
SPR: Shielded Processor Reservations
with Bounded Management Overhead

Esma Kökten1 Gabriel Parmer1 Björn B. Brandenburg2

1The George Washington University, Washington, DC
2Max Planck Institute for Software Systems, Kaiserslautern, Germany

Abstract—With growing hardware consolidation in modern
computational infrastructures, ensuring predictable CPU allo-
cation has become increasingly critical. Processor reservations,
usually realized through rate-limiting servers, play an essential
role in providing such predictability by precisely controlling
when and how long each task may execute. In theory, rate-
limiting servers provide strong temporal isolation, meaning
that a task’s timely access to its guaranteed budget is not
contingent on the behavior of any other task in the system.
However, in practice, these guarantees are easily undermined
by the realities of actual hardware and shortcomings in naı̈ve
reservation implementations. When confronted with malicious
tasks using the reservation policy itself to attack the very security
and rate properties it is meant to uphold, temporal isolation
breaks down in current implementations. In response, this
paper presents shielded processor reservation (SPR) scheduling,
a novel approach that ensures that at most two reservations are
processed per scheduler invocation and integrates deferred timer
handling, early replenishment processing, and processor access
granularity guarantees to provide robust temporal isolation.
We implement SPR and existing rate-limiting servers in the
Composite operating system and evaluate its performance. The
results demonstrate that SPR provides reliable rate-limiting with
low overhead while also mitigating vulnerabilities that can be
exploited to attack existing reservation systems.

I. INTRODUCTION

Rate-limiting servers [2, 20, 22] are a core mechanism in
our computational infrastructure. Widely used in Linux [12],
in hypervisors such as Xen [24], and at the core of CPU
control in cgroups containers [1], they restrict CPU usage to
provide virtual processor shares that give tenants predictable
access to processing capacity. As such, they serve as a critical
security measure to maintain desired levels of availability.

For example, aperiodic tasks—i.e., tasks without an inherent
limit on the rate of activations such as network interrupts—
pose a risk of excessive delays and can, in the worst case, even
cause livelock [16]. More generally, untrusted tasks, aperiodic
tasks exposed to unpredictable inputs, and any other potentially
unbounded workloads, must be temporally isolated to prevent
them from unduly interfering with critical time-sensitive tasks.

Starting with RT-Mach [14] and popularized by the Resource
Kernel [17], the established solution to this problem is
to encapsulate such tasks in reservations backed by rate-
limiting servers that shape aperiodic (or overrunning) tasks
into a predictable pattern of interference, which enables their
integration into traditional schedulability analysis. A rate-
limiting server is typically defined in terms of a task τi
associated with a budget bi that is consumed while τi executes.

A replenishment rule determines when the budget is increased.
For example, a deferrable server [22] replenishes the budget
to its initial value at the beginning of every period pi, thus
limiting τi’s asymptotic utilization to bi/pi.

Critically, reservations are used in practice not only to
contain aperiodic tasks that may “accidentally” cause excessive
interference (e.g., due to input overload or other benign factors),
but also in security-centric systems where actively malicious
behavior on behalf of the encapsulated tasks cannot be ruled
out. For example, seL4 [8] integrates sporadic servers [13, 20]
into the execution and IPC subsystems to constrain untrusted
processes, and TCaps [9] combine constrained budgets and a
mechanism to transfer budget slices alongside invocations to
predictably coordinate among schedulers.

Tenants that actively try to undermine the temporal isolation
guarantee of the reservation system pose new challenges. While
reservations are very well understood from a schedulability
perspective, their practical implementation has received far
less attention, which is unfortunate as it is decidedly nontrivial
to implement reservations correctly (i.e., such that their
theoretical isolation guarantees are realized in practice).

Already in 2010, Stanovich et al. [21] uncovered flaws in
the POSIX sporadic server specification and demonstrated that
tasks can consume processor capacity beyond the intended
limits. Much more recently, Mergendahl et al. [15] demon-
strated Thundering Herd attacks against the sporadic server
implementation in seL4 [13]. In particular, they showed that
a victim thread’s temporal isolation guarantee can be violated
by inducing unanticipated interference (i.e., priority inversion
that theoretically should be impossible) that is bounded only
in the number of attacker-controlled threads. Interestingly, in
this case, the very security mechanism designed to provide
predictable reservations opened the door to an attack that
negated the desired temporal isolation guarantees.

This paper. Motivated by these findings, we revisit the issue
of reservations for untrusted, potentially malicious tasks in
light of the realities of actual hardware and the shortcomings
of naı̈ve implementations, and systematically investigate how
rate-limiting servers must be implemented to realize their
temporal isolation guarantees in practice. We identify three
main attack vectors that defeat temporal isolation, against
which no published reservation scheme, and to the best of our
knowledge, no publicly available implementation, defends.

A1 Lower-priority tasks can coordinate to force the processing
of N reservation replenishments on the critical path to

1

dispatching a higher-priority task, where N is the number
of attacker-controlled tasks. The accumulated replenishment
processing can induce excessive latency and ultimately, for
large N , a breakdown of temporal isolation. Mergendahl
et al.’s Thundering Herd [15] falls into this category.

A2 Lower-priority tasks can arrange for the processing of a
large number of slightly offset replenishment timers during
the execution of a higher-priority task, resulting in excessive
interrupt delays, with cumulative effects similar to A1.

A3 Higher-priority tasks can cause an unbounded number
of virtually back-to-back preemptions in lower-priority
tasks, causing excessive context switching overhead and
preventing lower-priority tasks from effectively using their
guaranteed processor time.

The two low-on-high attacks A1 and A2 exploit the fact that
untrusted tasks can tailor their behavior to trick naı̈ve server
implementations into performing management operations at
inopportune times: they use the reservation policy itself to
attack the very isolation properties it is meant to uphold.

The core issue underlying the high-on-low attack A3 is that
prior work has reasoned only about (unqualified) processor
time, but not made guarantees on useful processing time. The
two are not the same on real hardware, since context switching
is not free and disturbs the cache state, and budget tracking
has accuracy limits. Processor time is a fungible resource only
on paper; what is needed in reality is progress guarantees.

This paper presents our solution, shielded processor reserva-
tion (or SPR) scheduling, which categorically defends against
all three attack vectors. SPR is based on three novel principles
not previously articulated in the context of reservation systems:
• A budget replenishment that does not cause a task to be

dispatched immediately can be safely shifted in time.
• A timer interrupt that does not cause an immediate context

switch is unnecessary and can be safely omitted.
• A meaningful processing time guarantee must extend to the

granularity of allocation, not just its cumulative duration.
Informed by these principles, SPR combines early replenish-
ment processing, deferred timer processing, and scheduling
logic that processes at most two reservations per invocation,
which thwarts attacks A1 and A2. Additionally, SPR allows
for non-preemptive regions as part of its reservation contracts
(accounted for in admission control), which addresses A3.

Contributions.
• We demonstrate attacks A1–A3 on existing sporadic and

deferrable server implementations, and show the induced
overhead to lead to a breakdown in temporal isolation.

• From the attacks, we derive novel, not previously articulated
design principles for reservation implementations.

• We introduce SPR scheduling, which ensures bounded
reservation management overhead on the critical path.

• We describe how SPR scheduling integrates non-preemptive
regions to give processor access granularity guarantees.

• We implement and evaluate SPR scheduling in the Com-
posite OS and demonstrate that predictable reservation
processing is possible, with very low overhead.

II. MODEL AND ASSUMPTIONS

In this paper, we focus on fixed-priority scheduling, though
the SPR principles transfer to other settings, including EDF
scheduling and non-priority-based scheduling (e.g., round-
robin or FCFS). For simplicity, we restrict our focus to single-
core scheduling and partitioned multiprocessor scheduling.
Tasks. The system consists of a set of tasks {τ1, τ2, . . .} = T
(or, equivalently, |T | servers containing one task each). After
a task activates, it remains ready until completion, at which
point it becomes inactive again and awaits its next activation.
While it is ready, a task is either executing or preempted.

As we focus on reservations, we make few assumptions
about the underlying real-time task model. In particular, we
allow for an aperiodic task model in which each task’s inter-
activation time is unrestricted. This admits both classical
periodic and sporadic tasks with bounded inter-activation times,
but also general event-driven tasks such as interrupt handlers.
Reservations. Reservation systems define budget consumption,
depletion, and replenishment rules. We consider the popular
deferrable [22] and sporadic server [20] policies. Both schemes
describe each task τi with a fixed priority σi, a budget bi,
a current budget b̂i, and a replenishment period pi. The
utilization bi/pi defines the reserved share of the processor.

Initially, b̂i = bi. When task τi executes, its current budget
b̂i decreases at unit rate under both policies. When b̂i = 0,
the current budget is depleted, which signals that the allowed
rate of execution has been reached, and τi is removed from
the runqueue until the current budget is replenished.

Deferrable and sporadic servers differ in how and when a
task’s current budget is replenished. Deferrable servers reset
b̂i to bi periodically every pi, at times divisible by pi. As
such, deferrable servers replenish at fixed times irrespective
of actual budget use—leading to the possibility of a “double
hit” of 2× bi contiguous consumption, once at the end of one
period window and continuing at the start of the next.

In contrast, sporadic servers track budget consumption
precisely: if a task τi is activated at time ts and executes for
e time units before becoming inactive again or depleting its
current budget at time te, then e is added to τi’s current budget
b̂i at time ts+pi. Theoretically, a sporadic server can generate
a (virtually) unbounded number of pending replenishments.
In practice, implementations often impose a limit on the
number of replenishments tracked for each reservation to
bound memory consumption [13, 21]. We thus assume that
each sporadic server’s number of pending replenishments is
bounded by a (configurable) constant.

A policy-specific admission test such as response-time anal-
ysis is used to ensure that the set of servers T is schedulable,
which prevents overload and ensures that every server can
consume its entire budget within every replenishment period,
irrespective of whether (or when) other servers are executing.
Timers. The OS uses timer interrupts to keep track of time
and to react to time-sensitive events. These events include
budget depletion, replenishment handling, and task activation
after time-based self-suspension operations (e.g., nanosleep).

Timer granularity can significantly complicate reservation
accounting. Traditionally, many real-time systems relied on

2

Task
completion

Task
execution

Non-preemptive
region

Replenishment
timer

R

Deferred or early
replenishment
timer

R

A

A Deferred
activation
timer

Activation
timer

Fig. 1: Legend for all examples.

periodic “timer ticks,” i.e., periodic timer interrupts that trigger
every quantum. However, such tick-based systems suffer
from a potential delay between when events are intended to
trigger and when the next subsequent timer interrupt actually
fires. The resulting uncertainty in time-keeping causes notable
complications for budget tracking and enforcement [21].

In contrast, we assume a “tickless” system in which timer
interrupts can be programmed at the granularity of cycles to
occur exactly at the time of the next expiring timer. Such
“one-shot” timers are widely available in modern hardware.

III. DESIGN

This section outlines the design of SPR and illustrates how
it overcomes the limitations identified in existing reservation
systems discussed in §I. We focus on deferrable and sporadic
servers due to their popularity, though we believe that
the observations and approaches apply generally. We first
illustrate unnecessary timer interrupts (§III-A).To address
these, SPR employs the following three techniques: 1) early
replenishments (§III-B), 2) pruning of premature activation and
replenishment timers (§III-C), and 3) deferred activation and
replenishment processing (§III-D). Additionally, as previously
demonstrated by the Thundering Herd attack [15], the eager
processing of a potentially unbounded number of reservations
during a single invocation of the scheduler or timer logic
exposes an attack surface. To counteract this weakness, we
introduce prioritized, bounded reservation processing (§III-E).
Lastly, we integrate non-preemptive regions (§III-F) to ensure
spans of cache-friendly contiguous computation.

Throughout the rest of the paper, we provide concrete
examples to illustrate the key issues using three tasks τhi, τmid,
and τlo at specific priority bands σhi > σmid > σlo. Table I
lists the replenishment periods, budgets, and priorities of the
tasks. The legend for all examples is given in Figure 1.

A. Unnecessary Timer Interrupts

Figure 2 illustrates multiple scenarios in which unnecessary
timer interrupts can occur in a naı̈ve reservation implemen-
tation. Unnecessary timer interrupts are those that update
bookkeeping information (e.g., for reservations), but do not
result in a context switch between tasks (i.e., that do not alter
the task schedule). Tasks are placed on the Y-axis, and the
X-axis represents time. Three lines represent the budgets of
the tasks, and the shaded areas represent the execution of the
tasks. The budget lines illustrate how budget is consumed and
replenished. When the line indicating the budget level reaches
the “bottom” (w.r.t. each task), the respective task’s budget
is depleted. Circled alphabetic labels correspond to different
types of unnecessary timer interrupts, as discussed next.
a Replenishment timer for the currently executing task. Task
τmid has 10 units of budget remaining, and is scheduled for
execution at time t1. τmid is interrupted by a replenishment

TABLE I: Tasks used in the examples.

Task (τ) Period (p) Budget (b) Priority (σ)

τhi 30 10 σhi

τmid 40 20 σmid

τlo 60 10 σlo

τhi

t1 t2

t5 t6

10 20 30 40 50 60 70 80 90 100 110

τlo
e

c
R A

R

AA

A A
d

τmid
a

R R RR RR

t7

AR R
A

A

b

R

t3 t4

Fig. 2: Unnecessary timers caused by sporadic servers.

timer at time t2 for a replenishment of 10 units, but a
context switch does not occur. Early replenishments (§III-B)
eliminate this unnecessary replenishment timer interrupt.

b Activation timer in a depleted state. Task τhi completes
execution at time t3 and depletes its budget while transition-
ing to the inactive state. Note that a task can both complete
and become depleted as completion is typically not atomic
and requires processing. Task τhi has an activation timer
at time t4, however, it has no budget, therefore it cannot
be scheduled before its replenishment. In general, timer
interrupts to activate depleted tasks can be delayed (§III-C).

c Replenishment timer for a completed task. Task τlo
completes at time t5 and has an activation at t6. A
replenishment is scheduled for time 60, in between t5
and t6. The resulting timer interrupt is unnecessary since
it does not change the task interleaving compared to a
scenario in which we delay the replenishment to time t6,
thus motivating delayed replenishment processing (§III-C).

d e Replenishment or activation of a lower-priority task
while a higher-priority task is executing. Task τmid has its
budget replenished at time t7 when τhi starts executing.
Thus, τmid is not actually scheduled until τhi depletes its
budget. Similarly, τlo has an activation timer at time t6,
while τmid is executing. Although τlo is activated at time t6,
it is not scheduled until τmid depletes its budget. Generally,
while a higher-priority task is executing, any timers for
lower-priority tasks are unnecessary and can be delayed
until all higher-priority tasks become inactive (§III-D).

While each of these forms of unnecessary timer interference
may seem somewhat innocuous on their own, we show in §V
that they can be maliciously used to attack the reservation
system. To prevent all of these forms of unnecessary timer inter-
ference, SPR uses the techniques described in the following.

3

10 20 30 40 50 60 70 80 90 100

Early
Replenishment

ai aii

τhi R R RA

A

R

τmid RA R

R

R

Fig. 3: Example scenario with early replenishment.

B. Early Replenishments

Replenishments for a task might be scheduled for a future
time that happens to be during the task’s execution. This
would cause a timer interrupt that would not switch tasks,
instead simply updating the budget, and continuing to execute
the already scheduled task. Our early replenishment mech-
anism leverages that we know when the currently available
budget overlaps with the replenishment, thus we process that
replenishment early, just before the task is actually scheduled.

In Figure 3, the replenishment for τmid is processed early,
just before its execution. The dotted lines in the budget graph
represent the budget without early replenishment. As shown,
the early replenishment eliminates the need for an unnecessary
timer interrupt that would delay the task (ai in Figure 3).

Note that early replenishment does not change the times
of future replenishments. For example, the budget originally
scheduled to be replenished at time 50 that is replenished
early at time 40 (and consumed throughout [50, 60)) does not
become available again until time 50 + pmid = 90.

However, as illustrated (aii in Figure 3), the replenishment
scheduled for time 90 is again eligible for early replenishment
at time 80 when τmid is dispatched. This time, though, τmid

is preempted by τhi, so that τmid cannot consume its early-
replenished budget until time 100, at which point τmid’s budget
would have been replenished anyway. This example shows
that early replenishment is orthogonal to preemptions and that
it does not negatively affect higher- or lower-priority tasks.

As SPR performs early replenishments, the task’s budget
depletion time is pushed into the future. This postponement can
result in overlaps with further replenishments, enabling further
early replenishments. Ultimately, the overhead induced by early
replenishments is bounded in the number of replenishments per
reservation, which is typically bounded by a small constant in
practical reservation schemes (including sporadic servers [21]),
ensuring that the dispatch operation remains fast.

Early replenishment is safe because it applies only if the
increase of a running task’s budget is a foregone conclusion.
Early replenishment reduces timer self-interference caused
by a task’s own replenishment. Additionally, the techniques
described in §III-C and §III-D further delay the processing
of replenishments in other scenarios, promoting additional
opportunities for early replenishment.

10 20 30 40 50 60 70 80 90 100

b
A

τhi R R RA

A

R

R

c

τmid A

A

Fig. 4: Unnecessary activation timer example.

C. Premature Activation and Replenishment Timer Pruning
On the one hand, tasks may deplete their budget while

completing their execution. In such cases, a task can request
an activation to take place sooner than its budget will be
replenished, resulting in a premature activation timer. For
example, Figure 4 shows how a premature activation timer may
fire while task τhi is still depleted. By pruning the premature
activation timer and delaying the task’s activation until its
budget is replenished (b in Figure 4), SPR ensures that
the task resumes execution at the earliest time possible while
eliding a source of interference for other tasks.

On the other hand, tasks may complete their execution and
become inactive after partially consuming their budget. While
being inactive, any replenishments for the task are obviously
unnecessary, as the task is not runnable irrespective of the
amount of budget available to it (c in Figure 4). As such
premature replenishment timer interrupts cannot result in a
context switch, SPR prunes them and processes any pending
replenishments at the time of the task’s next activation.

These two techniques prevent unnecessary interference due
to premature replenishment and activation timers.

D. Deferred Replenishment and Activation Processing
The timer interrupt logic for processing replenishments can

cause significant priority inversion. A task’s replenishment
or activation timer may fire while a higher-priority task
is executing, regardless the priority of the task that is to
be replenished or activated. In Figure 5, d represents a
replenishment timer and e represents an activation timer
for τmid firing while τhi is executing. These timers interfere
with the execution of τhi unnecessarily, and they should be
delayed until the end of τhi’s execution. To eliminate the
interference caused by the timers at d and e , SPR ensures
a priority-aware processing of replenishments and activations.

In general, all timeouts should be processed with the priority
of their associated task’s priority. Therefore, SPR does not
allow replenishment or activation timers for lower-priority
tasks to fire while a higher-priority task is executing, so
that the lower-priority timers are safely delayed until the
higher-priority task completes or depletes it budget. Note that
TimerShield [18] similarly delays timers for task activations,
and we extend this approach to replenishment processing.
Summary. SPR allows only timer interrupts that are necessary
in the sense that they immediately result in a context switch.

4

e d

10 20 30 40 50 60 70 80 90 100

τhi R R RA

A RRτmid A RA

Fig. 5: Deferred timers of lower-priority tasks.

More precisely, SPR suppresses unnecessary timer interference
present in previous reservation implementations by processing
inevitable replenishments early (§III-B), by pruning premature
activation and replenishment timers (§III-C), and by deferring
lower-priority activation and replenishment timers (§III-D).
This 1) can increase system throughput by decreasing the
number of timer interrupts and their associated overheads,
2) ensures system predictability even when the number of
threads is not known a-priori (e.g., in open real-time systems),
and 3) protects the system by preventing the reservation system
itself becoming the focus of malicious attacks.

E. Bounded Reservation Processing in the Scheduler

Another source of potentially prolonged priority inversion
occurs when many reservations are processed as part of
a single scheduler invocation or timer interrupt. This may
happen naturally because multiple timeouts—replenishments
and activations—for different tasks may expire (and thus
become due for processing) within the same timer interrupt
if they happen to expire at the same (or almost the same)
time. Existing sporadic server implementations handle these
timeouts in a single scheduler (or timer subsystem) activation,
introducing unbounded and unpredictable interference [15].
This problem is exacerbated in systems that use quantum-
based timers as all timeouts that expire within a quantum are
handled together at the next quantum boundary.

Techniques for early and deferred replenishment processing
ensure that only necessary timer interrupts occur, but do
not prevent a single timer interrupt from handling a large—
and in open systems potentially unbounded—number of
replenishments. In fact, they might increase the number of
replenishments processed at a single time because their very
purpose is to shift unnecessary replenishment processing to
times at which the scheduler is called anyway.

To bound the overhead caused by reservation processing
in a single scheduler invocation (or timer interrupt), SPR
processes only the timeout (i.e., replenishment or activation) of
the next task to be executed. This priority-aware processing of
reservations effectively defers the processing of replenishments
and activations of lower-priority (or same-priority) tasks until
they have a chance to be scheduled right away.

Due to deferred replenishment processing, a task can accu-
mulate multiple expired replenishments by the time it becomes
the highest-priority task, at which point SPR processes all

10 20 30 40 50 60 70 80 90 100

ηlo = 0 ηlo = 6

A R
Non-preemptive

Regionsτlo

A A A Aτhi R R R R R R
R
R R RA RR

Fig. 6: Illustration of non-preemptive regions.

outstanding replenishments before the task is dispatched.
As we assume that the number of replenishments for each
task is bounded (which is typical in practical reservation
implementations [13, 21]), this is a constant-time operation.

F. Preventing Excessive Preemption Rates

While existing reservation algorithms ensure that tasks
receive processor time according to the specified rate of
execution, they make no guarantees about the granularity of
allocation. In particular, sporadic and deferrable servers (that
do not execute with the maximum priority) provide no upper
bounds on the number of preemptions incurred per server
period, and hence also not on the total amount of preemption-
induced overheads. That is, existing reservation schemes
provide guarantees on the time that a task is scheduled, but
cannot guarantee that tasks will make a predictable amount of
computational progress while using their budget. As progress
is often correlated with effective cache usage, we wish to
decrease cache-related preemption delays.

To this end, SPR augments the classic reservation interface
(bi, pi, σi) with a fourth parameter: the non-preemptive region
length ηi. Whenever a task τi is dispatched (i.e., chosen for
execution after a context switch), SPR ensures that τi will not
be involuntarily preempted within min(ηi, b̂i) time units of
starting execution by deferring any higher-priority activations
and replenishments until the end of the non-preemptive region.
As a result, if ηi > 0, then τi is guaranteed to suffer at most⌈

bi
ηi

⌉
− 1 involuntary preemptions per server period.

The non-preemptive region mechanism enables lower-
priority tasks to effectively use the cache for a guaranteed
minimum amount of time, irrespective of the self-suspension
behavior and activation pattern of any higher-priority tasks.
The tradeoff is that it induces a bounded amount of priority in-
version, which must be taken into account by the schedulability
test during admission control (discussed in §III-G below).

Figure 6 illustrates a case where τlo suffers from frequent
preemptions due to τhi’s activation pattern. In this example, the
left-hand side of the figure shows τlo’s execution with ηlo = 0
subject to frequent disruptions. In contrast, the right-hand side
depicts ηlo set to 6, which ensures that τlo can consume a
minimum of 6 units of budget before being preempted. In
this case, τlo is preempted only

⌈
10
6

⌉
− 1 = 1 times, and thus

can consume its budget in two contiguous regions, which is
generally beneficial for cache usage.

5

G. Admission Control and Overhead Analysis

Recall from §II that the goal of admission control is to
ensure that all servers are schedulable, which means that every
server τi ∈ T has the opportunity to consume its entire budget
bi within each server period pi, irrespective of the behavior
of any other servers and assuming τi is continuously active.
Since SPR integrates non-preemptive regions, which cause
priority inversion, we adopt established response-time analysis
for limited-preemptive fixed-priority scheduling [5, 6] as the
admission test, which we briefly summarize in the following.

Let Ii = max ({ηl | σl < σi} ∪ {0}) denote the maximum
lower-priority non-preemptive region length, and let, for each
higher-priority server τh, RBFh(∆) = αh(∆) × bh denote
τh’s request-bound function, where αi(∆) = ⌈∆/pi⌉ if τh is
a sporadic server, and αi(∆) = ⌈(∆ + (pi − bi))/pi⌉ if it is
a deferrable server (to account for the “double hit”).

The set of servers T is schedulable if, for each τi ∈ T ,
there exists a bound Ri ≤ pi such that1

Ii + bi +
∑

σh≥σi
RBFh(Ri) ≤ Ri. (1)

Eq. (1) assumes that all scheduling-related overhead is
charged against the current budgets of reservations involved
in a context switch (i.e., the time taken by the scheduler is
not left unaccounted for). Therefore, let us analyze Li, the
amount of budget “lost” to overheads in the worst case (i.e.,
the amount of budget that would need to be over-provisioned
to compensate for worst-case overheads), again assuming that
the task under analysis τi is continuously active.

To this end, let Opre
i denote an upper bound on the total

overhead incurred by τi due to one preemption, where Opre
i

accounts for one timer interrupt, one scheduler invocation (in-
cluding any deferred replenishment and activation processing),
and one context switch. Then τi “loses” at most

Li =

(⌈
bi
ηi

⌉
− 1 + 1

)
×Opre

i =

⌈
bi
ηi

⌉
×Opre

i (2)

units of budget to scheduling overheads per server period,
where the “+1” accounts for the initial context switch when
τi is first scheduled in each server period. The maximum
cache-related preemption delay can be bounded analogously.

In comparison with prior work, Eq. (2) reflects two key
innovations of SPR. First of all, the mechanisms established
in §III-B through §III-E ensure that Opre

i can be reasonably
bounded at all. In particular, in prior implementations, Opre

i

would have to account for a potentially unbounded number of
activations and replenishments as part of a single scheduler
invocation [15], which clearly precludes an effective bound.

Second, the non-preemptive region support introduced in
§III-F is necessary for Li to be reasonably bounded at all.
Without the bound on the maximum number of preemptions
per server period induced by ηi, Eq. (2) would have to account
for a potentially unbounded number of preemptions since the
number of preemptions would be controlled entirely by the
(potentially malicious) activation patterns of higher-priority
tasks, which again prevents any meaningful analysis.

1A tighter analysis is possible by exploiting that τi cannot be preempted in
its final non-preemptive region [5, 6], but we prefer Eq. (1) here for simplicity.

σmaxσ : σhi σmid σlo

τh1
timeout

τh2
timeout

τm4
timeout

τm3
timeout

τm1
timeout

τm2
timeout

τl4
timeout

τl5
timeout

τl1
timeout

τl6
timeout

τl3
timeout

τm3 τl2

τlnτnext

thp

Runqueue

Timer queue

τmax
timeout

Fig. 7: Timer queue and runqueue per priority (σ). In this
example, σmax > σhi > σmid > σlo and τl1.timeout <
τm3.timeout < tnow < τh1.timeout < τmax.timeout .

IV. IMPLEMENTATION

SPR integrates the sporadic server algorithm [20], in align-
ment with the guidelines provided by Stanovich et al. [21],
with deferred timer handling, early replenishment processing,
bounded reservation management, and non-preemptive regions,
as introduced in Section III. Our implementation depends on
widely available, cycle-accurate, one-shot timers to eliminate
inaccuracies associated with quantum-based timers [21]. For
simplicity, we present the implementation of SPR on a
single core (i.e., a uniprocessor or one core under partitioned
multiprocessor scheduling). We implemented SPR in the
Composite OS, which is a publicly available [7] µ-kernel
focused on component-based system construction [23] that
defines scheduling policies in user-level, isolated components.
However, SPR requires no specific features of Composite; the
blueprint presented here readily transfers to other systems.

A. Data Structures

SPR relies on the following data structures.

Runqueue. As is typical in fixed-priority scheduling, we
use a priority-based runqueue that stores the tasks ready for
execution as an array of per-priority lists (Figure 7); possible
generalizations to other runqueue designs are discussed in
§V-D. The highest-priority task in the runqueue is identified
in O(1) time (as there are a constant number of priorities).
Upon activation or replenishment, a task is moved to the
runqueue; conversely, when a task completes its execution or
depletes its budget, it is removed from the runqueue.

Timer queues. For each priority level, SPR maintains a
separate timer queue, realized as a min-heap, as shown in
Figure 7. Each node in each of the per-priority heaps stores a
task’s next timeout, denoted τi.timeout , where the timeout is
either the time of the task’s next replenishment (if its budget
is currently depleted) or the time of the task’s next activation
(if it self-suspended, e.g., via nanosleep). This approach
makes it straightforward to retrieve both the soonest timeout
for a task with a priority higher than the currently active
task, and the highest priority level at which there is either an
active task or an expired timeout. We err toward simplicity in

6

u i : 0

bi

tact

(thead , bhead)

Ri amount :

time :

(a) Initial replenishment queue for τi.

u i : b1

t2

b2

t1

b1

(thead , bhead)

Ri amount :

time :

tnow

t1+ pi{ }b1

*

(b) A new replenishment is queued.

u i : 0

t1

b1

t3

b3

t4

b4

t2

b2

(thead , bhead)

Ri amount :

time :

tnow

{ }b1+b2+b3

t3
*

(c) Merging expired entries upon activation.

Fig. 8: Replenishment queue state transitions. *{}: newly added or updated values. ✖: removed entry.

our implementation, which is linear in the (constant) number
of priorities, but note that Segment Trees [19] as used in
TimerShield [18] could be used to realize next-timeout lookups
in logarithmic time (w.r.t. the number of priorities). In the
following, timer queue.update(τi) adds or updates a task
τi’s timeout value, and timer queue.remove(τi) removes the
node for task τi from the timer queue (if currently queued).

Per-task data. In addition to a task’s next timeout τi.timeout
and its static parameters—its priority σi, budget bi, replenish-
ment period pi, and non-preemptive region length ηi—SPR
tracks for each task τi the following dynamic information:
its state ∈ {ready , blocked , depleted}, the used budget ui (so
that b̂i = bi − ui), the last execution start time xi (i.e., time
of the last context switch to τi), and the task’s replenishment
queue Ri (described below). Whenever the task is running,
the scheduler increments ui by the amount of time the task is
scheduled, and whenever the task’s budget is replenished, ui

is reset or reduced accordingly. Tracking the used budget ui

rather than the remaining budget b̂i helps with avoiding integer
underflow and accounting precision issues if the underlying
hardware platform’s one-shot timers are not perfectly precise.

Replenishment queue. A task’s replenishment queue Ri is
a fixed-size circular buffer of tuples, where each entry (t, b)
represents an upcoming replenishment that is to grant b units
of budget at time t. We let Si = |Ri| denote Ri’s capacity.
Initially, the queue’s first entry is initialized with the initial
budget of the task bi and the replenishment time set to the
task’s initial activation time tact (Figure 8a).

We let hi denote the index of current head of Ri, and for
brevity let thead = Ri[hi].t and bhead = Ri[hi].b denote the
current head’s timeout and budget values, respectively. The
replenishment queue is naturally sorted by time, from soonest
to latest replenishment, so that hi always points to the next
replenishment to be processed. When Ri.dequeue() is called,
the head hi is advanced in the usual circular fashion.

SPR uses Ri to track the currently available budget and
to plan future replenishments (§IV-B). New replenishments
are queued when SPR accounts for τi’s budget use, either
when the task runs out of budget (u ≥ bhead) or when it self-
suspends (e.g., due to a blocking call). For example, Figure
8b illustrates a depletion scenario, where τi fully exhausted
its budget. A new replenishment amounting to the consumed
budget b1 is scheduled for time t1 + pi, after which hi is
advanced to point to (t2, b2). Since the indicated current time
tnow is earlier than the new thead = t2, the task has no budget
remaining and moves to the depleted state.

Figure 8c shows an example of SPR batch-processing

multiple expired replenishments, which are consolidated into
a single budget bhead upon activation of the task. Here, three
replenishments (b1, b2, b3) expired before the current time tnow.
The replenishment amounts b1 and b2 are added to b3, and
(t3, b3) becomes the new head. Since thead = t3 ≤ tnow, the
task has budget to spend and moves to the ready state.

When the replenishment queue reaches its maximum ca-
pacity Si, we follow the approach described by Stanovich
et al. [21]. Suppose a replenishment (t, b) is to be added to
Ri when it is already full, and let (tlast, blast) denote the last
replenishment in the queue. Then SPR postpones last entry’s
replenishment time to tlast ← t and updates its replenishment
amount to incorporate the additional budget: blast ← blast+ b.
This avoids undue interference to other tasks, thus maintaining
temporal isolation guarantees, but penalizes the task in question
by delaying its last replenishment. The reservations of self-
suspending real-time tasks should thus be provisioned with a
large enough capacity Si such that Ri never fills completely.

B. Scheduling Logic

The scheduler is triggered by either a timer interrupt
or a cooperative call to the scheduler (e.g., to block or
activate a task). Each time the scheduler is invoked, it first
captures a timestamp (on x86, via the rdtsc instruction)
that defines the “current time” and forms the basis for all
decisions throughout the scheduler invocation (tnow in all
algorithms and figures). After processing the reason for the
invocation (i.e., activation or self-suspension), or in response
to a timer interrupt, the scheduler determines the next task to
run by calling the schedule function. The schedule function
performs the following activities in order: 1) budget accounting,
2) timeout processing, 3) selection of the next task to execute,
and 4) programming of the hardware’s one-shot timer.

Budget accounting. The scheduler first processes the previ-
ously running task τp to account for the budget it consumed
and to plan any necessary replenishments, as given in Algo-
rithm 1. Recall that the used budget up reflects the task’s
runtime (w.r.t. tnow), which Algorithm 1 assumes to have
been updated already. While up exceeds bhead (line 1), up is
reduced by bhead, a full replenishment of bhead is planned for
the earliest possible time thead + pp, and hp is advanced.

To prevent prematurely processing replenishments (where
thead > tnow), the system sets a timer to fire exactly at
the time the available budget will be used up (discussed
below), ensuring that the scheduling loop does not pull in
future budget early. However, if a task completely depletes
its budget, there is still a small window of time—from the

7

Algorithm 1: Budget accounting
/* τp, up, pp: previously executed task, used budget, period
Rp, (thead, bhead): τp’s replenishment queue and its head */

1 while bhead ≤ up do
2 up ← up − bhead
3 Rp.enqueue(bhead, thead + pp)
4 Rp.dequeue() /* updates (thead, bhead) */
5 if τp.state = blocked then
6 if thead > tnow then /* blocked and depleted */
7 if τp.timeout < thead then
8 τp.timeout ← thead
9 timer queue.update(τp)

10 else /* τp is blocked and has budget */
11 Rp.enqueue(up, thead + pp)
12 bhead ← bhead − up

13 up ← 0 /* split the budget */
14 else /* τp is ready */
15 if thead > tnow then /* τp is depleted */
16 τp.state← depleted
17 runqueue.remove(τp)

/* set the timeout for replenishment */
18 τp.timeout ← thead
19 timer queue.update(τp)

moment the task depletes its budget until the scheduler handles
that event—during which the task may consume a few more
cycles (e.g., due to the overhead of the timer interrupt itself
or in systems with significant interrupt latency or otherwise
imprecise timers). Any such overrun must be deducted from
future replenishments to avoid inflating the total budget [21].
Specifically, any residual usage in up is left as an overrun and
is accounted for subsequently (lines 7 and 15 in Algorithm 1).

Next, SPR handles the case where the task blocks. If the
task still has remaining budget (line 10), the budget must be
split: the consumed part up is planned to be replenished at
time thead + pp, and the remaining budget bhead is reduced
by up. Finally, the used budget up is reset to zero.

If, in the process of blocking itself, τp has also depleted
its budget (line 7), SPR must prevent a premature activa-
tion (§III-C). If τp requested a timed wake-up (e.g., via
nanosleep), τp.timeout holds the intended activation time
(otherwise, if τp blocks for another reason, τp.timeout =∞).
The task can execute only when it both activates and has
budget. Thus, SPR avoids a premature timer by postponing
τp.timeout to thead if the requested wake-up time is too early.

If τp is still in the ready state (line 14), it is either being
preempted or a timer interrupt fired to force SPR to engage in
bookkeeping. If τp’s budget is depleted (line 15), the task is
moved to the depleted state and removed from the runqueue.
Additionally, a timer is added to the timer queue corresponding
to τp’s upcoming replenishment at time thead.

Finally, if τp is ready and has budget remaining, it is being
preempted and no further management actions are necessary:
it simply remains ready and on the runqueue.

Timeout processing. Recall that, at any time, each task has
at most one active timeout, either a replenishment or a future

activation. SPR defers timer interrupts if they do not lead
to immediate context switches (§III), which in turn means
that the scheduler can encounter a potentially large number
of expired timeouts as part of a single invocation.

Using per-priority timer queues, SPR tracks the next timeout
separately for each priority level (Figure 7). To defend against
attack A1 (§I), SPR processes at most one such timeout per
scheduler activation (§III-E). Specifically, SPR processes a
timeout only if it belongs to a task that then becomes the
highest-priority ready task (τnext in Figure 7). For example,
in Figure 7, SPR processes the expired timeout τm3.timeout ,
but not the also expired timeout τl1.timeout , which would
activate a lower-priority task. (The higher-priority timeouts
τh1.timeout and τmax.timeout are skipped because they have
not expired yet.) The correct timeout to process can be found
easily with a linear sweep of the top elements of the per-
priority min-heaps in order of decreasing priority.

Thus, after processing a single timeout, either:
• a higher-priority task’s depleted budget is replenished,

moving it to the ready state for execution again; or
• a self-suspended higher-priority task waiting for a timed

activation is moved to the ready state.
In either case, because the processed timeout corresponds to
a higher-priority task that is re-added to the runqueue, SPR
is guaranteed to then switch to that task.

To emphasize the point: processing any other timers would
result in premature processing of events related to lower-
priority threads that would not be immediately scheduled
anyway. As such, the scheduler defers their processing, thereby
avoiding the priority inversion that attack A1 seeks to induce.
Next task selection. After 1) the previously executing task
τp’s budget consumption has been accounted for, potentially
removing it from the runqueue, and 2) the timeout of the
highest-priority task (if any) to become ready has been
processed, thereby adding it to the runqueue, the runqueue
is in a consistent state. SPR then first checks whether τp is
presently in a non-preemptive region: if τp.state = ready
and tnow < xp + ηp, then SPR lets τp continue executing
irrespective of its priority (i.e., τn ← τp in this case).
Otherwise, SPR simply selects τn to be the head of the highest-
priority non-empty list in the runqueue (e.g., τm3 in Figure 7).
Hardware timer. After selecting the next task to run, denoted
τn, the scheduler’s final activity is to program the hardware’s
one-shot timer to regain control at the appropriate time.
This time is determined by Algorithm 2 according to three
constraints: 1) the amount of budget available to τn, including
any early replenishments (§III-B), 2) the length of τn’s
non-preemptive region (§III-F), ηn, and 3) the earliest timeout
of any higher-priority task, denoted thp. Lines 1–4 compute
the depletion time td and thus correspond to constraint (1);
constraints (2) and (3) are integrated in lines 5–6.

First, the depletion time td is initialized to reflect the
remaining budget available from the current head of τn’s
replenishment queue, which will be fully consumed after
executing for bhead − un units of budget (line 1). SPR then
iterates over every later replenishment in Rn (if any) to
identify any budget eligible for early replenishment: if the next

8

Algorithm 2: Programming the hardware timer
/* τp, τn: the previous and next tasks to be scheduled
un, xn: the used budget and last start time of τn
Rn, (thead, bhead): τn’s replenishment queue & its head
td: depletion time of τn
thp: closest timeout of a higher-priority task */

1 td ← tnow + bhead − un

2 foreach (t, b) in Rn after (thead, bhead) do
3 if td ≥ t then
4 td ← td + b /* enact early replenishment */
5 if τp ̸= τn then xn ← tnow
6 set timer(min(td, max(thp, xn + ηn)))

replenishment (t, b) is due by td (line 3), its budget amount
b can be added to td since its replenishment at time td is a
foregone conclusion (line 4), and so on. Since Rn is ordered
by increasing replenishment times, the loop can be aborted
when the condition in line 3 is not satisfied.

If the result of the scheduler invocation is a context switch
(i.e., τp ̸= τn), xn records the time at which τn starts executing
(line 5), which defines the start of its non-preemptive region.
Finally, SPR considers the time thp at which the next timeout
of a higher-priority task is due (as illustrated in Figure 7),
where thp = ∞ if no such timeout exists, and the end of
τn’s non-preemptive region at time xn + ηn. Task τn must be
interrupted at latest at time td, but potentially already earlier at
time thp. However, if thp is before xn+ηn, the higher-priority
timeout must be deferred until the end of the non-preemptive
region. Line 6 programs the hardware timer accordingly.

C. Task Activation

A task is activated either by a timer interrupt (e.g., at the
end of nanosleep) or some other, time-unrelated wake-up
event (e.g., when resuming after blocking on a mutex). In
either case, SPR updates the activating task τa’s budget and
state with Algorithm 3 before schedule is called.

Since SPR does not process replenishments for blocked
tasks (§III-C), SPR needs to batch-process any replenishments
that expired in the meantime when a task activates. To this end,
lines 1–3 of Algorithm 3 accumulate all expired replenishments
(if any) into a single one, which becomes the new head of
τa’s replenishment queue Ra, as illustrated in Figure 8c.

Next, SPR checks whether the activating task τa has budget
available. The simpler scenario is that τa is out of budget,
(thead > tnow), in which case it is simply moved to the
depleted state and a timeout is registered corresponding to
the time of its next replenishment (lines 8–11).

Conversely, if τa does have budget available (lines 4–7), it
is moved to the ready state and added to the runqueue. The
update of thead in line 5, however, requires some elaboration.

First, recall that τa.timeout holds either (i) τa’s requested
wake-up time, (ii) τa’s deferred wake-up time (recall line 8 in
Algorithm 1), or (iii) τa.timeout =∞ (if τa blocked for some
timer-unrelated reason). In case (ii), τa.timeout = thead, so
line 5 in Algorithm 3 has no effect: thead simply remains the
replenishment time that τa’s activation was deferred to.

Algorithm 3: Task activation
/* τa: the task to be activated
Ra, (thead, bhead): τa’s replenishment queue & its head */
/* Batch-process any expired replenishments, where

tnext = Ra[(ha + 1) mod Sa].t and
bnext = Ra[(ha + 1) mod Sa].b */

1 while |Ra| > 1 and tnext ≤ tnow do
2 bnext ← bnext + bhead
3 Ra.dequeue() /* changes ha, i.e., (tnext, bnext) */
4 if thead ≤ tnow then /* Is budget available? */
5 thead ← max(min(tnow, τa.timeout), thead)
6 τa.state← ready
7 runqueue.add(τa)
8 else /* τa has no budget available */
9 τa.state ← depleted

/* Set the timeout for replenishment. */
10 τa.timeout ← thead
11 timer queue.update(τa)

In cases (i) and (iii), since τa.timeout ≤ tnow if and only
if τa.timeout holds τa’s requested wake-up time, the inner
min selects τa.timeout if it is defined, and defaults to tnow
otherwise. Here, thead needs to be updated to account for the
fact τa was inactive past its earliest-possible replenishment
time, so future replenishments need to be planned relative to
the current activation, rather than past replenishments [20].

In an ideal, overhead-free system, thead could simply be
set to min(tnow, τa.timeout); however, in a system subject
to timer interrupt latency or otherwise imprecise timers, the
outer max in line 5 protects against a scenario wherein both
thead ≤ tnow and τa.timeout < thead, which is possible if a
delay in processing τa’s timeout pushes tnow past thead.

Due to space constraints, we have elided additional logic
from Algorithm 3 that resets ua in the corner case of τa
suspending for longer than one replenishment period after
blocking with a fully depleted budget and an overrun ua > 0.

Finally, after Algorithm 3 ends, schedule is called (§IV-B).

V. EVALUATION

We carried out experiments with two goals: 1) to inves-
tigate how traditional implementations of classic real-time
reservation policies are susceptible to interference channels
that defeat their theoretical temporal isolation guarantees; and
2) to validate that SPR’s constant-time design successfully
mitigates these shortcomings. In particular, we introduce
novel pathological task behaviors that can induce significant
interference affecting higher-priority tasks, and that prevent the
effective use of processor time by lower-priority reservations.
We also replicate the Thundering Herd [15] attack, which
provides another possible vector for priority inversion.

Setup. We ran all experiments on a Cincoze DX1200 em-
bedded computer with an Intel Core i9-12900TE CPU with
8 performance cores (P-cores) and 8 efficiency cores (E-
cores) running between 0.8 GHz and 1.1 GHz, with 8 GB of
RAM. A single P-core was used for all experiments, with
hyper-threading disabled. We used the Composite operating

9

Aτhi
1RRR

τlo2 R R

R Rτlo1

τlo0 RR

Fig. 9: Illustration of a coordinated timer interference attack
delaying a high-priority task via budget replenishments.

system, in which we implemented three fixed-priority policies:
deferrable servers (DS), sporadic servers (SS), and SPR.

A. Mitigation of Coordinated Timer Interference Attacks (A2)

In order to evaluate the effects of unnecessary timer
interrupts (as explained in §III-A), we focused on the SS
baseline and SPR, as the SS policy’s potentially multiple
pending replenishments exacerbate the problem. In the ex-
periment, we coordinated replenishments for N (attacking)
low-priority tasks τlo0, τlo1, . . . , τloN to induce unnecessary
timer interference in a (victim) higher-priority tasks τhi.

Let Si denote the configured replenishment buffer size (i.e.,
the maximum number of pending replenishments per task).
To fill their replenishment buffers, each of the low-priority
threads self-suspends (very briefly) Si times, to be woken
again immediately by an even lower-priority auxiliary thread.

We carefully arranged for the low-priority threads to
schedule replenishments coinciding with τhi’s activation time,
as shown in Figure 9. In this scenario, under the SS policy,
each replenishment causes a separate timer interrupt.

To measure the interference caused by these unnecessary
timer interrupts (1 in Figure 9), we let the high-priority
thread τhi execute the rdtsc instruction in a tight loop, record-
ing any samples separated by more cycles than a threshold
indicating undisturbed consecutive measurements. The rdtsc
instruction reads the processor’s time-stamp counter (TSC), a
64-bit register that counts CPU cycles since reset, providing
a fine-grained measure of elapsed time. By detecting and
accumulating delays above a set threshold, τhi can quantify
the impact of timer interrupts on its execution.

Figure 10 shows the observed results as a function of the
number of adversarial low-priority threads N , under both the
SS and SPR policies, in two configurations each for Si = 16
and Si = 32. On the one hand, the effects on the SS policy are
clear: As N and Si increase, the number of timer interrupts
and hence the cumulative interference that the high-priority
victim thread experiences also increases proportionally.

On the other hand, SPR defers lower-priority replenishments
until the high-priority thread finishes its execution, thus
preventing excessive priority inversion, which is confirmed by
the flat, N -invariant trend of the SPR results.

16 32 64 128 256 512 1024
Number of Threads

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

T
ot

al
In

te
rf

er
en

ce
(u

s)

SS Si=16

SS Si=32

SPR Si=16
SPR Si=32

SS (Si=16)

SS (Si=32)

SPR (Si=16)

SPR (Si=32)

Fig. 10: Interference from timer interrupts due to lower-priority
replenishment processing under the SS and SPR policies.

While Figure 10 covers an admittedly wide range of task
counts (up to 1024 threads), evaluating such extreme tasks
counts serves primarily to clearly reveal the underlying trend.
However, major problems manifest already for moderate
thread counts—for instance, even with only 64 threads, delays
under the SS policy reach already about 2.5ms. Given that
modern real-time systems in mixed-criticality domains (e.g.,
automotive, UAVs, and rovers) routinely run 100+ tasks, and
that tasks with periods as low as 1ms are not uncommon (e.g.,
in automotive systems [10, 11]), delays in the order of several
milliseconds from only a few dozens of tasks are concerning.

In summary, our results demonstrate a practical breakdown
of temporal isolation under the SS policy when faced with an
antagonistic workload. SPR mitigates this attack vector.

Batched replenishment processing. Although SPR’s deferred
replenishment and activation processing prunes unnecessary
timer interrupts, there is a downside to this approach: batched
processing of multiple deferred replenishments before a task is
dispatched. Instead of processing replenishments immediately,
SPR potentially processes them in batches, which can lead to
higher scheduling overhead relative to the baseline SS policy.

To investigate this tradeoff, we measured the execution time
of the code for processing early and deferred replenishments in
SPR, and report the average and maximum measured overhead
in Table II. We collected one million samples for different Si

settings with synthetically filled replenishment buffers.
The results show that the overheads incurred due to batched

replenishment processing are not unreasonable, although
noticeable for larger Si settings, and especially so in the
worst case (i.e., when considering the maximum). However,
these overheads are fully accounted for as part of scheduling
and context-switching overhead in Opre

i . Overall, deferred
replenishment processing clearly represents a favorable trade-

TABLE II: SPR batch replenishment processing overheads.

Si Average Cost ± stdev (cycles) Maximum Cost (cycles)

1 52± 2 143
4 61± 1 240

16 95± 2 510
32 159± 2 416

10

2

Aτhi
RR
R

τlo2 R

τloN R

τlo1 R

τlo0 R

Fig. 11: A Thundering Herd delaying a higher-priority task.

off given the SS policy’s vulnerability to coordinated timer
interference attacks demonstrated in Figure 10.

B. Mitigation of Simultaneous Replenishment Attacks (A1)

We replicated a variant of the Thundering Herd [15] attack
against the DS policy to demonstrate that its simpler replen-
ishment rule is just as vulnerable to exploitation as the more
sophisticated SS mechanism. In fact, the DS policy’s periodic
replenishments make the attack far simpler to implement.

Figure 11 illustrates how the attack proceeds. In general,
the replenishment of the N lower-priority tasks are aligned to
occur at the same time that a periodic higher-priority victim
task is activated. Under the DS policy specifically, the scenario
is trivial to set up: the necessary alignment is inherent if the
lower-priority tasks share the same replenishment period, and
alignment with a higher-priority periodic task’s activation time
is guaranteed at each common multiple of the victim task’s
period and the period of the attackers (2) in Figure 11).

As a basis for comparison, we implemented a variant of SPR
using the DS replenishment rule. To assess the impact of the
Thundering Herd (or lack thereof), we measured the wakeup
latency of the victim task, that is, the difference between its
planned activation time and its actual activation time, similar
to Linux’s cyclictest. Figure 12 shows the observed results,
again as a function of the number of attacking tasks N .

Under the DS policy, the observed wakeup latency is
proportional to the number of lower-priority tasks as eager
replenishment processing by the scheduler delays the context
switch to the just-activated higher-priority task. In contrast, the
delay is constant under SPR as its bounded-time dispatching
rule (§III-E) ensures that only a single timeout—here, the one
corresponding to the higher-priority task being activated—is
processed when the scheduler executes.

Interestingly, Mergendahl et al. [15] reported significantly
higher delays than we observed in our setup. We attribute this
disparity to algorithmic differences in how reservation timeouts
are tracked and processed in seL4 (i.e., the implementation
Mergendahl et al. [15] studied) and the fact that we use a
much faster and more capable processor in our experiments.
Nonetheless, our experiment clearly replicates the trends
observed by Mergendahl et al. [15] and thus demonstrates the
vulnerability to simultaneous replenishments in DS servers.

16 32 64 128 256 512 1024
Number of Threads

0

10

20

30

40

50

60

70

W
ak

eu
p

L
at

en
cy

(u
s)

DS

SPR

Fig. 12: A Thundering Herd’s impact on wakeup latency.

In practical systems that commonly aim for wakeup latencies
in the single-digit microsecond range, the increases in latency
that we observe are by no means negligible. Thread counts
in the range of 64 to 128 threads already push the wakeup
latency well above 10µs. Additionally, open systems in which
attackers may create additional tasks (subject to admission
control) are particularly at risk, as even a very large number
of lower-priority tasks can be arranged to have only negligible
total utilization (with sufficiently long replenishment periods)
and thus virtually no impact on schedulability (§III-G).

C. Mitigation of Preemption Storm Attacks (A3)

To test the efficacy of SPR’s non-preemptive regions
(§III-F), we used a simple setup: a lower-priority task τl,
confined to a reservation with bl = 1 s and pl = 5 s, is contin-
uously executing matrix multiplication kernel while a higher-
priority task τh preempts it potentially repeatedly. As a metric
of meaningful progress, we counted the number of matrix
multiplications completed by τl per replenishment period.

Table III shows the median results across 10 runs for three
different behaviors of τh and three different settings of ηl. The
first row shows a scenario with no interference, in which τh
does not activate. This is the baseline showing τl running in
isolation (within its configured budget, i.e., subject to regular
rate-limiting but without additional preemptions). As expected,
the choice of ηl has no impact in this setting.

The second row shows the impact of a timer flood caused
by τh repeatedly self-suspending (with the equivalent of
nanosleep) for 10µs, causing a deluge of timer interrupts
that each “steal” a small amount of execution time from
τl’s budget for interrupt processing and context-switching.
Without a non-preemptive region (ηl = 0), τl’s throughput is
severely reduced to 9650 completed iterations, a 41% reduction
relative to the no-interference baseline. In contrast, a 1-ms non-
preemptive region restores τl’s throughput already to 95.5%
of the baseline, and with ηl = 2ms, τl manages to achieve
99.6% of the baseline throughput.

Finally, in the cache attack scenario, τh causes a timer
flood as before, but additionally also flushes the processor’s
data caches before it suspends, to maximally disrupt τl’s
cache affinity. With ηl = 0, this almost halves τl’s throughput,
resulting in a 46% reduction w.r.t. the no-interference baseline.

11

TABLE III: Median number of completed matrix multiplica-
tions across 10 runs with and without preemption storms.

Workload ηl = 0 ηl = 1ms ηl = 2ms

no interference 16194 16194 16194
timer flood 9650 15458 16125
cache attack 8853 17042 16975

Curiously, with 1-ms and 2-ms non-preemptive regions, we
observe marginally higher throughput than in the baseline
scenario. We attribute this counterintuitive result to a pecu-
liarity in our experimental setup. In particular, we observe
higher throughput with cache flushes because, after τh flushes
the cache, τl requires only (less costly) cache-line refills—
which evict unmodified or invalid cache lines—rather than
(more time-consuming) dirty-line write-backs. This effectively
transfers some write-back overhead to τh’s budget, so that τl
actually benefits from infrequent preemptions by τh.

Overall, Table III demonstrates SPR’s non-preemptive
regions to be an effective mitigation against preemption storms.

D. Transferability and Broader Applicability

While our SPR prototype is based on Composite OS and
evaluated on an Intel platform, the underlying insights are
not tied to Composite or Intel-exclusive hardware features.
Prior research has shown that vulnerabilities similar to those
addressed by SPR exist across multiple platforms, including
in seL4 on ARM [15] and in Linux on both Intel and ARM
architectures [18]. This highlights the broader relevance of
SPR’s design beyond its current implementation context.

The key principles—pruning unnecessary interrupts, pro-
cessing at most one timeout per scheduler invocation, and
non-preemptive regions—can be seamlessly transferred to
monolithic kernels like Linux, microkernels like seL4, hyper-
visors (e.g., RT-Xen), and containerized environments.

Beyond fixed-priority scheduling, SPR’s techniques can be
naturally adapted to dynamic-priority systems, such as EDF-
based schedulers and in particular (hard) constant-bandwidth
servers (CBS) [2, 4], by tracking the next-eligible reservation
(e.g., by deadline in SCHED DEADLINE [12]) to identify non-
essential replenishments that can be safely deferred and to
ensure bounded reservation processing overhead per scheduler
invocation. Additionally, while we present SPR in the context
of single-task reservations for simplicity, multi-task servers
can be supported without major logic changes. We leave the
practical exploration of such extensions to future work.

VI. RELATED WORK

Reservations have long been used as an OS primitive to
control the rate of execution of one or more threads. RT-Mach’s
processor capacity reserves [14], resource containers [3],
and the Resource Kernel [17] all provide resource abstrac-
tions to rate-limit arbitrary computations. Modern Linux’s
cgroups [1], widely used as a critical foundation for container
infrastructures, are conceptually a direct descendent of this line
of work. Similarly, seL4’s MCS variant [13] and TCaps [9]
provide principled µ-kernel abstractions for reservations, the
former focusing on cross-thread communication, and the latter

focusing on predictably coordinating multiple cooperating
schedulers. SPR’s focus is orthogonal to such prior work on
principled OS interfaces, programming models, and abstrac-
tions, concentrating instead on implementation shortcomings.

As outlined in §I, existing reservation systems suffer from
practical limitations that can compromise the isolation guaran-
tees they aim to provide. Stanovich et al. [21] identified issues
in the POSIX sporadic server specification itself, demonstrating
how these flaws can lead to reservation violations.

The inherent complexity of scheduler implementations, often
exacerbated by simple (but in the worst case inefficient) data
structures like linked lists, can introduce significant operational
overhead. This complexity, coupled with the abstraction pro-
vided by budget handling, creates opportunities for malicious
tasks to exert undue influence. Mergendahl et al. [15] exposed
the Thundering Herd attack against the seL4 sporadic server
implementation, which we replicate as attack A1 in §V-B.

Beyond implementation issues, malicious tasks can exploit
unrestricted timer APIs to disrupt the execution of other tasks.
Patel et al. [18] showed that malicious tasks can use time-based
self-suspension operations in Linux (e.g., clock nanosleep)
to negatively affect the response times of higher-priority tasks
(similarly to our attack A2 in §V-A) and proposed TimerShield,
a scheduler-integrated solution to safely defer lower-priority
timers. SPR incorporates some of these ideas at the conceptual
level, but uses different implementation strategies.

To the best of our knowledge, prior work has not yet
explored the difference between reservations for (theoretically
fungible) processor time and a task’s ability to make meaning-
ful progress in practice (as in our attack A3 in §V-C). SPR is
the first comprehensive and principled solution to mitigating
all three attack vectors A1–A3, and thus the first reservation
scheme that ensures a bound Li on overhead-induced budget
loss (§III-G) in practice, even in the face of malicious tasks.

VII. CONCLUSIONS

In this paper, we have demonstrated that despite the strong
theoretical properties of established reservation algorithms,
their existing direct implementations suffer from a number of
practical shortcomings. In particular, we have demonstrated
how determined attackers can (A1) trigger simultaneous
replenishment attacks that undermine temporal isolation via
induced priority inversion, (A2) launch coordinated timer
interference attacks that similarly result in priority inversion,
and (A3) cause preemption storms that undermine temporal
isolation by preventing tasks from making effective use of
their guaranteed processor time budgets. In these attacks, the
reservation policy’s implementation itself is used as an attack
surface to undermine its theoretical guarantees.

In response, we have introduced shielded processor reser-
vation (SPR) scheduling, the first reservation scheme and
implementation blueprint that comprehensively mitigates these
shortcomings in practice. To avoid attacks A1–A3 by design,
SPR uses early and deferred replenishment processing, prunes
unnecessary timers, processes at most two reservations per
invocation, and integrates non-preemptive regions. We have
shown SPR scheduling to be effective and efficient with the
evaluation of a prototype implementation in Composite OS.

12

ACKNOWLEDGEMENTS

We’d like to thank our reviewers for their time and
effort, which significantly improved this paper. This work is
supported by NSF CPS 1837382 and ONR N000142212084.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of these agencies.

REFERENCES

[1] Control groups (cgroups), 2024. [Online]. Avail-
able: https://www.kernel.org/doc/html/latest/admin-guide/
cgroup-v2.html

[2] L. Abeni and G. Buttazzo, “Integrating multimedia
applications in hard real-time systems,” in Proceedings
of the 19th IEEE Real-Time Systems Symposium (RTSS),
1998, pp. 3–13.

[3] G. Banga, P. Druschel, and J. C. Mogul, “Resource
containers: A new facility for resource management in
server systems,” in Proceedings of the 3rd Symposium on
Operating Systems Design and Implementation (OSDI),
1999, pp. 45–58.

[4] A. Biondi, A. Melani, and M. Bertogna, “Hard con-
stant bandwidth server: Comprehensive formulation and
critical scenarios,” in Proceedings of the 9th IEEE In-
ternational Symposium on Industrial Embedded Systems
(SIES), 2014, pp. 29–37.

[5] S. Bozhko and B. B. Brandenburg, “Abstract response-
time analysis: A formal foundation for the busy-window
principle,” in Proceedings of the 32nd Euromicro Con-
ference on Real-Time Systems (ECRTS), 2020, pp. 22:1–
22:24.

[6] G. C. Buttazzo, M. Bertogna, and G. Yao, “Limited
preemptive scheduling for real-time systems. A survey,”
IEEE Transactions on Industrial Informatics, vol. 9, no. 1,
pp. 3–15, 2013.

[7] “The Composite component-based system source:
https://github.com/gparmer/Composite.”

[8] K. Elphinstone and G. Heiser, “From L3 to seL4 – What
have we learnt in 20 years of L4 microkernels?” in
Proceedings of the 24th ACM Symposium on Operating
Systems Principles (SOSP), 2013, pp. 133–150.

[9] P. K. Gadepalli, R. Gifford, L. Baier, M. Kelly, and
G. Parmer, “Temporal capabilities: Access control for
time,” in Proceedings of the 38th IEEE Real-Time
Systems Symposium (RTSS), 2017, pp. 56–67.

[10] A. Hamann, D. Dasar, S. Kramer, M. Pressler, F. Wurst,
and D. Ziegenbein, “WATERS industrial challenge 2017,”
in Proceedings of the 8th International Workshop on
Analysis Tools and Methodologies for Embedded and
Real-time Systems (WATERS), 2017.

[11] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world
automotive benchmarks for free,” in Proceedings of
the 6th International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems
(WATERS), 2015.

[12] J. Lelli, C. Scordino, L. Abeni, and D. Faggioli, “Dead-
line scheduling in the linux kernel,” Software: Practice
and Experience, vol. 46, no. 6, pp. 821–839, 2016.

[13] A. Lyons, K. McLeod, H. Almatary, and G. Heiser,
“Scheduling-context capabilities: A principled, light-
weight operating-system mechanism for managing time,”
in Proceedings of the 13th EuroSys Conference (EuroSys),
2018, pp. 1–16.

[14] C. W. Mercer, S. Savage, and H. Tokuda, “Processor
capacity reserves: Operating system support for multime-
dia applications,” in Proceedings of IEEE International
Conference on Multimedia Computing and Systems, 1994,
pp. 90–99.

[15] S. Mergendahl, S. Jero, B. C. Ward, J. Furgala, G. Parmer,
and R. Skowyra, “The Thundering Herd: Amplifying ker-
nel interference to attack response times,” in Proceedings
of the IEEE 28th Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2022, pp. 95–107.

[16] J. C. Mogul and K. K. Ramakrishnan, “Eliminating
receive livelock in an interrupt-driven kernel,” ACM
Transactions on Computer Systems, vol. 15, no. 3, pp.
217–252, 1997.

[17] S. Oikawa and R. Rajkumar, “Portable RK: A portable
resource kernel for guaranteed and enforced timing
behavior,” in Proceedings of the 5th IEEE Real-Time
Technology and Applications Symposium (RTAS), 1999,
pp. 111–120.

[18] P. Patel, M. Vanga, and B. B. Brandenburg, “TimerShield:
Protecting high-priority tasks from low-priority timer
interference,” in Proceedings of the 23rd IEEE Real-Time
and Embedded Technology and Applications Symposium
(RTAS), 2017, pp. 3–12.

[19] F. P. Preparata and M. I. Shamos, Computational Ge-
ometry: An Introduction. Berlin, Heidelberg: Springer-
Verlag, 1985.

[20] B. Sprunt, L. Sha, and J. P. Lehoczky, “Aperiodic
task scheduling for hard real-time systems,” Real-Time
Systems, vol. 1, pp. 27–60, 1989.

[21] M. Stanovich, T. P. Baker, A.-I. Wang, and M. G. Harbour,
“Defects of the POSIX sporadic server and how to
correct them,” in Proceedings of the 16th IEEE Real-Time
and Embedded Technology and Applications Symposium
(RTAS), 2010, pp. 35–45.

[22] J. K. Strosnider, J. P. Lehoczky, and L. Sha, “The
deferrable server algorithm for enhanced aperiodic re-
sponsiveness in hard real-time environments,” IEEE
Transactions on Computers, vol. 44, no. 1, pp. 73–91,
1995.

[23] Q. Wang, Y. Ren, M. Scaperoth, and G. Parmer, “Speck:
A kernel for scalable predictability,” in Proceedings of
the 21st IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2015, pp. 121–132.

[24] S. Xi, J. Wilson, C. Lu, and C. Gill, “RT-Xen: Towards
real-time hypervisor scheduling in Xen,” in Proceedings
of the 9th ACM International Conference on Embedded
Software (EMSOFT), 2011, pp. 39–48.

13

https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html
https://www.kernel.org/doc/html/latest/admin-guide/cgroup-v2.html

	Introduction
	Model and Assumptions
	Design
	Unnecessary Timer Interrupts
	Early Replenishments
	Premature Activation and Replenishment Timer Pruning
	Deferred Replenishment and Activation Processing
	Bounded Reservation Processing in the Scheduler
	Preventing Excessive Preemption Rates
	Admission Control and Overhead Analysis

	Implementation
	Data Structures
	Scheduling Logic
	Task Activation

	Evaluation
	Mitigation of Coordinated Timer Interference Attacks (A2)
	Mitigation of Simultaneous Replenishment Attacks (A1)
	Mitigation of Preemption Storm Attacks (A3)
	Transferability and Broader Applicability

	Related Work
	Conclusions

