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Abstract—We present LIME, a novel dynamic real-time task
model extractor. LIME observes the temporal behavior of Linux
real-time threads and automatically maps the observed activity
to established real-time task models: sporadic and periodic tasks,
upper and lower arrival curves, cumulative execution-time curves,
and two self-suspension models (dynamic and segmented). LIME
runs on unmodified Linux kernels and requires neither knowledge
of real-time theory nor familiarity with Linux internals to be used
effectively. An extensive evaluation shows LIME to achieve very
high inference accuracy—in particular 100% accuracy for com-
mon automotive periods—with low kernel overhead, low latency
impact, and low processor utilization (at best-effort priority).

I. INTRODUCTION

The recent acceptance of the PREEMPT RT patch into the
mainline Linux kernel, after 20 years of development [58], has
made official what has long been true: Linux is a major platform
for hosting modern, complex real-time workloads across various
industries. Notable examples feature demanding application
domains such as automotive systems [52], autonomous vehi-
cles [30, 31], unmanned aerial vehicles (UAVs) [19, 27, 35],
and spacecraft [37], in particular crewed rockets [59], NASA’s
Mars helicopter Ingenuity [57], and tens of thousands of Linux
systems deployed in orbit as part of Starlink constellations [54].

As noted recently by Erik Vallow, a representative of the
RTOS vendor LYNX Software Technologies, in a retrospective
on the evolving role of Linux in the aerospace and defense
industries [56]: “Linux has become a formidable contender
in safety-critical systems due to advancements in real-time
capabilities and reliability. [. . . ] Linux is increasingly capable
of meeting the demands of real-time applications on its own,
reducing the need for a separate RTOS in some cases.” In
addition, the availability of drivers for high-performance GPUs
is increasingly a factor favoring the consolidation of AI-enabled
or otherwise GPU-accelerated real-time workloads on Linux.

However, while the popularity of Linux as a versatile and
feature-rich RTOS has soared in the real-time systems industry,
there is a growing disconnect with the analytical foundations
studied in the scientific literature on real-time systems. Rooted
in abstract system models and high-level mathematical descrip-
tions of workloads, state-of-the-art methods for establishing
temporal guarantees are far removed from the engineering
realities of a low-level embedded Linux environment.

It stands to reason, then, that only a diminishingly small
fraction of the many real-time workloads deployed on Linux
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over the past decade have been modeled and formally evaluated
using published schedulability analyses. A major contributor to
this disconnect is the lack of tool support: without automated
system introspection tools, engineers interested in formally char-
acterizing the timing properties of a real-time workload running
on Linux require dual expertise in both Linux implementation
details, particularly the kernel’s low-level tracing facilities and
system-call interface, and state-of-the-art temporal modeling
and analysis techniques. This, along with the associated manual
effort that would be required (and not just once, but repeatedly
as systems evolve to meet changing requirements), presents a
formidable barrier to the widespread adoption of state-of-the-art
real-time analysis techniques in a Linux context.

Could the schedulability analysis of Linux workloads be
automated and thus made easily accessible to non-experts? Mo-
tivated by this question, we address the first, fundamental prob-
lem that precedes any practical analysis: the automated model-
ing of real-time tasks deployed on unmodified Linux kernels.

While applications developed using higher-level model-first
approaches [9, 24, 44], or using programming languages with
explicit timing semantics [7, 10, 11, 15, 26, 28, 42, 43], can
certainly be compiled down to Linux binaries and executed
efficiently (i.e., model-driven engineering), the converse is far
from obvious: Is it possible to extract high-level temporal
models of running Linux threads suitable for schedulability
analysis simply by observing their low-level runtime behavior?
Is it possible to do this for black-box threads (i.e., without
access to source code)? Fully automatically, without user
guidance, annotations, or specifications of intended timing?
And can it be done in situ on a target embedded platform
without unduly perturbing the timing of the real-time threads?

This paper. We show that the answer to each of these questions
is ‘yes’ by presenting LIME, the Linux real-time task Model
Extractor (Sec. III). LIME is a dynamic introspection tool
that maps sequences of low-level thread-kernel interactions
(Sec. II-A), observed via the kernel’s eBPF tracing facility, to
task models from the real-time scheduling literature (Sec. II-B).

Fig. 1 illustrates the entire pipeline: Given an arbitrary
black-box workload (in Fig. 1, a thread implementing pe-
riodic activations with clock_nanosleep), LIME uses eBPF to
observe key scheduling events and system calls throughout the
whole system (Inset 1). After reconstructing the timeline for
each target thread (Inset 2), LIME identifies job boundaries
based on its builtin understanding of Linux system call
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struct timespec next = {…}; 
while (true){ 

clock_nanosleep(…,next); 
do_something(); 
next_activation(&next, period); 

}

    "separator": { 
      "type": “clock_nanosleep”, …}, 
    "jobs": [{…},…,{…}, 

      { 
        "arrival": 50, 
        "release": 51, 
        "end": 58, 
        "execution_time": 7, 

… 
      }, 

{…},…,{…}] 

… 
{ "wcet": 7 } 
{ 
 "model": "sporadic", 
 "mit": 20 
}, 
{ 
 "model": "periodic", 
 "period": 20, 
 "offset": 10, 
 "max_jitter": 1  
}, 
...

...
...

...
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~
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...
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Fig. 1: LIME’s model-inference pipeline, illustrated for a periodic thread with PID = 4 (colored yellow).

semantics (Inset 3). From the stream of jobs, LIME extracts the
building blocks of real-time task models (Inset 4). Finally, the
user is presented with instances of classic task models (such
as a periodic task with jitter) that conservatively describe all
observed thread behavior (Inset 5). Importantly, LIME can run
the entire pipeline fully automatically (without annotations or
user guidance) and in situ (online, with bounded memory).

LIME is highly accurate (Sec. V-A), easy to deploy, runs
on unmodified Linux kernels, and requires no knowledge
of real-time theory, Linux internals, or eBPF to be used
effectively. The models it extracts are useful in a number
of ways: 1) for behavior validation, wherein LIME confirms
that a thread exhibits the intended timing (Secs. V-A and VI-B);
2) for system exploration, wherein LIME discovers previously
unknown or unexpected kernel and application threads and char-
acterizes their impact (Sec. VI-A); 3) for debugging, wherein
peculiarities of the extracted models point to subtle bugs in
application code (Sec. VI-B); and 4) for continuous monitoring,
wherein LIME runs alongside an application for prolonged
times with low overheads (Secs. V-B to V-D) to check that the
target’s timing does not drift over time (Sec. VI-B).

Thanks to the low overhead of eBPF, LIME’s online model-
inference algorithms (Sec. IV), and its efficient implementation
in the Rust programming language, LIME is lightweight enough
to run alongside the monitored target (Sec. V-B) without placing
a significant burden on application timing (Sec. V-C).

We will revisit Fig. 1 throughout the rest of this paper as
we explain each stage of LIME’s model-inference pipeline in
detail. To begin, we take a closer look at the fundamental
disconnect that makes model inference challenging in Linux.

II. LINUX VS. REAL-TIME TASK MODELS

Conceptually, the core challenge addressed by LIME is the
large semantic gap between how Linux processes operate
compared to established models of real-time computation. To
illustrate the difficulties involved in bridging this gap, we begin
with a high-level overview of Linux’s process abstraction and
then review the real-time task models most relevant to LIME.

A. Linux Thread Behavior

The principal schedulable entity in Linux is a thread,1

representing an ongoing computation defined by a register
context and a call stack. A process contains one or more

1Linux documentation interchangeably refers to threads and processes also
as “tasks.” To avoid confusion, we exclusively use “thread” when discussing
Linux’s OS abstraction and reserve “task” to refer to real-time model entities.

threads that share the process’s resources (e.g., the address
space, open file descriptors, security capabilities, etc.).

At any point in time, each thread in the system is either
runnable (i.e., either currently executing or ready to execute) or
blocked (i.e., in some state in which the thread’s computation
cannot proceed until some thread-external event takes place).
A thread is said to block (or suspend) when it ceases to be
runnable, and to activate (or resume) when it becomes runnable
again. Conceptually, the scheduler always selects a subset of
the runnable threads to dispatch on the available processors.

Linux provides a sophisticated and continuously evolving
hierarchy of thread schedulers that implement several real-time
(SCHED RR, SCHED FIFO, SCHED DEADLINE) and best-
effort policies (SCHED OTHER, SCHED BATCH); however,
as we focus on intrinsic thread behavior, which is largely
independent of the scheduling policy a thread is managed by,
we will not delve further into Linux scheduling details.

In Linux, thread behavior is fundamentally unconstrained:
threads execute arbitrary code and may call arbitrary system
calls in arbitrary order at arbitrary points in their execution.
Regular or repeating thread behavior emerges by choice of the
programmer, not due to kernel-enforced constraints or thread-
model properties. Any formal model of “real-time thread behav-
ior” in Linux suitable for schedulability analysis thus inherently
targets only a narrow subset of permissible thread behavior.

Fundamentally, at any point in time, a thread can be involved
in one of three activities: it may (i) compute in user space
using only the processor and memory already mapped into
the thread’s address space; (ii) invoke system calls (or trigger
exceptions) that cause some computation to take place in kernel
space without blocking the thread (e.g., the getpid() system
call has no timing implications other than taking a few cycles to
complete); and (iii) invoke (potentially) blocking system calls
(or trigger exceptions) that change a thread’s status to “blocked”
and prevent it from being scheduled for some time. Activities
in categories (i) and (ii) affect only a thread’s execution time,
but otherwise do not affect its timing behavior. Category (iii),
however, is critical to understanding thread behavior.

Blocking system call semantics arise for many reasons. For
example, attempting to read data from a socket when the
socket’s buffer is empty will (by default) block the calling
thread until data becomes available (e.g., in the case of a
datagram socket, until the next packet arrives and its payload
is placed into the socket’s buffer). Similarly, a thread program-
ming a timer to be activated later (e.g., via clock_nanosleep())

2



will block until the timer expires. Thread synchronization APIs
(e.g., pthreads, POSIX, or SYSTEM V) also come naturally
with blocking semantics (e.g., semaphores, barriers, etc.). A
thread might also become involuntarily blocked if it triggers
a page fault that requires some time to be serviced (e.g.,
demand paging, copy-on-write). Of particular interest to real-
time systems are blocking system calls with timeout semantics
(e.g., sig_timed_wait(), which cause a thread to block until
it either receives a signal or a specified timeout expires).

A comprehensive review of all blocking system calls in
Linux is necessarily beyond the scope of this paper. Suffice to
say, there are many ways in which Linux threads can block,
and many more reasons for why they might do so.

Abstracting from such details for now, we observe an
important high-level pattern: any well-behaved Linux thread
awaiting a future event or the passage of time will block in
some way. Furthermore, this behavior is unambiguous and
readily observable from the kernel’s vantage point. However,
it is also important to realize that threads do not necessarily
block when invoking system calls with blocking semantics,
precisely when the event in question has already occurred (e.g.,
when reading from a socket with a non-empty buffer, when
acquiring a semaphore that is available, or when requesting a
timer for a point in time already in the past).

In summary, a Linux thread alternates between intervals in
which it is runnable and intervals in which it is blocked. This
sequence of intervals may follow any pattern, or no pattern at
all. The transition from runnable to blocked is always marked
by a blocking system call (or exception handler). Intervals
in which a thread is runnable may contain any number of
system call invocations, including system calls with blocking
semantics if the particular invocation did not block the thread.

B. Models of Recurrent Real-Time Computation

In the five decades since Liu and Layland’s pioneering
work [39], a plethora of increasingly nuanced and detailed
real-time task models have been proposed and analyzed.
In the following, we restrict our attention to widely used,
fundamental models of sequential tasks (since we seek to
model sequential Linux threads) and focus on those for which
we have implemented support in LIME.

Under all considered models, the system is comprised of n
sequential real-time tasks τ1, . . . , τn, which matches the fact
that a Linux system consists of a finite number of sequential
threads. Each task τi is repeatedly activated, and each activation
is called a job, so that each task is simply a stream of jobs. We
let τi,j denote the jth job of task τi. Each job τi,j is defined
by (at least) two parameters (ri,j , ci,j): its release time ri,j ,
which is the earliest time it becomes available for execution,
and its execution time (or cost) ci,j . Task models differ in how
they constrain each task’s stream of jobs, and for some models
additional job parameters will be introduced in the following.
Sporadic. The sporadic task model [41], wherein each task τi
is characterized by two parameters (Ci, Ti), is the most simple
task model applicable to Linux. The worst-case execution time
(WCET) bound Ci simply limits the maximum cost of any

job: ∀j, ci,j ≤ Ci. Conversely, the minimum job separation
Ti lower-bounds the minimum distance between any two job
releases: ∀j, ri,j + Ti ≤ ri,j+1. The sporadic task model is
best suited to describing tasks that are infrequently triggered.

Arrival curves. If tasks can be subject to bursty activations,
then the classic sporadic model’s reliance on a scalar separation
parameter Ti is often too limiting. In particular, if multiple
jobs can arrive simultaneously, then the sporadic task model
degenerates to Ti = 0, which prevents meaningful analysis.

Arrival curves [29, 50], inspired by network calculus [34, 53],
are a more general way of describing arrival processes that
can express bursts and simultaneous arrivals without loss of
analysis accuracy. Specifically, an upper arrival curve α+

i (∆)
bounds the maximum number of jobs of task τi released in any
given interval: ∀∆, ∀t, |{τi,j | t ≤ ri,j < t+∆}| ≤ α+

i (∆).
Conversely, a lower arrival curve α-

i(∆) bounds the mini-
mum number of jobs of task τi released in any given interval:
∀∆, ∀t, α-

i(∆) ≤ |{τi,j | t ≤ ri,j < t+∆}|. Together, α+
i

and α-
i provide a good characterization of how frequently job

releases must be expected, irrespective of how bursty a task is.

Periodic. The best-known real-time task model is Liu and
Layland’s original periodic task model [39], in which each task
is characterized by a tuple (Ci, Ti) as in the (later) sporadic
task model. However, in the periodic model, all release times
are pre-determined and the separation is required to be exact:
∀j, ri,j = (j−1)·Ti, which implies ∀j, ri,j+Ti = ri,j+1. This,
unfortunately, is unobtainable in Linux and similar systems.
As the processing of activations invariably involves kernel
code, there is always some amount of variably-timed overhead
involved that affects the separation of job releases. Furthermore,
there is no guarantee that the first release occurs at some integer
multiple of Ti. The Liu and Layland model is thus inapplicable.

Nonetheless, periodic workloads are common in practice and,
for reasons of analytical precision, it is undesirable to over-
approximate periodic tasks as sporadic tasks. We thus turn to
a more expressive variant of the periodic task model in which
each task τi is described by four parameters (Ci,Φi, Ti, Ji),
where the offset Φi ≥ 0 [46] describes the time of the task’s
first activation and the maximum release jitter Ji ≥ 0 [3]
bounds the maximum deviation from ideal periodic behavior.

To state the model’s constraints precisely, we first need to
introduce two new job parameters: a job τi,j’s arrival time ai,j
describes the intended release time (i.e., when the job should
have been released in a hypothetical overhead-free system),
and its jitter λi,j = ri,j − ai,j is the deviation from this ideal.

The jitter-aware periodic model requires exactly spaced
arrivals, but allows releases to deviate by a bounded amount:

∀j, ai,j = Φi + (j − 1) · Ti ∧ 0 ≤ λi,j ≤ Ji (1)

As shown later (Sec. V-A) the flexibility afforded by the offset
and jitter parameters makes the model practical in our setting.

Self-suspension. So far, we have not discussed whether jobs
execute as a whole from start to finish or whether they can
intermittently suspend their execution. The models described so
far (implicitly) assume the absence of self-suspension, meaning

3



once released a job can execute whenever selected by the
scheduler. As already discussed, in a complex OS such as
Linux, this is not always a practical assumption: threads can
call blocking system calls at any time (e.g., to wait for I/O).

Self-suspension has major implications for schedulability
analysis [18], and thus must be modeled when it occurs. The
simplest approach is the dynamic self-suspension model, which
can be integrated with all models considered so far. It simply
adds a scalar task parameter Si that bounds the cumulative
self-suspension duration exhibited by any job of task τi.

To state the semantics of the parameter Si precisely, we
once more must refine our job model. Let mi,j ≥ 0 denote
the number of self-suspensions exhibited by a job τi,j , and let
the vector ⟨(si,j,0, ci,j,0); (si,j,1, ci,j,1); . . . ; (si,j,mj

, ci,j,mi,j
)⟩

describe τi,j’s sequence of alternating suspensions and exe-
cution segments, such that ci,j =

∑mi,j

k=0 ci,j,k. That is, each
tuple (si,j,k, ci,j,k) describes a segment of τi,j comprising
ci,j,k ≥ 0 time units of execution preceded by a self-suspension
lasting si,j,k ≥ 0 time units. (The “suspension” before the first
computation segment ci,j,0 is equivalent to the release jitter
λi,j [17].) Given this elaborated job model, Si simply bounds
the total self-suspension time: ∀j,

∑mi,j

k=0 si,j,k ≤ Si.
The dynamic self-suspension model is flexible, but limits

analysis accuracy [18]. A more accurate model is the segmented
self-suspension model, wherein each job’s segment structure
is fixed at the task level [18]. However, a single permissible
segment vector per task is too restrictive in a Linux environment,
where (some) tasks tend to exhibit more dynamic behavior.

Inspired by an earlier hybrid model [60], we therefore
consider a bag of segment vectors (BOS) model, in which
each task is associated with a set of possible segment vectors.
Let Vi denote a set of segment vectors for task τi, and let
S⃗l ∈ Vi denote a vector of per-segment upper bounds of the
form S⃗l = ⟨(Si,l,0, Ci,l,0); (Si,l,1, Ci,l,1); . . .⟩. The BOS model
constraint can then be precisely stated as follows: ∀j, ∃S⃗l ∈ Vi
s.th. |S⃗l| = mi,j + 1 ∧ ∀k ∈ {0, . . . ,mi,j}, si,j,k ≤ Si,l,k ∧
ci,j,k ≤ Ci,l,k, where |S⃗l| denotes the length of vector S⃗l.

WCET(ι). Finally, let us refine the (scalar) WCET bound Ci.
As stated above for the sporadic task model, Ci applies equally
to all jobs. In practice, however, it is often not the case that all
jobs are of similar cost. For example, the first job in a burst
may be more expensive to compute than subsequent jobs in the
same burst due to warm-up effects. Furthermore, some tasks
are deliberately programmed to carry out certain particularly
expensive operations only infrequently.

For such workloads, it is beneficial to adopt a cumulative
execution-time curve WCETi(ι) to express bounds on the joint
execution time of multiple consecutive jobs [49]. Similarly
to arrival curves, WCETi(ι) bounds the total cost of any
ι consecutive jobs: ∀ι, ∀j,

∑j+ι
k=j ci,k ≤ WCETi(ι). Clearly,

Ci = WCETi(1), but usually ι ·Ci >WCETi(ι). This allows
for a more accurate characterization of the joint impact of a
task’s jobs across some longer interval (e.g., in response-time
analysis), as previously observed in the context of ROS [8].

C. Semantic Gap

There is a large conceptual gulf between Linux thread
behavior and established real-time task models. On the one
hand, Linux threads are unconstrained and can behave in
arbitrary, irregular, and unrepeating ways. On the other hand,
real-time task models fundamentally assume recurrent task
activations and seek to expose as much regularity as possible
in the interest of analysis accuracy. It is thus not feasible to
capture any possible Linux thread behavior with these models.

Nevertheless, useful software is usually not arbitrary in its
behavior. In particular, well-engineered real-time workloads
tend to exhibit highly regular behavior even on Linux. It is
thus feasible to describe well-behaved Linux real-time threads
using the models discussed in Sec. II-B.

However, even well-behaved Linux threads are challenging
to model automatically, due to some fundamental obstacles.
First, Linux is jobless: All task models discussed in this
section inherently revolve around the notion of jobs, but thread
execution under Linux is unstructured and often involves many
different potentially blocking system calls. Even if tasks behave
in a recurrent fashion, it is not always obvious where one
job “ends” and another one “starts.” Defining and efficiently
detecting reliable job separators is thus a core challenge when
modeling Linux threads as real-time tasks.

Second, thread intention is unknown: In the absence of
annotations and without resorting to a static analysis of a
thread’s machine code (or its source code if available), an
observer is generally unaware of a thread’s intended timing
behavior. This creates considerable ambiguity. For example,
even humans struggle to reliably distinguish the trace of a
jitter-affected periodic task from a truly sporadic one.

Third, many threads are event-driven: Even a static analysis
cannot tell us the intended timing behavior of a thread that
is activated by incoming UDP packets—the sender and the
network determine the timing behavior, not the recipient’s
source code. Models of event-driven tasks thus always need to
be understood in the context of the observed environment.

III. LIME: DESIGN AND IMPLEMENTATION

We designed and built LIME to automatically bridge the
semantic gap between low-level thread behavior and high-level
task models without relying on user guidance, annotations, or
access to the source code of running threads.

As shown in Fig. 1, LIME extracts task models from observed
thread behavior via a four-stage pipeline. First, to observe
thread behavior, LIME’s kernel-level tracing component records
events at predefined tracepoints in the Linux kernel (Inset 1).
The resulting stream of thread events is then mapped to
individual tasks (Inset 2). After the stream of events has
been split into individual per-task streams, each such per-task
stream of events is distilled into an intermediate representation
that provides a more succinct summary of thread behavior,
including separators marking probable job boundaries (Inset 3).
In the fourth and last stage, LIME’s model inference algorithms
continuously update the parameters of each model reviewed
in Sec. II-B based on the stream of jobs identified in the
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prior stage (Inset 4). Finally, when LIME terminates, instances
of each applicable real-time task model are emitted for each
observed task (Inset 5). We discuss the first three stages next
and dedicate Sec. IV to the last stage.

It is important to acknowledge that LIME is inherently
measurement-based and heuristic-driven, as is common in the
context of Linux. As such, it cannot provide hard guarantees on
the correctness of the models that it extracts. Rather, it should
be seen as making a best-effort attempt at interpreting real-
world thread behavior through the lens of real-time scheduling
theory, and it may fail to offer a reasonable interpretation if
confronted with pathological workloads. That said, LIME goes
to great lengths to ensure that it extracts only task models that
conservatively explain all observed activity (as we revisit in
greater detail in Sec. IV-A) and as a result achieves remarkable
accuracy for well-behaved threads (Sec. V-A).

Operating modes. LIME can be used in three separate modes.
In offline mode, the pipeline stops after the second stage (Inset 2
in Fig. 1). In this mode, LIME simply records the per-task
stream of events for all monitored threads for later processing.
Conversely, in online mode, LIME runs the full pipeline,
processes all events in situ, and outputs only the extracted task
models (Inset 5). In particular, in online mode, LIME consumes
only a constant amount of memory per task, irrespective of
the monitoring duration. Finally, in replay mode, LIME runs
the third and fourth stages on a trace previously recorded by
its offline mode. In replay mode, LIME can optionally also
output the lists of jobs corresponding to Inset 3 of Fig. 1.

The main advantage of LIME’s offline mode is that later
offline analyses can be arbitrarily complex and resource-
consuming (as they can be carried out on a different machine).
Its major limitation is the large amount of disk space required
to store longer traces (Sec. V-A), which can quickly exhaust
the storage capacities of typical embedded platforms.

LIME’s online mode is specifically designed so that LIME
can be deployed for arbitrary durations alongside the monitored
system, even on storage- and memory-constrained platforms.
Its downside is that model-extraction overheads are incurred
on the target platform, but fortunately these overheads are low
(Sec. V-B). In the following, we focus mainly on LIME’s online
mode, as it is the more challenging use case to support.

Event tracing. LIME relies on Linux’s eBPF tracing facility,
which allows (privileged) user processes to upload sandboxed
programs (or probes) to kernel space without endangering the
kernel’s integrity. First introduced more than 10 years ago,
eBPF is by now a mature technology with a rich feature set.
We focus here only on the parts most relevant to LIME.

Depending on the kernel version, LIME installs up to 65
eBPF probes, implemented in about 1,600 lines of eBPF’s C
dialect, to monitor context switches, thread-state changes (e.g.,
threads becoming runnable), and specific system calls. Each
time a probe is triggered, it checks whether the event is relevant
to LIME (e.g., if the triggering thread is being traced), and if
so, places the event in a shared ring buffer accessible to user
space (a standard component provided by the eBPF library).

LIME consumes events from this ring buffer. Each event has
a timestamp, a thread ID, a type, and a body with additional
attributes depending on the type of event. Timestamps are
provided in nanosecond resolution based on the kernel’s internal
clock (known as CLOCK_MONOTONIC in user space). The first
step in processing an event is to associate it with a task.

Task mapping. The thread-to-task mapping is somewhat more
nuanced than one might initially assume. In particular, it is not
a 1-to-1 mapping: a thread can be mapped to multiple tasks
throughout its lifetime to reflect changing behavior and/or
gaps in observation. We collectively refer to changes in the
thread-to-task mapping as task transition events.

By default, a task transition event occurs if major scheduling-
related thread parameters change (e.g., processor affinity,
scheduling policy, priority). The rationale is that such a change
typically indicates a major shift in operating mode, which is
more accurately modeled as one task leaving and another task
joining the system. A practical benefit is that it also tends to
automatically separate execution phases that are uninteresting
from the point of view of longterm behavioral modeling.

For example, programs tend to parse flags, initialize their
state, load additional resources, set up logging facilities, etc.
before switching to “real-time mode” by setting their scheduling
policy to a real-time policy. Conversely, a switch from a
real-time priority to SCHED OTHER typically indicates the
end of “real-time mode.” By default, LIME will record such
initialization and termination phases as separate tasks, which
can then be trivially discarded during subsequent processing.

Importantly, it is possible to override LIME’s default heuristic
so that it does not count priority and affinity changes as task
transition events, which is necessary when faced with a user-
space scheduling framework (as we revisit in Sec. VI-B).

Job separation. For each task, the incoming stream of events
is reduced to an intermediate representation that tracks the
intervals in which the corresponding thread is suspended,
running, or preempted, in addition to other information useful
to the model extractors. Most importantly, it identifies job
separators that demarcate the end of one job and the beginning
of the next. As motivated in Sec. II, splitting a thread’s
execution history into a sequence of logically distinct jobs is a
key step in LIME’s extraction pipeline and a major challenge.

LIME identifies probable job boundaries based on two
insights: (i) a job corresponds conceptually to one activation
of a task, and such an activation is virtually always preceded
by a potentially blocking system call since the task must wait
for the next activation if none has occurred yet; and (ii) proper,
well-behaved real-time threads tend to execute the same system
calls over and over since they react to activations of a particular
kind (e.g., it is unlikely that one job is triggered by timer, the
next by a UDP packet, and the third by a signal).

Therefore, the first step is to efficiently pick out potentially
blocking system calls from the stream of events. To this end,
LIME uses regular expressions (implemented as simple finite
automata) to match signatures that uniquely identify particular
system calls in the per-task streams of events.
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For example, consider the periodic task shown in Fig. 1. In
this example, the useful work is done by the do_something()

function and the desired period is enacted by invoking
clock_nanosleep(). In every iteration of the while loop,
the thread generates the characteristic sequence of events
highlighted in Inset 1 of Fig. 1, which is the signature specific
to the job separator clock_nanosleep(). Whenever the thread
has no more work to do, it enters the system call, which causes
it to block in state TASK_INTERRUPTIBLE (i.e., the thread is no
longer runnable) until a new period begins, at which point the
thread resumes and exits the system call.

In total, LIME detects more than 20 different job separators,
including all major system calls for device I/O, networking,
IPC, signal handling, and timers. Great care is taken by the
eBPF probes to exclude non-blocking variants of these system
calls. Two job separators warrant additional attention.

First, the suspension separator declares any suspension to
indicate a job boundary. This separator is of particular interest
because, on the one hand, the resulting models, by definition,
consist exclusively of non-self-suspending jobs, which is highly
attractive from a schedulability analysis perspective. On the
other hand, it is applicable even to kernel threads that do not
invoke any system calls (as discussed in Sec. V-A).

Second, the sched_yield separator provides support for
tasks designed for the SCHED DEADLINE policy (and is
exclusive to that policy). A thread scheduled by this policy
can call sched_yield to relinquish any remaining budget to
SCHED DEADLINE’s slack reclamation mechanism, which is
an unambiguous indicator that a job has finished.

Conceptually, job separators transform the per-task stream of
events into per-separator streams of jobs (i.e., there is a distinct
stream of jobs for each task and each type of separator). Each
such stream of jobs is then consumed by the model extractors.
There is one model extractor instance for each job stream and
each supported type of model, as we discuss next.

IV. MODEL INFERENCE

We now focus on LIME’s algorithmic core, namely its model
extractors. To begin, we clarify the goal of the extraction stage.

A. Conservative Model Extraction

We adopt conservative extraction as LIME’s correctness
specification. As a measurement-based tool, LIME is inherently
limited to describing the thread activity it has observed. Beyond
this fundamental constraint, however, we require that the models
it produces faithfully describe all observations.

More precisely, recall from Sec. II-A that we can model
all Linux thread activity as an alternating sequence of ready
and suspension intervals, with sequences of system calls
interspersed in ready intervals. Let T denote the set of all
possible thread traces, and let M be an instance of a sequential
real-time task model (e.g., a sporadic task τi with concretely
defined parameters Ci and Ti). We can understand M to
describe a restricted subset traces(M) ⊂ T, which contains
all thread traces compliant with M’s parameters and semantics
(e.g., all thread traces in which the start times of ready intervals

are at least Ti time units apart and the thread never executes
for longer than Ci time units during any ready interval).

In this view, LIME can be seen as function in the reverse
direction: it maps an observed trace t ∈ T to a set of
inferred models LIME(t) = {M1,M2, . . .}. The conservative
extraction criterion then requires:

∀t ∈ T, ∀Mi ∈ LIME(t), t ∈ traces(Mi).

That is, if LIME claims a model instance Mi to explain the
observed behavior t, then the observed trace t must indeed be
in traces(Mi), the subset of traces permitted by Mi.

B. Directly Extractable Models

Models defined solely in terms of release, execution, and
suspension times are easy to infer since all relevant parameters
are explicitly part of the intermediate representation (i.e., con-
ceptually the stream of jobs) consumed by the model extractors.

For example, to infer the sporadic task model’s job separation
parameter Ti, it suffices to keep a running minimum of the
distance between any two consecutive job releases for each
task. Similarly, the dynamic self-suspension model parameter
Si is trivially determined by a running maximum, and inference
of segmented self-suspension models is also straightforward.

The inference of arrival and execution-time curves is algorith-
mically more nuanced, but has long been well understood. For
example, Stark provides a detailed discussion [51, pp. 99–105]
of the extraction algorithms also used in LIME.

C. Periodic Model Inference

This leaves the periodic model, which is by far the most
challenging to infer. The principal source of difficulty is that a
job’s arrival time ai,j cannot be directly observed for most job
separators. We therefore focus in the following on extracting
the arrival tuple (Φi, Ti, Ji) for separators where ai,j cannot be
directly observed. To reduce clutter, we focus on an individual
thread in the remainder of this section and use job indices only
(e.g., we write rj instead of ri,j in the following).
Inference goal. Given a sequence R ≜ ⟨r1, r2, . . . , rz⟩ of z
jitter-affected releases observed by LIME, the objective is to
infer a conservative arrival tuple (Φ, T, J) satisfying Eq. (1).
For brevity, let AΦ,T (j) = Φ + (j − 1) · T be the arrival
sequence implied by (Φ, T, J).

Consider Fig. 2a, which illustrates a running example R =
⟨100, 115, 120, 135⟩. Three arrival sequences are shown:

▲ A100,15(j): which is unsound, as the projected arrivals
for j = 3 and j = 4 occur after the observed releases.

■ A100,5(j): which is sound, but has an overly pessimistic
maximum jitter r4 −A100,5(4) = 135− 115 = 20.

● A100,10(j): which is sound with a maximum jitter of 5
time units, the least obtainable by any sound sequence.

This example shows that multiple arrival sequences can fit
an observed release sequence. However, a single model—the
one minimizing maximum jitter—provides the most accurate
representation. Thus, our approach aims to find the arrival tuple
(Φ, T, J) with the minimal maximum jitter bound J .

To this end, we leverage two key properties (I) and (II):
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(I) For each period T , there exists a unique offset ϕ(T ) that
minimizes the maximum jitter for R.

The offset ϕ(T ) is the largest offset for which the arrival
sequence AΦ,T (j) is sound (w.r.t. R). It can be computed
iteratively as follows: for j = 1, Φ(1) = r1, and for j > 1,
Φ(j) = Φ(j − 1) if rj−AΦ(j−1),T (j) ≥ 0, and Φ(j) = Φ(j−
1)−(AΦ(j−1),T (j)−rj) otherwise . Finally, ϕ(T ) ≜ Φ(z), and
ψ(T ) ≜ max1≤j≤z

(
rj −Aϕ(T ),T (j)

)
is the least maximum

jitter for any sound arrival sequence with period T .
However, property (I) alone is insufficient, as a brute-force

approach to minimizing ψ(T ) would require an exhaustive
search over a broad range of periods. Conveniently, as illus-
trated in Fig. 2b, ψ(T ) first decreases with increasing period
until reaching a minimum, after which it increases again.
Intuitively, the reason is that “ill-fitting” periods that are either
too short or too long result in “more” maximum jitter to
compensate for the mismatch. The best fit is hence achieved
with a period that results in minimal maximum jitter, which
gives us the second important property:
(II) A period Tmin that minimizes ψ(T ) can be found via

ternary search, which is computationally efficient.
Ultimately, the arrival tuple (ϕ(Tmin), Tmin, ψ(Tmin)) min-

imizes the maximum jitter for R.
Online inference. So far, we have outlined the approach under
the implicit assumption that the entire sequence R is known (an
offline setting). To keep LIME’s memory footprint and runtime
low in its online mode, at most b recent releases are retained,
which are analyzed with Algorithm 1 in sequential batches
B1,B2, . . . of length b each. Each batch (except B1) includes
the final release of the previous one to maintain continuity.
1 For a model derived from an arbitrary batch Bk, we must

account for two sources of imprecision. First, to deal with
potentially noisy observations, which could skew the estimate
if left uncorrected, LIME first identifies outliers among the
inter-release gaps within Bk using the well-known lightweight
Hampel identifier [e.g., 45, Ch. 3.2.2]. Then, it identifies the
first release r′ not followed by an outlier gap and the last release
r′′ not preceded by one. The optimal period Tmin is computed
based on property (II) from the release times in [r′, r′′].

To anticipate that slightly different models may better fit
future releases, the initial batch B1 is processed differently
(lines 1–13) from subsequent ones by computing Tmin (line 4)
and generating two sets of candidate periods (lines 5 and 6):

Algorithm 1 Periodic Model Inference
1: procedure INIT(B1) ▷ B1 = ⟨r1, . . . , rz⟩ ∧ z ≥ 2
2: G , H← [ ] ▷ Init collections of candidates
3: R′ ← ⟨r ∈ B1 | r′ ≤ r ≤ r′′⟩ as per 1 ▷ Outlier removal
4: Tmin ← ternary (R′, ψ(·)) ▷ Minimize ψ(T ) w.r.t. r ∈ R′

5: G← Generate a set of fine-grained periods following 2
6: H← Generate a set of rounded periods following 3
7: for T ∈ G ∪ {Tmin} do ▷ Fine-grained model candidates
8: append δ(B1, r1, T, 0, 0) to G

9: for T ∈ H do ▷ Rounded model candidates
10: append δ(B1, r1, T, 0, 0) to H

11: TE ← Tmin ▷ Init mean period
12: ℓ← z ▷ Init ordinal of the last observed release

13: procedure UPDATE(Bk) ▷ Bk = ⟨r1, . . . , rz⟩ ∧ k > 1 ∧ z ≥ 2
14: R′ ← ⟨r ∈ Bk | r′ ≤ r ≤ r′′⟩ as per 1 ▷ Outlier removal
15: Tmin ← ternary (R′, ψ(·)) ▷ Minimize ψ(T ) w.r.t. r ∈ R′

16: TE ← TE + (Tmin − TE)/(k − 1) ▷ Welford’s alg. for mean
17: for T ∈ {Tmin, TE} do ▷ Derive sound offset and jitter
18: (Φ′, T ′, J ′)← argmin(Φ′′,T ′′,J′′)∈G∪H(|T ′′ − T |)
19: if T > T ′ then
20: Φ← AΦ′,T ′(ℓ)− ℓ · T
21: J ← Φ′ + J ′ − Φ
22: if T < T ′ then
23: Φ← Φ′

24: J ← AΦ′,T ′(ℓ) + J ′ −AΦ,T (ℓ)

25: append (Φ, T, J) to G

26: for (Φ, T, J) ∈ G ∪H do ▷ Sound update of Φ and J
27: update (Φ, T, J) with δ(Bk,Φ, T, J, ℓ)

28: prune G and H as per 4
29: ℓ← ℓ+ z − 1 ▷ (. . .− 1) because r1 ∈ Bk = rz ∈ Bk−1

30: procedure δ(B,Φ, T, J, x) ▷ B = ⟨r1, . . . , rz⟩ ∧ z ≥ 2
31: for j = 2 to z do
32: if rj −AΦ,T (x+ j) < 0 then ▷ If implausible arrival
33: Φ← Φ− (AΦ,T (x+ j)− rj) ▷ update offset
34: J ← J + (AΦ,T (x+ j)− rj) ▷ update max. jitter
35: return (Φ, T, J)

G fine-grained periods close to Tmin, intended to account
for minor estimation inaccuracies; and

H human-designed (rounded) periods (e.g., favouring “50ms”
rather than “52.001ms” if supported by the data).

2 For set G (line 5), LIME generates up to 50 evenly spaced
candidate periods around Tmin, spanning the range [Tmin −
σ · ψ(Tmin) − 10, Tmin + σ · ψ(Tmin) + 10], where σ is an
arbitrary granularity parameter (by default, σ = 3).
3 Set H (line 6) is obtained by rounding Tmin at each

significant digit and including candidates with adjustments
of ±1 and ±2 (e.g., a Tmin = 5.01ms results in 3, 4, 5, 6, 7 at
millisecond granularity, and similarly at smaller granularities).

Model updates. For each generated period T ∈ G ∪ H, a
candidate model (Φ, T, J) ∈ G ∪H is constructed according
to property (I) (lines 7–10). As new batches arrive, the models
are iteratively updated (lines 13–29) by recomputing Φ and J
for newly observed releases (lines 27 and 30–35).

For each batch Bk beyond B1 (i.e., k > 1), before updating
all candidates as explained above, we introduce new candidates
to G using the optimal period for Bk and the mean of all
optimal periods up to Bk (inclusive). To preserve soundness,
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any newly introduced model with T must remain valid for
previously processed (but no longer available) releases by
computing its Φ and J from sound models in G and H. For
a newly estimated period T , LIME selects the sound candidate
(Φ′, T ′, J ′) with the closest period T ′ (lines 17–25). Then,
given the ordinal ℓ of the last release from Bk−1, LIME first
selects the largest offset Φ such that AΦ,T (j) ≤ AΦ′,T ′(j) for
1 ≤ j ≤ ℓ; by transitivity, this ensures it is also less than
or equal to previously observed releases. To determine the
jitter bound, LIME identifies the j where the two sequences
deviate most, implicitly assuming that the sound model always
experiences its maximum jitter J ′.

If T > T ′, a sound offset is given by Φ = AΦ′,T ′(ℓ)− ℓ · T
and a sound jitter is given by J = Φ′ + J ′ − Φ. Offset Φ is
chosen to align the sequences at the last release ℓ.

If T < T ′, a sound offset is Φ = Φ′, and a sound jitter
bound is J = AΦ′,T ′(ℓ) + J ′ −AΦ,T (ℓ). The reasoning here
is reversed: for AΦ,T (j) to remain below AΦ′,T ′(j) for any
j ≤ ℓ, it suffices to start from the same offset.
4 To reduce runtime overhead, the candidate sets are pruned

after each batch to remove excessively pessimistic estimates
(e.g., T = 15 in Fig. 2a). To this end, the candidate with the
least jitter bound Jm in G∪H is identified and any candidate
with a jitter bound exceeding 5× Jm is discarded.
Output. Finally, LIME derives the candidate (Φm, Tm, Jm)
with the lowest maximum jitter Jm from G ∪ H. To favor
periods likely preferred by system designers, it rounds Tm
at each significant digit in decreasing order, selecting the
first matching period candidate from H with a jitter bound
within 25% of Jm. If no such candidate exists, LIME returns
(Φm, Tm, Jm) to balance jitter minimization and human biases.

V. EVALUATION

We evaluated LIME using synthetic benchmark programs
to explore its model inference accuracy and runtime overhead.
Additionally, we report on experiences with programs not
written for benchmarking purposes in Sec. VI.
Platform. All experiments and case studies were conducted on
a Raspberry Pi 4 Model B (or RPi for short), featuring a quad-
core ARM Cortex A72 processor and 8 GiB RAM. The RPi
ran Ubuntu Server 22.04 LTS, which is based on Linux 5.15.

A. Model Inference Accuracy

To assess LIME’s model extractor across a wide range of
workloads, we let LIME extract all types of models introduced
in Sec. II for workloads comprised of synthetic benchmark
programs that implemented randomly chosen periods.

For variety, we used four different period generators:
• automotive periods were drawn randomly from the set of

periods {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}ms com-
monly encountered in the automative industry, using the
distribution of periods reported by Kramer et al. [33];

• LogU-ms periods were chosen log-uniformly at random
from the range {1, 2, . . . 1000}ms;

• LogU-µs periods were chosen log-uniformly at random
from the range {1000, 1100, 12000, . . . , 1000000}µs; and

• LogU-ns periods were chosen log-uniformly at random
from the range {106, 106 + 1, 106 + 2, . . . , 109} ns.

For each period distribution, we generated 100 workloads
comprised of n = 20 periodic tasks each. For each task,
we randomly selected a driver program to implement it.
We implemented driver programs to exercise the following
system calls, which can all be used to effect periodic thread
activations: clock_nanosleep, sig_timed_wait, poll, read,
recvfrom, mq_timed_receive, futex_wait_bit_set, msgrcv,
and semop. Additionally, we used Linux’s standard latency-
testing benchmark cyclictest as a driver, too.

For each workload, we generated a shell script to launch
the driver programs realizing the periodic tasks on the target
platform. Many of the exercised system calls require input
(e.g., for a thread to be periodically activated via UDP packets,
some other thread must send those packets). In those cases, we
launched two processes: a consumer process that we evaluate,
and another producer process to periodically generate inputs.
The number of real-time processes launched in the system can
thus exceed the number of evaluated tasks by a factor of two.

Each of the 400 workloads was executed with rate-monotonic
priorities under SCHED FIFO and traced for 10 minutes, for a
total runtime of over 66 hours of traced real-time execution. To
enable independent validation of the extracted models, we used
LIME’s offline mode to record the full event trace. In total, we
collected more than 330 GiB of event traces. The volume of the
collected traces highlights a key advantage of online inference,
especially on embedded platforms with limited storage.

Offline validation. Recall that LIME emits instances of all
models reviewed in Sec. II-B for each monitored thread. To
assess LIME’s inference accuracy for the sporadic model (Ti),
upper and lower arrival curves (α+

i and α-
i ), the dynamic and

segmented self-suspension models (Si and Vi), and cumulative
execution-time curves (WCETi), we compared the models
extracted by LIME’s online model-inference algorithms against
an offline baseline that extracts models from the recorded event
traces. Importantly, the offline model extractor is a completely
independent baseline that shares no code with LIME.

Fig. 3 summarizes the results: For the just-mentioned types of
models (i.e., Ti, α+

i , α-
i, Si, Vi, and WCETi), LIME achieves

100% accuracy relative to the offline baseline for each of the
considered period distributions. That is, the models produced
by LIME’s online inference algorithms are identical to those
produced by the independent offline model extractor, which
confirms that for these models online inference does not imply
a tradeoff in precision. Importantly, this also confirms that
LIME satisfies the conservative extraction criterion specified in
Sec. IV-A: the models inferred online by LIME are not “lossy”
and correctly reflect all observations made at runtime.

Ground-truth periods. We further confirmed that all instances
of the periodic model with jitter (i.e., Φi, Ti, and Ji) inferred
online by LIME satisfy the conservative extraction criterion, too.
Additionally, for the periodic model, we compared against an
even more demanding baseline, namely the ground-truth period
that each traced driver program was configured to realize.
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A practical complication is that system overheads can
prevent driver programs from enacting the intended period
perfectly down to the exact nanosecond. We thus counted a
periodic model inferred by LIME’s online model extractor
as accurate in two separate cases: (i) when LIME identifies
exactly the ground-truth period given as input to the driver
program, and (ii) when LIME identifies a period diverging
from the intended ground-truth period and the independent
offline extractor confirms that the driver program indeed failed
to precisely enact the specified period (i.e., the offline extractor
confirms that LIME correctly identified system limitations).

Overall, as Fig. 3 shows, LIME achieves near-perfect ground-
truth accuracy for three of the four period distributions. In
particular, for automotive and LogU-ms periods, LIME achieves
100% ground-truth accuracy. The reason is that periods rounded
to millisecond granularity leave a clear signal in the trace that
LIME is able to quickly detect thanks to its rounding heuristic.
LIME also succeeds in inferring almost all of the LogU-µs
periods accurately, as this period distribution’s signal emerges
through the noise relatively quickly, too.

The most difficult period distribution is LogU-ns, as there is
no structure for LIME to uncover (i.e., the rounding heuristic
fails). Nonetheless, LIME is still accurate in over 60% of the
cases. Furthermore, even when LIME is not perfectly accurate,
it is usually very close. This can be seen on the right-hand
side of Fig. 3, which shows the distribution of the gap between
LIME’s model period and the ground-truth period in those cases
in which LIME’s model is counted as inaccurate: in roughly
50% of the inaccurate models, the gap is only 10 ns or less, it is
less than 100 ns in roughly 90% of the inaccurate models, and
even the 99th percentile is less than 500 ns, with a maximum
observed gap of roughly 64µs. Longer observations could
likely further improve the accuracy for these workloads, as
additional samples help LIME to narrow in on the ground-truth
period that minimizes the maximum jitter.

The data shown here was obtained with LIME’s default batch
size b = 200. We repeated the experiment while varying the
batch size from b = 10 to b = 250 and found that LIME’s
online period extractor is relatively insensitive to the batch size
parameter. Only in case of the LogU-ns periods does a larger
batch size show a clearly positive effect, but even then a point
of diminishing returns is reached already around b = 100.

In summary, LIME is highly accurate. It is thus well suited for
behavior validation: LIME can reliably confirm that a thread
realizes its timing specification correctly, and conversely, if a
model reported by LIME does not match expectations, it is

likely indicative of actual thread behavior diverging from the
intended specification. We revisit this point in Sec. VI-B.

B. Runtime Overhead
To assess LIME’s impact on processor utilization, we

generated 5 workloads for each n ∈ {1, 2, . . . , 20} using the
LogU-ms period distribution, for a total of 100 workloads. We
configured LIME to run in its default online mode, in which
it extracts models directly without storing traces for offline
analysis. Each workload was observed for 5 minutes, for a
total of over eight hours of real-time execution.

There are two sources of runtime overhead. Most critically,
the eBPF probes installed to observe thread behavior cause
some overhead on critical paths in the kernel and thus affect
all real-time tasks. These overheads can be assessed with the
kernel’s built-in eBPF introspection facilities that provide access
to per-probe runtime statistics (via the /proc file system).

Additionally, in user space, LIME processes the stream of
thread events with the model-extraction algorithms discussed in
Sec. IV. We measured LIME’s user-space runtime via Linux’s
schedstat interface (also via /proc). However, the LIME
process does not run with real-time priority, and hence its
runtime has no immediate effect on the real-time workload.

Workloads impose different levels of stress on the kernel and
LIME, depending on the rate at which threads execute and how
many system calls they make on average per thread activation.
As a proxy for a workload’s intensity, we computed for each
workload the total rate of thread wake-ups per second (across
all monitored threads). Fig. 4 shows the observed average
utilization (normalized to the RPi’s four cores) of both all eBPF
probes and the LIME user-space process for each workload as
a scatter plot in relation to the workload’s total wake-up rate.

There are several key takeaways. First, as expected, the
cumulative overhead of all eBPF kernel probes exhibits a clear
linear dependency on the traced workload’s rate of thread
wake-ups. More intense workloads trigger eBPF probes more
often and require more events to be relayed to user space, with
obvious effects. The average utilization of the LIME process
also follows a clear linear trend with a similar slope.

Second, eBPF overheads, which directly impact the real-time
workload, are reassuringly low. Even for the most demanding
workloads we observed, LIME’s eBPF probes consume less than
2.5% of the system’s total processing capacity. This confirms,
together with experiments reported on in Secs. V-C and V-D
below, that LIME has little impact on the traced workload.

Third, LIME’s user-space utilization is also low, topping out
at less than 2% average utilization (w.r.t. four cores) on our RPi
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platform. Additionally, since the runtime of the LIME process
does not immediately affect real-time threads (because it runs
as a regular SCHED OTHER process), there is considerable
headroom to accommodate even more intense workloads.

In summary, our evaluation shows that LIME’s runtime
overhead is low on our relatively old RPi—and for low-intensity
workloads even negligible—which suggests that LIME is more
than fast enough for most modern embedded Linux platforms.

C. Latency Impact
Since eBPF probes execute on critical kernel paths, it

is important to understand their effect on thread-activation
latency (i.e., how quickly a thread executes in response to an
interrupt). Linux’s standard latency benchmark is cyclictest,
which periodically measures the difference between when an
activation should ideally take place and when it is actually
recorded in user space, with a configurable period.

We repeatedly ran cyclictest with varying periods from
100µs to 1000 ms for 15 minutes for each period choice. For
comparison purposes, we repeated the experiment without
instrumentation (“control”) and with three other tracing ap-
proaches (strace, ftrace, and ftrace-all). Fig. 5 shows the
average thread activation latency reported by cyclictest.

LIME is at the lower end of the spectrum, causing a latency
impact of only around 20µs on our platform. This is in large
parts due to the efficient eBPF infrastructure upon which
LIME builds. Its overheads are in line with the similarly eBPF-
based ftrace. The results also indicate that intercepting and
inspecting all system calls in user space (as done by strace)
would not be a viable alternative design for LIME.

D. Throughput Impact
Finally, we explored LIME’s impact on overall system

performance with a standard Redis benchmark. Redis, a key-
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Fig. 6: Redis throughput (bars indicate one standard deviation)

value server widely used as an in-memory database and cache,
is representative of a class of latency-sensitive, throughput-
oriented workloads commonly encountered on Linux. We
deployed Redis on our target platform and traced the server
process with LIME while it served requests generated by
memtier_benchmark (a standard Redis benchmark [1]) running
on a server-class machine directly connected to the target RPi.
The load was generated by 16 threads sending 1 KiB requests
without pipelining. We repeated the experiment for all baseline
tracers as in Sec. V-C and without instrumentation (“control”).

Fig. 6 reports the average throughput measured over 10 runs
in which each thread sent 500,000 requests to the server. The
throughput reduction caused by LIME is modest and compares
favorably to the heavier tracing approaches (i.e., ftrace-all
and strace). This confirms the trends from Secs. V-B and V-C:
LIME’s runtime and latency overheads do not place an undue
burden on the workload under observation.

VI. CASE STUDIES

In addition to the benchmarks discussed in Sec. V, we
also explored LIME’s utility with two case studies involving
workloads not specifically designed for evaluation purposes.

A. Identifying and Characterizing System Threads

One of the roles in which LIME is useful, as highlighted in
Sec. I, is to aid with system exploration. In particular, if LIME
is configured to trace all real-time threads in the system, it can
reveal threads executing with real-time priorities that a system
designer might not have anticipated or overlooked otherwise.

Case in point, all results collected for the accuracy and
overhead evaluations (Secs. V-A and V-B) reveal the presence
of system threads executing at maximum real-time priority. As
these threads are inherently part of the system and consume
processor capacity at high priority, a schedulability analysis
must take them into account, even if they are not part of the
system’s payload (i.e., intended workload).

With LIME, their presence and impact becomes obvious. In
total, we observed four kernel migration threads (one per core),
which assist the Linux scheduler in certain cases with moving
threads from core to core, and three multipathd threads, which
assist the kernel with peripheral device management.

As a representative example, Fig. 7a shows the arrival curve
α+(∆) of the kernel migration threads; Fig. 7b shows the
corresponding cumulative execution-time curve WCET(ι). As
kernel threads do not issue system calls, the only viable job
separator for these threads is the suspension separator. These
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Fig. 7: Arrival curve and WCET of kernel migration threads.

observations reflect about 75 hours of in situ observation (all
traces discussed in Secs. V-A and V-B) and thus represent a
considerable empirical basis for parameter estimation.

The arrival curve in Fig. 7a shows that migration threads
are activated relatively regularly, with a longterm rate of
roughly α+(360 ms)−α+(75 ms)

355 ms−75 ms ≈ 1 job
14 ms , but with significantly

bursty arrivals for ∆ ≤ 50ms. The WCET(ι) curve in Fig. 7b
reveals a mostly linear trend, but starting only at ι ≥ 2. For
comparison purposes, Fig. 7b also shows the extrapolated scalar
WCET bound Ci · ι, which reveals the difference in slope.

Interestingly, the observed system threads clearly demon-
strate the need for non-scalar task models to accurately
characterize real-world system behavior. For example, when
performing a response-time analysis [12, 36], a central concept
is the request-bound function (RBF), which bounds the total
execution time of all jobs released by a given task τi in any
interval of length ∆. For the scalar sporadic task model, it is
defined as RBF sp

i (∆) = ⌈∆/Ti⌉ ·Ci. Given the curves α+
i (∆)

and WCETi(ι), we can define the RBF also more accurately as
RBFwc

i (∆) = WCETi(⌈∆/Ti⌉), RBF ac
i (∆) = α+

i (∆) · Ci,
or simply RBF i(∆) = WCETi(α

+(∆)).
For the kernel migration threads, the degree of overestima-

tion by (partially) scalar models is significant: for ∆ = 300ms,
we obtain a grossly pessimistic bound RBF sp

i (300ms) ≈
1515.8ms for the sporadic model, still pessimistic bounds
RBFwc

i (300ms) ≈ 344.3ms and RBF ac
i (300ms) ≈ 4.3ms

for the hybrid models, and a more reasonable fully non-scalar
bound RBF i(300ms) ≈ 0.99ms. The multipathd threads
inherently require non-scalar models, too.

B. Detecting and Debugging Unintended Timing Behavior

To explore LIME’s effectiveness for observing real-world
runtime behavior, we experimented with ROSACE [44], a
representative aircraft control system case study. In contrast to
Sec. V, which involved synthetic benchmarks, this case study
showcases LIME’s practical utility in identifying and diagnosing
runtime issues in a real-world workload not prepared by us.

ROSACE includes two distinct versions: one programmed
in the C programming language directly targeting POSIX and
one realized with PRELUDE [25, 43], which uses the SCHEDM-
CORE [20] user-space scheduling framework. PRELUDE’s use
of SCHEDMCORE—which dynamically adjusts the processor
affinities and priorities of the threads managed by it to enact
custom scheduling policies—provided us with an opportunity to
evaluate LIME’s compatibility with a non-standard scheduling

approach. The fact that LIME successfully identified suitable
task models regardless emphasizes its versatility in analyzing
workloads using either kernel- or user-space scheduling.

When running the POSIX version on our RPi platform, LIME
identified 5 active real-time threads, while in the PRELUDE

implementation it detected 17 active threads—a result of
SCHEDMCORE’s custom user-space scheduling, which manages
job execution differently from traditional POSIX scheduling.

Given that ROSACE implements an avionics control sys-
tem [44], periodic execution can be expected. However, for
the POSIX implementation, LIME extracted a period of
T = 5.339ms and observed an unreasonably large maximum
jitter of J = 487.12ms for ROSACE’s main worker thread.
While the period may not seem too unusual on its own, such
a massive jitter bound is a strong indication that something is
amiss. In contrast, the PRELUDE implementation’s main thread
exhibited a period of T = 2ms with a reasonable maximum
jitter of J = 0.205ms, showing stable timing behavior.

A difference in period is not surprising because PRELUDE is a
synchronous language that compiles periodic models differently
before handing them to SCHEDMCORE for execution. A four-
orders-of-magnitude difference in maximum jitter, however,
defies plausible explanation. We thus manually examined the
code and found that ROSACE’s POSIX version uses usleep()

in an attempt to enact periodic behavior in the main thread, and
pthread_barrier_wait() to propagate activations to worker
threads. The use of usleep() caused delays due to its improper
use. Specifically, it was called to unconditionally suspend
the thread for 5 ms without accounting for the thread’s own
execution time, leading to unintended timer drift—which LIME
correctly detected and accounted for in its reported model.

We modified ROSACE’s POSIX version to use absolutely
timed sleeps, which ensures precise, drift-free timing [13]. We
then used LIME to validate the patch: it confirmed that the
patched version achieves the desired period of T = 5ms with
less than J = 0.1ms of jitter. We also validated the other
worker threads relying on pthread_barrier_wait(), which
LIME confirmed to exhibit the correct period of T = 5ms.

Notably, to be sure of the absence of timer drift, we let LIME
observe ROSACE for a full hour. Such prolonged use of LIME
in a continuous monitoring role is made possible only by its
online mode, as recording traces spanning an hour for offline
analysis would have quickly exhausted the RPi’s storage.

Without LIME, it would have been much more difficult
to observe and detect such a minuscule difference between
actual and intended period (5.338ms vs. 5ms), as such a small,
but creeping deviation can easily escape notice during testing.
By accurately extracting models across different scheduling
mechanisms, LIME provides essential insights for developers
that can help to pinpoint subtle timing issues.

VII. LIMITATIONS AND EXTENSION OPPORTUNITIES

LIME provides a unique set of capabilities—online model
inference for black-box Linux threads—not found in any prior
tool. Nonetheless, in its initial version, it is subject to certain
limitations that will be interesting to investigate in future work.
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Foremost, LIME currently focuses on classic models of inde-
pendent, sequential real-time tasks. For example, while LIME’s
models already reflect all observed synchronization delays (e.g.,
threads busy-waiting on a spin lock or blocking on a mutex), the
models that LIME emits do not include explicit information on
shared resources (such as critical-section lengths or the set of
tasks sharing a particular resource). Similarly, LIME’s models
do not yet explicitly express precedence constraints, although
they already fully capture any release jitter resulting from
such constraints. Furthermore, LIME currently cannot identify
parallel task models such as fork-join or general DAG tasks.

The common reason is that LIME’s eBPF probes are limited
to kernel-observable events, whereas user-space instrumenta-
tion would be required to infer richer task models (e.g., spin
locks and futex fast-paths are not kernel-visible, middlewares
such as OpenMP or ROS are largely opaque to the kernel).
Incorporating Linux’s uprobes could help provide the necessary
user-space introspection capabilities, but doing so introduces
significant challenges beyond the scope of this paper.

Another limitation is that LIME’s execution-time model
(WCETi) currently reflects the time spent executing on any
processor, irrespective of a processor’s type or its current
speed. In heterogenous systems (e.g., with separate “efficiency
cores” and “performance cores”) or when dynamically adjusting
processor speeds, it may be helpful to augment LIME’s output
with WCETi models for specific core types and speed settings.

Lastly, like any measurement-based approach, LIME is
limited to modeling observed behavior and cannot provide
formal guarantees covering unobserved corner cases; stronger
guarantees would require the integration of static analysis
approaches (to the extent possible on typical Linux platforms,
if at all). Nonetheless, LIME’s conservative extraction criterion
ensures that LIME never under-approximates observed behavior.
In particular, LIME does not emit models based on incomplete
observations. In the limit, if the system becomes overloaded to a
degree such that LIME cannot keep up with the generated events
(e.g., if the LIME process is starved), it will detect that there
are gaps in the event stream and simply not emit any models.

VIII. RELATED WORK

A wide range of research has focused on analyzing system
behavior through tracing and modeling. Over the years, much
emphasis has been placed on low-overhead, minimally intrusive
tracing mechanisms and toolkits suitable for embedded real-
time systems, including for Linux [23], Linux-derived sys-
tems [14], microkernel OSs [32, 48], and popular middlewares
such as ROS [2, 6, 38]. These differ from LIME in significant
ways: in contrast to LIME, most tracing toolkits are typically
deployed to collect traces for later offline analysis. Additionally,
none of these tracing approaches is specifically targeting real-
time task models and hence none include comparable model-
extraction capabilities. LIME benefits from the ready availability
and maturity of Linux’s eBPF support, so that we did not have
to develop low-level tracing capabilities ourselves.

As LIME targets classic real-time task models conceived for
schedulability analysis, which adopt a high-level, abstract view

of a real-time system, it does not track thread internals in much
detail (i.e., only system calls). In contrast, at the other end of
the spectrum, tools like MadT [16] provide detailed insights
into memory access patterns in multi-core real-time systems.
Earlier, Bastoni et al. [4] presented an empirical method to
approximate cache-related preemption delays as an input to
an overhead-aware schedulability analysis, but using synthetic
benchmark tasks rather than in situ observation.

Vădineanu and Nasri [55] previously studied the period
inference problem in a different context, namely in an offline
setting with access to complete traces but without access to
job release times. In contrast, our online solution (Sec. IV)
works directly on the release times observed via eBPF.

Much more closely related in spirit, though not in the choice
of modeling abstraction, is work by De Oliveira et al. [21]
who extract automata-based models from the Linux kernel,
allowing for a detailed exploration of synchronization behaviors.
Similarly, work by De Oliveira and De Oliveira [22] exploring
the Linux kernel through a custom tracing tool to model timing
delays, mapping Linux’s low-level timing behavior to real-time
scheduling abstractions, shares much of our motivation. Another
offline approach is by Beamonte et al. [5], who use execution
traces to generate behavioral models of real-time applications.
Maggio et al. [40] proposed rt-muse, which combines tracing
and modeling in the context of a controlled experiment with
synthetic tasks on a Linux system to derive supply-bound
functions as well as bounds on migration events and response
times. LIME differs from these efforts by its focus on in situ
online model extraction, the identification of a large number of
job separators, and the range of supported classic task models.

IX. CONCLUSION

We are hopeful that LIME will prove useful in various
contexts. As a research tool, it bridges theory and practice,
laying a foundation for future work that connects both realms.
For researchers focused on analysis, LIME provides a means to
obtain models from actual workloads with relatively little effort,
thereby increasing the validity of synthetic evaluations based on
metrics like schedulability ratios. Notably, LIME’s automated
nature means it can be used without in-depth knowledge of
Linux’s low-level tracing facilities or system call semantics.

For systems-oriented researchers experimenting with practi-
cal workloads on Linux, LIME opens the door to schedulability
analysis, also in a largely automated way, without a need for
extensive prior study of the relevant real-time literature.

For practitioners, LIME can provide insights into the difficult-
to-observe temporal behavior of the system in a number of use
cases, including the validation of intended timing behavior and
integration testing (Secs. V-A and VI-B), system exploration
(Sec. VI-A), debugging of abnormal behavior (Sec. VI-B), and
low-overhead continuous monitoring (Secs. V-B to V-D).

Many opportunities for future extensions of LIME remain,
including support for parallel task models, synchronization
APIs, and user-provided specification hints and annotations.

LIME is freely available under an open-source license at:

https://lime.mpi-sws.org
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