does APA feasibility analysis directly without first
transforming the problem to one on unrelated multiprocessors;
furthermore, our algorithm enables us to obtain a scheduling
strategy that performs the actual scheduling during run-time.
Although this algorithm is based on the approach presented
in [8], it is simpler than the algorithm in [8]: Section IV-D
explains how our algorithm for APA-scheduling upon identical
processors is simpler that the algorithm in [8] for global
scheduling upon unrelated processors.

In the remainder of this section let (τ, π) denote an APA
instance in which τ consists of the n tasks {τ1, τ2, . . . , τn},
and π consists of the m identical unit-speed processors
π1, π2, . . . , πm.

1Actually, [8] was concerned with the scheduling of collections of indepen-
dent jobs rather than systems of recurrent tasks, but the extension to implicit-
deadline sporadic task systems is straightforward – see, e.g., [1].

Given this APA instance (τ, π), our scheduling strategy
proceeds in three steps:

1) First, we construct a linear program that has a solution
(is feasible, in the language of linear programming) if
and only if (τ, π) is APA-feasible – how we do this is
described in Section IV-A.

2) We then solve this linear program, and use the solution to
construct a schedule “template” — this step is described
in Section IV-B.

3) In Section IV-C, we describe how we then use this
schedule template to actually construct a schedule during
run-time.

We will use the following example throughout this section, to
illustrate our algorithm.

Example 1: Our APA instance (τ, π) has τ = {τ1, τ2, τ3}
with parameters as given below, while π = {π1, π2}.

τi Ci Ti αi ui
τ1 7 10 {1} 0.7
τ2 6 10 {2} 0.6
τ3 10 20 {1, 2} 0.5

A. Constructing a linear program

As a first step in obtaining a run-time scheduling algorithm,
we will represent APA feasibility as a linear programming
problem. We define n ×m real-valued variables xi,j for i =
1, . . . , n and j = 1, . . . ,m, with variable xi,j denoting the
fraction of τi that executes on processor πj . We constrain each
xi,j variable to be non-negative: xi,j ≥ 0 for all i, j. (While
we could also constrain each xi,j to be no larger than one,
specifying such a constraint turns out to be unnecessary in the
sense that it is implied by other constraints that we will add
to the linear program.)

We now seek to enforce the requirement that each task
receives its appropriate amount of execution time. Since the
affinity mask of task τi restricts the processors upon which
τi may execute, this requirement can be represented by n
equations of the following form, one for each i = 1, 2, . . . , n:∑

j∈αi

xi,j = 1 (1.1)

Next, we seek to enforce the requirement that the capacity
constraint of each processor is met. This is represented by
m inequalities of the following form, one for each j =
1, 2, . . . ,m:

n∑
i=1

(
uixi,j

)
≤ 1 (1.2)

The resulting LP problem incorporating these two sets of
constraints for any APA instance (τ, π), over the (n × m)
variables {xi,j }i=1,...,n;j=1,...,m which are all constrained to
being ≥ 0 and ≤ 1, is depicted in Figure 1.

Example 2: The linear program for the instance of Exam-
ple 1 is

x11 = 1

x22 = 1

x31 + x32 = 1

0.7x11 + 0.5x31 ≤ 1

0.6x22 + 0.5x32 ≤ 1

where the first three constraints correspond to instantiations
of Constraint (1.1) for tasks τ1, τ2, and τ3 respectively, while
the last two correspond to instantiations of Constraint (1.2) for
processors π1 and π2.

(Note that this linear program has no objective function
specified: we are simply seeking to determine any assignment
of values to the xij variables that would cause all the con-
straints to evaluate to true.)

It may be verified that the following assignment of values
to the xij variables

x11 = 1;x22 = 1;x31 = 0.4; and x32 = 0.6 (2)

constitutes a possible solution to this linear program.

It is immediately evident that the linear program APA-
Feas(τ, π) has a solution if the instance (τ, π) is APA-feasible;
this is formally demonstrated in Lemma 1 below.

Lemma 1: If instance (τ, π) is APA-feasible, then APA-
Feas(τ, π) has a solution.

Proof: Since (τ, π) is APA-feasible, it is possible to
generate a schedule for any sequence of jobs that could legally
be generated by this instance. Let us therefore consider the
sequence of job arrivals in which jobs of each task τi arrive
at all instants k · Ti, for all k = 0, 1, 2, . . ., and executes for
exactly Ci time units. Let P denote the least common multiple
(lcm) of the periods of the n tasks.

Consider a schedule for this sequence of job arrivals, in
which all job deadlines are met. Let fi,j denote the fraction
of the total amount of time over [0, P) during which task τi
executed on processor πj , for each i and each j. We will show
that all the constraints in APA-Feas(τ, π) are satisfied when
xi,j ← (fi,j/ui) for each i, j.

Constraints (1.1): The total amount of execution received by
task i over [0, P) is given by

∑
j∈αi

(fi,j · P) = P
∑
j∈αi

(fi,j) .

There are P
Ti

jobs of task τi with arrival times and deadlines
in [0, P); in a schedule in which all job deadlines are met,
τi will therefore have received Ci · PTi

units of execution over

APA-Feas(τ, π)
Determine non-negative values for the variables {xi,j}, 1 ≤ i ≤ n, 1 ≤ j ≤ m, satisfying the following constraints:∑

j∈αi

xi,j = 1 , (i = 1, 2, . . . , n) (1.1)

n∑
i=1

(
ui xi,j

)
≤ 1 , (j = 1, 2, . . . ,m) (1.2)

(1)

Fig. 1. Linear Programming formulation of APA feasibility.

[0, P). That is,

P
∑
j∈αi

(fi,j) = Ci ·
P

Ti

⇔
∑
j∈αi

(fi,j) =
Ci
Ti

⇔
∑
j∈αi

(
fi,j
ui

)
= 1

Thus, Constraint (1.1) of APA-Feas(τ, π) is satisfied when
xi,j ← (fi,j/ui) for all i, j.

Constraints (1.2): For each j, this simply reflects the fact that
processor πj could not have executed for more than P time
units over the interval [0, P).

That completes the proof of Lemma 1.

Lemma 1 above showed that if the instance (τ, π) is APA-
feasible then the linear program APA-Feas(τ, π) of Figure 1
has a solution. What about in the opposite direction? — does
a solution to the LP imply that (τ, π) is APA-feasible? It turns
out that the answer is “yes;” in Sections IV-B and IV-C below
we will show how to use a solution to the linear program APA-
Feas(τ, π) to develop a strategy for the run-time scheduling of
APA instance (τ, π). Taken in conjunction with Lemma 1, this
will serve to show that the linear program APA-Feas(τ, π) of
Figure 1 has a solution if and only if (τ, π) is APA-feasible.

B. Constructing a schedule template

Once we have constructed the linear program APA-
Feas(τ, π) as discussed above, we determine whether it has
a solution or not. If not, Lemma 1 tells us that instance (τ, π)
is not APA-feasible; we therefore declare failure and stop. If
APA-Feas(τ, π) is feasible, however, we show below how we
can use any feasible solution to APA-Feas(τ, π) to determine
a scheduling strategy for the APA-instance (τ, π).

Let us therefore suppose that APA-Feas(τ, π) is a feasible
linear program, and let {xi,j} denote a solution to it. We now
describe how we can use a feasible solution to APA-Feas(τ, π)
to construct a schedule template for the tasks in τ upon the
processors in π, such that all deadlines are met.

Let ` be defined as follows:

` := max
{

n
max
i=1

{∑
j∈αi

uixi,j
}
,
m

max
j=1

{ n∑
i=1

uixi,j
}}

(3)

Example 3: From the LP solution in Expression 2, we
compute ` for the APA-instance of Example 1 according to
Expression 3 as follows:

` = max
{

max{0.7, 0.6, 0.2 + 0.3},

max{0.7 + 0.2, 0.6 + 0.3}
}

= 0.9 (4)

Notice that by Constraint (1.1) of APA-Feas(τ, π),(∑
j∈αi

uixi,j
)

is equal to Ci/Ti. Thus ` is set equal to the
larger of (i) the maximum utilization of any task, and (ii) the
maximum fraction of the computing capacity of any processor,
that is committed to executing the tasks in τ . It is evident that
` ≤ 1 for any feasible solution to APA-Feas(τ, π).

We will now apply the technique introduced in [8] to
construct a schedule over the interval [0, `) that, for all i, j,
executes task τi for exactly (uixi,j) time units on processor
πj . By Constraint (1.1) of APA-Feas(τ, π), this implies that
each τi receives exactly (Ci/Ti) units of execution over [0, `).
(Since ` ≤ 1, it follows that this schedule completes at or
before time-instant 1; hence, a schedule in which all job
deadlines are met may be obtained by repeating this schedule
over all time-intervals [k, k+`), for all integer k. However, this
is not how we will be constructing our schedule in run-time –
the manner in which we do so is described in Section IV-C.)

In constructing the schedule over [0, `), the major challenge
is to ensure that no job-level parallelism occurs: at each
instant, each task τi should execute on at most one processor
πj . Our approach towards constructing such a schedule is
iterative: we repeatedly choose a subset of the set of tasks for
execution, the processors to execute them on, and the length
of time for which to execute them. More specifically, in each
iteration we

1) Determine a one-to-one mapping χ from a subset of the
set of tasks to a subset of the set of processors — if

task τi is in this subset chosen for execution, then τi is
executed on πχ(i) over the interval [`− δ, `) for some δ,
0 < δ ≤ ` .
(The precise manner in which the mapping χ, and the
value of δ, are determined, is described below.)

2) For each (i, j) pair such that χ(i) = j, we decrement
xi,j by an amount (δ/ui):

xi,j ← xi,j −
δ

ui

3) We decrement ` by an amount δ: `← `− δ.
During each such iteration, we will choose the tasks to be
executed over [` − δ, `) in such a manner that the values of
xi,j and ` after the iteration will continue to satisfy Equation 3.
Since δ > 0, it follows that executing these three steps
repeatedly will yield the desired schedule.

This process is illustrated in Example 4 below for the APA
instance of Example 1. The reader is encouraged to glance
through Example 4 at the current moment and observe that
the algorithm undergoes three iterations for that example. The
first iteration maps tasks τ1 and τ3 on processors π1 and π2

respectively for 0.3 time units; the second iteration maps tasks
τ3 and τ2 on processors π1 and π2 respectively for 0.2 time
units; and the third (and final) iteration maps tasks τ1 and τ2
on processors π1 and π2 respectively for 0.4 time units.

Determining χ and δ

As stated above, our approach towards constructing the
schedule template is iterative in the sense that we choose
a subset of the set of tasks for execution, the processors to
execute them on, and the length of time for which to execute
them, during each iteration. We now describe each iteration of
this iterative process, starting with a high-level overview and
following up with a more detailed description.

Overview. With respect to the current iteration2, we define a
processor πj to be full if

∑n
i=1 uixi,j = `, thereby requiring

that processor πj must be continually busy over the interval
[0, `) in a correct schedule. We define a task τi to be urgent
if
∑
j∈αi

uixi,j = `; this requires that task τi must execute
continually over the interval [0, `) in a correct schedule. (We
observe from the definition of ` in Equation 3 that there must
be some full processor[s] and/ or some urgent task[s] at the
start of the first iteration). In each iteration, we obtain a one-
to-one mapping χ from a subset of the set of tasks to a subset
of the set of processors, such that each urgent task is mapped
upon some processor, and all full processors have some task
mapped upon them; in addition, some non-urgent tasks may
be mapped upon processors, and some non-full processors
may have tasks mapped upon them. Each task τi that is so

2At the beginning, the first iteration is the current iteration; consequently,
the values of the xi,j ’s and of ` referred to in this paragraph during this first
iteration are the values obtained by solving the LP problem APA-Feas(τ, π)
and Equation 3 respectively. The values of ` and the xi,j ’s in subsequent
iterations are obtained as described in the next paragraph (the one starting
with “At the end of the iteration. . . ”).

mapped will be executed upon the processor πχ(i) to which
it is mapped, for an interval of time δ. That is, task τi is
executed on processor πχ(i) over the interval [`− δ, `), for all
task-processor pairs (i, χ(i)) in the mapping.

At the end of the iteration, we decrement the xi,j value
corresponding to each such task-processor pair by an amount
(δ/ui), and set ` ← ` − δ. Then, we proceed to the next
iteration which involves identifying a new mapping such that
all tasks which are urgent (according to these updated values
for ` and xi,j’s), and all processors which are full (also
according to these updated values), are mapped. Notice that
the set of urgent tasks/ full processors in this next iteration will
include all urgent tasks/ full processors of the current iteration,
and may contain some additional tasks/ processors.

Details. In each iteration, we will construct a bipartite graph
based upon the current values of the xi,j’s and `. We will then
use the following well-known result concerning matchings in
bipartite graphs to determine a matching on the bipartite graph
we construct, and use this matching to obtain the mapping χ
of a subset of the tasks to a subset of the processors.

For any set of vertices V, let N(V) denote the neighborhood
of V – i.e., all vertices that are connected by an edge to some
vertex in V. We will make use of Halls’ famous condition
for saturating matchings [5] (see, e.g., [15, page 110] for a
text-book exposition).

Theorem 2 (Hall’s theorem [5]): Let G = (X
⋃
Y,E ⊆

X × Y) denote a bipartite graph with vertex set (X
⋃
Y),

and edge-set E. There is a matching in G which saturates X
(i.e., in which each vertex in X is matched), if and only if
(|N(S)| ≥ |S|) for all S ⊆ X .

Our bipartite graph is constructed as follows. The graph has
(n + m) vertices, one corresponding to each task τi and one
to each processor πj , and an edge (τi, πj) if and only if the
value of xi,j during the current iteration is > 0.

Fact 1: Every collection of vertices corresponding to full
processors and every collection of vertices corresponding to
urgent tasks in this bipartite graph has “many” neighbors.
More precisely,

1) For any set Γ′ of (vertices corresponding to) urgent tasks,
it is the case that |N(Γ′)| ≥ |Γ′|.

2) For any set Π′ of (vertices corresponding to) full proces-
sors, it is the case that |N(Π′)| ≥ |Π′|.

Proof: We prove the first statement above; the proof of the
second is virtually identical.

Let Γ′ denote the vertices corresponding to any set of
urgent tasks. Since all tasks in Γ′ are urgent, it follows that∑
τi∈Γ′

∑
all j xi,j = |Γ′| · `.

By definition, all non-zero xi,j’s from all task-
vertices τi ∈ Γ′ lead to vertices πj ∈ N(Γ′). Therefore∑
τi∈Γ′

∑
all j xi,j =

∑
τi∈Γ′

∑
πj∈N(Γ′) xi,j . Now if

|N(Γ′)| < |Γ′|, then it must be the case that, for some
πj ∈ N(Γ′),

∑
i xi,j > `. However, having

∑
i xi,j exceed `

violates Equation 3 – a contradiction.
End proof (of Fact 1).

Let Γ denote the set of all vertices corresponding to tasks,
and Π the set of all vertices corresponding to processors, in
this bipartite graph. Let Γu ⊆ Γ denote the set of all vertices
corresponding to urgent tasks, and Πf ⊆ Π the set of all
vertices corresponding to full processors.

1) Determine a matching from all vertices in Γu to a subset
of the vertices in Π – by Fact 1 and Theorem 2, this can
always be done.

2) Determine a matching from all vertices in Πf to a subset
of the vertices in Γ – by Fact 1 and Theorem 2, this can
always be done.

3) If an urgent task appears in the second matching as well,
then discard the edge that this task was matched with in
the first matching.
With the remaining edges, it is evident that each urgent
task is matched with exactly one processor, and each full
processor is matched with one or two tasks; furthermore,
if a full processor is matched with two tasks then exactly
one of these is an urgent task.

4) If a full processor remains matched with two tasks with
these remaining edges, then discard the edge matching
it with a non-urgent task, and retain only that edge that
matches it with an urgent task.

It is evident that the remaining edges constitute a partial
matching on the bipartite graph that satisfies the following
property:

Fact 2: The union of all the remaining edges is a matching
in which each full processor is matched, and each urgent
task is matched. (There may be additional matched vertices,
corresponding to non-full processors and non-urgent tasks, as
well.)

The matching obtained above defines the mapping χ from
tasks to processors – if (τi, πj) is an edge in the matching,
then χ(i)← j. By Fact 2, it is ensured that each urgent task is
executed, and that each full processor has some task executed
upon it. It remains now to specify how long each task τi that
has been so matched should execute upon processor πχ(i); i.e.,
how the value of δ is determined. We want the largest value
of δ satisfying the following three conditions:

1) For each task-processor pair (τi, πj) such that χ(i) = j,
we need δ ≤ uixi,j ; this ensures that task τi can indeed
execute on processor πj for the δ time units in [`− δ, `).

2) For each task τi that did not get mapped, we need δ ≤
(`−

∑
j∈αi

uixi,j); this ensures that task τi remains non-
urgent throughout the interval [`− δ, `).

3) For each processor πj that did not get mapped, we need
δ ≤ (` −

∑
all i uixi,j); this ensures that processor πj

remains non-full throughout the interval [`− δ, `).
Hence, δ is computed as follows:

δ = min


uixi,j , all (i, j) such that χ(i) = j

`−
∑
j∈αi

uixi,j , all i such that τi was not selected for
execution on any processor

`−
n∑
i=1

uixi,j , all j such that πj was not selected to
execute any task

(5)

Thus the current iteration defines a schedule for the interval
[`− δ, `): each task τi which is mapped on to some processor
πχ(i) is executed on processor πχ(i) over this interval. The
value of ` is decremented by an amount δ, and all the xi,j’s
corresponding to tasks that are scheduled during this interval
are each decremented by an amount (δ/ui), prior to the start
of the next iteration.

Example 4: The following solution to the linear program
APA-Feas(τ, π) for the APA-instance (τ, π) of Example 1 was
given in Expression 2:

x11 = 1;x22 = 1;x31 = 0.4; and x32 = 0.6

At the start of the first iteration, the bipartite graph that is
constructed contains the edges corresponding to each non-zero
xi,j , i.e., the edges (τ1, π1), (τ2, π2), (τ3, π1), and (τ3, π2).

��
��

τ3

��
��

τ2

��
��

τ1 ��
��

π1

��
��

π2

�
�
�
�

�
�
�
�
�
�
�
�
�
�

In Example 3, we had determined that the value of ` for the
APA-instance (τ, π) of Example 1 is 0.9. Since this is larger
than u1x11, u2x22, and u3x31 + u3x32, the set of urgent
tasks Γu is empty. However, both processors are full (since
u1x11 + u3x31 = 0.9 and u2x22 + u3x32 = 0.9). Hence a
possible matching that would match all full processors would
map task τ1 to processor π1 and task τ3 to processor π2:
χ(1) = 1, χ(3) = 2.

Based on this mapping, we would compute δ according to
Equation 5:

δ = min

 u1x11, u3x32

(`− u2x22)
−

which evaluates to 0.3 – the value of both u3x32 and (` −
u2x22).

Hence the current iteration defines a schedule over the
interval [`− δ, `), or [0.6, 0.9):

π2

π1

0 1.00.90.6

τ3

τ1

For the next (i.e., second) iteration, the values of the xij’s
are updated to represent the remaining execution requirements:

x11 = (1− 0.3

0.7
) = 4/7;x22 = 1;x31 = 0.4, and x32 = 0 (6)

while the value of ` is also decremented by an amount δ:

`← 0.9− 0.3(= 0.6) (7)

The bipartite graph that is constructed during this second
iteration is

��
��

τ3

��
��

τ2

��
��

τ1 ��
��

π1

��
��

π2

�
�
�
�
�
�
�
�
�
�

(the edge (τ3, π2) is missing since x32 = 0.)
Since ` is equal to the remaining utilization for task τ2, the
set of urgent tasks Γu consists of τ2; both processors are full.
Hence a possible matching that would match both processors
would map task τ2 to processor π2 and task τ3 to processor
π1: χ(2) = 2, χ(3) = 1.

Based on this mapping, we would compute δ according to
Equation 5:

δ = min

 u2x22, u3x31

(`− u1x11)
−

which evaluates to 0.2 (since this is the value of both u3x31

and (`− u1x11)).
Hence this second iteration defines a schedule over the

interval [` − δ, `), or [0.4, 0.6); adding this to the schedule
generated during the first iteration, we get the following:

π2

π1

0 1.00.90.6

τ3

τ1

0.4

τ2

τ3

For the next (i.e., third) iteration, the values of the xij’s are
updated to represented the remaining execution requirements:

x11 = 4/7;x22 = (1− 0.2

0.6
) = 2/3;x31 = 0.0, and x32 = 0 (8)

while the value of ` is also decremented by an amount δ:

`← 0.6− 0.2(= 0.4) (9)

The bipartite graph would have only the two edges (τ1, π1)
and (τ2, π2): both τ1 and τ2 are urgent and both π1 and π2

are full. Hence χ maps τ1 to π1 and τ2 to π2, to yield the
following schedule:

π2

π1

0 1.00.90.6

τ3

τ1

0.4

τ2

τ3

τ2

τ1

Although the algorithm described above would stop with this
schedule, heuristics can be applied to this schedule to reduce
the number of preemptions. These heuristics observe that task
τ3 is the only one that has a presence on both processors;
hence, τ3’s allocation on π1 can be moved to the beginning
of the interval (i.e., to [0.0, 0.2)), and on π2 to the end of the
interval (i.e., to [0.6, 0.9)); this has the effect of allowing the
two allocations of τ1 on π1 and of τ2 on π2 to be contiguous
in time, thereby avoiding preemptions between them. The
final schedule template obtained after applying these heuristic
optimizations is depicted in Figure 2 below:

π2

π1

0 1.0

0.6

0.90.2

τ2 τ3

τ3 τ1

Fig. 2. The schedule template for the instance of Example 1

C. Runtime scheduling

Once a schedule template has been constructed as described
above, we can use this template to make scheduling decisions
at run-time. If we were not concerned with the number of
preemptions, this would be trivial: we could divide the time-
line into arbitrarily small intervals and simply replicate this
template, appropriately scaled in size, during each interval
— if some task does not have any job awaiting execution
during some time-instant, its allocation could simply idle the
processor.

However, it should be evident that such a schedule will
experience a very large number of preemptions, and is likely
to result in unacceptably high run-time overhead for many
(perhaps most) realtime applications. We are therefore working
on developing a run-time scheduling policy that only invokes
the template upon the release of jobs of tasks that have non-
zero execution on more than one processor (i.e., for jobs
of tasks τi for which there are j1 and j2 in αi, j1 6= j2,

-

-

π2

π1

time

time

to

(to + 11)

τ3

τ3

(to + 2) (to + 4)

(to + 8) (to + 11)

τ3

τ3

(to + 12) (to + 20)

(to + 16.8) (to + 19.2)

(to + 13.6)

τ3

τ3

Fig. 3. Example 5: A job of τ3 arrives at time-instant to, with a deadline at time-instant to + 20. Capacity on processors π1 and π2 is reserved for this job
as shown. (The time axis is not labeled over [to, to + 2) to avoid over-cluttering the figure — over this interval, τ3 has a reservation over [to, to + 0.4) on
π1 and over [to + 1.2, to + 1.8) on π2.)

such that xi,j1 and xi,j2 are both non-zero in the solution
to the linear program APA-Feas(τ, π)). When a job of such
a τi is released, the template is “scaled” by an appropriate
factor and reservations are made on all the processors for
only those tasks whose jobs may execute upon more than one
processor. We stress that it is not necessary to make these
reservations for tasks that execute upon only one processor:
jobs of such tasks may be scheduled upon their respective
processors by executing preemptive uniprocessor EDF upon
the non-reserved capacities on these processors. Below, we
provide a brief description of the operation of this run-time
algorithm when there is only one task that executes upon
more than one processor; in Example 5 we will illustrate its
operation on our example APA instance.

Suppose that a job of task τi, that executes upon more than
one processor in the schedule template, arrives at some time-
instant to. This job has a deadline at time-instant to+Ti; hence,
we will need to make reservations over the interval [to, to+Ti).
Let d1, d2, . . . , dk denote the (absolute) deadlines, indexed in
increasing order (i.e., dj < dj+1 for all j) of jobs that had
arrived prior to to, are still active at time to, and have deadlines
within [to, to + Ti). Let ∆ denote (an upper bound on) the
smallest relative deadline of any job that may arrive over this
interval, and that may “interact” with the scheduling of τi’s
job, by, e.g., executing upon one of the processors on which
τi executes. (A safe value for ∆ is the minimum period of any
task in the instance, although larger values may be obtained
by more careful analysis — we postpone consideration of
an optimal choice for ∆ to future work.) To determine the
reservations that must be made, we will

• First, let do := to. For each value of j, 0 ≤ j < k, scale
the schedule template by a factor of (dj+1 − dj), and
invoke the reservations of this scaled schedule template
over the interval [dj , dj+1).

• Next, scale the schedule template by a factor ∆, and
invoke the reservations of this scaled schedule template
b(Ti − dk)/∆c times contiguously beginning at time-
instant dk.

• Finally, scale the schedule template by a factor ((Ti −
dk) mod ∆), and invoke the reservations of this scaled
schedule template once, over the interval [to+Ti−((Ti−
dk) mod ∆), to + Ti).

We now illustrate this process on our running example.

Example 5: Recall that we have constructed the template
depicted in Figure 2 for the example APA instance of Exam-
ple 1. Suppose that during run-time we have made the correct
scheduling decisions until some time-instant to. Suppose that
a job of τ3 arrives at time to (and hence has a deadline at
time to + 20). Suppose that there is one other job active at
time-instant to with deadline at time-instant to+ 2; i.e., k = 1
and d1 = to + 2. Since the smallest period of any task in the
instance is min{10, 10, 20} = 10, the parameter ∆ may safely
be assigned the value 10.
• The schedule template of Figure 2 is first scaled by a

factor of (d1−do) = (d1− to), or 2; this template yields
τ3’s reservations over [to, to + 2).

• Next, the schedule template is scaled by a factor of ∆,
or 10; this template is repeated b(Ti − dk)/∆c = b(20−
2)/10c times, i.e., once, to obtain τ3’s reservations over
the interval [to + 2, to + 12).

• Finally, it is scaled by a factor ((Ti − dk) mod ∆) =
((20 − 2) mod 10) = 8, to obtain the reservations over
the interval [to + 12, to + 20).

The resulting reservations are illustrated in Figure 3.

Since the schedule template must be used only upon the
arrival of jobs of tasks that execute on more than one pro-
cessor, and capacity reserved for only such tasks, it is to be
expected that the efficiency of this run-time scheduler is highly
dependent upon how many tasks execute on more than one
processor — in the extreme case where each task executes on
only a single processor, we do not need to use the template at
all and may simply execute the uniprocessor EDF dispatcher
upon each processor. Later in Section V, we will bound the
number of tasks that execute upon more than one processor
in the schedule templates that are generated by the algorithm
described in Section IV-B.

D. Comparison with global feasibility analysis upon unrelated
multiprocessors [8]

At the start of this section, we had stated that although
APA feasibility analysis can be considered to be a special case
of the problem of global feasibility analysis upon unrelated
multiprocessors, it is in fact a simpler problem; our solution as
described in Sections IV-A to IV-C above is therefore simpler

than the algorithm in [8] for global feasibility analysis on
unrelated multiprocessors. We now briefly enumerate a couple
of salient differences between our algorithm and the one in [8].

1) Although the approach of [8] also requires the construc-
tion of a linear program with (n×m) xij variables, the
interpretation of these variables is different. Specifically,
xij denotes the fraction of time for which task τi is
executing on processor πj in the approach of [8], while
for us xij denotes the fraction of task τi that is assigned
to processor πj . (Hence in [8] xij is constrained to lie in
the range [0, ui], rather than [0, 1] as is the case here.)

2) The linear program constructed in [8] had n more con-
straints than APA-Feas(τ, π): in addition to constraints
that are analogous to Constraints (1.1) and (1.2), there
were n additional constraints that needed to be explicitly
added in order to enforce the prohibition that a single
job may not be executing concurrently upon multiple
processors.

V. CHARACTERIZING THE DEGREE OF MIGRATION

As we saw in Section IV-C above, run-time scheduling is
more difficult for tasks that may execute on multiple pro-
cessors: jobs of such tasks need per-processor “reservations”
to be maintained during runtime, whereas tasks that execute
on just a single processor may have their jobs scheduled
using uniprocessor EDF. It is well known (see, e.g., [10])
that preemptive uniprocessor EDF can be implemented very
efficiently to have a run-time that is logarithmic in the number
of tasks per scheduling decision, while maintaining reserva-
tions for individual jobs requires significant book-keeping and
is typically implemented using algorithms that have run-time
linear in the number of reservations that are made.

We will now show that the preemptive schedule obtained
by the technique described in Section IV executes most tasks
on a single processor only, and bounds the total number of
tasks that execute on more than one processor. More precisely,
let us say that a task τi has a presence on a processor πj in
the schedule obtained using the approach described above, if
and only if task τi executes for any amount on processor πj
in this schedule (i.e., if xi,j > 0 in the solution to the linear
program APA-Feas(τ, π) of Figure 1). Intuitively speaking,
the total number of presences is a measure of the “degree”
to which the schedule is global rather than partitioned; the
number of presences in a purely partitioned schedule is equal
to the number of tasks n, while a schedule in which each task
has a presence on each processor upon which it is allowed to
execute would have

(∑n
i=1 |αi|

)
presences. We will prove in

this section that
1) The total number of presences exceeds the total number

of tasks by at most m (Lemma 2 below); and
2) At least (n − m) tasks have a presence on a single

processor only (Lemma 3 below).
We first state without proof a basic fact concerning linear

programming: a proof may be found in any standard text on
linear programming (see, e.g., [14]).

Fact 3: Consider a linear program on N variables, in which
each variable is constrained to be non-negative. Suppose that
there are M additional linear constraints. If M < N , then at
most M of the variables have non-zero values at each vertex
of the feasible region3 of the linear program.

Observe that APA-Feas(τ, π) is a linear program on (n×m)
variables that are each constrained to be non-negative, and (n+
m) constraints. By Fact 3, therefore, at most (n+m) of the xi,j
variables have non-zero values at each vertex of the feasible
region of APA-Feas(τ, π). Lemma 2 follows immediately:

Lemma 2: The total number of presences exceeds the total
number of tasks by at most m.

A crucial observation is that each of the n Constraints (1.1)
of APA-Feas(τ, π) is on a different set of xi,j variables – the
first such constraint has only the variables x1,1, x1,2, . . . , x1,m,
the second has only the variables x2,1, x2,2, . . . , x2,m, the
i’th has only the variables xi,1, xi,2, . . . , xi,m, and so on.
Since there are at most (n + m) non-zero xi,j values, it
follows from the pigeon-hole principle that at most m of these
constraints may have more than one non-zero variable. For the
remaining constraints, the sole non-zero xi,j variable must take
on the value 1 in order that the corresponding constraint be
satisfied, which implies that the entire task τi is assigned to
the processor πj . Lemma 3 follows.

Lemma 3: For at least (n − m) of the integers i in
{1, 2, . . . , n}, exactly one of the variables {xi,1, xi,2, . . . ,
xi,m} is non-zero in any vertex solution to APA-Feas(τ, π).
That is, at least (n −m) tasks will have a presence on one
processor only.

From a computational complexity perspective, determining
a vertex in the feasible region of a linear program is an
easy problem. Many LP solvers return vertex solutions; others
that are based on interior-point algorithms [6] or ellipsoid
algorithms [7] do not guarantee to find a vertex point (al-
though the simplex algorithm [2] does). There are efficient
polynomial-time algorithms (see, e.g, [14]) for obtaining a
vertex optimal solution given any non-vertex optimal solution
to a LP problem – if the LP-solver being used does not
guarantee to return a vertex-optimal solution, then one of these
algorithms may be used to obtain a vertex-optimal solution
from the feasible solution that is returned by the LP-solver.

VI. CONTEXT AND CONCLUSIONS

The ability to specify processor affinity masks for individual
tasks is now widely available in real-time operating systems;
as a consequence, there has been an increasing use of affinity
masks by programmers of real-time systems to achieve diverse
goals including improved performance, load-balancing, inter-
component isolation, physical separation for fault-tolerance,
etc. As the ability to set processor affinity masks comes to be

3The feasible region in N -dimensional space for this linear program is the
region over which all (N +M) constraints – the M linear constraints plus
the N constraints that each of the N variables be non-negative – are satisfied.

increasingly used in real-time systems, we believe it important
that the real-time scheduling theory community seek to obtain
a better understanding of this phenomenon.

When a new model is investigated by the real-time
scheduling theory community, feasibility-analysis and run-
time scheduling have traditionally been the first scheduling
problems studied. In this paper, we have studied the problems
of determining whether a real-time system with specified
affinity masks is feasible or not and if feasible, of obtaining a
run-time scheduling strategy that meets all timing constraints.
We have shown that the feasibility analysis problem can be
solved in polynomial time, by transforming it to the earlier-
studied problem of preemptive global scheduling on unrelated
multiprocessors. We have also derived an algorithm that does
feasibility-analysis directly from first principles; this algorithm
leads to a run-time scheduling strategy. We demonstrated the
efficiency of this run-time strategy by showing that it can be
implemented efficiently if most tasks execute on just a single
processor, and then proving that the schedules generated by
our scheduling strategy indeed possess this property.

Our work can be extended in several directions. One obvious
extension would be to consider more general workload models:
to begin with, it would be useful to have results concerning
task systems in which relative deadlines of tasks are not
required to be equal to the period parameters. Another interest-
ing extension comes from considering the results in this paper
along-with the work in [4]: given specified affinity masks (as
in our model), can we further constrain these masks in order
to ensure better run-time behavior? Indeed, the approach in [4]
can be placed into the following framework:

Given a task set with application- or system-defined initial
(maximal) processor affinity sets that the system designer has
specified, we perform processor affinity set minimization prior
to run-time and obtain, for each task, the smallest processor
affinity set that ensures schedulability. Then during runtime
we perform “global” scheduling that respect the processor
affinity sets determined off-line.

Observe that our results in Section V can be considered to fit
within this framework: given arbitrary processor affinity sets,
the off-line phase would construct, for any feasible system,
processor affinity sets in which all but at most m tasks have
a processor affinity set of cardinality one, and the sum of the
cardinalities of all the processor affinity sets is at most n+m
(here, n denotes the number of tasks and m the number of
processors).

In this framework, the processor affinity set minimization
step can be considered to be an optimization process. It would
be interesting to study what kinds of constraints could be
placed on this process while retaining tractability, what kinds
of constraints are “useful” from a system-implementation
perspective, and and what impact such constraints would have

on the feasibility/ schedulabilty of the system. As a specific
example, how would the optimization algorithm change if the
the goal of the optimization step is to obtain a system in which
each task may execute on at most two (or in general, some
small constant k) processors?

Another interesting generalization of the studied problem
was suggested in [4]: processor affinity sets do not put any
restrictions on when the migrations can take place. It would be
interesting to interpret each affinity set as a function of time
as well – see [4] for details – in which case the feasibility
and run-time scheduling problems become quite a bit more
challenging.

ACKNOWLEDGEMENTS

The work of the first author was supported in part by NSF
grants CNS 1016954, CNS 1115284, and CNS 1218693; and
ARO grant W911NF-09-1-0535.

REFERENCES

[1] S. Baruah. Feasibility analysis of preemptive real-time systems upon
heterogeneous multiprocessor platforms. In Proceedings of the 25th
IEEE Real-Time Systems Symposium, RTSS 2004, pages 37–46, Lisbon,
Portugal, December 2004. IEEE Computer Society Press.

[2] G. B. Dantzig. Linear Programming and Extensions. Princeton
University Press, 1963.

[3] A. Foong, J. Fung, and D. Newell. An in-depth analysis of the impact
of processor affinity on network performance. In Proceedings of the
12th IEEE Conference on Networks, ICON 2004, pages 244–250, 2004.

[4] A. Gujarati, F. Cerqueira, and B. Brandenburg. Schedulability analysis
of the Linux Push and Pull Scheduler with arbitrary processor affinities.
In Proceedings of the 2013 25th Euromicro Conference on Real-Time
Systems, ECRTS ’13, Paris (France), 2013. IEEE Computer Society
Press.

[5] P. Hall. On representation of subsets. Journal of the London Mathemat-
ical Society, 10:26–30, 1935.

[6] N. Karmakar. A new polynomial-time algorithm for linear programming.
Combinatorica, 4:373–395, 1984.

[7] L. Khachiyan. A polynomial algorithm in linear programming. Dokklady
Akademiia Nauk SSSR, 244:1093–1096, 1979.

[8] E. Lawler and J. Labetoulle. On preemptive scheduling of unrelated
parallel processors by linear programming. Journal of the ACM,
25(4):612–619, Oct. 1978.

[9] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in
a hard real-time environment. Journal of the ACM, 20(1):46–61, 1973.

[10] A. Mok. Task management techniques for enforcing ED scheduling on
a periodic task set. In Proceedings of the 5th IEEE Workshop on Real-
Time Software and Operating Systems, pages 42–46, Washington D.C.,
May 1988.

[11] G. Nelissen and J. Goossens. A counter-example to: Sticky-ERfair:
a task-processor affinity aware proportional fair scheduler. Real-Time
Systems, 47(4):378–381, July 2011.

[12] V. Salmani, M. Naghibzadeh, and M. Kahani. Deadline scheduling with
processor affinity and feasibility check on uniform parallel machines.
In Proceedings of the 7th IEEE International Conference on Computer
and Information Technology, CIT 2007, pages 793–798, 2007.

[13] A. Sarkar, S. Ghose, and P. P. Chakrabarti. Sticky-ERfair: a task-
processor affinity aware proportional fair scheduler. Real-Time Systems,
47(4):356–377, July 2011.

[14] A. Schrijver. Theory of Linear and Integer Programming. John Wiley
and Sons, 1986.

[15] D. B. West. Introduction to Graph Theory (2nd Edition). Prenctice Hall,
2001.

