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Abstract—Synchronous inter-process communication (IPC) is a
central operation in microkernel-based operating systems, which
are commonly employed in mixed-criticality real-time systems. A
key desideratum in an IPC protocol for time-sensitive systems is
temporal isolation: when invoking a shared server, the worst-case
interference incurred by the waiting client (i.e., the maximum
amount of budget its reservation drains while waiting for the reply)
should be bounded irrespective of the behavior of competing,
untrusted clients. Additionally, an IPC protocol should support
server-to-server (S2S) invocations, so that servers may invoke
other servers when handling requests, which enables modern
software engineering practices (e.g., reuse of shared functionality,
decomposition of complex services into cooperating servers, etc.).

However, no prior synchronous multiprocessor IPC protocol
achieves both. The main contribution of this paper is to remedy
this limitation: the proposed G(IP)*C protocol for partitioned,
reservation-based multiprocessor scheduling ensures a strong no-
tion of temporal isolation while permitting S2S invocations without
placing any restrictions on which processors clients and servers
reside on. The protocol is defined as a set of request-sequencing,
bandwidth-delegation, and budget-exhaustion rules, analyzed in
terms of maximum budget drain, extended to multi-occupancy
reservations and background tasks, and shown to be practically
realizable with a prototype implementation in LITMUS®".

I. INTRODUCTION

Many real-time operating systems for critical and mixed-
criticality systems follow a microkernel design. Notable exam-
ples are QNX [32], the L4 familly [10, 18], Quest-V [22], and
CompositeOS [29]. A key driver for this design preference is
the high degree of isolation and fault containment achievable
by microkernel-based systems, which realize most of the
functionality provided by the operating system (device drivers,
file systems, efc.) in user-space processes called servers.

In particular, microkernel-based systems offer an elegant
and robust solution to the problem of resource sharing in the
presence of untrusted tasks: access to shared resources (such
as actual hardware devices or higher-level OS facilities) can
be mediated by encapsulating them in resource servers. In this
approach, instead of exercising direct, unchecked access to
shared resources (which would require frust), clients invoke
the corresponding resource servers using a synchronous inter-
process communication (IPC) protocol to request operations
to be carried out on their behalf according to a well-defined,
access-controlled interface (which requires trusting the server,
but not other clients). Unsurprisingly, the IPC infrastructure
is a central part of any microkernel, influencing its overall de-
sign [23], and subject to much optimization and benchmarking.

When hosting time-sensitive applications, temporal pre-
dictability also becomes a key design objective. Consequently,

a real-time IPC protocol should guarantee temporal isolation
(i.e., bounded delay) to clients invoking shared resource servers,
which however is easier said than done. In the context of mixed-
criticality systems in particular, such guarantees are difficult to
offer since the number of competing tasks may be uncertain
and since tasks cannot be trusted to be well-behaved [5].

The challenge of ensuring temporal isolation does not get any
easier if resource servers may invoke other servers as part of
handling requests. We refer to such requests as server-to-server
(S25) requests, as opposed to client-to-server (C2S) requests
emitted by top-level applications. S2S requests introduce the
possibility for a client to be delayed due to contention for
servers it does not explicitly invoke. This problem is similar
to the transitive blocking problem encountered in the context
of nested locking protocols, which can result in exponential
delays as shown by Takada and Sakamura [34].

While IPC protocols are typically designed to be extremely
fast in the absence of contention [10, 23, 24], historically,
much less attention has been given to the sequencing of
concurrent requests, and even less so in the context of
multiprocessor systems. Prior work in this space can be
divided roughly into two categories: (1) flexible approaches
permitting S2S invocations, which however do not ensure
temporal isolation, and (2) approaches offering strong temporal
isolation guarantees that alas support only C2S requests.

Related work in the first category (reviewed in Section IX)
focuses mostly on FIFO and priority queues, which do not
guarantee temporal isolation in the presence of untrusted tasks,
especially if servers and clients reside on different proces-
sors. To our knowledge, the mixed-criticality IPC (MC-IPC)
protocol [5] is the only protocol in the second category. The
MC-IPC protocol offers strong temporal isolation properties
in the context of mixed-criticality systems, regardless of the
number and behavior of competing tasks. Unfortunately, the
MC-IPC protocol lacks support for S2S requests.

Proper handling of S2S requests must reconcile two difficult
problems: first, how to interleave concurrent S2S requests in a
way that does not cause deadlock or exponential worst-case
delays for clients; and second, how to do so while preserving
some level of parallelism? Advances in real-time nested locking
protocols, especially the real-time nested locking protocol
(RNLP) [36, 37] and more recently the group-independence-
preserving protocol (GIPP) [31], offer solutions that can help
reconcile these aspects in systems using job-level fixed priority
(JLFP) schedulers. However, these solutions do not directly
apply in the IPC context since they assume fully trusted
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Fig. 1: G(IP)*C protocol components overview.

worst-case execution times and critical-section lengths. In
contrast, budgets are typically enforced with reservation-based
scheduling [27] in a mixed-criticality setting. A real-time [PC
protocol must hence account for the possibility of budget
exhaustion during IPC, which is a major complication.

The main contribution of this paper is the first protocol
that simultaneously solves all of these challenges: the group-
independence-preserving IPC protocol (Section IV) for parti-
tioned, reservation-based multiprocessor scheduling, henceforth
abbreviated as the G(IP)>C protocol. The G(IP)>C protocol
prevents deadlock and ensures temporal isolation (Section V),
is suitable for use with untrusted tasks and in mixed-criticality
systems, and allows for S2S requests while still ensuring a
degree of parallelism in the processing of concurrent C2S
requests. We additionally show how to adapt the G(IP)>C pro-
tocol to allow for multi-occupancy reservations (i.e., multiple
tasks sharing a reservation) and best-effort background tasks
(Section VI). Finally, we report on a prototype implementation
of the G(IP)>C protocol in LITMUSRT [3, 9] that shows the
protocol to be realizable in practice (Section VII).

II. HIGH-LEVEL OVERVIEW

The G(IP)>C protocol involves a fair number of interacting
elements and techniques. For ease of understanding, we begin
with a high-level overview of the G(IP)*C protocol, with a focus
on its structure (see Fig. 1), central elements, and the underlying
intuition. A precise definition is given later in Section IV.

The G(IP)*C protocol orchestrates the communication be-
tween possibly untrusted clients and trusted resource servers.
Invocation requests are issued to resource servers using the
gip_invoke system call. Conceptually, a resource server
respectively selects a request to handle and completes it with
the gip_wait and gip_reply operations. For efficiency,
these two operations are actually combined into a single
gip_reply_wait system call in which a server atomically
completes a request and picks the next one (if any). The client
of a request is suspended until it receives an answer from
the invoked server. The G(IP)*>C protocol guarantees bounds
on this waiting time in terms of the budget expended by the
reservation hosting the client.

There are two distinct types of requests depending on the
nature of the issuer: C2S requests are emitted by tasks of top-
level applications, whereas S2S requests are emitted by resource
servers as part of processing another request. It follows that

the processing of a C2S request can result in many subsequent
S2S requests, which must be tracked. The IPC context is the
main structure used internally in the G(IP)>C protocol to track
the progress of C2S and S28S requests. It embeds the necessary
information to let resource servers determine when a request
can be processed safely without breaking temporal isolation.

The lifecycle of a C2S request consists of an IPC context
acquisition phase (Phase 1) followed by a request service phase
(Phase 2). The main purpose of Phase 1 is to resolve intra-
processor contention. To this end, the G(IP)>C provides only
one shared IPC context for each processor and each “server
group” (introduced shortly). Tasks must hence first acquire
their local IPC context before they can issue a C2S request.

Phase 2 starts once a task has acquired the necessary IPC
context. During this phase, the IPC context is enqueued in a
global queue of requests. Resource servers process requests
from this queue, potentially in parallel, based on the information
contained in the IPC context. Phase 2 ends when the initial
C2S request is complete, at which point the client is resumed.

To avoid deadlock and the risk of exponential delay, it is
necessary to introduce non-work-conserving behavior into the
request service phase (as pioneered by the RNLP [36] and
also employed in the GIPP [31]). Specifically, servers must not
always serve the next C2S or S2S request immediately when the
prior request is finished, as that can easily lead to pathological
scenarios. Rather, servers may start serving a request only if
there is no risk of thereby delaying any earlier, still-unfinished
C2S requests (directly or indirectly).

To track which resource server is or will be involved in the
processing of a request, we introduce the notion of a server
ticket. A server ticket is a single-use token required to invoke
a resource server and consumed on reply. Each acquired IPC
context is equipped with a finite multiset of server tickets,
representing the resources needed to fulfill the client request
in the worst case. As a result, the multiset of server tickets
of an IPC context represents the current and future resource
servers potentially involved in processing this request.

It follows that two C2S requests do not interfere if their
ticket multisets do not intersect. Hence, during the request
service phase, a request is served only if there is no conflicting
C2S request emitted earlier. This approach, inspired by the
dynamic group locks (DGL) variant of the RNLP [37], also
prevents deadlock (as shown in Section V).

Clearly, IPC contexts with disjoint sets of server tickets
do not directly affect each other through the just-sketched
ticketing rules. It would thus be undesirable for such unrelated
C2S requests to compete for the IPC context of the same
processor. Rather, such disjoint C2S requests should be handled
in separate scopes. We introduce the notion of a server group
for that purpose. Two resource servers belong to the same
server group if there is a dependency among them, i.e., if at
least one operation of one of the two servers requires invoking
the other. Therefore, server groups partition the set of resource
servers into disjoint sets that can safely operate in parallel.
The G(IP)>C protocol thus operates at the server group level:
each server group has a separate global queue and set of IPC



contexts. Clients interact with only one server group at a time.

The notion of progress in the G(IP)>C protocol is deeply
tied to the employed scheduling model. The G(IP)>C protocol
is suited for systems using reservation-based scheduling [27].
Tasks are encapsulated in reservations with a finite budget of
processor time that is occasionally replenished. By scheduling
these reservations instead of their contained tasks directly,
temporal isolation can be offered in the presence of untrusted
or unknown worst-case execution times.

In the G(IP)>C protocol, resource servers are passive: they
are not assigned to a reservation and instead execute on behalf
of their client using a form of bandwidth inheritance [11, 21].
Bandwidth inheritance is a mechanism allowing a task to
make its budget available to another one. This is achieved
by decoupling a task’s scheduling context from the rest of
its execution context: each task contained in a reservation is
assigned a service token representing its scheduling context.

Service tokens are scheduled by reservations and can be
transferred to other tasks, giving them the right to be dispatched
in place of the task giving up its service token. We then say that
a task delegates its bandwidth to another. Bandwidth delegation
takes effect across reservation and processor boundaries: a task
making use of a service token that it received via bandwidth
delegation is transferred to the corresponding reservation,
temporarily migrating to another processor if necessary.

Bandwidth delegation is necessarily transitive. A key chal-
lenge is to manage an effective bandwidth delegation flow from
regular tasks to resource servers. To that end, we introduce
the notion of a bandwidth proxy. A bandwidth proxy is a
non-executable entity that can receive and delegate bandwidth.
These proxies greatly simplify the delegation rules that ensure
that resource servers always receive the service tokens of all
clients waiting for them, either directly or indirectly.

With a high-level overview of the G(IP)>C protocol and its
key entities in place, we now offer a more formal definition.

III. SYSTEM MODEL

We consider a partitioned system with m identical processors
P1,--.,Pm. The main schedulable entities are N reservations
Ry, ..., Ry. Each reservation I7; has a current budget B; and
a current priority Y;. We assume that priorities are unique (i.e.,
any ties are broken arbitrarily but consistently). Reservations
are statically assigned to processors and do not migrate.

Each reservation hosts one or more tasks releasing jobs over
time. We denote by J; a job of a task 7;. The number of tasks
within each reservation and their parameters are left unspecified.
A reservation is active if at least one of the contained tasks
has a pending (i.e., incomplete) job and is inactive otherwise.
An incomplete job is pending regardless of whether it is ready
to execute, waiting for IPC, or suspended for other reasons.

The system contains an unspecified number of serially
reusable resources /1, 5, . .. shared by the tasks. Each resource
¢, is encapsulated in a corresponding resource server S, that
can be invoked by regular jobs and other resource servers.
Each server S, has a set of resource-specific operations, is
sequential, and belongs to exactly one server group. Resource

servers can call other servers when handling requests as long
as they belong to the same server group.
Access rights are managed by means of server tickets: a
server ticket is a server-specific token a client must present
before invoking a resource server. For each operation o, we
assume there exists a finite multiset £, containing enough
server tickets to carry out o. The ticket multiset £, can be a
conservative superset of the server tickets actually needed to
carry out o (e.g., as determined by a static analysis). While we
do not address security considerations in this paper, we note
that our notion of server tickets is well suited for integration
with a capability system as commonly found in microkernels.
Upon its release, a job J; receives a service token T;
representing its right to be scheduled in its reservation. This
token is referred to as J;’s assigned service token. T; has an
intra-reservation priority, which is determined on J;’s release.
For each processor, there is a top-level scheduler in charge of
selecting, at any time ¢, the highest-priority active reservation
with non-zero budget. The selected reservation, in turn, invokes
its reservation-level scheduler to select the highest-priority
service token held by an executable entity in the ready state
(if any). Finally, the reservation-level scheduler dispatches the
holder of this service token.
We employ the passive server model: resource servers are not
contained in reservations and instead benefit from bandwidth
delegation. Bandwidth delegation is a mechanism allowing the
transfer of service tokens between jobs, resource servers, and
non-executable entities called bandwidth proxies. The set of
service tokens held by an entity at time ¢ (either assigned or
obtained by delegation) is called its bandwidth. An executable
entity (job or resource server) is dispatched using one of the
scheduled service tokens comprising its bandwidth. If several
service tokens are available, the choice can be made arbitrarily.
Upon starting delegation, a delegator fully transfers its
bandwidth to a recipient, i.e., a delegator’s bandwidth is always
empty. Delegation is transitive: a delegator receiving bandwidth
forwards it to its recipient. An entity retrieves all its bandwidth
when it ceases delegation. Cyclic delegation is forbidden.
The employed scheduling and budgeting rules (i.e., how a
reservation IR;’s current priority Y} is determined and how
and when R;’s current budget B; is replenished) are left
underspecified for generality. The G(IP)>C protocol’s analytical
guarantees depend on only the following two assumptions:
Al an active reservation’s current priority Y; changes only
when its budget is exhausted or replenished; and

A2 an active reservation’s current budget B; drains at unit
speed whenever the reservation is selected for service
by the top-level scheduler, regardless of whether it has a
ready task or server to dispatch.

Note that Assumption A2 covers both the regular execution
of contained tasks as well as bandwidth delegation. Further,
if an active reservation is selected by the top-level scheduler,
and none of its client tasks are ready (i.e., there are pending
jobs, but they are all waiting for IPC or are suspended) and
no server is inheriting its budget, then the reservation idles: it
consumes budget at unit speed without dispatching a task or



server, and background tasks or tasks from other reservations
may be dispatched instead as a form of slack reclamation [8].

IV. THE G(IP)2C PROTOCOL

In this section, we introduce the main rules of the G(IP)>C
protocol. For the sake of simplicity, we first assume that each
reservation contains only one task and that no background job
uses the IPC infrastructure. We will later lift these limitations
with protocol extensions presented in Section VI.

The G(IP)>C protocol rules fall into three categories: sequenc-
ing, bandwidth delegation, and abortion rules. We introduce
these rules in the context of a job J; invoking a resource
server S, in group g to carry out operation o. Tj is assigned
to reservation I2; assigned to a processor py. Fig. 2 illustrates
the structures and concepts introduced throughout this section.

A. Sequencing Rules

The G(IP)>C protocol orchestrates the invocation of resource
servers by jobs of applications (i.e., tasks). Conceptually, there
are three operations: jobs issue C2S requests to servers using
the gip_invoke system call, servers wait for requests with
gip_wait and complete them with gip_reply. Addition-
ally, resource servers can invoke other servers as part of
handling client requests. In this case, they emit S2S requests,
also using gip_invoke. The gip_invoke and gip_wait
operations are blocking; their callers (jobs or resource servers)
are suspended until completion of the respective operation.

The lifecycle of a C2S request emitted by J; consists of
two consecutive phases. In the first phase, J; must acquire
an IPC context, which is used to track the progress of its
request, and which also limits the number of concurrent C2S
on each processor. Phase 1 begins with a job’s gip_invoke
invocation. Then, in the second phase, the acquired IPC context
is enqueued in a group queue from which resource servers pick
requests to handle. The request selection rules are designed such
that a C2S request cannot be delayed after a resource server
starts handling it. The request is then said to be committed. This
notion is important for two reasons: a committed request cannot
be aborted, and committing a request affects the progress in
Phase 1. For convenience, we use the term committed also to
refer to IPC contexts tracking committed C2S requests.

Phase 1. The IPC context-acquisition phase resolves intra-
processor contention. During this phase, jobs of reservations
on the same processor contend for an IPC context. There is one
such IPC context per group and per processor. We denote by C 5
the IPC context for the group g and the processor py. An IPC
context is either acquired or available and, additionally, has an
associated slot that can be occupied by a waiting reservation.
Each IPC context C;f is guarded by a priority queue PQ’; of
reservations, as illustrated in Fig. 2a. Finally, a reservation
requires Ci if it has a job waiting to acquire or holding C%.
The rules under which J; acquires C;f are stated below.
C1 R; is enqueued in PQ’; when it starts requiring C!;.
C2 Whenever C g’s slot is free, the highest-priority reservation
queued in PQ’; (if any) is dequeued from PQ’; and moved
to Céf’s slot. The reservation becomes slotted.

C3 J; acquires C;“ when (a) its reservation 7 is slotted and
(b) no other job is holding C%.

The significance of the slot concept may not be obvious at
first, but will become more apparent after we introduce the
delegation and abortion rules (in Sections IV-B and IV-C). In
short, the slot mechanism serves to protect waiting reservations
from excessive budget drain in the case of repeated budget
depletions (by higher-priority reservations). More specifically,
the slot will be essential to establishing Lemmas 5 and 6.

Phase 2. The request-service phase resolves inter-processor con-
tention. During this phase, IPC context holders are sequenced
and their requests processed by servers in a deadlock-free
manner. Deadlock freedom is ensured by protocol rules and
the server ticket abstraction (see Theorem 1 in Section V).
Phase 2 starts when Rule C3 takes effect.

Each server group contains a group queue of IPC contexts,
denoted as G(). As mentioned previously, IPC contexts track
the state of C2S requests. The state stored in an IPC context
C§ consists of a timestamp ts(Cif), a multiset of server tickets
T(Cg), and a call stack. We denote by Ry, ; the j-th request on
CF’s call stack. It follows that C} tracks the progress of Ry 1.
We call the request on top of C’s stack its current request.

During Phase 2, C2S and S2S requests are processed in
essentially the same way. The only difference is that, before
emitting a C2S request, the corresponding IPC context must
be initialized and enqueued in GQ.

S1 Upon being acquired by job J; at time ¢, the IPC context
Cg is first initialized and then enqueued in GQ. After Cg’s
initialization, ts(Cy) =t and T(Ck) = L,. We assume a
strict total order on timestamps.

S2 When gip_invoke is called to issue a request Ry, ; to
a server S¢, Ry ; is pushed onto Cf;’s call stack and S, is
notified of a request arrival. gip_invoke fails if T(Cg)
does not contain a ticket for S, or Sy is already serving
a request on C;f’s call stack.

S3 A C2S request Ry 1 becomes committed when Cf; is
enqueued in GQ and there is no IPC context Cg in GQ
such that (a) ¢s(C%) < ts(Ck) and (b) T(C))NT(CF) £ 2.

S4 A request Ry, ; is served by the respective resource server
when Ry, is committed and Ry, ; is on Cg”s call stack.

S5 Cf’s slot is freed when R, 1 becomes committed. We say
the reservation ceases to be slotted.

S6 When gip_reply is called, Ry ; is popped from C!’;’s
call stack and a ticket for S, is consumed from 7 (C}).

S7 When J; exits Phase 2 (i.e., on Ry 1’s completion), Cg
is dequeued from G and released.

An example of Phase 2 is depicted in Fig. 2b. It illustrates
the non-work-conserving behavior of the G(IP)*C protocol: Sy
is stalling even though R ; is waiting for it. However, R3 1 is
served even though a blocked request has been emitted earlier,
showing that the G(IP)?C protocol allows some degree of in-
group parallelism. Fig. 2a shows that the slots of committed
IPC contexts are not occupied by the reservation of their holder.
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Fig. 2: Example illustrating a snapshot of the different structures of the server group g during IPC. In this example, each reservation R;
contains a task 7; and R; has lower priority than R; if ¢ < j. The resource server S; is blocked waiting for S to reply to Ri,2.

B. Bandwidth Delegation Rules

The core sequencing rules are insufficient as they do not
consider any notion of progress. We now augment them with
bandwidth delegation rules to support the passive server model.
These rules define how jobs delegate service tokens to resource
servers through different bandwidth proxies (as depicted in
Fig. 2c): in Phase 1, jobs delegate their bandwidth to TPC
contexts; in Phase 2, IPC contexts delegate their bandwidth to
the IPC contexts blocking them or to resource servers.

Phase 1. Jobs simply delegate their bandwidth to the IPC
context they hold or are waiting to acquire.

D1 J; delegates bandwidth to C& as long as R; requires C}.

Phase 2. During Phase 2, we must ensure that resource servers
receive bandwidth from the IPC contexts of the requests they
are serving, and that not-yet-committed IPC contexts delegate
their bandwidth to requests blocking them.

Before stating a rule for the latter case, let us introduce some
terminology for blocking during Phase 2. Let B (C;“) be the set
of the IPC contexts preventing Ry 1 from being committed, i.e.,
IPC contexts that precede Cg in GQ and whose ticket multiset
overlaps with CX’s. We say that C} blocks CY directly if it is the
element of B (C;€ ) with the latest timestamp. Since timestamps
are ordered totally, only one IPC context can directly block
CF. Blocking is transitive, thus any IPC context C blocking
CZ) also blocks CF. We then say that C¢ blocks C% transitively.

The delegation rules for Phase 2 are defined below.

D2 A committed IPC context Céj delegates its bandwidth to
the server handling the request on top of C_(’j’s call stack.
D3 If C_(’j is not committed and queued in GQ, it delegates
its bandwidth to the IPC context Cg directly blocking it.

Fig. 2c shows an example of a bandwidth-delegation graph
obtained during the two phases. Ultimately, resource servers re-
ceive the service tokens of all jobs directly or indirectly waiting
for them to finish processing the currently served request.

C. Request Abortion Rules

There are two strategies for handling budget exhaustion
during IPC: checking budgets beforehand or aborting requests
emitted by jobs of exhausted reservations. The first strategy

prevents budget exhaustion during IPC and does not require
additional rules, but it places a significant configuration burden
on the system integrator. The second strategy requires additional
rules that we present now.

When a task exhausts its reservation budget during IPC,
the top-level scheduler tries to abort the C2S request of the
corresponding job. A C2S invocation request can be aborted
only if it is not yet committed. Otherwise, the request must be
carried out to completion.

The action taken to abort a request depends on the stage
reached by the job in the invocation process.

X1 If R; exhausts its budget while it is queued in PQF, then
R; is dequeued from PQ’; and J;’s request is aborted.

X2 If R; exhausts its budget while it is slotted, then R; ceases
to be slotted.

X3 If R; exhausts its budget while J; is holding C!’j and
Ri,1 is not committed yet, then Ry ; is aborted and Céj
is dequeued from G and released.

With the protocol’s main rules in place, we next analyze its
properties. In particular, we bound the budget drain over the
course of a C2S request and show that progress is ensured.

V. G(IP)?>C: BUDGET DRAIN AND DEADLOCK FREEDOM

In the following analysis, we reuse the context in which
the protocol rules have been expressed: job J; is contained
in a reservation R; assigned to processor pj, and invokes a
resource server S, contained in group g to carry out operation o.
We assume that gip_reply and gip_wait are performed
atomically as part of a single gip_reply_wait system call.

We define the following times in the lifecycle of J;’s request.

e At t =1y, J; initiates Phase 1.

o Att =19, R; is slotted.

e At t = t3, J; initiates Phase 2.

o Att =14, Ry, is committed.

e At t =15, Ry,1 completes.

We further denote by L™%" the total length of the longest
server operation in the group g, i.e., the maximum end-to-end
budget required in total by all servers involved in handling this
operation in the absence of contention.



Requests that are pruned due to budget exhaustion lose all
progress and must be reissued, which resets the analysis. In the
following, we thus assume that the reservation under analysis
R; does not exhaust its budget during [t1,%5), but place no
assumptions on the behavior of any contending reservations.

First, we note the absence of deadlock.

Theorem 1. The G(IP)*C protocol is deadlock-free.

Proof. By contradiction. Consider a resource server S, waiting
for a resource server S, and suppose that S, is directly (or
indirectly) waiting for S, (i.e., there is a cycle in the wait-for
graph). By the definition of server groups, the two servers
belong to the same group g. Let CZ; and Cé be the IPC contexts
of the request served by S, and S,, respectively. By Rule S4,
CF and C| both track committed requests. By Rules S2 and S6,
a server ticket is required to invoke a server, and consumed only
after the corresponding request has been completed. Hence, the
ticket multisets of both C;f and Cé include a ticket for S,. By
Rule S3, neither S, nor S, can process a request tracked by
an IPC context with an earlier timestamp and an intersecting
ticket multiset. It follows that C; and C} must be the same
IPC context. However, by Rule S2, ST is not serving any
request currently on Cg ’s call stack, so C;“ and Cé are distinct.
Contradiction. O

Having observed that all requests eventually progress, we
next consider the progress of J;’s request more closely. We
say that J;’s request makes progress whenever (i) the server
processing J;’s C2S request, (ii) a server processing an S2S
request resulting from J;’s C2S request, or (iii) a server
processing a request blocking J;’s request has a service token
in its bandwidth that allows it to be scheduled.

Since the progress of .J; during Phase 1 depends on the
progress of the job holding the IPC context J; is waiting for,
we proceed backward and start by analyzing Phase 2.

Lemma 1. During Phase 2, the request of the job holding an
IPC context C !’; makes progress whenever a reservation requiring
C;“ drains budget.

Proof. Let Jj, denote the job holding Ck All jobs requiring Ck
delegate their bandwidth to Ck Therefore when a reservatron
of any of these jobs drains budget Jy’s request makes progress
if C;“ delegates its bandwidth to a resource server handling
Jp’s request or a request preventing Jp,’s request from being
committed. If C} is committed, then the server handling C}’s

current request recerves Ck’s bandwidth (Rule D2) and the
claim follows. Otherwise, there is a unique IPC context Cb
directly blocking C;“ and therefore receiving Cg’s bandwidth
(Rule D3). If Cb is not committed, it delegates its bandwidth to
the only job dlrectly blocking it. This process repeats until Ck
delegates its bandwidth to a committed IPC context blockrng
it transitively. By Rule D2, the resource server handling this
committed IPC context receives C;’s bandwidth. O

Building on Lemma 1, we observe that progress is guaranteed
throughout the whole request sequence.

Lemma 2. During [t,
request makes progress.

Proof. During [t1,t5), J; requires C¥ and by Rule D1,

delegates its bandwidth to Ck By Lemma 1, the request of
Ck’s holder makes progress whenever R; drains bandwidth. It
follows that, during [t1,t3), J; makes progress towards IPC
context acquisition. Then, during [t3, ¢5), J; holds Ck therefore
Ji’s request makes progress. [

t5), whenever R; drains budget, J;’s

We next bound the budget drained by J; when it invokes
S,. For ease of analysis, we again proceed backward in time,
starting with the interval [t4, t5).

Lemma 3. R; drains at most B, £ [™a% units of budget during

the interval [ty, t5).

Proof. By Theorem 1, there is no deadlock. In particular, once
Ri,1 i1s committed, it is not delayed by other requests as, by
Rule S3, there is no committed IPC context in G with an
intersecting ticket multiset. By Lemma 2, R, 1 makes progress
whenever R; drains budget. As servers processing J;’s C2S
request and any resulting S2S requests require at most L™%*
units of budget in total to complete the request, R; drains at
most L™ units of budget during [t4, t5). O

Lemma 4. R; drains at most By £ (m — 1) - L™ units of

budget during the interval [t3,ty).

Proof. The IPC contexts preventing Ry ; from being commit-
ted are necessarily preceding Cg in GQ. Since at most m IPC
contexts can be acquired at a time, and they are enqueued by
timestamp order in G@, at most m — 1 IPC contexts precede C 5’,‘
in GQ. Since Ry,; makes progress whenever I?; drains budget,
it follows analogously to Lemma 3 that [2; drains at most
(m — 1) - Lyyqe units of budget before Ry, 1 is committed. [

Lemma 5. R; drains at most By £ [™a% units of budget during

the interval [to, t3).

Proof. At time to, R; is slotted. If J; acquires CZ; immediately
due to Rule C3, then t; = ¢3. Otherwise, another job is holding
C;“ at time ¢3. By Rules C3 and S5 in the regular case, and
by Rules X2 and X3 in the case of budget exhaustion, the
request of the job holding Cg is already committed at time 5.
By Rule C2, analogously to Lemma 3, this request completes
after I%; drains at most L™ units of budget. O

Lemma 6. R; drains at most By = m - L™ units of budget

during the interval [t,t2).

Proof. After having drained m - L™ units of budget, either
iy is reached and R; is slotted, in which case the claim holds
trivially, or R; is still waiting to be slotted. In the latter case, if
J; is still waiting after [2; has drained m- L™ units of budget,
then the job of the reservation occupying Cg’s slot at time ?;
has been delegated sufficient budget to acquire C _f; (analogously
to Lemma 5) and have its request committed (analogously to
Lemma 4). Consequently, the reservation now occupying Cg’s
slot has been slotted no earlier than at time ¢;. According
to Rule C2, this reservation thus has higher priority than R;.



Therefore, I?; is not the highest-priority active reservation on
its assigned processor and thus does not drain budget. O

Jointly, the above lemmas yield the end-to-end budget-drain

bound B £ B; + By + Bs + By, which we note as Theorem 2.

Theorem 2. Under the G(IP)’C protocol, R; drains at most
B = (2m + 1) - L™ units of budget during [t1,t5).

Theorem 2 establishes temporal isolation with bounded
interference: the maximum amount of budget drained when
accessing a shared server is bounded by B irrespective of
the behavior of any other clients of the server. In particular,
note that Theorem 2 places no assumptions on the number of
competing clients, their access patterns, on which processors

they reside, and whether they exhaust their reservation’s budget.

By design, the G(IP)>C protocol ensures an even stronger
property, namely complete temporal isolation at the group
level: a reservation is entirely unaffected by contention in
server groups its constituent tasks do not access.

Theorem 3. Under the G(IP)’C protocol, if task T; does not
invoke any resource server in group g, then IPC calls to resource
servers in g do not affect I?;’s budget consumption.

Proof. By design, the only way for a resource server to
drain budget on behalf of another task is through bandwidth
delegation, which is managed at the server group level.
Therefore, if 7T; does not invoke a resource server in g, no
resource server receives service tokens from 7;’s pending jobs,
and hence none of R;’s budget is consumed by serversin g. [J

This concludes our analysis of the core G(IP)2C protocol.

VI. G(IP)2C: PROTOCOL EXTENSIONS

In this section, we define additional rules adding support for
reservations containing multiple tasks and background jobs.

A. Multi-Occupancy Reservation Support

Supporting multiple tasks per reservation requires managing
contention at an additional level. To that end, we introduce
a Phase 0 in which jobs contend for a right-to-invoke token
(RIT) before competing for an IPC context. There is one such
RIT per server group in each reservation. An RIT represents a
job’s right to use its reservation budget to engage in IPC.

Priority inversion may occur during Phase 0, causing a job
to consume budget while it waits for an RIT. We address this
issue by introducing RIT stealing: an acquired RIT can be
stolen unless its reservation is slotted. The highest-priority job
of a reservation can acquire an already held RIT if it can be
stolen. As we establish below, with this mechanism in place, a
job does not consume more budget to acquire an IPC context
than it would if it was the only job in its reservation.

Let us define the rules governing Phase 0. For each server
group and each reservation, there is one RIT and an associated
priority queue of jobs. We denote by )\Jé reservation I2;’s
RIT for the server group g and by R(), ; the priority queue
sequencing access to it. Suppose J; and J; are two jobs in I;
competing for /\f?: J; acquires /\g under the rules below.

R1 J; is enqueued in RQ when it starts requiring \J. Jobs
in RQJ are ordered according to the intra-reservation
priority of their assigned service token.

R2 J; acquires X) when (a) J; is the head of RQ? and (b) A/
can be stolen or no job is holding it.

R3 J; remains enqueued in RQ{, as long as it requires >\§~

R4 When a job Jy, is holding A? when J; steals it by Rule R2,
then Jy, releases AJ and J; starts holding it instead.

A job delegates its bandwidth to an RIT from the start of
Phase O until the end of its invocation request.

DS J; delegates its bandwidth to )\g from the moment it enters
R@} to the moment its invocation request completes.

The rules of Phase 1 need some adaptations. First of all,
we must modify the acquisition and the delegation rules to
consider RITs instead of jobs.

C3’ The job holding )\g acquires C;f when (a) its reservation
R; occupies C§ ’s slot and (b) no other job is holding C;“.

D1’ )/ delegates bandwidth to C} as long as R; requires C}.

Then, additional rules are required to define when an RIT
can be stolen and when it is released.

C4 )\ cannot be stolen while R; is slotted.
CS J; releases A when its request is committed.

We assume that, if any job is waiting for \J when A/ is
released, then )\g is reacquired and F7; is re-enqueued in PQ’;
right away. In other words, no reservation with priority lower
than R;’s is slotted while some job in R; is waiting for /\g
and R; does not deplete its budget.

We extend the budget-drain analysis presented in Section V
to Phase 0. We say that job J; consumes its reservation’s R;’s
budget when R; drains budget and J; is R;’s highest-priority
pending job. Let ¢y denote the time at which J; initiates Phase 0.
We redefine t; to be the time at which J; initiates Phase 1,
and t» to be the first point in time at which R; is slotted and
Ji holds AJ. After 5, AJ cannot be stolen anymore and the
analysis remains unchanged. We assume the reservation under
analysis R; does not exhaust its budget during [to, t5).

Lemma 7. If J; consumes R;’s budget during [to,t1), then J;
does not consume budget during [t1,ts).

Proof. By contradiction. Suppose .J; has consumed 12;’s budget
at some point during [to,¢1) and there exists a time ¢ € [t1,t2)
at which J; also consumes budget. J; consumes budget during
[to, t1) only if it is the head of RQJ and cannot acquire A/,
which by Rules R2 and C4 implies that R; is slotted at time {.
Since ¢ < to, by the definition of ¢y, R; is not slotted. Thus,
some other reservation is slotted at time ¢. Since .J; is waiting
for or holding )\g throughout [tg, t2), C§ ’s slot is not occupied
by a lower-priority reservation at time ¢. It follows that Cg’s
slot is occupied by a higher-priority reservation. Therefore, I2;
is not the highest-priority reservation on its processor and thus
does not drain budget at time ¢. Contradiction. O

Lemma 8. J; consumes at most'm - L™ units of R;’s budget
during [to, t1).



Proof. By contradiction. Suppose there exists a time ¢ € [tg, t1)
at which J; is consuming budget and has consumed more than
m- L% units of budget in total. First observe that .JJ; consumes
R;’s budget during [to, t1) only if it is RQ?’s head and cannot
acquire )\74, which implies that A} is held by a lower-priority
job and A} cannot be stolen. Therefore, at any point in time
that J; consumes budget, R; is slotted. At time ¢, I2; has thus
been slotted for more than m - L™ time units. It follows
analogous to Lemmas 4 and 5 that the job holding )\g when
J; first required A\J must have already released it by time ¢,
but by the definition of ¢;, J; did not acquire it. Consequently,
at time ¢, )\g is held by a higher-priority job, and J; thus does
not consume 1¥;’s budget. Contradiction. O

Lemma 9. If another job steals )\g from J; atatimet € [t1,12),
then J; does not consume R;’s budget during [t,t5).

Proof. By contradiction. Suppose there exists a time ¢’ € [t, t3)
at which J; drains budget and {2 has not been reached yet. If
a job steals )\g from J;, then by Rule R2, J; is not the highest-
priority job in R;. J; thus does not consume budget until it
again becomes the highest-priority job in I;, which happens
only after the higher-priority job that stole )\é releases )\g,
which by Rules C3’ and C5 happens only if R; is slotted. By
the definition of ¢3, however, I; is not slotted at time t'. Recall
that, when )\g is released, no reservation with a priority lower
than R; can occupy Cg’s slot if RQ; is not empty. Therefore,
at time ¢, since t' < to, C;“ ’s slot is occupied by a higher-
priority reservation. Therefore, R; does not drain budget and
J; does not consume R;’s budget at time ¢'. Contradiction. []

Lemma 10. J; consumes at most m - L™ units of budget
during [tq,t2).

Proof. If no job steals /\g from J;, then the claim follows
analogously to Lemma 6. Otherwise, let ¢ be the time at
which )\g is stolen from J; for the first time during [¢1,¢2). By
Lemma 9, J; does not consume budget after time ¢. Further, J;
consumes no more than m - L™ units of budget during [t1,t)
since otherwise to is reached (analogously to Lemma 6). [J

Lemma 11. J; consumes at most m - L"™" units of R;’s budget
during [to, t2).

Proof. By case analysis. If J; consumes budget during [to, 1),
then by Lemma 7 J; consumes no budget during [¢1,t2) and
by Lemma 8 at most m - L™ units of budget during [to, t1).

Otherwise, if J; does not consume budget during [tg, t1),
then by Lemma 10 J; consumes at most m - L™ units of
budget during [t1,t2). O

Lemma 11 replaces Lemma 6 in the sequence of bounds
leading to Theorem 2, which establishes that temporal isolation
is preserved even if multiple tasks share a reservation.

The next extension provides support for background tasks.

B. Background Tasks Support

Background tasks are low-priority tasks served in a best-
effort fashion. Background jobs follow the same invocation
process as regular ones, with two major differences. The first
difference is that background jobs always have lower priority
than non-background (i.e., regular) jobs.

We also consider reservations whose RIT is held by a
background job to have lower priority than regular reservations
for the purposes of the IPC protocol rules (i.e., the behavior
of the reservation scheduler is not affected). We call such
reservations background reservations.

The second difference is that background jobs with not-yet-
committed requests cede any protocol resources they hold (RIT
or IPC context) to regular jobs. A background job’s request is
aborted when it cedes a protocol resource and is later reissued.

Background job support is governed by the rules below. In
these rules, J;, is a background job in reservation ;.

B1 Background jobs have lower priority than regular jobs.

B2 During Phase 1, background reservations are considered
to have lower priority than regular reservations.

B3 If J holds A, and a regular job starts requiring A}, then
Jp releases )\{J.

B4 If J, holds )\g, R; occupies C;“’s slot and there is at
least one regular job requiring )\z or Cg, then R; vacates
Ck’s slot, Jy releases Cl (if J, is holding it), and R; is
reenqueued in PQ?.

These rules ensure that background jobs do not increase the
budget-drain bound established for regular jobs.

Lemma 12. Under the above rules, Theorem 2 holds for regular
Jjobs even in the presence of background jobs.

Proof. Consider a regular job J; and a background job J;.
During Phase 0 and Phase 1, unless J,’s request is already
committed, J, (or the reservation containing .J,) releases any
resource it holds (RIT, slot, or IPC context) when they are
required by J; (or the reservation containing .J;). If J;’s request
is already committed, then it is equivalent in effect to a
regular lower-priority job’s committed request and thus already
accounted for. Therefore, J;, does not cause additional delay
during Phase O or Phase 1. During Phase 2, J, can delay J;’s
request by preventing it from being committed. However, the
bound on the maximum delay in Phase 2 derives from the
limited number of available IPC contexts, which is not affected
by Jp’s background status, and hence still holds. O

Support for background tasks offers an alternative to request
abortion in the event of a reservation exhausting its budget
during IPC. When budget exhaustion occurs, the associated
task is demoted to background status instead of aborting the
request. When the reservation budget is replenished, the task
becomes regular again. This strategy gives a chance for the
request to complete in a best-effort manner before otherwise
possible, and makes it unnecessary to expose the abortion and
reissuing of requests to the programmer.



VII. EVALUATION

To assess the proposed protocol and its analysis in a practical
setting, and to experimentally justify the necessity of Phases 1
and 2, we implemented a prototype in LITMUSKT [3, 9].
Specifically, we explored three questions: (1) how tight is the
analytical budget-drain bound in practice, (2) what is the impact
of eliding Phase 1, and (3) what is the impact of employing
a work-conserving request selection policy during Phase 2?
We first describe our evaluation platform, then introduce the
employed benchmark and experimental protocol, and finally
present three experiments answering the above questions.

Platform. We performed experiments on an Intel platform
with a 4-core i5-4590 processor. We implemented the G(IP)*C
protocol in the latest release of LITMUSRT, which is based on
Linux 4.9. Our implementation is based on LITMUS®!’s P-RES
plugin, which implements partitioned reservation-based schedul-
ing. Our prototype supports background tasks as described in
Section VI-B and demotes jobs of depleted reservations to
background status instead of aborting their requests.

Regarding budget exhaustion, our implementation slightly
deviates from the protocol specification. Our prototype extends
a pre-existing variant of the P-RES plugin supporting non-
transitive bandwidth inheritance. We added support for transi-
tive bandwidth delegation on top of the existing implementation
by maintaining a delegation graph that is consulted to set up
direct bandwidth inheritance between clients and servers as
needed. Unfortunately, LITMUSR™s pre-existing state-listener
facility used to notify the protocol implementation of budget
exhaustion during IPC does not support the reconfiguration of
bandwidth inheritance in the budget-exhaustion handler (due
to invariants related to Linux’s scheduler locks).

This limitation becomes an issue if a client waits to acquire
the IPC context assigned to a reservation that depletes its budget.
Instead of redesigning the existing bandwidth inheritance
mechanism, we instead employed an alternative lazy group-
queue cleanup strategy: IPC contexts of demoted requests are
pruned from the group queue during gip_reply.

Since at most L™** budget units are drained before the
queue is cleaned up, waiting for an IPC context to be removed
from the group queue is equivalent to waiting for a committed
IPC context to be released. Thus, the worst-case behavior of
this workaround is equivalent to the worst-case behavior of
the specified protocol. Note that this issue stems purely from
our desire to reuse an existing codebase with certain design
limitations; a clean implementation “from scratch” can proceed
without such workarounds.

Benchmark. To easily compare different resource-server
topologies and request patterns, we evaluated the G(IP)C
protocol using a synthetic application exhibiting configurable
runtime behavior. Our synthetic application involves clients
invoking a chain of ¢ resource servers. We call each such
server in the chain a link. When the i-th server in the chain
receives a message, it first invokes its successor (if any), and
then spins before sending a reply.
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Fig. 3: Box plot showing the budget drained per link in Experiment 1.
The bottom and top whiskers show the first and fourth quartiles,
respectively; the box indicates the second and third quantiles. The
median is shown as a horizontal line, and outliers below the first
quartile are shown as points.

The spinning time depends on whether it is handling a
C2S or S28S request. In the case of a C2S request, the server
spins for ¢ milliseconds. Otherwise, the server spins for one
millisecond before sending a reply. Therefore, the budget
needed to complete a C2S request is roughly equal to L™%* = ¢
milliseconds regardless of the invoked server’s position. This
design allows us to compare the budget drained under different
resource servers topologies (which is determined by the chain
length) using a common metric: the budget drain per link (i.e.,
the measured budget drain normalized by ¢). Correspondingly,
the budget required per link is Lj}%F = L™ /q, which by
design is roughly one millisecond plus a small margin to
account for overheads and spin-loop inaccuracy.

Experimental protocol. We measured the budget drained by
a client under different contention scenarios. Our system is
partitioned, and the same number of clients c is assigned to each
core. Each client is contained in a sporadic polling reservation
with a unique fixed priority. We measure the budget drained
by the highest-priority client assigned to core 0. We call this
client the observed client and the other clients the contenders.
Unlike the contenders, the observed client checks that it has
sufficient budget before invoking a resource server.

In all experiments, the observed client always invokes the
first server in the chain. The server invoked by contenders
is determined by three different calling patterns: under the
s pattern, all clients call the first server in the chain; under
the r pattern, contenders select a resource server randomly
before each invocation; finally, under the d pattern, clients
are distributed evenly along the chain by priority and then by
assigned core. Specifically, using zero-based indexing, under
the d pattern, the ¢-th client of the k-th core invokes the server
at position p = (k- c+14) mod q.

The s pattern is a pathological case that does not allow
for any in-group parallelism. Conversely, the d pattern allows
for in-group parallelism because clients are distributed along
the chain, and resource servers spin after receiving the reply
to their S2S requests, which leaves time windows in which
later-issued requests can be processed in parallel. Finally, the
r policy falls between the s and d strategies.

We measured the budget drained by the observed client
during each IPC request it sent to the server chain. We discarded
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Fig. 4: Average budget drain per link in Experiment 1.

the first measurement since resource servers may not be ready
to serve requests at the beginning of the experiment. Finally, we
determined the budget required per link to be L}7%" = 1.025 ms
by applying our experimental protocol without contenders.
Experiment 1: Tightness of the budget-drain bound. Our
first experiment aimed at empirically assessing the tightness of
the analytical budget-drain bound. We applied the experimental
protocol for chain lengths ¢ € {1,...,8}, up to eight clients
per core, and all calling patterns (s, r, and d). We call a
combination of these three parameters a contention scenario.
Each reservation was provisioned with enough budget for three
IPC calls. In each of the 192 contention scenarios, the observed
client sent 1000 messages, yielding 191808 samples in total.

The measured budget drain per link is depicted in Fig. 3.
Foremost, we observe that samples close to the analytical upper
bound of (2m + 1) - L7297 are indeed observable in practice,
which suggests that the analysis is not pessimistic.

We can also observe that the protocol works as expected
when there are only one or two clients per core. When there is

only one client per core, no budget is drained during Phase 1.

Lmaa:

Therefore, the budget-drain bound per link is 4- L% = 4.1ms
in this case. If there are two clients per core, then the expected
bound is 8 - L% = 8.2ms. Indeed, the worst-case bound
is reached only when a client waits for a slot occupied by a
reservation waiting to acquire an IPC context. This scenario
implies the presence of three clients on the same core, as
validated by Fig. 3, which shows the observed maxima to
reach a plateau close to the analytical bound for ¢ > 3.
While the observed maxima do not vary with the calling
pattern, the distributions of observed samples clearly differ.
First, we observe that, in the case of the s pattern, most of the
values are concentrated in the second and third quartiles (i.e.,
the boxes are small in Fig. 3). This is not surprising since all
clients call the first server, so all nested calls are serialized.
Notice also how, for each ¢, the highest and the lowest
median values are always observed for the s and d patterns,
respectively. This is again unsurprising because, as mentioned
earlier, the s pattern does not allow for any in-group parallelism,
whereas the d pattern does. Fig. 4, which shows the mean

10

prefix
—o— all
uc

w
o

N
(6]

N
o

-
o

-
o

Max. Budget drained per link (ms)

4 5
Clients per core ¢ (#)

6

Fig. 5: Maximum budget drain per link in Experiment 2.

observed budget drain per link, confirms this intuition. The
gap between the d and the s patterns clearly grows with c.

The r pattern performs slightly worse than the d pattern,
but the average observed budget-drain per link still follows a
similar trend. This result suggests that one may expect some
benefits from parallelism also in practical systems with complex
server topologies and irregular calling patterns.

Experiment 2: Effect of IPC context acquisition. A signif-
icant part of the budget drained during an IPC invocation is
expended during Phase 1. To study the impact of bypassing this
phase, we implemented a protocol version in which Phase 1 is
elided. We call this version G(IP)>’C-UC. Instead of contending
for a shared, processor-local IPC context, IPC contexts are
picked from a global pool containing a sufficient number of IPC
contexts to satisfy the demand of all clients. This modification
has two effects: first, Phase 1 is elided; and second, the number
of IPC contexts in the group queue is unconstrained and thus
bounded only by the total number of clients.

We applied the experimental protocol to the G(IP)>C-UC
variant for the s pattern (i.e., all clients invoke the first server
in the chain), sending 1000 requests per contention scenario,
giving us 63936 samples in total. The results are presented in
Fig. 5, which shows the largest observed budget drain per link.

Under the the G(IP)>C-UC variant, the maximum observed
budget drain clearly scales with ¢, and is never lower than
under the full G(IP)2C as defined in Section IV. Furthermore,
note that, in mixed-criticality systems, the total number of
clients is not necessarily known in advance, and when it is, it
is not necessarily reliable or trusted. Consequently, the observed
scaling, and hence the implied dependency on a trustworthy
number of clients, is undesirable in this context.

Overall, Experiment 2 clearly shows the benefits of Phase 1:
sequencing intra-processor contention by providing only one
IPC context per core renders the maximum budget-drain bound
independent of the total number of contenders.

Experiment 3: Effect of non-work-conservation. The non-
work-conserving request selection strategy employed in Phase 2,
specifically the joint effect of Rules S3 and S4, limits the
degree of parallelism achieved by the G(IP)>C. In the third and
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final experiment, we therefore sought to study how the system
behaves if we employ a work-conserving approach instead.

To that end, we implemented a variant of the G(IP)>C
protocol that allows resource servers to process the first
available request in the group queue without performing
additional checks (i.e., without waiting for the request to
become committed), which we call G(IP)>C-WC. Note that
the G(IP)>*C-WC does not prevent deadlock, which however is
avoided by design in our benchmark workload.

This experiment focuses on Phase 2. Consequently, our setup
involved only one client per core. As a workload, we employed
a slightly modified version of the r pattern in which contenders
never call the first server. We evaluated server chains of lengths
ranging from 2 to 16, where the observed client sent 10000
messages for each test case. In total, we collected 139986 data
points for each protocol variant.

Fig. 6 shows the results of Experiment 3. Since there is only
one job per core, no budget is drained during Phase 1, and thus
the bound on budget drain per chain link is 4-L}?%”, as indicated
by the dashed horizontal red line. The work-conserving variant
G(IP)2C-WC behaves like the regular, non-work-conserving
G(IP)2C for q < 3. Thereafter, however, the work-conserving
variant drains significantly more budget, exceeding the G(IP)*C
bound by approximately 51% for ¢ = 4 and 368% for g = 16.

Recall that, by the design of our experimental setup, the
budget drained per link should not vary with the chain
length. However, Fig. 6 shows that, under the work-conserving
G(IP)>C-WC, the maximum observed normalized budget drain
increases massively with increasing q. The explanation for this
trend is that, since no check is performed before serving a
request, S2S requests can be delayed by any request associated
with any IPC context enqueued in GQ. As ¢ increases, there are
ever more opportunities for later-arriving contenders to “sneak
in” and cause delays, which makes the worst case significantly
worse (compared to the full G(IP)>C).

In conclusion, Experiment 3 validates the non-work-
conserving design of Phase 2: while Rules S3 and S4 may
seem unintuitive at first, they are actually essential to obtaining
favorable and predictable worst-case behavior, which is clearly
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desirable in the context of critical real-time systems.

Overall, our prototype implementation of the G(IP)C
in LITMUSRT shows the protocol, despite its admittedly
many rules, to be realizable in a real system. Additionally,
Experiment 1 has shown the analytical budget-drain bound to
be tight, and Experiments 2 and 3 have validated key design
choices in the G(IP)*C to offer clear benefits.

VIII. LIMITATIONS AND OPEN QUESTIONS

We did not conduct a comparison of our G(IP)2C prototype
with prior IPC implementations in terms of low-level archi-
tectural overheads or achievable throughput. There are several
reasons for this: first, there is no natural baseline in LITMUSKT,
since the design of the underlying Linux kernel is not focused
on fast IPC. A direct comparison of our Linux-based prototype
with a more nimble microkernel, however, would be heavily
lopsided and thus not yield meaningful results.

Second, our prototype implementation is primarily a proof
of concept, and as such not heavily optimized. In contrast, IPC
paths in mature microkernels are typically some of the best-
optimized, most-heavily scrutinized code in the entire system.
Considerable engineering effort will be required to lift the
G(IP)>C protocol to a comparable level, which is beyond the
scope of this paper and remains future work.

Ultimately, the throughput and latency limits achievable with
the G(IP)>C protocol in the context of a proper microkernel
remains an open question at this point.

Nonetheless, the G(IP)>’C protocol undoubtedly imposes
greater runtime overhead than more straightforward approaches
such as FIFO and priority queues. For one, when emitting a
C2S request (with gip_invoke), the relevant ticket multiset
must be re-initialized. This overhead does not exist in simpler
protocols and can become substantial for large multisets.

Additionally, the non-work-conserving behavior of the
gip_wait operation is costlier than in other IPC protocols
due to the need to check for intersecting ticket multisets. In
the worst case, a resource server may traverse the group queue
GQ completely in reverse order before findindg an eligible
request. This is clearly costlier than simply dequeuing the head
of a FIFO or priority queue. Fortunately, the traversal cost
remains bounded and relatively small since there are at most
m IPC contexts queued. Multiset intersection can be realized
efficiently with bit strings in which the i bit indicates whether
at least one ticket for the i resource server is present.

Finally, bandwidth delegation requires synchronization with
the scheduler and thus imposes additional overhead. It is
certainly not a lightweight technique, especially due to the
frequent migration of servers among processors (with its
implied loss of cache affinity). However, it is presently unknown
whether it is even possible to realize synchronous inter-
processor IPC with strong temporal isolation without relying on
techniques similar to bandwidth delegation. In line with earlier
considerations [4, 5], we conjecture the answer to be negative.

On a positive note, the G(IP)>C protocol conceptually allows
for a fast path, which is crucial to achieving performance
approaching existing microkernel-based systems. A fast path



could allow for a direct context switch (i.e., without involving
the scheduler) from client to server whenever the server can
process a request immediately. In particular, in a fully initialized
system (with all servers running), all S2S requests could take
this fast path. There is considerable potential in this direction.

Last but not least, a major constraint imposed by our protocol
is its notion of server groups, which shapes overall system
design. To maximize parallelism, it is desirable to obtain many
small server groups. Naive designs, however, with globally
shared servers (e.g., if all subsystems rely on a single, shared
page allocator) can easily degenerate into a single group
comprising all servers. Avoiding this requires careful resource
partitioning (e.g., separate memory pools).

Overall, the G(IP)>C protocol offers a new tradeoff: unprece-
dented temporal isolation with O(m) bounds, but at the cost
of nontrivial overhead. In contrast, prior S2S-capable protocols
are overhead-optimized, but lack temporal isolation and no
applicable multiprocessor bounds are known for them.

IX. RELATED WORK

This paper combines techniques stemming from mixed-
criticality systems, real-time resource sharing, microkernel
design, and reservation-based scheduling. As each of these
areas is vast in itself, having received much attention for many
years, we focus on the most closely related prior work.

Reservation-based scheduling is central to our approach
to providing temporal isolation. The G(IP)>C rules are not
tied to any particular scheduler. The prototype presented in
Section VII uses simple polling reservations [27], but more
flexible approaches such as CBS [1] or RBED [7] can be
adapted such that Rules A1 and A2 are satisfied, too.

Prior work on microkernel IPC has focused primarily on max-
imizing throughput in the absence of contention [23, 24, 30].
The sequencing of concurrent requests has received less
attention, with prior work focused on priority and FIFO-
ordered wait queues. For example, TU Dresden’s Fiasco.OC
microkernel [19] and sel4’s mixed-criticality variant sel.4-
MCS [25] use priority queues to order IPC requests, while the
MBWTI protocol [11] (which can be trivially adapted into an IPC
protocol) and “plain” seL4 [18] use FIFO queues. Mergendahl
et al. recently showed that implementation choices surrounding
IPC and budget enforcement can undermine temporal isolation
guarantees even on uniprocessors [28].

We focus in this paper exclusively on resources and services
shared at the software level. We do not consider implicitly
shared hardware resources such as memory caches or DRAM
controllers, which can give rise to substantial hardware-induced
interference. This is a major problem in practice and has
received much attention in recent years [14, 26], but it is largely
orthogonal to the IPC coordination problem studied herein.

The structure of the G(IP)?C protocol is inspired by the
RNLP [36] and the GIPP [31]. The server ticket abstraction
implements a form of DGL [37]. The G(IP)*>C protocol can
be seen as the first RLNP instantiation to reservation-based
scheduling, even though the RNLP is designed for systems
using JLFP scheduling, unmediated direct resource access, and
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locking primitives. This change in setting results in a tighter
coupling between the two phases of the G(IP)>C than there
usually is between the two main components of the RNLP.
Further related protocols and techniques may be found in
a comprehensive review of multiprocessor real-time locking
protocols [2]. Tong et al. explored the complexities that arise
when dealing with budget depletion in locking protocols [35].
Our approach to ensuring progress in the G(IP)>C protocol,
bandwidth delegation, is a form of allocation inheritance [17]
and inspired by a number of earlier multiprocessors protocols
employing similar techniques [4, 6, 11, 31]. Already more than
two decades ago, a microkernel in the L4 family used process
migration during IPC to “help” servers complete requests [15,
16]. Bandwidth delegation can also be seen as an emulation of
the migrating-threads model [12], which has also influenced
the designs of Composite OS [29] and seL4-MCS [25].
Service tokens are conceptually similar to scheduling con-
texts [20], TCaps [13], or scheduling context capabilities [25].
The G(IP)>C protocol relies on the fact that service tokens
embed the priority of their assigned job and the ability to revoke
bandwidth delegation. Scheduling context capabilities [25]
do not embed priority and rely on the immediate priority
ceiling protocol [33] to implement the passive server model.
Unfortunately, this approach by itself is insufficient to ensure
temporal isolation in multiprocessor systems [4]. The TCaps
design has not yet been extended to multiprocessors either.
Finally, the MC-IPC protocol [5] is in some ways a precursor
of the G(IP)*>C protocol, but only conceptually, not in terms of
technique. In fact, the G(IP)*C is structurally rather dissimilar
and uses substantially more advanced progress and sequencing
techniques, as necessitated by the support for S2S requests.

X. CONCLUSION

We have considered the problem of temporally isolated
synchronous IPC in the presence of S2S requests in parti-
tioned, reservation-based multiprocessor real-time systems, and
proposed the G(IP)>C protocol as the first solution.

The G(IP)>C protocol lifts the main limitation of MC-IPC [5]
while preserving its analytical properties. From a protocol-
and mechanism-design perspective, the G(IP)>C protocol can
be seen as the first RNLP [36] instantiation that is not a
locking protocol, and not geared towards JLFP scheduling.
Furthermore, it is the first variant with support for multi-
occupancy reservations and background tasks.

We have shown the G(IP)>C to be practically realizable with
an implementation in LITMUSRT. Using our prototype, we have
experimentally demonstrated the tightness of the established
budget-drain bound, and that omitting key elements of the
protocol’s design results in a loss of temporal isolation.

In future work, it would be interesting to focus on the low-
level implementation details of the G(IP)>C protocol. In par-
ticular, the integration of a fast path and the interplay between
IPC and the scheduling infrastructure pose many optimization
opportunities. Analytically, it would be an intriguing challenge
to generalize the protocol to other multiprocessor scheduling
models, including clustered and semi-partitioned scheduling.
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