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Abstract—Ethernet is expected to play a key role in the
development of the next generation of safety-critical distributed
real-time systems. Unfortunately, the use of switched Ethernet in
place of traditional field buses such as CAN exposes systems to
the risk of Byzantine errors (or inconsistent broadcasts) due to
environmentally-induced transient faults.

Byzantine fault tolerance (BFT) protocols can mitigate such
errors to a large extent. However, no BFT protocol has yet been
investigated from the perspective of hard real-time predictability.
Classical Byzantine safety guarantees (e.g., 3f+1 processes can
tolerate up to f Byzantine faults) are oblivious to non-uniform
fault rates across different system components that arise due
to environmental disturbances. Furthermore, existing analyses
abstract from the underlying network topology despite its strong
influence on actual failure rates.

In this work, we present (i) a hard real-time interactive
consistency protocol that allows distributed processes to agree
on a common state despite Byzantine errors; and (ii) the first
quantitative, real-time-aware reliability analysis of such a proto-
col deployed over switched Ethernet in the presence of stochastic
transient faults. Our analysis is free of reliability anomalies and,
as we show in our evaluation, can be used for a reliability-aware
design space exploration of different fault tolerance alternatives.

I. INTRODUCTION

To meet safety certification requirements, commercial aircraft
are designed to achieve quantifiably negligible failure rates [1].
In particular, they are designed to tolerate not only software
errors and manufacturing defects, but also errors due to
environmentally-induced transient faults. For example, when
Hopkins et al. [2] designed one of the first highly reliable fault-
tolerant multiprocessors for aircraft control systems, they vali-
dated analytically that its expected failure rate in the presence
of stochastic faults does not exceed 10−10 failures per hour.

In the future, aircraft-like highly reliable designs, which are
(in)famously expensive [3], will become necessary in other,
much more cost-sensitive, CPS domains too. Recent trends
suggest that the cumulative operating time of safety-critical CPS
in other domains (e.g., autonomous vehicles, drones, and robots)
will likely exceed that of aircraft [4]; commodity Ethernet
technology [5] will play a more important role due to its
low cost and high bandwidth [6, 7]; and strong economic
and time-to-market pressures will further drive the adoption
of cheap, but relatively unreliable, commercial off-the-shelf
(COTS) processors. As a result, to guarantee a minimum
level of safety across fleets of next-generation CPS, it will be
necessary to tolerate errors due to environmentally-induced
transient faults at runtime, as well as to a priori quantify the
expected residual failure rates for better resource provisioning.

In this work, we focus on tolerating environmentally-induced
Byzantine errors (i.e., inconsistent broadcasts) in Ethernet-based
distributed real-time systems. Non-malicious Byzantine errors
pose a significant risk in practice, and have been shown to occur
due to electro-magnetic interference and other environmental
disturbance sources (such as thermal effects) [8].

Prior work on distributed real-time systems has proposed
reliability analyses of active-replication protocols [9], network
retransmission protocols [10], OS-level fault tolerance mecha-
nisms [11], etc., but none of these address Byzantine errors.
Prior work on Byzantine fault tolerance (BFT) protocols for
cloud computing systems does not address the predictability
concerns of real-time systems [12]. In addition, classical
Byzantine safety guarantees (e.g., 3f+1 processes can tolerate
up to f Byzantine faults) do not take into account non-uniform
fault rates across different system components that arise due
to environmental disturbances. They also abstract from the
underlying network topology despite its strong influence on
actual failure rates (as shown in §V).

To address this gap, we present the first quantitative reliability
analysis of a hard real-time interactive consistency (IC) protocol
over Ethernet in the presence of stochastic transient faults. The
protocol allows distributed processes to agree on a common
state despite Byzantine errors. Specifically, we analyze a
parameterized (more generic) version of the classic IC protocol
by Pease et al. [13] for synchronous networks (§II).

Our work is motivated by next-generation fault-tolerant
architectures for safety-critical autonomous CPS, which will
require hard real-time fault-tolerant algorithms for replica
coordination. For example, Fig. 1(a) illustrates an overview
of the legacy drone autopilot system in Paparazzi [14]. An
enhanced design with active replication (as shown in Fig. 1(b))
tolerates fault-induced crash errors, but is still susceptible to
Byzantine errors. Going a step further, if the active replicas
would instead synchronize their local state using a BFT
datastore (as shown in Fig. 1(c)), the actuation commands
would be protected from Byzantine errors (with very high
likelihood). The IC protocol considered and analyzed in this
paper would be a suitable choice for implementing the core
functionality of such a hard real-time BFT datastore.

The remainder of the paper is organized as follows. In §III,
we first propose a blueprint for a hard real-time adaptation of
Pease et al.’s IC protocol [13] based on Liu and Layland’s
periodic task model [15] and Ethernet’s prioritized traffic
classes [5]. Thereafter, we propose a multi-layered analy-
sis (§IV) where we (i) abstract the effect of basic errors (such
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Fig. 1. Motivating example. (a) Overview of the legacy drone autopilot system in Paparazzi [14]. (b) An enhanced design with active replication safeguards
against crash faults but does not tolerate Byzantine errors. The gray arrows illustrate an example Byzantine error scenario. A sensor replica is faulty and sends
inconsistent values to the controller replicas. As a result, the output of the fuse function in each controller replica may differ, causing the replica states to
diverge over time. (c) Instead, the active replicas can be periodically coordinated using a BFT datastore, which significantly reduces the risk of Byzantine errors.
The contribution of this paper is the first quantitative, real-time-aware reliability analysis of an IC protocol that can be used to realize such a BFT data store.

as crashes) into different types of protocol-specific message
errors (such as crash-induced message omissions); (ii) derive
system-specific upper bounds on the probabilities with which
these protocol-specific message errors occur; and (iii) upper-
bound the overall protocol failure probability by exhaustively
evaluating all scenarios in which one or more protocol-specific
message errors result in a failed execution of the IC protocol.
Unlike simulations and probabilistic model checking [16], our
analysis is free from reliability anomalies, which can result in
non-monotonic increases in the system’s overall failure rate
despite local decreases in a component’s failure rate.

In our evaluation (§V), we show that the analytical bounds
closely predict the failure rates observed in simulation. We also
report on a case study in which we assessed reliability gains
for different configurations of the IC protocol and for different
network topologies. Our analysis was successful in revealing
non-trivial reliability trade-offs, such as the significant impact
of the number of message exchange rounds and the network
topology on the overall reliability of the IC protocol.

II. SYSTEM MODEL

Consider a distributed system consisting of Np processes
Π = {Π1,Π2, . . . ,ΠNp

} deployed on Np independent hosts
H = {E1, E2, . . . , ENp

}, respectively. The hosts are connected
using Ns ethernet switches S = {S1, S2, . . . , SNs

} and Nl
links L = {L1, L2, . . . , LNl

}. Messages from Πi to Πk

are transmitted through a statically configured route denoted
routei,k and defined as an alternating sequence of links and
switches, e.g., routei,k = 〈L1S1L2S2L3〉 is a 3-hop route.

A. Interactive Consistency Protocol

The IC problem for this system is defined as follows. Each
process Πi has a local state vi and seeks to compute a vector
Vi such that, for 1 ≤ k ≤ Np, item Vi[k] corresponds to
the local state of process Πk. The objective is to ensure that
Vi[k] = Vj [k] for any two correct processes Πi,Πj ∈ Π, and
if process Πk is also correct, then Vi[k] = Vj [k] = vk.

To solve the IC problem, we consider the classic BFT
protocol by Pease et al. [13]. The protocol was designed to
solve the IC problem in a synchronous manner (i.e., using a
finite number of communication and processing rounds), and is

thus a good match for real-time systems. That is, as we show in
§III, it can easily be translated into a real-time implementation.

We actually analyze a generalized version of the IC protocol.
Unlike Pease et al., we do not upper-bound the number of
faulty processes beforehand and, conversely, also do not lower-
bound the number of message exchange rounds. Instead, we
parameterize the protocol in terms of an arbitrary number
of participating processes Np and protocol rounds Nr. The
reason for this generalization is that, in the presence of
environmentally induced transient faults, each process may
behave erroneously at different times with non-zero probability.
Therefore, depending on the program-visible effects of transient
faults, additional protocol rounds or processes do not always
increase the chances of solving the IC problem successfully.

The precise IC protocol executed by each process Πi is
explained next (see Algorithm 1 for pseudocode). Process Πi

gathers all received information in the form of a tree, called
the Exponential Information Gathering (EIG) tree [17], and
denoted EIG i. Each node in EIG i is a 〈label , value〉 pair
(denoted as 〈α, v〉 in Algorithm 1), where the label is an
ordered sequence of one or more process identities. In the
beginning (Line 2), EIG i is initialized with the root node
〈ε, vi〉, where ε denotes an empty label. In each of the Nr
rounds thereafter, Πi executes up to three steps.

During the sending step in round r (Lines 4–6), Πi sends
to other processes all nodes in the (r − 1)st level of its tree
(i.e., nodes with label size |α| = r − 1). However, there are
two exceptions to this rule. Nodes with value ⊥ are not sent
because they correspond to omitted messages (as explained
later), and nodes whose labels contain Πi are also not sent to
avoid cycles in the EIG tree labels.

The next step is the state transition step during which Πi

updates its EIG tree based on the received messages (Lines 7–
15). In particular, during round r, for every level-(r− 1) node
〈α, v〉 in EIG i (i.e., for every node with |α| = r − 1), Πi

expects other processes to send their corresponding level-(r−1)
nodes. If Πi indeed receives a message of the form 〈α, v′〉
from another process Πj , it adds the pair 〈αΠj , v

′〉 as a child
of node 〈α, v〉; if Πi does not receive such a message, it adds
a dummy pair 〈αΠj ,⊥〉 to register an error-induced omission,



Algorithm 1 Πi’s version of the IC protocol.
1: procedure INITIALIZATION
2: EIGi.addRoot(〈ε, vi〉)
3: procedure ROUND(r)
4: for all 〈α, v〉 ∈ EIGi.nodes s.t. |α| = r − 1 do . sending step
5: if Πi 6∈ α ∧ v 6= ⊥ then
6: send 〈α, v〉 to all processes in Π \ {Πi}
7: for all 〈α, v〉 ∈ EIGi.nodes do . state transition step
8: if |α| = r − 1 then
9: for all Πj ∈ Π s.t. Πj 6∈ α do

10: if Πi = Πj then
11: EIGi.addChild(〈α, v〉, 〈αΠj , v〉)
12: else if 〈α, v′〉 is received from Πj then
13: EIGi.addChild(〈α, v〉, 〈αΠj , v

′〉)
14: else
15: EIGi.addChild(〈α, v〉, 〈αΠj ,⊥〉)
16: if r 6= Nr then return . reduction step
17: for all 〈α, v〉 ∈ EIGi.nodes from |α| = Nr − 1 to |α| = 1 do
18: candidates = ∅, vmajority = ⊥
19: for all 〈αΠj , v

′〉 ∈ EIGi.getChildren(〈α, v〉) do
20: if v′ 6= ⊥ then
21: candidates = candidates ∪ {v′}
22: if candidates 6= ∅ then
23: vmajority = simpleMajority(candidates)

24: EIGi.updateValue(〈α, v〉, vmajority )
25: if α = Πk then . if level-1 node
26: Vi[k]← vmajority . update decision vector

i.e., any message received past its deadline is discarded. Πi

does not expect a message from Πj if Πj ∈ α (Line 9), since
the sending step avoids cycles in the EIG tree labels.

Information gathering as described above goes on for Nr ≤
Np rounds. In the last round, during the reduction step, each
sub-tree of EIG i’s root node is recursively reduced (Lines 17–
26). If any node 〈α, v〉 is a leaf node (i.e., |α| = Nr), its value
does not change; otherwise, if vmajority denotes the majority
among the values of node 〈α, v〉’s children, 〈α, v〉 is updated
to 〈α, vmajority〉. (Line 24). The decision vector Vi is finally
determined by the level-1 nodes (Line 26).

B. Time-Aware Correctness Criteria

An embedded application may use the IC protocol to achieve
input consistency over redundant sensor values, where the
processes may fuse their respective decision vectors using a
noise filtering function and forward the results to an actuator,
which in turn may use a simple majority hardware for
redundancy suppression. In this case, application reliability
depends on the IC protocol execution as well as on the fuse
function used by the processes. In general, every application
may rely on a different set of correctness criteria requiring a
slightly different set of reliability analyses. We define below
two correctness criteria that form the basis of our analysis.

1) Strong Correctness: We assume that every process Πi

uses quorum majority as its fuse function, which we denote as
fq . That is, fq(Vi) returns either the value that equals at least
bNp/2c+ 1 elements in Vi, or ⊥ (if no such value exists).

With a focus on real-time applications, we also assume
that fq(Vi) = ⊥ if Πi fails to produce Vi on time. This is
possible if environmentally-induced faults delay the execution
of IC protocol steps (i.e., deadline misses in the hard real-time
realization of the IC protocol, which is provided in §III).

Suppose that at the end of an error-free execution of the IC
protocol, fq(Vi) = fcorrect 6= ⊥. Let Π be partitioned into:

Scorrect = {Πi ∈ Π | fq(Vi) = fcorrect},
Sskipped = {Πi ∈ Π | fq(Vi) = ⊥}, and
Sfaulty = {Πi ∈ Π | fq(Vi) 6= fcorrect ∧ fq(Vi) 6= ⊥}.

The strong correctness criterion requires that |Scorrect | ≥
bNp/2c+ 1. This criterion resembles the guarantees offered
by traditional BFT protocols for general-purpose systems.

2) Weak Correctness: We assume that each Πi uses simple
majority as its fuse function, denoted as gs . The simple majority
function gs(Vi) breaks ties deterministically using process
IDs, and returns ⊥ only if all values in Vi are ⊥ or if Πi

failed to produce vector Vi on time. Once again, suppose that
gs(Vi) = gcorrect 6= ⊥ denotes the output at the end of an error-
free execution of the IC protocol. Let Π be partitioned into:

Wcorrect = {Πi ∈ Π | gs(Vi) = gcorrect},
Wskipped = {Πi ∈ Π | gs(Vi) = ⊥}, and
Wfaulty = {Πi ∈ Π | gs(Vi) 6= gcorrect ∧ gs(Vi) 6= ⊥}.

The weak correctness criterion requires that |Wcorrect | >
|Wfaulty |. It is particularly useful for embedded applications
which are not concerned if redundant outputs are skipped,
as long as at least one correct output is delivered on time.
For example, the weak correctness criterion is ideal for the
embedded application mentioned above that relies on a simple
majority hardware for redundancy suppression.

C. Basic Errors Modeling

We classify the basic errors due to environmentally-induced
transient faults into three broad categories: node crashes
(i.e., system reboots), memory corruption in nodes, and frame
corruption on network links (where nodes refers to both
compute hosts and network switches).

Crash errors occur if the system suffers a fault-induced
corruption that causes the system to be rebooted, or that induces
an unbounded hang that causes the system’s watchdog timer
to trigger a reboot, e.g., see [18]. A crashed system remains
unavailable for some time while it reboots and thus causes
an interval in which messages are continuously omitted. We
assume that the recovery interval of each host Ei and switch Si
is upper-bounded by ∆reboot(Ei) and ∆reboot(Si), respectively,
and that any messages queued in a switch are lost upon a crash.

Memory corruption errors occur if the system suffers a fault-
induced corruption that does not result in a system reboot, but
ends up corrupting one or more bits of the system’s memory.
The exposure interval of a task during which it may be affected
by memory corruption errors depends on whether the task is
stateful or stateless, and on the memory protection mechanisms
in use [19]. With Error-Correcting Code (ECC) memory and
lockstep processors (common in safety-critical systems), latent
faults are suppressed, and it suffices to consider the scheduling
window of a message (i.e., the duration from the message’s
creation to its deadline) as its exposure interval. If no such
architectural support is available, then any relevant state can be



protected with a data integrity checker task that periodically
verifies the checksums of all relevant data structures (and that
reboots the system in the case of any mismatch). The exposure
interval of a message then includes its scheduling window
and (in the worst case) an entire period of the data integrity
checker. We assume that process states are checked at least
once between consecutive activations of the protocol. Thus, an
IC protocol task cannot be affected by memory corruptions
that occur prior to the end of the previous protocol instance.

Frame corruption errors result in the corruption of message
frames during transmission. They occur only if the corruption
is not caught by the CRC at the Ethernet layer. In contrast, if
the corruption is detected at the Ethernet layer, the frame is
discarded, resulting in a frame omission error.

Based on prior work, we model the occurrence of the
aforementioned basic errors in any given interval of time using
Poisson distributions.1 As per this model, the probability that
x instances of any basic error type err affect any component
comp in any interval of length δ is defined as

P(x, δ, γerr (comp)) =
e−δ·γerr (comp) · (δ · γerr (comp))x

x!
,

where γerr (comp) denotes the peak error rate. γerr (comp)
is specified in advance, taking into account the maximum
expected rate of environmental interference (including safety
margins) as deemed appropriate by reliability engineers or
domain experts. For example, γerr (comp) can be empirically
determined with measurements, or derived from environmental
modeling assuming worst-possible operating conditions as well
as derating factors [22] that account for masked transient faults.

Based on the stochastic nature of transient faults, we consider
these basic error events, and their corresponding Poisson arrival
processes, to be independent. We do however account explicitly
for all correlations that arise from the protocol structure. For
example, messages in a later round being incorrectly computed
due to corruptions in an earlier round or the loss of a batched
payload is explicitly accounted for in our analysis.

III. HARD REAL-TIME REALIZATION

The IC protocol described in §II-A can be realized in many
ways. However, a hard real-time implementation is most benefi-
cial for safety-certification and typically expected when building
safety-critical CPS. Moreover, hard real-time predictability is
where prior literature on Byzantine fault tolerance falls short,
which is why it is important to sketch a design that is certainly
analyzable. Hence, we map the IC protocol to Liu and Layland’s
periodic task model [15], which has been widely studied in
the real-time systems community and which therefore provides
a solid foundation for temporal certification.

1The applicability of the Poisson distribution for modeling environmentally-
induced errors is discussed in detail in prior work [10, 20]. In a nutshell,
when higher mean fault rates obtained during periods of high environmental
interference are used, a Poisson distribution models transient faults sufficiently
well. In addition, a Poisson distribution is also applicable to fault-induced
errors since real-time tasks are repeated, short workloads, and hence each job
of a task is equally likely to suffer a fault-induced error [21].
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<latexit sha1_base64="ByszkpZ4I0oiUSTNqzwhuVwIJfI=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWOFpi20sWy2m3bpZhN2J0Ip/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEph0HW/nY3Nre2d3cJecf/g8Oi4dHLaMkmmGfdZIhPdCanhUijuo0DJO6nmNA4lb4fju7nffuLaiEQ1cZLyIKZDJSLBKFrJb/bNY7VfKrsVdwGyTryclCFHo1/66g0SlsVcIZPUmK7nphhMqUbBJJ8Ve5nhKWVjOuRdSxWNuQmmi2Nn5NIqAxIl2pZCslB/T0xpbMwkDm1nTHFkVr25+J/XzTCqBVOh0gy5YstFUSYJJmT+ORkIzRnKiSWUaWFvJWxENWVo8ynaELzVl9dJq1rxrivVh5tyvZbHUYBzuIAr8OAW6nAPDfCBgYBneIU3RzkvzrvzsWzdcPKZM/gD5/MHXfeOXA==</latexit>
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<latexit sha1_base64="2IpIIRmXN9COQUoG/TtW7fEjWfY=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBZBEEpSBXssePFYwdZCE8tmu2mXbjZhdyKU0r/hxYMiXv0z3vw3btsctPXBwOO9GWbmhakUBl332ymsrW9sbhW3Szu7e/sH5cOjtkkyzXiLJTLRnZAaLoXiLRQoeSfVnMah5A/h6GbmPzxxbUSi7nGc8iCmAyUiwShayUdyQfx0KHrm0euVK27VnYOsEi8nFcjR7JW//H7CspgrZJIa0/XcFIMJ1SiY5NOSnxmeUjaiA961VNGYm2Ayv3lKzqzSJ1GibSkkc/X3xITGxozj0HbGFIdm2ZuJ/3ndDKN6MBEqzZArtlgUZZJgQmYBkL7QnKEcW0KZFvZWwoZUU4Y2ppINwVt+eZW0a1Xvslq7u6o06nkcRTiBUzgHD66hAbfQhBYwSOEZXuHNyZwX5935WLQWnHzmGP7A+fwBtCyQyQ==</latexit>
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<latexit sha1_base64="x0cARc/+eUjQCBN7xHPC0E6lGww=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBZBEEpSBXssePFYwdZCE8tmu2mXbjZhdyKU0r/hxYMiXv0z3vw3btsctPXBwOO9GWbmhakUBl332ymsrW9sbhW3Szu7e/sH5cOjtkkyzXiLJTLRnZAaLoXiLRQoeSfVnMah5A/h6GbmPzxxbUSi7nGc8iCmAyUiwShayUdyQfx0KHrmsdYrV9yqOwdZJV5OKpCj2St/+f2EZTFXyCQ1puu5KQYTqlEwyaclPzM8pWxEB7xrqaIxN8FkfvOUnFmlT6JE21JI5urviQmNjRnHoe2MKQ7NsjcT//O6GUb1YCJUmiFXbLEoyiTBhMwCIH2hOUM5toQyLeythA2ppgxtTCUbgrf88ipp16reZbV2d1Vp1PM4inACp3AOHlxDA26hCS1gkMIzvMKbkzkvzrvzsWgtOPnMMfyB8/kDtbCQyg==</latexit>
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<latexit sha1_base64="nzCQ3VfCoLz3oQ6ZVk/kOgE03M0=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBZBEEpSBXssePFYwdZCE8tmu2mXbjZhdyKU0r/hxYMiXv0z3vw3btsctPXBwOO9GWbmhakUBl332ymsrW9sbhW3Szu7e/sH5cOjtkkyzXiLJTLRnZAaLoXiLRQoeSfVnMah5A/h6GbmPzxxbUSi7nGc8iCmAyUiwShayUdyQfx0KHr4WOuVK27VnYOsEi8nFcjR7JW//H7CspgrZJIa0/XcFIMJ1SiY5NOSnxmeUjaiA961VNGYm2Ayv3lKzqzSJ1GibSkkc/X3xITGxozj0HbGFIdm2ZuJ/3ndDKN6MBEqzZArtlgUZZJgQmYBkL7QnKEcW0KZFvZWwoZUU4Y2ppINwVt+eZW0a1Xvslq7u6o06nkcRTiBUzgHD66hAbfQhBYwSOEZXuHNyZwX5935WLQWnHzmGP7A+fwBtzaQyw==</latexit>
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<latexit sha1_base64="dehY6FLowjIpzkBHWMKuSp74Q8c=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBZBEEpSBXssePFYwdZCE8tmu2mXbjZhdyKU0r/hxYMiXv0z3vw3btsctPXBwOO9GWbmhakUBl332ymsrW9sbhW3Szu7e/sH5cOjtkkyzXiLJTLRnZAaLoXiLRQoeSfVnMah5A/h6GbmPzxxbUSi7nGc8iCmAyUiwShayUdyQfx0KHr46PXKFbfqzkFWiZeTCuRo9spffj9hWcwVMkmN6XpuisGEahRM8mnJzwxPKRvRAe9aqmjMTTCZ3zwlZ1bpkyjRthSSufp7YkJjY8ZxaDtjikOz7M3E/7xuhlE9mAiVZsgVWyyKMkkwIbMASF9ozlCOLaFMC3srYUOqKUMbU8mG4C2/vEratap3Wa3dXVUa9TyOIpzAKZyDB9fQgFtoQgsYpPAMr/DmZM6L8+58LFoLTj5zDH/gfP4AtbKQyg==</latexit>
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<latexit sha1_base64="eTqWVT03TdGvJAjqoSf3GoEMaWg=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgqiRVsMuCG5dV7APaECbTSTt0Mgkzk2IJ+RM3LhRx65+482+ctllo64GBwzn3cO+cIOFMacf5tkobm1vbO+Xdyt7+weGRfXzSUXEqCW2TmMeyF2BFORO0rZnmtJdIiqOA024wuZ373SmVisXiUc8S6kV4JFjICNZG8m37wc8Gmj6ZaGaCee7bVafmLIDWiVuQKhRo+fbXYBiTNKJCE46V6rtOor0MS80Ip3llkCqaYDLBI9o3VOCIKi9bXJ6jC6MMURhL84RGC/V3IsORUrMoMJMR1mO16s3F/7x+qsOGlzGRpJoKslwUphzpGM1rQEMmKdF8ZggmkplbERljiYk2ZVVMCe7ql9dJp15zr2r1++tqs1HUUYYzOIdLcOEGmnAHLWgDgSk8wyu8WZn1Yr1bH8vRklVkTuEPrM8fd7KUKw==</latexit>
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<latexit sha1_base64="25kaRF3I34ly5isOU+mWj5HoeX0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx6rmFpoY9lsJ+3SzSbsboRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCopZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBD+HoeuY/PKHSPJH3ZpxiENOB5BFn1FjJv+vpR69XrrhVdw6ySrycVCBHs1f+6vYTlsUoDRNU647npiaYUGU4EzgtdTONKWUjOsCOpZLGqIPJ/NgpObNKn0SJsiUNmau/JyY01noch7Yzpmaol72Z+J/XyUxUDyZcpplByRaLokwQk5DZ56TPFTIjxpZQpri9lbAhVZQZm0/JhuAtv7xKWrWqd1Gt3V5WGvU8jiKcwCmcgwdX0IAbaIIPDDg8wyu8OdJ5cd6dj0VrwclnjuEPnM8fWWOOWQ==</latexit>
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<latexit sha1_base64="tWVTuEQjkC+VokGKJgN/uHZpjGA=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx6rmFpoY9lsJ+3SzSbsboRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCopZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBD+HoeuY/PKHSPJH3ZpxiENOB5BFn1FjJv+vpx1qvXHGr7hxklXg5qUCOZq/81e0nLItRGiao1h3PTU0wocpwJnBa6mYaU8pGdIAdSyWNUQeT+bFTcmaVPokSZUsaMld/T0xorPU4Dm1nTM1QL3sz8T+vk5moHky4TDODki0WRZkgJiGzz0mfK2RGjC2hTHF7K2FDqigzNp+SDcFbfnmVtGpV76Jau72sNOp5HEU4gVM4Bw+uoAE30AQfGHB4hld4c6Tz4rw7H4vWgpPPHMMfOJ8/WueOWg==</latexit>
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<latexit sha1_base64="SNxU7OsFwdEV8RciXLCKaz9/V7c=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx6rmFpoY9lsN+3SzSbsToRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O4W19Y3NreJ2aWd3b/+gfHjUMkmmGfdZIhPdDqnhUijuo0DJ26nmNA4lfwhH1zP/4YlrIxJ1j+OUBzEdKBEJRtFK/l0PH2u9csWtunOQVeLlpAI5mr3yV7efsCzmCpmkxnQ8N8VgQjUKJvm01M0MTykb0QHvWKpozE0wmR87JWdW6ZMo0bYUkrn6e2JCY2PGcWg7Y4pDs+zNxP+8ToZRPZgIlWbIFVssijJJMCGzz0lfaM5Qji2hTAt7K2FDqilDm0/JhuAtv7xKWrWqd1Gt3V5WGvU8jiKcwCmcgwdX0IAbaIIPDAQ8wyu8Ocp5cd6dj0VrwclnjuEPnM8fXG2OWw==</latexit>
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<latexit sha1_base64="nDoE3/AmR8RjuguBvNZ1L6Vta0Q=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx6rmFpoY9lsN+3SzSbsToRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O4W19Y3NreJ2aWd3b/+gfHjUMkmmGfdZIhPdDqnhUijuo0DJ26nmNA4lfwhH1zP/4YlrIxJ1j+OUBzEdKBEJRtFK/l0PH71eueJW3TnIKvFyUoEczV75q9tPWBZzhUxSYzqem2IwoRoFk3xa6maGp5SN6IB3LFU05iaYzI+dkjOr9EmUaFsKyVz9PTGhsTHjOLSdMcWhWfZm4n9eJ8OoHkyESjPkii0WRZkkmJDZ56QvNGcox5ZQpoW9lbAh1ZShzadkQ/CWX14lrVrVu6jWbi8rjXoeRxFO4BTOwYMraMANNMEHBgKe4RXeHOW8OO/Ox6K14OQzx/AHzucPWumOWg==</latexit>
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<latexit sha1_base64="I1tY7JAGUdE0eePAUq37JOhgEEs=">AAAB/XicbVDLSsNAFJ34rPUVHzs3wSK4KkkV7LKgC1dSwT6gDWEyvW2HTiZh5kasofgrblwo4tb/cOffOH0stPXAwOGce7h3TpgIrtF1v62l5ZXVtfXcRn5za3tn197br+s4VQxqLBaxaoZUg+ASashRQDNRQKNQQCMcXI79xj0ozWN5h8ME/Ij2JO9yRtFIgX3YvgKBNMjaCA8mn900RqPALrhFdwJnkXgzUiAzVAP7q92JWRqBRCao1i3PTdDPqELOBIzy7VRDQtmA9qBlqKQRaD+bXD9yTozScbqxMk+iM1F/JzIaaT2MQjMZUezreW8s/ue1UuyW/YzLJEWQbLqomwoHY2dchdPhChiKoSGUKW5udVifKsrQFJY3JXjzX14k9VLROyuWbs8LlfKsjhw5IsfklHjkglTINamSGmHkkTyTV/JmPVkv1rv1MR1dsmaZA/IH1ucPJnmVpQ==</latexit>
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<latexit sha1_base64="I1tY7JAGUdE0eePAUq37JOhgEEs=">AAAB/XicbVDLSsNAFJ34rPUVHzs3wSK4KkkV7LKgC1dSwT6gDWEyvW2HTiZh5kasofgrblwo4tb/cOffOH0stPXAwOGce7h3TpgIrtF1v62l5ZXVtfXcRn5za3tn197br+s4VQxqLBaxaoZUg+ASashRQDNRQKNQQCMcXI79xj0ozWN5h8ME/Ij2JO9yRtFIgX3YvgKBNMjaCA8mn900RqPALrhFdwJnkXgzUiAzVAP7q92JWRqBRCao1i3PTdDPqELOBIzy7VRDQtmA9qBlqKQRaD+bXD9yTozScbqxMk+iM1F/JzIaaT2MQjMZUezreW8s/ue1UuyW/YzLJEWQbLqomwoHY2dchdPhChiKoSGUKW5udVifKsrQFJY3JXjzX14k9VLROyuWbs8LlfKsjhw5IsfklHjkglTINamSGmHkkTyTV/JmPVkv1rv1MR1dsmaZA/IH1ucPJnmVpQ==</latexit>
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<latexit sha1_base64="/axwEn37kGD0PJ9RaAhz1mjjoUY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWPFfkEbymY7aZduNmF3I5TQn+DFgyJe/UXe/Ddu2xy09cHA470ZZuYFieDauO63s7G5tb2zW9gr7h8cHh2XTk7bOk4VwxaLRay6AdUouMSW4UZgN1FIo0BgJ5jczf3OEyrNY9k00wT9iI4kDzmjxkqPzYEalMpuxV2ArBMvJ2XI0RiUvvrDmKURSsME1brnuYnxM6oMZwJnxX6qMaFsQkfYs1TSCLWfLU6dkUurDEkYK1vSkIX6eyKjkdbTKLCdETVjverNxf+8XmrCmp9xmaQGJVsuClNBTEzmf5MhV8iMmFpCmeL2VsLGVFFmbDpFG4K3+vI6aVcr3nWl+nBTrtfyOApwDhdwBR7cQh3uoQEtYDCCZ3iFN0c4L86787Fs3XDymTP4A+fzBzWojbc=</latexit>
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Time

Fig. 2. Periodic tasks as part of process Π1; the IC protocol starts at time t.

In particular, we propose a design where the execution of
the IC protocol by each process Πi is modeled using multiple
periodic tasks deployed on the respective host Hi. The proposed
design depends on two assumptions. First, we assume that hosts
have synchronized clocks, which can be ensured on commodity
platforms using clock synchronization protocols such as the
widely used Precision Time Protocol (PTP) [23]. Second, we
assume that worst-case network latency is predictable, which
can be ensured using Ethernet’s Time Sensitive Networking
(TSN) standard [5] (or similar other protocols). In the following,
we present the detailed task model, which is also illustrated in
Fig. 2. Since the IC protocol is symmetric for all processes,
identical task sets are deployed on each host; therefore, we
omit the process index i from the notations to reduce clutter.

We realize each process by a set of tasks Ts =
{T 1

s , T
2
s , . . . , T

Nr
s } that execute the Nr sending steps (respec-

tively), a set of tasks Tt = {T 1
t , T

2
t , . . . , T

Nr
t } that execute

the Nr state transition steps (respectively), and a task Tr that
executes the reduction step in the end. Additionally, we model
tasks Tpre and Tpost that execute at the beginning and end of
the protocol, respectively, and which interface the IC protocol
with the application. Tpre is also responsible for initializing
the EIG tree. We assume that the IC protocol is invoked
periodically with time period P , i.e., a new protocol instance
with the objective of achieving interactive consistency over a
new set of values is initiated every P time units. Hence, all
tasks are assigned a time period of P , and each new activation
of the task set corresponds to a new IC protocol instance.

To ensure that the tasks are activated in the order required by
the IC protocol, each task is also assigned an appropriate release
offset. Task Tpre , which is expected to execute before any other
IC protocol tasks, is released periodically with release offset 0
on each host, i.e., Tpre becomes ready for execution at time
instants 0, P , 2P , and so on. Suppose that Rpre denotes the
global worst-case response time of Tpre across all hosts, i.e., the
periodic invocations of Tpre on all hosts finish their executions
at the latest by time instants Rpre , P+Rpre , 2P+Rpre , and so
on, respectively (we omit differences due to clock skew in these
absolute time instants to avoid clutter). As per Algorithm 1,
task T 1

s , which is responsible for executing the sending step
of round one, must follow task Tpre . Thus, T 1

s is assigned
a release offset of φ1

s = Rpre , i.e., T 1
s becomes ready for

execution at time instants Rpre , P +Rpre , 2P +Rpre , and so
on. The next step as per Algorithm 1 is the state transition
step of round one, which is executed by task T 1

t . Task T 1
t



must also wait for the messages sent during the preceding
sending step to be transmitted. Thus, task T 1

t is assigned a
release offset of φ1

t = φ1
s+R1

s+∆NW , where R1
s denotes task

T 1
s ’s global worst-case response time and ∆NW denotes the

worst-case latency for the exchange of IC protocol messages
over the network. This assignment ensures that, in an error-free
scenario, the sending step of round one has finished sending
all messages and that these messages have been transmitted
before the state transition step of round one begins. Other tasks
are assigned their release offsets similarly (see Fig. 2).

The task organization discussed above works only if all
the tasks with their respective parameters can be integrated
successfully on the host platforms, i.e., without any deadline
misses. This requires the use of a predictable scheduler at
runtime and an a priori schedulability analysis of the task set. In
this work, we consider the partitioned fixed-priority scheduling
policy as our predictable scheduling policy, which is supported
on all major real-time platforms such as VxWorks and QNX,
and also on Linux (via SCHED FIFO and suitably chosen
processor affinity masks). For schedulability analysis, the
existing literature on real-time scheduling theory for periodic
task models [24] provides a rich foundation for checking if
each task meets its deadline i.e., if each task finishes before a
dependent task instance arrives.

The proposed task modeling breaks down the IC algorithm
into smaller tasks to ensure that the pessimism incurred in
the schedulability analysis is minimal. An alternative design
where the entire IC algorithm is modeled as one periodic task
with suspensions (while awaiting network I/O) requires use of
suspension-aware schedulability analyses [25], which are prone
to substantial pessimism. Another alternative design wherein the
periodic tasks are implemented without suspensions (i.e., when
tasks spin while waiting for I/O) is extremely inefficient in
terms of CPU usage. Further, note that these alternatives pertain
only to the modeling of the protocol implementation. An actual
implementation can still realize all tasks (model entities) within
a single sequential process (OS facility).

IV. RELIABILITY ANALYSIS

Software reliability in the presence of transient faults can be
measured using different metrics [26]. We adopt the failures-
in-time (FIT) rate, which is an industry-standard reliability
metric that denotes the number of failures expected in one
billion device operating hours [27]. Since in a real-time context
the maximum frequency at which the protocol is invoked is
known in advance, to bound a system’s FIT rate, it is sufficient
to (i) derive an upper bound on the failure probability of a
single execution of the IC protocol, (ii) use this upper bound
to compute a lower bound on the mean time to the first failed
execution of the protocol, which is also known as its MTTF
(see [26, Section 2.2] for a detailed discussion), and then (iii)
derive an upper bound on the FIT rate as an inverse of the
MTTF lower bound. Since steps (ii) and (iii) are trivial, our
main contribution is addressing the first step, i.e., the single-
invocation failure probability problem.

A. Reliability Assumptions

Our fault model does not account for failures in the
operating system and its scheduling mechanism, or the clock
synchronization mechanism. In general, while analyzing the
failure rate of the IC protocol, we assume that other system
components are reliable, even though the protocol execution
may directly depend on them. This assumption does not
imply that the proposed analysis is not useful if a dependent
component fails; rather it provides a FIT rate for the IC
protocol, which can then be composed with the FIT rates
of other dependent, dependee, or unrelated subsystems using a
fault tree analysis [28]. In fact, fault tree analysis is a common
way of decomposing the reliability analysis of a complex
system into manageable subproblems. Extremely rare events
like bit flips affecting the scheduler’s priority bits occur with
such low likelihood that they are best modeled as a separate,
additive failure source and accounted for using a separate
FIT analysis. In other words, in a fault-tree analysis of a
complete system, orthogonal concerns (e.g., a failing power
supply vs. loss of network connectivity) are represented by
separate branches of the fault tree, whereas tightly coupled
components (e.g., redundant messages that form a middleware
transaction) form a single branch and must be analyzed jointly.
The contribution of this paper is the first such joint analysis
for a hard real-time instantiation of an IC protocol.

B. Protocol-Specific Message Errors

Recall from §II-A that, in each round of the IC protocol,
the processes exchange one or more EIG nodes belonging to
their respective EIG trees; and in the final round, they process
the exchanged information locally to determine their respective
decision vectors. Suppose that Mi,k(α) denotes the message
sent by process Πi to another process Πk carrying information
about the node labeled α, during round r = |α|+ 1.

Each message Mi,k(α) can be affected by crash or corruption
errors. In particular, Mi,k(α) can be omitted if its sender host
Hi crashes, if one of the switches through which the message is
routed crashes, or if its receiver host Hk crashes. Mi,k(α) can
also be omitted (or rather explicitly dropped) if the Ethernet
frame carrying the message is corrupted during transmission
and if Ethernet’s checksum mechanism successfully detects
this corruption. Finally, Mi,k(α) can also be corrupted if it
was incorrectly prepared in the first place due to corruptions
on the sender side, if the Ethernet frame carrying that message
is corrupted during transmission but the corruptions are not
detected by Ethernet’s checksum mechanism, or if it is affected
by corruptions on the receiver side just before being delivered.
We denote these events as protocol-specific message errors.

However, unlike transient faults and basic errors, which are
mutually independent, the protocol-specific message errors are
not mutually independent. For example, all messages from Πi

to Πk during round r are typically batched together into a
single Ethernet frame; hence, they are simultaneously dropped
if the frame gets corrupted and if the corruption is successfully
detected. Similarly, if the common payload that is carried by
all message frames originating from Πi during round r is



TABLE I
MESSAGE ERROR EVENTS DUE TO TRANSIENT FAULTS.

Type Error event description Remark

1 “round r msgs. omitted at source Ei” Omission
2 “round r msgs. omitted at switch Sl”
3 “round r msgs. omitted at dest. Ek”
4 “round r frame from Πi to Πk omitted by NW”

5 “round r msgs. corrupted at source Ei” Corruption
6 “round r frame from Πi to Πk corrupted by NW”

corrupted during preparation, even before its checksum has
been computed, the corruptions go undetected and are passed
on to every message containing the payload.

Hence, for the purpose of this analysis, we conservatively
model six types of error events that are defined at a coarser
granularity in terms of sets of dependent messages (at the
cost of slight pessimism). These are summarized in Table I.
Events 1, 2, and 3 denote message omissions due to host and
switch crashes during the rth round’s sending step of the IC
protocol. Events 4 and 6 denote frame omissions and frame
corruptions due to perceptible and imperceptible corruption
during transmission, respectively. Event 5 denotes the message
corruption due to corruption on the host. Unlike omission
errors, we do not consider corruption errors at destinations
since these are implicitly accounted for as corruption errors at
the source of subsequently sent messages.

C. Upper-Bounding Message Error Probabilities

As a first step in the reliability analysis, we derive
implementation-specific upper bounds on the probability of
protocol-specific message errors (from §IV-B).

1) Event Types 1 and 2 in Table I: Using the Poisson arrival
model (recall from §II-C), we first upper-bound the probability
of omission errors due to host and switch crashes.

Let t1 and t′1 denote the release time of task T rs (responsible
for the sending step in round r) on hosts Ei and Ek,
respectively. Similarly, let t2 = t1 + Rrs + ∆NW and t′2 =
t′1 +Rrs + ∆NW denote T rt ’s release time on hosts Ei and Ek,
respectively. Since the IC protocol rounds on all hosts execute
synchronously, and since the host clocks differ by at most
∆clock time units, |t′1 − t1| ≤ ∆clock and |t′2 − t2| ≤ ∆clock .

The sending step on host Ei may be omitted if node Ei
is crashed at any time during task T rs ’s scheduling window
[t1, t1 +Rrs) (as shown in Fig. 3). Thus, the event “round r
msgs. omitted at source Ei” may occur if at least one crash
occurs during interval [t1 −∆reboot(Ei), t1 +Rrs), i.e.,

P (“round r msgs. omitted at source Ei” )

≤ 1− P(0, Rrs + ∆reboot(Ei), γcrash(Ei)).

The round r messages sent from Πi to Πk may arrive at
Πk any time during [t1, t1 +Rrs + ∆NW ). These messages are
then used for updating the EIG tree on Ek any time during
task T rt ’s scheduling window [t′2, t

′
2 + Rrt ). Thus, the event

“round r msgs. omitted at dest. Ek” may occur if at least one
crash occurs during [t1, t

′
2 + Rrt ). Since time t2 and t′2 may

�reboot(Ek)
<latexit sha1_base64="6MUXr0nnI14DPpp0wclhbinR21s=">AAACBHicbVDLSgNBEJz1GeNr1WMui0GIl7AbBXMMqOAxgnlAEpbZSScZMruzzPSKYcnBi7/ixYMiXv0Ib/6Nk8dBEwsaiqpuuruCWHCNrvttrayurW9sZray2zu7e/v2wWFdy0QxqDEppGoGVIPgEdSQo4BmrICGgYBGMLyc+I17UJrL6A5HMXRC2o94jzOKRvLtXPsKBFI/bSM8YKogkBLH48K1Pzz17bxbdKdwlok3J3kyR9W3v9pdyZIQImSCat3y3Bg7KVXImYBxtp1oiCkb0j60DI1oCLqTTp8YOydG6To9qUxF6EzV3xMpDbUehYHpDCkO9KI3Ef/zWgn2yp2UR3GCELHZol4iHJTOJBGnyxUwFCNDKFPc3OqwAVWUockta0LwFl9eJvVS0Tsrlm7P85XyPI4MyZFjUiAeuSAVckOqpEYYeSTP5JW8WU/Wi/VufcxaV6z5zBH5A+vzBxSBmFQ=</latexit>

⇧k
<latexit sha1_base64="zw5Xn0hnwsNu2wNpZo0upP0uMHI=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWMF0xbaUDbbTbt0swm7E6GE/gYvHhTx6g/y5r9x2+agrQ8GHu/NMDMvTKUw6Lrfzsbm1vbObmmvvH9weHRcOTltmyTTjPsskYnuhtRwKRT3UaDk3VRzGoeSd8LJ3dzvPHFtRKIecZryIKYjJSLBKFrJ77fEYDKoVN2auwBZJ15BqlCgNah89YcJy2KukElqTM9zUwxyqlEwyWflfmZ4StmEjnjPUkVjboJ8ceyMXFplSKJE21JIFurviZzGxkzj0HbGFMdm1ZuL/3m9DKNGkAuVZsgVWy6KMkkwIfPPyVBozlBOLaFMC3srYWOqKUObT9mG4K2+vE7a9Zp3Xas/3FSbjSKOEpzDBVyBB7fQhHtogQ8MBDzDK7w5ynlx3p2PZeuGU8ycwR84nz+b+46F</latexit>
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<latexit sha1_base64="Bolg++8LOx+JNTo7mg7h0By+88s=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWOFpi20sWy223bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEhh0HW/nY3Nre2d3cJecf/g8Oi4dHLaMnGqGfdZLGPdCanhUijuo0DJO4nmNAolb4eTu7nffuLaiFg1cZrwIKIjJYaCUbSS3+zjo+6Xym7FXYCsEy8nZcjR6Je+eoOYpRFXyCQ1puu5CQYZ1SiY5LNiLzU8oWxCR7xrqaIRN0G2OHZGLq0yIMNY21JIFurviYxGxkyj0HZGFMdm1ZuL/3ndFIe1IBMqSZErtlw0TCXBmMw/JwOhOUM5tYQyLeythI2ppgxtPkUbgrf68jppVSvedaX6cFOu1/I4CnAOF3AFHtxCHe6hAT4wEPAMr/DmKOfFeXc+lq0bTj5zBn/gfP4AwH2OnQ==</latexit>

t1
<latexit sha1_base64="0OaYIontm67T2LorNHwBlz31178=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzjwBuWKW3UXIOvEy0kFcjQH5a/+MGZpxBUySY3peW6CfkY1Cib5rNRPDU8om9AR71mqaMSNny1OnZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5diWPczoZIUuWLLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNMp2RC81ZfXSbtW9a6qtfvrSqOex1GEMziHS/DgBhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPHwPkjZY=</latexit>

t2
<latexit sha1_base64="d04zkK/ml8T/jWPxf4r6CevJVK0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzioDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/FsO5nQiUpcsWWi8JUEozJ/G8yFJozlFNLKNPC3krYmGrK0KZTsiF4qy+vk3at6l1Va/fXlUY9j6MIZ3AOl+DBDTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwVojZc=</latexit>
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<latexit sha1_base64="bDhFQSoLVjCsMnc3Pzh1A/xqZQE=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LGgB09SwX5AGspmu22XbjZhdyKU0J/hxYMiXv013vw3btsctPXBwOO9GWbmhYkUBl3321lb39jc2i7sFHf39g8OS0fHLROnmvEmi2WsOyE1XArFmyhQ8k6iOY1Cydvh+Gbmt5+4NiJWjzhJeBDRoRIDwShaye/ecom0l923p71S2a24c5BV4uWkDDkavdJXtx+zNOIKmaTG+J6bYJBRjYJJPi12U8MTysZ0yH1LFY24CbL5yVNybpU+GcTalkIyV39PZDQyZhKFtjOiODLL3kz8z/NTHNSCTKgkRa7YYtEglQRjMvuf9IXmDOXEEsq0sLcSNqKaMrQpFW0I3vLLq6RVrXiXlerDVbley+MowCmcwQV4cA11uIMGNIFBDM/wCm8OOi/Ou/OxaF1z8pkT+APn8wco/JEk</latexit>
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<latexit sha1_base64="WbH4H1Vrl95GkzHVRAA135N1rOU=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx6rmFpoY9lsJ+3SzSbsboRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MBVcG9f9dgpr6xubW8Xt0s7u3v5B+fCopZNMMfRZIhLVDqlGwSX6hhuB7VQhjUOBD+HoeuY/PKHSPJH3ZpxiENOB5BFn1FjJv+vpR9UrV9yqOwdZJV5OKpCj2St/dfsJy2KUhgmqdcdzUxNMqDKcCZyWupnGlLIRHWDHUklj1MFkfuyUnFmlT6JE2ZKGzNXfExMaaz2OQ9sZUzPUy95M/M/rZCaqBxMu08ygZItFUSaIScjsc9LnCpkRY0soU9zeStiQKsqMzadkQ/CWX14lrVrVu6jWbi8rjXoeRxFO4BTOwYMraMANNMEHBhye4RXeHOm8OO/Ox6K14OQzx/AHzucPu+eOmg==</latexit>

T r
s

<latexit sha1_base64="AMAv/mDihvZnfFAmPxkWxNpUkgg=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWOFpi20sWy203bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAiujet+OxubW9s7u4W94v7B4dFx6eS0peNUMfRZLGLVCalGwSX6hhuBnUQhjUKB7XByN/fbT6g0j2XTTBMMIjqSfMgZNVbym339qPqlsltxFyDrxMtJGXI0+qWv3iBmaYTSMEG17npuYoKMKsOZwFmxl2pMKJvQEXYtlTRCHWSLY2fk0ioDMoyVLWnIQv09kdFI62kU2s6ImrFe9ebif143NcNakHGZpAYlWy4apoKYmMw/JwOukBkxtYQyxe2thI2poszYfIo2BG/15XXSqla860r14aZcr+VxFOAcLuAKPLiFOtxDA3xgwOEZXuHNkc6L8+58LFs3nHzmDP7A+fwBvveOnA==</latexit>
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<latexit sha1_base64="QcfmidxUZGd/CJsbft5j58tJ9kk=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx6rmFpoY9lsN+3SzSbsToRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O4W19Y3NreJ2aWd3b/+gfHjUMkmmGfdZIhPdDqnhUijuo0DJ26nmNA4lfwhH1zP/4YlrIxJ1j+OUBzEdKBEJRtFK/l0PH3WvXHGr7hxklXg5qUCOZq/81e0nLIu5QiapMR3PTTGYUI2CST4tdTPDU8pGdMA7lioacxNM5sdOyZlV+iRKtC2FZK7+npjQ2JhxHNrOmOLQLHsz8T+vk2FUDyZCpRlyxRaLokwSTMjsc9IXmjOUY0so08LeStiQasrQ5lOyIXjLL6+SVq3qXVRrt5eVRj2PowgncArn4MEVNOAGmuADAwHP8ApvjnJenHfnY9FacPKZY/gD5/MHvW2Omw==</latexit>
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that can affect TsT r

s
<latexit sha1_base64="+7SFRfetyTvhn99yDQX82O2Xl/Y=">AAAB7HicdVBNS8NAEN3Ur1q/qh69LBbBU9ikoa23ghePFZq20May2W7bpZtN2N0IJfQ3ePGgiFd/kDf/jZu2goo+GHi8N8PMvDDhTGmEPqzCxubW9k5xt7S3f3B4VD4+6ag4lYT6JOax7IVYUc4E9TXTnPYSSXEUctoNZ9e5372nUrFYtPU8oUGEJ4KNGcHaSH57qO7ksFxB9lWj5no1iGyE6o7r5MSte1UPOkbJUQFrtIbl98EoJmlEhSYcK9V3UKKDDEvNCKeL0iBVNMFkhie0b6jAEVVBtjx2AS+MMoLjWJoSGi7V7xMZjpSaR6HpjLCeqt9eLv7l9VM9bgQZE0mqqSCrReOUQx3D/HM4YpISzeeGYCKZuRWSKZaYaJNPyYTw9Sn8n3Rc26na7q1XaaJ1HEVwBs7BJXBAHTTBDWgBHxDAwAN4As+WsB6tF+t11Vqw1jOn4Aest08crY7W</latexit>

�reboot(Ei)
<latexit sha1_base64="79bQbVt01DBOczrCFtL2CPnO1pM=">AAACBHicbVDLSgNBEJz1GeNr1WMui0GIl7AbBXMMqOAxgnlAEpbZSScZMruzzPSKYcnBi7/ixYMiXv0Ib/6Nk8dBEwsaiqpuuruCWHCNrvttrayurW9sZray2zu7e/v2wWFdy0QxqDEppGoGVIPgEdSQo4BmrICGgYBGMLyc+I17UJrL6A5HMXRC2o94jzOKRvLtXPsKBFI/bSM8YKogkBLH48K1z099O+8W3SmcZeLNSZ7MUfXtr3ZXsiSECJmgWrc8N8ZOShVyJmCcbScaYsqGtA8tQyMagu6k0yfGzolRuk5PKlMROlP190RKQ61HYWA6Q4oDvehNxP+8VoK9ciflUZwgRGy2qJcIB6UzScTpcgUMxcgQyhQ3tzpsQBVlaHLLmhC8xZeXSb1U9M6KpdvzfKU8jyNDcuSYFIhHLkiF3JAqqRFGHskzeSVv1pP1Yr1bH7PWFWs+c0T+wPr8ARF3mFI=</latexit>
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<latexit sha1_base64="R62CT5RJRsyybggwmjPE8AA1Cz8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKDzhwB+WKW3UXIOvEy0kFcjQH5a/+MGZpxBUySY3peW6CfkY1Cib5rNRPDU8om9AR71mqaMSNny1OnZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5diWPczoZIUuWLLRWEqCcZk/jcZCs0ZyqkllGlhbyVsTDVlaNMp2RC81ZfXSbtW9a6qtfvrSqOex1GEMziHS/DgBhpwB01oAYMRPMMrvDnSeXHenY9la8HJZ07hD5zPHwJgjZU=</latexit>
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<latexit sha1_base64="zT2nolsVtmNUo3PBgGHcICw1tn0=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWMF0xbaUDbbSbt0swm7G6GE/gYvHhTx6g/y5r9x2+agrQ8GHu/NMDMvTAXXxnW/nY3Nre2d3dJeef/g8Oi4cnLa1kmmGPosEYnqhlSj4BJ9w43AbqqQxqHATji5m/udJ1SaJ/LRTFMMYjqSPOKMGiv5/RYf8EGl6tbcBcg68QpShQKtQeWrP0xYFqM0TFCte56bmiCnynAmcFbuZxpTyiZ0hD1LJY1RB/ni2Bm5tMqQRImyJQ1ZqL8nchprPY1D2xlTM9ar3lz8z+tlJmoEOZdpZlCy5aIoE8QkZP45GXKFzIipJZQpbm8lbEwVZcbmU7YheKsvr5N2veZd1+oPN9Vmo4ijBOdwAVfgwS004R5a4AMDDs/wCm+OdF6cd+dj2brhFDNn8AfO5w+Y846D</latexit>
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<latexit sha1_base64="Bolg++8LOx+JNTo7mg7h0By+88s=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWOFpi20sWy223bpZhN2J0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemEhh0HW/nY3Nre2d3cJecf/g8Oi4dHLaMnGqGfdZLGPdCanhUijuo0DJO4nmNAolb4eTu7nffuLaiFg1cZrwIKIjJYaCUbSS3+zjo+6Xym7FXYCsEy8nZcjR6Je+eoOYpRFXyCQ1puu5CQYZ1SiY5LNiLzU8oWxCR7xrqaIRN0G2OHZGLq0yIMNY21JIFurviYxGxkyj0HZGFMdm1ZuL/3ndFIe1IBMqSZErtlw0TCXBmMw/JwOhOUM5tYQyLeythI2ppgxtPkUbgrf68jppVSvedaX6cFOu1/I4CnAOF3AFHtxCHe6hAT4wEPAMr/DmKOfFeXc+lq0bTj5zBn/gfP4AwH2OnQ==</latexit>
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<latexit sha1_base64="AMAv/mDihvZnfFAmPxkWxNpUkgg=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV7LHgxWOFpi20sWy203bpZhN2N0IJ/Q1ePCji1R/kzX/jts1BWx8MPN6bYWZemAiujet+OxubW9s7u4W94v7B4dFx6eS0peNUMfRZLGLVCalGwSX6hhuBnUQhjUKB7XByN/fbT6g0j2XTTBMMIjqSfMgZNVbym339qPqlsltxFyDrxMtJGXI0+qWv3iBmaYTSMEG17npuYoKMKsOZwFmxl2pMKJvQEXYtlTRCHWSLY2fk0ioDMoyVLWnIQv09kdFI62kU2s6ImrFe9ebif143NcNakHGZpAYlWy4apoKYmMw/JwOukBkxtYQyxe2thI2poszYfIo2BG/15XXSqla860r14aZcr+VxFOAcLuAKPLiFOtxDA3xgwOEZXuHNkc6L8+58LFs3nHzmDP7A+fwBvveOnA==</latexit>
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<latexit sha1_base64="QcfmidxUZGd/CJsbft5j58tJ9kk=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqYI8FLx6rmFpoY9lsN+3SzSbsToRS+hu8eFDEqz/Im//GbZuDtj4YeLw3w8y8MJXCoOt+O4W19Y3NreJ2aWd3b/+gfHjUMkmmGfdZIhPdDqnhUijuo0DJ26nmNA4lfwhH1zP/4YlrIxJ1j+OUBzEdKBEJRtFK/l0PH3WvXHGr7hxklXg5qUCOZq/81e0nLIu5QiapMR3PTTGYUI2CST4tdTPDU8pGdMA7lioacxNM5sdOyZlV+iRKtC2FZK7+npjQ2JhxHNrOmOLQLHsz8T+vk2FUDyZCpRlyxRaLokwSTMjsc9IXmjOUY0so08LeStiQasrQ5lOyIXjLL6+SVq3qXVRrt5eVRj2PowgncArn4MEVNOAGmuADAwHP8ApvjnJenHfnY9FacPKZY/gD5/MHvW2Omw==</latexit>

time
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<latexit sha1_base64="5VzVoa/UsOVAWA+g8xF1mFhzWYg=">AAACA3icdVDLSgNBEJz1bXxFvellMAiewk4UE2+CHjwqmAdkQ5iddOKQ2YczvWJYAl78FS8eFPHqT3jzb5xNIqhoQUNR1U13lx8radB1P5yp6ZnZufmFxdzS8srqWn59o2aiRAuoikhFuuFzA0qGUEWJChqxBh74Cup+/yTz6zegjYzCSxzE0Ap4L5RdKThaqZ3f8hRcU+8UFPJ26iHcYipUJPrDYTtfcIuu6zLGaEZY+dC15OioUmIVyjLLokAmOG/n371OJJIAQhSKG9NkboytlGuUQsEw5yUGYi76vAdNS0MegGmlox+GdNcqHdqNtK0Q6Uj9PpHywJhB4NvOgOOV+e1l4l9eM8FupZXKME4QQjFe1E0UxYhmgdCO1CBQDSzhQkt7KxVXXHOBNracDeHrU/o/qZWKbL9YujgoHFcmcSyQbbJD9ggjZXJMzsg5qRJB7sgDeSLPzr3z6Lw4r+PWKWcys0l+wHn7BPjtmF8=</latexit>Mi,k may be delivered at Ek 

any time in this interval
Mr

i,k
<latexit sha1_base64="aTtVhOhwqG8kNeJ6zLdquXWwJzE=">AAAB8HicdVDLSgMxFM3UV62vqks3wSK4kCGpHe2y4MaNUME+pB1LJs20oZnMkGSEMvQr3LhQxK2f486/MX0IKnrgwuGce7n3niARXBuEPpzc0vLK6lp+vbCxubW9U9zda+o4VZQ1aCxi1Q6IZoJL1jDcCNZOFCNRIFgrGF1M/dY9U5rH8saME+ZHZCB5yCkxVrq96mX8ZDS5U71iCbnozKvgKkSuh3AVe5aUPYxQGWIXzVACC9R7xfduP6ZpxKShgmjdwSgxfkaU4VSwSaGbapYQOiID1rFUkohpP5sdPIFHVunDMFa2pIEz9ftERiKtx1FgOyNihvq3NxX/8jqpCat+xmWSGibpfFGYCmhiOP0e9rli1IixJYQqbm+FdEgUocZmVLAhfH0K/yfNsotP3fJ1pVRDizjy4AAcgmOAwTmogUtQBw1AQQQewBN4dpTz6Lw4r/PWnLOY2Qc/4Lx9AuuUkHA=</latexit>

Ek
<latexit sha1_base64="7jc1Shk0UBmqSr1HjNg+IrXOHsw=">AAAB6nicdVDLSgMxFM3UV62vqks3wSK4GpKxo10WRHBZ0T6gHUomzbShmcyQZIQy9BPcuFDErV/kzr8xfQgqeuDC4Zx7ufeeMBVcG4Q+nMLK6tr6RnGztLW9s7tX3j9o6SRTlDVpIhLVCYlmgkvWNNwI1kkVI3EoWDscX8789j1TmifyzkxSFsRkKHnEKTFWur3qj/vlCnLRuV/FNYhcH+Ea9i3xfIyQB7GL5qiAJRr98ntvkNAsZtJQQbTuYpSaICfKcCrYtNTLNEsJHZMh61oqScx0kM9PncITqwxglChb0sC5+n0iJ7HWkzi0nTExI/3bm4l/ed3MRLUg5zLNDJN0sSjKBDQJnP0NB1wxasTEEkIVt7dCOiKKUGPTKdkQvj6F/5OW5+Iz17upVupoGUcRHIFjcAowuAB1cA0aoAkoGIIH8ASeHeE8Oi/O66K14CxnDsEPOG+fYGaNzw==</latexit>

All crashes in this interval can 
omit messages Mi,* sent by Ts T r

s
<latexit sha1_base64="+7SFRfetyTvhn99yDQX82O2Xl/Y=">AAAB7HicdVBNS8NAEN3Ur1q/qh69LBbBU9ikoa23ghePFZq20May2W7bpZtN2N0IJfQ3ePGgiFd/kDf/jZu2goo+GHi8N8PMvDDhTGmEPqzCxubW9k5xt7S3f3B4VD4+6ag4lYT6JOax7IVYUc4E9TXTnPYSSXEUctoNZ9e5372nUrFYtPU8oUGEJ4KNGcHaSH57qO7ksFxB9lWj5no1iGyE6o7r5MSte1UPOkbJUQFrtIbl98EoJmlEhSYcK9V3UKKDDEvNCKeL0iBVNMFkhie0b6jAEVVBtjx2AS+MMoLjWJoSGi7V7xMZjpSaR6HpjLCeqt9eLv7l9VM9bgQZE0mqqSCrReOUQx3D/HM4YpISzeeGYCKZuRWSKZaYaJNPyYTw9Sn8n3Rc26na7q1XaaJ1HEVwBs7BJXBAHTTBDWgBHxDAwAN4As+WsB6tF+t11Vqw1jOn4Aest08crY7W</latexit>

Mr
i,⇤

<latexit sha1_base64="P5230/7Ha1ZO+76FO17dTDWON9o=">AAAB8HicdVDLSgMxFM34rPVVdekmWAQRGTLToa27ghs3QgX7kHYsmTRtQ5OZIckIZehXuHGhiFs/x51/Y6atoKIHLhzOuZd77wlizpRG6MNaWl5ZXVvPbeQ3t7Z3dgt7+00VJZLQBol4JNsBVpSzkDY005y2Y0mxCDhtBeOLzG/dU6lYFN7oSUx9gYchGzCCtZFur3opOzud3sleoYjs82rZ9coQ2QhVHNfJiFvxSh50jJKhCBao9wrv3X5EEkFDTThWquOgWPsplpoRTqf5bqJojMkYD2nH0BALqvx0dvAUHhulDweRNBVqOFO/T6RYKDURgekUWI/Uby8T//I6iR5U/ZSFcaJpSOaLBgmHOoLZ97DPJCWaTwzBRDJzKyQjLDHRJqO8CeHrU/g/abq2U7Lda69YQ4s4cuAQHIET4IAKqIFLUAcNQIAAD+AJPFvSerRerNd565K1mDkAP2C9fQKZwJA7</latexit>

All crashes in this interval can omit messages M*,k received by Ts Mr
⇤,k

<latexit sha1_base64="s/UpdJ6Tp4WoqYd7ObfbDW2hziA=">AAAB8HicdVDLSgMxFM34rPVVdekmWAQRGWamQ1t3BTduhAr2Ie1YMmnahiaZIckIZehXuHGhiFs/x51/Y6atoKIHLhzOuZd77wljRpV2nA9raXlldW09t5Hf3Nre2S3s7TdVlEhMGjhikWyHSBFGBWloqhlpx5IgHjLSCscXmd+6J1LRSNzoSUwCjoaCDihG2ki3V7309Gw8vZO9QtGxz6tlzy9Dx3aciuu5GfEqfsmHrlEyFMEC9V7hvduPcMKJ0JghpTquE+sgRVJTzMg0300UiREeoyHpGCoQJypIZwdP4bFR+nAQSVNCw5n6fSJFXKkJD00nR3qkfnuZ+JfXSfSgGqRUxIkmAs8XDRIGdQSz72GfSoI1mxiCsKTmVohHSCKsTUZ5E8LXp/B/0vRst2R7136x5iziyIFDcAROgAsqoAYuQR00AAYcPIAn8GxJ69F6sV7nrUvWYuYA/ID19gmcUJA9</latexit>

T r
t

<latexit sha1_base64="8O1KP7RB1yOHNGB87STcnUNLZFE=">AAAB7HicdVBNS8NAEN3Ur1q/qh69LBbBU9ikoa23ghePFZq20May2W7bpZtN2N0IJfQ3ePGgiFd/kDf/jZu2goo+GHi8N8PMvDDhTGmEPqzCxubW9k5xt7S3f3B4VD4+6ag4lYT6JOax7IVYUc4E9TXTnPYSSXEUctoNZ9e5372nUrFYtPU8oUGEJ4KNGcHaSH57qO/ksFxB9lWj5no1iGyE6o7r5MSte1UPOkbJUQFrtIbl98EoJmlEhSYcK9V3UKKDDEvNCKeL0iBVNMFkhie0b6jAEVVBtjx2AS+MMoLjWJoSGi7V7xMZjpSaR6HpjLCeqt9eLv7l9VM9bgQZE0mqqSCrReOUQx3D/HM4YpISzeeGYCKZuRWSKZaYaJNPyYTw9Sn8n3Rc26na7q1XaaJ1HEVwBs7BJXBAHTTBDWgBHxDAwAN4As+WsB6tF+t11Vqw1jOn4Aest08eM47X</latexit>

t01<latexit sha1_base64="9vTICWdx6LohF87rB2K75F+/L2g=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbRU0mqYI8FLx4r2A9oQ9lsN+3S3U3Y3Qgh9C948aCIV/+QN/+N2zQHbX0w8Hhvhpl5QcyZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV0eJIrRDIh6pfoA15UzSjmGG036sKBYBp71gdrfwe09UaRbJR5PG1Bd4IlnICDa5NPIuR9WaW3dzoHXiFaQGBdqj6tdwHJFEUGkIx1oPPDc2foaVYYTTeWWYaBpjMsMTOrBUYkG1n+W3ztGFVcYojJQtaVCu/p7IsNA6FYHtFNhM9aq3EP/zBokJm37GZJwYKslyUZhwZCK0eByNmaLE8NQSTBSztyIyxQoTY+Op2BC81ZfXSbdR967rjYebWqtZxFGGMziHK/DgFlpwD23oAIEpPMMrvDnCeXHenY9la8kpZk7hD5zPH2Tsjcc=</latexit>

t02<latexit sha1_base64="3s4fPskm/9dUacuvDYoojPCEu3E=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbRU0mqYI8FLx4r2A9oQ9lsN+3S3U3Y3Qgh9C948aCIV/+QN/+N2zQHbX0w8Hhvhpl5QcyZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV0eJIrRDIh6pfoA15UzSjmGG036sKBYBp71gdrfwe09UaRbJR5PG1Bd4IlnICDa5NGpcjqo1t+7mQOvEK0gNCrRH1a/hOCKJoNIQjrUeeG5s/Awrwwin88ow0TTGZIYndGCpxIJqP8tvnaMLq4xRGClb0qBc/T2RYaF1KgLbKbCZ6lVvIf7nDRITNv2MyTgxVJLlojDhyERo8TgaM0WJ4aklmChmb0VkihUmxsZTsSF4qy+vk26j7l3XGw83tVaziKMMZ3AOV+DBLbTgHtrQAQJTeIZXeHOE8+K8Ox/L1pJTzJzCHzifP2Zxjcg=</latexit>

t00
<latexit sha1_base64="ITNIX7lJO16l6+PdWMaxwjsM5as=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbRU0mqYI8FLx4r2A9oQ9lsN+3S3U3Y3Qgh9C948aCIV/+QN/+N2zQHbX0w8Hhvhpl5QcyZNq777ZQ2Nre2d8q7lb39g8Oj6vFJV0eJIrRDIh6pfoA15UzSjmGG036sKBYBp71gdrfwe09UaRbJR5PG1Bd4IlnICDa5NHIvR9WaW3dzoHXiFaQGBdqj6tdwHJFEUGkIx1oPPDc2foaVYYTTeWWYaBpjMsMTOrBUYkG1n+W3ztGFVcYojJQtaVCu/p7IsNA6FYHtFNhM9aq3EP/zBokJm37GZJwYKslyUZhwZCK0eByNmaLE8NQSTBSztyIyxQoTY+Op2BC81ZfXSbdR967rjYebWqtZxFGGMziHK/DgFlpwD23oAIEpPMMrvDnCeXHenY9la8kpZk7hD5zPH2NnjcY=</latexit>

Earliest task release time

Latest task finishing time

Earliest crash that can 
affect the delivery of M*,kMr

⇤,k
<latexit sha1_base64="s/UpdJ6Tp4WoqYd7ObfbDW2hziA=">AAAB8HicdVDLSgMxFM34rPVVdekmWAQRGWamQ1t3BTduhAr2Ie1YMmnahiaZIckIZehXuHGhiFs/x51/Y6atoKIHLhzOuZd77wljRpV2nA9raXlldW09t5Hf3Nre2S3s7TdVlEhMGjhikWyHSBFGBWloqhlpx5IgHjLSCscXmd+6J1LRSNzoSUwCjoaCDihG2ki3V7309Gw8vZO9QtGxz6tlzy9Dx3aciuu5GfEqfsmHrlEyFMEC9V7hvduPcMKJ0JghpTquE+sgRVJTzMg0300UiREeoyHpGCoQJypIZwdP4bFR+nAQSVNCw5n6fSJFXKkJD00nR3qkfnuZ+JfXSfSgGqRUxIkmAs8XDRIGdQSz72GfSoI1mxiCsKTmVohHSCKsTUZ5E8LXp/B/0vRst2R7136x5iziyIFDcAROgAsqoAYuQR00AAYcPIAn8GxJ69F6sV7nrUvWYuYA/ID19gmcUJA9</latexit>

Fig. 3. Illustration to demonstrate when a crash on the sender side (above) or
the receiver side (below) may result in the omission of messages that are to
be sent from or delivered to that host, respectively.

differ by at most ∆clock (as also shown in Fig. 3), the event
“round r msgs. omitted at dest. Ek” may occur if at least one
crash occurs during interval [t1, t2 + ∆clock +Rrt ), i.e.,

P (“round r msgs. omitted at dest. Ek” )

≤ 1− P
(

0,

(
Rrs + ∆NW +Rrt +
∆clock + ∆reboot(Ek)

)
, γcrash(Ek)

)
.

2) Event Type 3 in Table I: Consider t1 and t′1 as defined
above (§IV-C1). All round r messages sent from Ei that are
routed through switch Sl can be omitted if switch Sl is crashed
at any time during the interval [t1, t1 +Rrs + ∆NW ). Similarly,
any round r message sent from Ek that is routed through
switch Sl may be omitted if switch Sl is crashed at any time
during time interval [t′1, t

′
1 + Rrs + ∆NW ). Since these two

intervals are expected to be offset by at most ∆clock time units,
by generalizing across all round r messages that are routed
through Sl, we get the following upper bound.

P (“round r msgs. omitted at switch Sl” )

≤ 1− P
(

0,

(
Rrs + ∆NW +
∆clock + ∆reboot(Sl)

)
, γcrash(Sl)

)
.

The recovery interval of nodes from crashes is typically
significantly larger than the task scheduling windows. Hence,
for each of the omission errors whose probability is upper-
bounded above (event types 1–3 in Table I), we conservatively
assume that if a crash error occurs once during the protocol
instance, it affects all subsequent tasks (and rounds) on that
node in the remaining part of the protocol instance.

3) Event Type 5 in Table I: To upper-bound the probability of
corruption errors due to corruption on the host, we need to argue
about their exposure intervals. The entire message broadcast
Mr
i,∗ =

⋃
Πk∈ΠM

r
i,k may be corrupted if the common payload

is corrupted during preparation as part of the sending task T rs ’s
execution. The payload corruption may even depend on state
corruption during earlier rounds of the same protocol instance
(e.g., on the corruption of Πi’s EIG tree). However, recall from
§II-C that, due to memory protection mechanisms, latent errors
prior to the beginning of the protocol instance do not affect



the protocol’s execution. Hence, since T rs ’s release offset φrs
denotes the time since the start of the IC protocol instance and
Rrs denotes the maximum response time of T rs , event “round
r msgs. corrupted at source Ei” may occur if at least one
corruption error occurs during an interval of length φrs +Rrs:

P (“round r msgs. corrupted at source Ei” )

≤ 1− P(0, φrs +Rrs, λcorrupt(Ei)).

4) Event Types 4 and 6 in Table I: Next, we upper-bound
the probability of frame omission or frame corruption by the
network layer. This is non-trivial because the network itself is
constituted of multiple components (links and switches), each
of which may experience different rates of transient faults.

We assume that all messages sent from Πi to Πk during
round r, denoted by message set Mr

i,k, are batched together and
sent as a single payload, and that the resulting Ethernet frame
does not exceed the Ethernet MTU of 1500 bytes (although
this is not a fundamental limitation). The time to transfer the
message frame corresponding to the batched frame Mr

i,k over
a single Ethernet link (which depends on the corresponding
frame size and on the bit-transfer rate) is denoted ∆link (Mr

i,k).
The standard 32-bit CRC used in Ethernet networks suc-

cessfully detects every message corruption with three or fewer
bit flips [29], whereas error detection becomes increasingly
more difficult with larger numbers of bit-flips. Thus, if the
message frame carrying Mr

i,k suffers up to three bit-flips
during transmission, the corruption is detected and the frame is
dropped. (The omission considered here is different from the
Type-2 errors analyzed earlier that correspond to involuntary
omissions of correct messages due to switch crashes.) In
contrast, if the message frame experiences more than three
bit-flips, the corruption may remain undetected.

Hence, if events A1 and A2 hold, where A1 denotes event
“Mr

i,k suffers no corruption on any of the Ethernet links in
routei,k” and A2 denotes event “Mr

i,k suffers no corruption
on any of the switches in routei,k,”, Mr

i,k is guaranteed to not
be omitted during transmission if:

P

(
“round r frame from Πi

to Πk omitted by NW”

)
≤ 1− P (A1) · P (A2).

Supposing that routei,k = 〈Ll1Sl1Ll2Sl2 . . . Lln−1Sln−1Lln〉
consists of n hops, and using the independence assumption from
§II-C, event probabilities P (A1) and P (A2) are defined as

P (A1) =
∏

1≤x≤n
P
(
0,∆link (Mr

i,k), γcorrupt(Llx)
)

and

P (A2) =
∏

1≤x<n
P
(
0, R+(Mr

i,k, Slx), γcorrupt(Slx)
)
,

where R+(Mr
i,k, Slx) denotes the maximum queuing delay

experienced by message frame Mr
i,k on switch Slx .

Frame Mr
i,k is corrupted by the network only if it is

undetectably corrupted (i.e., with four or more bit-flips). To
accurately upper-bound its probability, we must account for
two factors: (i) if Mr

i,k is undetectably corrupted once, any
corruptions later on the network path need not be accounted

for (as a worst case, we assume that more bit-flips later do not
reverse previous bit-flips and thus do not render the corruption
detectable); and (ii) before Mr

i,k is undetectably corrupted for
the first time, it does not suffer any detectable corruptions so
as to cause its omission. Thus, we define the probability upper
bound as a sum of the probabilities of events C1,x and C2,y

for each 1 ≤ x ≤ n and 1 ≤ y < n, where C1,x denotes
event “the first undetectable corruption occurs on the xth link
in routei,j” and C2,y denotes event “the first undetectable
corruption occurs on the yth switch in routei,j ,” i.e.,

P

(
“round r frame
from Πi to Πk

corrupted by NW”

)
≤

∑
1≤x≤n

P (C1,x) +
∑

1≤y<n
P (C2,y).

Like P (A1) and P (A2), each P (C1,x) and P (C1,y) can be
defined using the independence assumption from §II-C as:

P (C1,x) =

( (∏
1≤y<x

(
P(0, Lky )P(0, Sky )

))
× P(4+, Lkx)

)
and

P (C2,y) =

( (∏
1≤z<y (P(0, Lkz )P(0, Skz ))

)
× P(0, Lky )P(4+, Sky )

)
,

where P(0, Lky ) = P(0,∆link (Mr
i,k), γcorrupt(Lky )),

P(0, Sky ) = P(0, R+(Mr
i,k, Sky ), γcorrupt(Sky )),

P(4+, Lky ) =
∑
i≥4

P(i,∆link (Mr
i,k), γcorrupt(Lky )),

P(4+, Sky ) =
∑
i≥4

P(i, R+(Mr
i,k, Sky ), γcorrupt(Sky )).

D. Estimating Protocol Failure Probability

Suppose that for each error event x (i.e., belonging to one of
the six error event types listed in Table I), its exact occurrence
probability P (x) is known in advance. In this section, we
propose a recursive analysis that defines the IC protocol failure
probability P (IC failure) as a function of each P (x), while
taking into account all relevant scenarios. In the next section
(§IV-E), we discuss how P (IC failure)’s definition can be
updated to use the upper bound on each P (x) (which were
derived in §IV-C) instead of P (x) (which are unknown).

By exhaustively enumerating all possible cases based on
whether each protocol-specific message error event occurs or
does not occur, the overall IC protocol failure probability can
be derived. However, considering all rounds, hosts, switches,
and message frames, altogether tens of errors events need to be
evaluated. Furthermore, the total number of cases is exponential
in the number of error events. Hence, for efficiency, we identify
and prune certain scenarios that are not possible in practice,
without compromising the analysis accuracy and safety. For
example, if a message is omitted at its source, it cannot be
omitted by the network. Therefore, the scenario corresponding
to the omission of a message at source and also by the network
can be safely excluded from the exhaustive enumeration. In the
recursive analysis, we systematically account for such factors
in order to reduce the number of cases to be analyzed.

1) Recursive Analysis Overview: The analysis pseudocode is
provided in Algorithm 2. LetM denote the set of all messages



exchanged between the processes in an error-free scenario,
i.e., M =

⋃
Πi,Πk∈Π,1≤r≤Nr

Mr
i,k. To evaluate the probability

of a failed protocol instance, we perform a recursive case
analysis over all possible error combinations for each message
inM. We choose one message at a time fromM, consider all
scenarios in which it may be affected by the error types listed
in Table I, assign case probabilities for each of these scenarios,
and recursively evaluate the error possibilities for the next
message in M. The recursion terminates when all messages in
M (and hence all possible cases) have been accounted for. We
consider messages from round one first, followed by messages
from round two, and so on, because message errors during
an earlier round may impact message transmissions during
subsequent rounds. The ordering of messages from the same
round is arbitrary since there is no causal relationship among
message errors in the same round.

The analysis maintains the following message sets for
bookkeeping. Message set U is initialized to M. Messages are
removed from U and analyzed one at a time. Every message
that is omitted is inserted into message set O. Similarly, every
message that is not omitted (and hence delivered on time)
but incorrectly computed is inserted into message set C. If a
message is neither omitted nor corrupted, it is still removed
from U but inserted into message set P , denoting that it is
in pristine condition. Sets O, C, and P are eventually used
during the terminating step of the recursion. We also maintain
an event log E to keep track of the message error events that
have already been accounted for in the earlier stages of the
recursion, and that must not be accounted for again. Sets O,
C, P , and event log E are initially empty (Line 2).

2) Recursive Cases: The probability that an IC protocol in-
stance fails is denoted P (IC failure) and computed recursively
by the function PROBANALYSISREC (Line 4). First, we obtain
a message from U using GETEARLIESTMESSAGE (Line 6),
which returns messages from round one, followed by messages
from round two, and so on. Let Mi,k(α) denote this message.
Suppose that it belongs to round r, i.e., |α| = r−1. Probabilities
Pfail and Pprefix , which keep track of the cumulative failure
probability and the case probability prefix (explained below),
are then initialized to zero and one, respectively (Line 8).

Based on the error event types in Table I, we consider six
cases in which Mi,k(α) is affected by errors and one case in
which Mi,k(α) is transmitted error-free. Case 1 implies that
Mi,k(α) experienced an error of type 1. Case 2 implies that
Mi,k(α) did not experience an error of type 1, but experienced
an error of type 2, Case 3 implies that Mi,k(α) did not
experience errors of type 1 and 2, but experienced an error
of type 3, and so on. In other words, our analysis explicitly
ignores all scenarios that do not adhere to this rule. As a result,
all omission errors (event types 1–4) are analyzed first, which is
sound since message corruption probabilities contribute to the
failure probability only if the message is not omitted. Similarly,
an omission at the source (event type 1) is considered first
since that determines whether the message is even exposed to
omissions by the network (event type 3).

Finally, the case that corresponds to an error-free transmis-

Algorithm 2 Probabilistic analysis of an IC protocol instance.
1: procedure PROBANALYSISINIT
2: P (IC failure)← PROBANALYSISREC(M, ∅, ∅, ∅, ∅)
3:
4: procedure PROBANALYSISREC(U ,O, C,P, E)
5: if U = ∅ then return P (IC failure | O, C,P) . termination case
6: Mi,k(α)← GETEARLIESTMESSAGE(U ) . the msg. to be analyzed
7: r ← |α|+ 1 . compute the IC protocol round
8: Pfail ← 0 , Pprefix ← 1 . initialize probabilities
9: X ← 〈〉 . an empty FIFO-ordered sequence

10: X.enqueue(“round r msgs. omitted at source Ei” ) . Case 1
11: for all Sl ∈ routei,k do . Case 2
12: X.enqueue(“round r msgs. omitted at switch Sl” )

13: X.enqueue(“frame Mr
i,k omitted by NW” ) . Case 3

14: X.enqueue(“round r msgs. omitted at destination Ei” ) . Case 4
15: Pfail , Pprefix , E ← OMISSIONCASES(U ,O, C,P, E, X, Pfail , Pprefix )

16: X ← 〈〉 . an empty FIFO-ordered sequence
17: X.enqueue(“round r msgs. corrupted at source Ei” ) . Case 5
18: X.enqueue(“frame Mr

i,k corrupted by NW” ) . Case 6
19: Pfail , Pprefix , E ← CORRUPTION-

CASES(U ,O, C,P, E, X, Pfail , Pprefix )
20: Pfail ← ERRORFREECASE(U ,O, C,P, E, Pfail , Pprefix ) . Case 7
21: return Pfail

22:
23: procedure OMISSIONCASES(U ,O, C,P, E, X, Pfail , Pprefix )
24: while X is not empty do
25: x← X.dequeue()
26: if x 6∈ E then . analyze event x if not analyzed before
27: E ← E ∪ {x} . update E to prevent repeated analysis
28: Pcase ← Pprefix × P (x) . compute case probability
29: Pprefix ← Pprefix × P (x) . update prefix for later cases
30: So ← OMITTEDMESSAGESGIVEN(x) . dependent messages
31: . compute conditional probability using the recursive call
32: Pcond ← PROBANALYSISREC(U \ So,O ∪ So, C,P, E)
33: Pfail ← Pfail + Pcase × Pcond . update failure probability
34: return Pfail , Pprefix , E . return params needed in the later cases
35:
36: procedure CORRUPTIONCASES(U ,O, C,P, E, X, Pfail , Pprefix )
37: while X is not empty do . similar to OMISSIONCASES ...
38: x← X.dequeue()
39: if x 6∈ E then
40: E ← E ∪ {x}
41: Pcase ← Pprefix × P (x)

42: Pprefix ← Pprefix × P (x)
43: Sc ← {Mi,k(α)} . ... except this step
44: Pcond ← PROBANALYSISREC(U \ Sc,O, C ∪ Sc,P, E)
45: Pfail ← Pfail + Pcase × Pcond

46: return Pfail , Pprefix , E
47:
48: procedure ERRORFREECASE(U ,O, C,P, E, Pfail , Pprefix )
49: S ← {Mi,k(α)}
50: Pcond ← PROBANALYSISREC(U \ S,O, C,P ∪ S, E)
51: Pcase ← Pprefix

52: Pfail ← Pfail + Pcase × Pcond

53: return Pfail

sion of message Mi,k(α) is evaluated last.
3) Cases 1–4: These cases are evaluated by calling the

OMISSIONCASES procedure (Line 15). Since an error event
may affect multiple messages, it is possible that an error event
that might affect Mi,k(α) has already been accounted for while
analyzing another message in an earlier recursion stage. Thus,
each case is evaluated only if the corresponding error event
has not already been evaluated before, in which case, it is
not in the event log E (Line 26). If the event is indeed being



evaluated for the first time, it is first inserted into E (Line 27).
The case analysis is then executed as follows.

First, the case probability is computed as the product of the
probability that prior cases do not occur (given by the latest
value of Pprefix ) and probability P (x) with which the analyzed
case occurs (Line 28). Probability Pprefix is then updated to
account for the negation of the analyzed case, so that it can be
reused during the analysis of subsequent cases (Line 29). All
messages in M that are omitted either directly or indirectly due
to X are computed as So = OMITTEDMESSAGESGIVEN(X)
(Line 30). The conditional failure probability is then computed
using a recursive call to PROBANALYSISREC with the updated
values of U and O, where the set of omitted messages So is
excluded from U and added to O (Line 32). In the end, the
conditional probability is multiplied with the case probability,
and added to the cumulative failure probability (Line 33).

4) Cases 5–7: Cases 5 and 6 are evaluated by calling the
CORRUPTIONCASES procedure (Line 19), and their analysis is
similar to the analysis of Cases 1–4 except for the computation
of the conditional failure probability. That is, unlike Cases 1–4,
the corrupted message Mi,k(α) is removed from U and added
to C while invoking the recursive call to PROBANALYSISREC
(Line 44). Case 7 corresponds to the scenario where Mi,k(α)
is transmitted error-free (Line 20). In this case, Mi,k(α) is
removed from U and inserted into set P that consists of all
pristine messages (Line 50). The case probability for the last
case is simply the probability that Cases 1–6 do not occur,
given by the latest value of Pprefix (Line 51).

5) Terminating Case: The recursion terminates when U is
empty, since each message has been assigned to either O, C,
or P based on whether it is affected by any fault-induced error
in this case. What remains is a computation of the conditional
probability given O, C, and P that the IC protocol instance
fails, denoted as P (IC failure | O, C,P) (Line 5).

Since it is impossible to estimate P (IC failure | O, C,P)
without knowing the exact contents of the corrupted messages,
we derive an upper bound on it through worst-case analysis. In
a nutshell, since all messages inM are already partitioned into
sets O, C, and P , we can deterministically apply the reduction
procedure in the IC protocol to these messages and map the
conditional failure probability for the termination case to either
zero or one. We assume as a worst-case scenario that all faulty
messages are identically corrupted.

6) Last-Mile Errors: A protocol instance may also fail if, at
the last moment, say, just after the reduction step, the decision
vectors are corrupted or the host crashes. Since the proposed
analysis is based on the analysis of message errors, to account
for such last-mile errors, we use dummy messages that are
sent back to the same host. To avoid clutter, Algorithm 2 does
not discuss dummy messages; it can be updated as follows.
(i) The dummy messages are denoted using our regular notation
Mi,k(α), but with i = k (the value of α is irrelevant for these
dummy messages); (ii) they are incorporated into the recursive
analysis by adding them to message setM during initialization;
(iii) function GETEARLIESTMESSAGE (Line 6) is modified to
return one of these dummy messages only if all other regular
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Fig. 4. Given a message corruption rate of 10−5 events/µs, the failure
probability estimated using Pfail decreases when Π1’s crash rate is increased
from 10−10 to 10−5 events/µs, whereas the failure probability estimated using
Pfail-mono always bounds the worst-case failure probability.

messages have been analysed; and finally, (iv) cases 4 and 6
corresponding to network errors are not applied to the dummy
messages (since these messages are local to each host).

E. Reliability Anomalies and their Elimination

Suppose we seek to estimate P (IC failure) when three
processes Π1, Π2, and Π3 execute a two-round IC protocol.
Suppose that Π1 is susceptible to crashes and message corrup-
tions, whereas Π2 and Π3 execute error-free. While keeping the
message corruption rate on Π1 constant at 10−05 events/µs,
if Π1’s crash rate is reduced from 10−05 events/µs to
10−10 events/µs, the value of P (IC failure) as estimated
using Algorithm 2 actually increases (as indicated by the
curve labeled Pfail in Fig. 4). This can be explained by the
fact that crash-induced message omissions at Π1 prevent the
transmission of possibly faulty messages, thereby preventing
other processes from making a wrong decision, and as a result
making the overall protocol execution more reliable. However,
the presence of such reliability anomalies poses a significant
problem: exact values of P (x) are unknown; but computing
failure probability using upper bounds on each P (x) (i.e., at
peak error rates) does not necessarily yield a safe upper bound
on P (IC failure), and it is infeasible to exhaustively evaluate
P (IC failure) for all possible values of P (x). In the following,
we provide an analytical approach to eliminate such anomalies.

We attribute the root cause of reliability anomalies to the non-
monotonicity of Pfail (returned at the end of function PROB-
ANALYSISREC(U ,O, C,P, E) in Algorithm 2) with respect to
each error probability P (x). In particular, since Pfail depends
on complements of the exact probabilities (see the use of P (x)
in Lines 29 and 42), it may not be monotonically increasing
in each P (x). As a result, replacing each P (x) with its upper
bound can yield an unsafe estimate of P (IC failure) that is
lower than its exact value. To solve this problem, we derive
non-negative correction terms that are added to the analysis to
ensure monotonicity, as shown below for a simplified scenario.

Suppose that message Mi,k(α) can experience only two
types of errors, E1 = “round r msgs. omitted at source Ei”
and E2 = “frame Mr

i,k corrupted by NW” (where r = |α| +
1). Let P1 and P2 denote the event probabilities for E1 and
E2 (respectively), C1 and C2 denote the conditional failure



probability bounds for cases corresponding to events E1 and
E2 (respectively), and let C3 denote the conditional failure
probability bound for the case that Mi,k(α) experiences neither
E1 nor E2. C1, C2, and C3 correspond to the recursive calls
in Algorithm 2, and since our analysis never evaluates an event
twice, they do not depend on P1 and P2.

As explained in §IV-D, Mi,k(α) can experience E2 only if it
did not experience E1 first, which is accounted for by the order
in which these events are analyzed. Thus, the failure probability
Pfail returned at the end of the recursive step concerned with
the analysis of message Mi,k(α) reduces to:

Pfail = P1C1 + P1P2C2 + P1P2C3

= C3 + P1(C1 − C3) + P2(C2 − C3)− P1P2(C2 − C3).

The above expression is monotonic in P1 and P2 only if
C1 and C2 are greater than or equal to C3. However, even
though C3 corresponds to the scenario where Mi,k(α) does
not experience errors E1 or E2, C1 and C2 can be smaller than
C3 because of the anomaly that omission errors can possibly
reduce the overall failure chances. Thus, we determine whether
C1 ≥ C3 and C2 ≥ C3 at analysis time. We define boolean
values B1 and B2 such that, for each i ∈ {1, 2}, if Ci ≥ C3

then Bi = 1 otherwise Bi = 0. Using these, Ci − C3 can be
expressed as Bi · |Ci − C3| − (1−Bi) · |Ci − C3|, and Pfail

can be split into two terms Pfail,pos and Pfail,neg , which are
guaranteed to be non-negative and non-positive (respectively):

Pfail = Pfail,pos + Pfail,neg , where

Pfail,pos =

(
C3 + P1B1|C1 − C3|+ P2B2|C2 − C3|
+P1P2(1−B2)|C2 − C3|

)
,

Pfail,neg =

(
P1(1−B1)|C1 − C3|+
P2(1−B2)|C2 − C3|+ P1P2B2|C2 − C3|

)
.

It is now trivial to obtain a safe upper bound on Pfail

(denoted Pfail-mono) that is guaranteed to be monotonic in
P1 and P2 by negating all negative terms, i.e., Pfail-mono =
Pfail − Pfail,neg . Consecutively, using Pfail-mono in place of
Pfail in Algorithm 2 always yields a safe upper bound on
P (IC failure) (see the green curve in Fig. 4).

In general, the decomposition of Pfail into Pfail,pos and
Pfail,neg explained in the example above can be accomplished
analogously for all scenarios, i.e., for all instances of the
recursive function where one or more cases may not be analyzed
(since they were analyzed before), and can also be easily
generalized to different network topologies. We provide the
full details in the Appendix.

In summary, to ensure safety, it is important to eliminate relia-
bility anomalies. Actual fault rates may vary unpredictably over
time, and are possibly correlated across different components
(e.g., during fault bursts). Since we address this unpredictability
by analyzing peak fault rates for all components (recall our
fault model from §II-C), thereby implicitly accounting for any
variations or correlations in actual fault rates, there must not be
any reliability anomalies. To this end, our approach eliminates
reliability anomalies by adding non-negative correction terms.
Conceptually, such terms may increase pessimism, but we show

in our evaluation that this increase is negligible (see §V-A).

F. Analysis Complexity

The proposed analysis is conducted entirely offline. Its
complexity is exponential in the number of messages, which
is proportional to the number of hosts and the number of
switches. While this can lead to intractable analysis runtimes
for configurations with many replicas and switches, in practice
two factors help to keep analysis times acceptable. First, in
practical deployments, there are typically only between two to
four replicas. Thus, even if the total number of hosts in the
system is large, the analysis must consider only up to four hosts
and the traversed switches. Second, as mentioned in §IV-D,
we prune impossible scenarios (like a message being omitted
by both the source and a switch) to speed up the analysis.

V. EVALUATION

We implemented our analysis in C++ using the GNU MPFR
library [30] to ensure that all analysis computations were
carried out at a precision of 200 decimal places. Upper bounds
on the message scheduling delays on switches (recall the
use of R+(Mr

i,k, Slx) from §IV-C4) were computed using
the Compositional Performance Analysis (CPA) [31, 32]. In
particular, we used the open-source pyCPA framework [33].
All experiments were carried out on Intel Xeon E7-8857 v2
machines (48 cores, 1.5 TB of memory) clocked at 3 GHz.

The analyzed workload consisted of up to four processes on
four different hosts periodically executing a hard real-time IC
protocol instance every P = 100ms. The global worst-case
response time for each IC protocol task was set to 1ms. The
hosts were assumed to be connected via a single switch (star
topology) or via multiple switches arranged in either a line or
a ring topology (Fig. 5). We used a transfer rate of 100Mbps
for each port and a wire delay of 330ns for each link. The
hosts also periodically exchanged PTP messages for clock
synchronization. Based on PTPd version 2.3.2, these messages
have a payload of 76 bytes each and a period of 500ms. We
assumed periodic exchanges of maximum-sized frames between
hosts to model lower-priority traffic, which results in worst-case
blocking delay for the IC protocol messages.

The crash recovery times were set to 1 s. Error rates are
reported as the mean number of errors per microsecond.
Unless mentioned otherwise, experiments assume the strong
correctness criterion defined in §II-B1.

A. Analysis vs. Simulation

We compared Unsafe-Analysis (with reliability anoma-
lies) and Mono-Analysis (without reliability anomalies)
with simulation baselines Sim-v1 and Sim-v2 to evaluate
the pessimism incurred due to reliability anomalies elimination.
Sim-v1 knows in advance the message error probabilities

for each IC protocol message. Thus, for every error type,
Sim-v1 draws a number uniformly at random from the range
[0, 1], compares it with the respective error probability to
decide whether the error is encountered or not, and if the error
is encountered, simulates the corresponding error scenario.
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E1
<latexit sha1_base64="VPyZXLBicAuCJD97AWPzgIW+wUY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JUQY8FETxWtLXQhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgpr6xubW8Xt0s7u3v5B+fCobeJUM95isYx1J6CGS6F4CwVK3kk0p1Eg+WMwvp75j09cGxGrB5wk3I/oUIlQMIpWur/pe/1yxa25c5BV4uWkAjma/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/mp07JmVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbzyM6GSFLlii0VhKgnGZPY3GQjNGcqJJZRpYW8lbEQ1ZWjTKdkQvOWXV0m7XvPOa/W7i0qjmsdRhBM4hSp4cAkNuIUmtIDBEJ7hFd4c6bw4787HorXg5DPH8AfO5w+3a41X</latexit>

E2
<latexit sha1_base64="4J942Rzwsku+Ck57z9itom4rqgE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JUQY8FETxWtLXQhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RTW1jc2t4rbpZ3dvf2D8uFRW8epYthisYhVJ6AaBZfYMtwI7CQKaRQIfAzG1zP/8QmV5rF8MJME/YgOJQ85o8ZK9zf9er9ccWvuHGSVeDmpQI5mv/zVG8QsjVAaJqjWXc9NjJ9RZTgTOC31Uo0JZWM6xK6lkkao/Wx+6pScWWVAwljZkobM1d8TGY20nkSB7YyoGellbyb+53VTE175GZdJalCyxaIwFcTEZPY3GXCFzIiJJZQpbm8lbEQVZcamU7IheMsvr5J2vead1+p3F5VGNY+jCCdwClXw4BIacAtNaAGDITzDK7w5wnlx3p2PRWvByWeO4Q+czx+4741Y</latexit>

E3
<latexit sha1_base64="Zln1WbjdKhPyLGKFQA2yXKJyBMQ=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoOQU9hNBD0GRPAY0TwgWcLsZDYZMju7zPQKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkQKg6777eQ2Nre2d/K7hb39g8Oj4vFJy8SpZrzJYhnrTkANl0LxJgqUvJNoTqNA8nYwvpn77SeujYjVI04S7kd0qEQoGEUrPdz2a/1iya24C5B14mWkBBka/eJXbxCzNOIKmaTGdD03QX9KNQom+azQSw1PKBvTIe9aqmjEjT9dnDojF1YZkDDWthSShfp7YkojYyZRYDsjiiOz6s3F/7xuiuG1PxUqSZErtlwUppJgTOZ/k4HQnKGcWEKZFvZWwkZUU4Y2nYINwVt9eZ20qhWvVqneX5bq5SyOPJzBOZTBgyuowx00oAkMhvAMr/DmSOfFeXc+lq05J5s5hT9wPn8AunONWQ==</latexit>

S1
<latexit sha1_base64="oNnNZcTeqZm2GgeSDGAK5AM6mnM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JUQY8FLx4rtbXQhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikY+JUM95msYx1N6CGS6F4GwVK3k00p1Eg+WMwuZ37j09cGxGrB5wm3I/oSIlQMIpWarUG3qBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDG/8TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddKp17zLWv3+qtKo5nEU4QzOoQoeXEMD7qAJbWAwgmd4hTdHOi/Ou/OxbC04+cwp/IHz+QPMv41l</latexit>

S2
<latexit sha1_base64="5p8kJkZEn+7hxSiidiExpg88e0w=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JUQY8FLx4rtbXQhrLZTtqlm03Y3Qgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSK4Nq777RQ2Nre2d4q7pb39g8Oj8vFJR8epYthmsYhVN6AaBZfYNtwI7CYKaRQIfAwmt3P/8QmV5rF8MNME/YiOJA85o8ZKrdagPihX3Jq7AFknXk4qkKM5KH/1hzFLI5SGCap1z3MT42dUGc4Ezkr9VGNC2YSOsGeppBFqP1ucOiMXVhmSMFa2pCEL9fdERiOtp1FgOyNqxnrVm4v/eb3UhDd+xmWSGpRsuShMBTExmf9NhlwhM2JqCWWK21sJG1NFmbHplGwI3urL66RTr3mXtfr9VaVRzeMowhmcQxU8uIYG3EET2sBgBM/wCm+OcF6cd+dj2Vpw8plT+APn8wfOQ41m</latexit>

S3
<latexit sha1_base64="a1S1M2LODHzibQDZ37iJbIama/U=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoOQU9hNBD0GvHiMxDwgWcLspDcZMju7zMwKYcknePGgiFe/yJt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJaPZpqgH9GR5CFn1Fip2RzUBsWSW3EXIJvEW5ESrNAYFL/6w5ilEUrDBNW657mJ8TOqDGcCZ4V+qjGhbEJH2LNU0gi1ny1OnZErqwxJGCtb0pCF+nsio5HW0yiwnRE1Y73uzcX/vF5qwls/4zJJDUq2XBSmgpiYzP8mQ66QGTG1hDLF7a2EjamizNh0CjYEb/3lTdKuVrxapfpwXaqXV3Hk4QIuoQwe3EAd7qEBLWAwgmd4hTdHOC/Ou/OxbM05q5lz+APn8wfPx41n</latexit>

S4
<latexit sha1_base64="eX9iP+mYZ9DIOxraoWW1AxRrFTA=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHhRHaRRI8kXjxikEcCGzI7NDBhdnYzM2tCNnyCFw8a49Uv8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzto4SxbDFIhGpbkA1Ci6xZbgR2I0V0jAQ2Ammdwu/84RK80g+mlmMfkjHko84o8ZKzeagNiiW3Iq7BNkkXkZKkKExKH71hxFLQpSGCap1z3Nj46dUGc4Ezgv9RGNM2ZSOsWeppCFqP12eOidXVhmSUaRsSUOW6u+JlIZaz8LAdobUTPS6txD/83qJGd36KZdxYlCy1aJRIoiJyOJvMuQKmREzSyhT3N5K2IQqyoxNp2BD8NZf3iTtasW7rlQfaqV6OYsjDxdwCWXw4AbqcA8NaAGDMTzDK7w5wnlx3p2PVWvOyWbO4Q+czx/RS41o</latexit>

S1
<latexit sha1_base64="oNnNZcTeqZm2GgeSDGAK5AM6mnM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JUQY8FLx4rtbXQhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikY+JUM95msYx1N6CGS6F4GwVK3k00p1Eg+WMwuZ37j09cGxGrB5wm3I/oSIlQMIpWarUG3qBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDG/8TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddKp17zLWv3+qtKo5nEU4QzOoQoeXEMD7qAJbWAwgmd4hTdHOi/Ou/OxbC04+cwp/IHz+QPMv41l</latexit>
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<latexit sha1_base64="oNnNZcTeqZm2GgeSDGAK5AM6mnM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JUQY8FLx4rtbXQhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikY+JUM95msYx1N6CGS6F4GwVK3k00p1Eg+WMwuZ37j09cGxGrB5wm3I/oSIlQMIpWarUG3qBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDG/8TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddKp17zLWv3+qtKo5nEU4QzOoQoeXEMD7qAJbWAwgmd4hTdHOi/Ou/OxbC04+cwp/IHz+QPMv41l</latexit>

S1
<latexit sha1_base64="oNnNZcTeqZm2GgeSDGAK5AM6mnM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBahp5JUQY8FLx4rtbXQhrLZbtqlm03YnQgl9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5QSKFQdf9dgobm1vbO8Xd0t7+weFR+fikY+JUM95msYx1N6CGS6F4GwVK3k00p1Eg+WMwuZ37j09cGxGrB5wm3I/oSIlQMIpWarUG3qBccWvuAmSdeDmpQI7moPzVH8YsjbhCJqkxPc9N0M+oRsEkn5X6qeEJZRM64j1LFY248bPFqTNyYZUhCWNtSyFZqL8nMhoZM40C2xlRHJtVby7+5/VSDG/8TKgkRa7YclGYSoIxmf9NhkJzhnJqCWVa2FsJG1NNGdp0SjYEb/XlddKp17zLWv3+qtKo5nEU4QzOoQoeXEMD7qAJbWAwgmd4hTdHOi/Ou/OxbC04+cwp/IHz+QPMv41l</latexit>

S3
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Fig. 5. Network topologies with static routes (dotted arrows) from E1 to other hosts. SPoF denotes “Single Point of Failure”.

Sim-v1 thus helps to isolate the pessimism incurred (if
any) in our recursive analysis procedure. In contrast, Sim-v2
simulates FIFO priority queues at the network layer and uses
Poisson processes to generate the respective fault events on each
host and on the network. These events may manifest as message
errors if they coincide with the message’s lifetime, e.g., as an
incorrect computation error if they coincide with the message’s
exposure interval. Sim-v2 evaluates the pessimism incurred
when upper-bounding the message error probabilities as a
function of the raw transient fault rates using the Poisson model.

Both Sim-v1 and Sim-v2 make the worst-case as-
sumption that any two faulty message copies are identical,
as in the analysis. The simulations were run as a discrete event
simulation for 100 000 iterations each to ensure that the 99th

percentile confidence intervals were of negligible magnitude
relative to the absolute values.

We compared Unsafe-Analysis, Mono-Analysis,
Sim-v1, and Sim-v2 for different topologies, host crash
error rates (0 or 10−8), switch crash error rates (0 or 10−8),
host corruption rates (0 or 10−5), switch corruption rates (0 or
10−5), and link corruption rates (0 or 0.001). We used higher
error rates than can be realistically expected as otherwise
the simulations would be extremely time-consuming. The
objectives of these comparisons are threefold. First, we compare
Mono-Analysis and Unsafe-Analysis to understand
the magnitude of pessimism due to correction terms. Second,
we compare Mono-Analysis and Unsafe-Analysis
with Sim-v1 as a baseline that yields results similar in
magnitude to what a probabilistic model checker would obtain.
Third, comparisons with Sim-v2 illuminate the magnitude of
pessimism incurred due to the message error analysis in §IV-C.

In Fig. 6(a), we illustrate the results for Np = 3 and
Nr = 2. Unsafe-Analysis exactly tracks Sim-v1, which
indicates that the recursive analysis presented in §IV-D incurs
no substantial pessimism. Mono-Analysis also closely
tracks Unsafe-Analysis and Sim-v1, (i.e., it does not
exhibit notable pessimism), which we attribute to the anomaly
correction terms having negligibly small magnitudes when not
needed. In contrast, the analysis results do not closely track
Sim-v2 for some configurations (with the maximum observed
relative error of about 2.1×). Higher pessimism results from
the analysis to upper-bound host corruption errors (§IV-C1),
since the exposure intervals for different protocol tasks overlap,
i.e., the exposure interval of each task includes the time since
the start of the IC protocol instance.

B. Case Studies

We conducted the following experiments to understand
the benefits (if any) of using the weak correctness criterion
(whenever the application permits), and the effects of non-
uniform fault rates and different network topologies on the
protocol reliability. The error rates used are much smaller than
those used in the previous section, since the analysis runtime
(unlike simulations) does not depend on the magnitude of error
rates. In particular, we use realistic error rates derived from
prior studies on transient fault rates [34, 35].

We evaluated FIT bounds for the strong and weak correctness
criteria for six configurations with Np ∈ {2, 3, 4} and Nr ∈
{1, 2}. We only considered crash errors in this experiment
(each host has a crash rate of 10−15).

The results in Fig. 6(b) show that the FIT bounds for the
strong criterion are orders of magnitude higher than the FIT
bounds for the weak criterion, which indicates that the protocol
is much more likely to violate the strong criterion (as expected).
Therefore, an effective reliability analysis must account for
the weak criterion whenever it suffices for an application, to
obtain more accurate failure rates.

In addition, when the number of processes is increased from
two to three, while the FIT bounds for the weak criterion
decrease, the FIT bounds for the strong criterion remain the
same. This observation corroborates the findings from classical
BFT theory (which is modeled by the strong correctness
criterion) that going from an odd number of replicas to an
even number of replicas does not yield any reliability benefits.

Surprinsingly, the results in Fig. 6(b) indicate that additional
rounds seemingly never help. This is a consequence of crash
errors, which dominate in these scenarios, since a crash is
likely to keep the node unavailable for all rounds of the
protocol. We repeated a similar experiment for Np = 3 while
considering only network corruption errors. The resulting FIT
bounds for Nr = 1 and Nr = 2 were 3.623 × 10−5 and
6.993 × 10−14 (respectively), clearly indicating the benefit
of multiple rounds when the dominant error sources affect
different rounds independently.

Next, we sought to understand the impact of different
network topologies as well as non-uniform error rates on the
evaluated FIT analysis. Therefore, we considered only switch
crash errors in this experiment, assigned a crash error rate of
10−15 to switches S1 and S2 (see Fig. 5 for reference), whereas
other switches were assumed to execute error-free. Assuming
the strong correctness criterion, we computed FIT bounds for
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Fig. 6. (a) Failure probabilities estimated by Unsafe-Analysis, Mono-Analysis, Sim-v1, and Sim-v2 (in increasing order of Unsafe-Analysis
results). (b) FIT bounds estimated in the presence of host crash errors. (c) FIT bounds estimated in the presence of switch crash errors.

eight different configurations: line and ring topology, Np ∈
{3, 4}, and Nr ∈ {1, 2}. The results are shown in Fig. 6(c).

We observe that all configurations with line topology have
very high FIT bounds with negligible differences. This is
because switch S2 is a single point of failure (SPoF) in a
line topology with three or four hosts (two hosts cannot form
a quorum if Np = 4). In contrast, if three hosts are arranged
in a ring topology, the FIT bounds are low since no single
switch is a SPoF (failure results only if both S1 and S2 crash).
Interestingly, four hosts benefit from the ring topology only
if Nr = 2. We attribute this to a combination of two factors:
static routing and asymmetric IC protocol rounds. Static routing
prevents switches from immediately moving to an alternate
route. Thus, every single switch becomes a SPoF for Nr = 1.
However, for Nr = 2, if Π3 misses a message from Π1 in
the first round owing to S2’s crash, it still gets a chance to
receive Π1’s private value from Π4 in the second round, since
messages from Π4 and Π1 are not routed through S2.

To conclude, the proposed analysis enables a systematic
exploration of the parameter space with respect to protocol
reliability, which allows any weak links, or even the presence
of any “redundant redundancies,” to become apparent.

VI. RELATED WORK

Reliability analyses of real-time systems have been widely
studied in the context of field buses [10, 36, 37]. A common
theme across these works is modeling of transient faults either
probabilistically (as in this paper) or using periodic models with
bursts, and then leveraging the timing properties of the field
bus to bound the likelihood of transient faults affecting a given
message. Recently, similar results have also been obtained for
Ethernet-based real-time systems [38]. However, these prior
works primarily focus on low-level properties, e.g., Broster et
al.’s analysis [10] upper-bounds the probability of an individual
message’s timely transmission over CAN despite fault-induced
retransmissions. In contrast, our contribution is to leverage such
message-level analyses to evaluate the failure rate of a complex,
higher-level, multi-round distributed agreement protocol.

Prior work on Byzantine fault tolerance has not inves-
tigated BFT protocols from the perspective of hard real-
time predictability and transient faults. For instance, classic
high-level Byzantine safety guarantees (e.g., 3f + 1 pro-
cesses can tolerate up to f Byzantine faults) are oblivious

to non-uniform fault rates across different components of
the system that arise due to environmental disturbances.
In contrast, our analysis evaluates a hard real-time CPS-
friendly implementation of a BFT protocol, considers timing
delays in our correctness definitions, and explicitly models
PE nodes, network switches, and network links.

Ryan et al. [39] presented the design and implementation of
an IC protocol suitable for real-time applications based on time-
triggered CAN (TTCAN). In contrast, our goal is to realize
such protocols over point-to-point Ethernet topologies based on
message-passing hard real-time periodic tasks. In future work,
it would be interesting to transfer our analysis methodology to
quantify the reliability of Ryan et al.’s TTCAN-based design.

Simulations and probabilistic model checking are alternate
techniques to solve the reliability analysis problem, but they
do not account for reliability anomalies. These alternatives
also suffer from scalability issues when the error probabilities
are very small. Simulations must be run for excessively long
durations to estimate the failure rate with high confidence, and
probabilistic model checkers such as PRISM [40] need to fall
back on exact model checking to avoid incorrect results due to
floating-point noise. For example, evaluting the reliability of
even a very basic distributed system [41] using PRISM takes
up to a few hours when exact representations are used (whereas
otherwise, it takes only a few seconds).

VII. CONCLUSION

In this work, we presented the first quantitative reliability
analysis of real-time systems connected by point-to-point
networks (such as Ethernet) in the presence of environmentally
induced Byzantine errors. Our analysis explicitly models hosts,
network switches, and network links, and considers the effect
of transient faults in any of them. Importantly, our analysis
is free from reliability anomalies, i.e., when a non-maximal
fault rate in some component can counter-intuitively result in
an increase of the system’s overall failure rate. In fact, to the
best of our knowledge, this is the first work to formalize the
concept of reliability anomalies, and to propose techniques to
eliminate such anomalies in a hard real-time setting. In future
work, it would be interesting to evaluate a practical prototype
of the analyzed protocol, and to incorporate recent advances
in real-time Ethernet standards related to flow integrity, such
as different stream reservation and path control protocols, into
our quantitative reliability analysis framework.
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APPENDIX

Recall the recursive analysis from §IV-D. We eliminate
reliability anomalies when using Algorithm 2 by replacing
Pfail with Pfail-mono in the algorithm. We defined Pfail-mono

for a simplified scenario in §IV-E. In this section, we show
how Pfail-mono can be defined for a generic scenario, i.e., for
different instances of the recursive function in Algorithm 2
and for different network topologies.

For brevity, we first introduce a shorthand notation (see
Table II) to denote the exact error probabilities and the
conditional failure probabilities used in Algorithm 2. For each
Pi in Table II, we let Pi = 1 − Pi. Note that the shorthand
notation is defined with respect to the specific iteration of the
recursive analysis, i.e., pertaining to the analysis of message
Mi,k(α) specifically. To start with, we assume that message
Mi,k(α) is routed through a single switch Sl. Later, we show
how the results can be extended to more general topologies.

Using the shorthand notation, Pfail returned at the end of
function PROBANALYSISRECSM(U ,O, C,P, E) is defined as
follows. If all events in X are being analyzed for the first
time during the recursive analysis, i.e., the condition x ∈ E (in
Line 26) evaluates to false for each x ∈ X , then

Pfail =



P1 · C1

+P1 · P2 · C2

+P1 · P2 · P3 · C3

+P1 · P2 · P3 · P4 · C4

+P1 · P2 · P3 · P4 · P5 · C5

+P1 · P2 · P3 · P4 · P5 · P6 · C6

+P1 · P2 · P3 · P4 · P5 · P6 · C7


. (1)

In case an event in X has already been analyzed during an
earlier stage of the recursion, the corresponding case analysis
is skipped, since x ∈ E would evaluate to true (see Line 26).
In this case, if, say, event “all round r msgs. omitted at source

Ei” has already been analyzed, Pfail for this recursion step is
defined by setting probabilities P1 and C1 to zero in Eq. (1).
Thus, in the following, we assume Pfail is defined generically
as in Eq. (1). The results can be extrapolated to all scenarios
(i.e., to all instances of the recursive function) by setting the
appropriate probabilities to zero.

Clearly, since Pfail relies on complementary probability
terms Pi’s, it is not apparent if Pfail is monotonic in all Pi’s,
and if not, how can Pfail ’s definition be enhanced (while
being safe) to ensure monotonicity. Thus, to assist with the
derivation of the correction terms (and in a way that can also
be generalized to any number of switches), we express Pfail

in a canonical form consisting of only Pi’s, i.e., where all Pi’s
in Eq. (1) are replaced with 1− Pi, i.e.,

Pfail = T1 + T2 + T3 + T4 + T5 + T6 + T7, (2)
where T1 = C7,

T2 =

6∑
i=1

Pi(Ci − C7),

T3 = −
5∑
i=1

6∑
j=i+1

PiPj(Cj − C7),

T4 =

4∑
i=1

5∑
j=i+1

6∑
k=j+1

PiPjPk(Ck − C7),

T5 = −
3∑
i=1

4∑
j=i+1

5∑
k=j+1

6∑
l=k+1

PiPjPkPl(Cl − C7),

T6 =

2∑
i=1

3∑
j=i+1

4∑
k=j+1

5∑
l=k+1

6∑
m=l+1

(
PiPjPkPlPm
(Cm − C7)

)
,

and T7 = −P1P2P3P4P5P6(C6 − C7).

In Eq. (2), if each Ci is greater than or equal to C7, Pfail is
monotonic in each Pi. However, even though C7 corresponds
to the conditional failure probability in an error-free scenario
whereas each Ci corresponds to a conditional failure probability
in an error scenario, Ci can be smaller than C7 because of the
anomaly that omission errors can sometimes reduce the failure
chances. Instead, for each Ci, we rely on a boolean value Bi
that can be evaluated at analysis runtime to denote whether
Ci ≥ C7, based on the following definition:

if Ci ≥ C7 then Bi = 1 else Bi = 0. (3)

Using Eq. (3), we rewrite each term Ci − C7 in Eq. (2) as

Ci − C7 = Bi · |Ci − C7| − (1−Bi) · |Ci − C7|. (4)

Next, using Eq. (4), and relying on the fact that all
probabilities (i.e., each Pi and Ci) are positive, we split
Pfail (Eq. (2)) into two terms Pfail,pos and Pfail,neg , such
that Pfail,pos is guaranteed to be non-negative and Pfail,neg is



TABLE II
SHORTHAND NOTATION FOR THE EXACT MESSAGE ERROR PROBABILITIES AND INTERMEDIATE CONDITIONAL FAILURE PROBABILITIES USED IN

ALGORITHM 2. MESSAGE Mi,k(α) IS ASSUMED TO BE ROUTED THROUGH A SINGLE SWITCH Sl IN THIS CASE.

Label Error event x in Line 26 Error event probability P (x) Conditional probability Pcond

X1 x = “all round r msgs. omitted at source Ei” P1 C1 (Line 32)
X2 x = “all round r msgs. omitted at switch Sl” P2 C2 (Line 32)
X3 x = “all round r msgs. omitted at dest. Ek” P3 C3 (Line 32)
X4 x = “round r frame from Πi to Πk omitted by NW” P4 C4 (Line 32)
X5 x = “all round r msgs. corrupted at source Ei” P5 C5 (Line 44)
X6 x = “round r frame from Πi to Πk corrupted by NW” P6 C6 (Line 44)

- x = “message Mi,k(α) is transmitted error-free” - C7 (Line 50)

TABLE III
DEFINITION OF EACH Ti,neg AND Ti,neg USED IN EQ. (5).

i Ti,pos Ti,neg

1 C7 0

2
6∑

i=1
PiBi|Ci − C7| −

6∑
i=1

Pi(1−Bi)(|Ci − C7|)

3
5∑

i=1

6∑
j=i+1

PiPj(1−Bj)(|Cj − C7|) −
5∑

i=1

6∑
j=i+1

PiPjBj(|Cj − C7|)

4
4∑

i=1

5∑
j=i+1

6∑
k=j+1

PiPjPkBk(|Ck − C7|) −
4∑

i=1

5∑
j=i+1

6∑
k=j+1

PiPjPk(1−Bk)(|Ck − C7|)

5
3∑

i=1

4∑
j=i+1

5∑
k=j+1

6∑
l=k+1

PiPjPkPl(1−Bl)(|Cl − C7|) −
3∑

i=1

4∑
j=i+1

5∑
k=j+1

6∑
l=k+1

PiPjPkPlBl(|Cl − C7|)

6
2∑

i=1

3∑
j=i+1

4∑
k=j+1

5∑
l=k+1

6∑
m=l+1

PiPjPkPlPmBm(|Cm − C7|) −
2∑

i=1

3∑
j=i+1

4∑
k=j+1

5∑
l=k+1

6∑
m=l+1

PiPjPkPlPm(1−Bm)(|Cm − C7|)

7 P1P2P3P4P5P6(1−B6)(|C6 − C7|) −P1P2P3P4P5P6B6(|C6 − C7|)

guaranteed to be non-positive. That is,

Pfail = Pfail,pos + Pfail,neg , where (5)

Pfail,pos =

7∑
i=1

Ti,pos , Pfail,neg =

7∑
i=1

Ti,neg ,

and Ti,neg , Ti,neg are defined as in Table III.

Given Eq. (5), it is trivial to come up with an over-estimation
of Pfail (since under-approximation is unsafe) that is also
monotonic in each Pi by negating all the negative terms, i.e.,

Pfail-mono = Pfail −
7∑
i=1

Ti,neg =

7∑
i=1

Ti,pos . (6)

The aforementioned procedure can be generalized for more
number of switches, which is the case for line and ring
topologies. In particular, with every extra switch in the route
from Πi to Πk (recall that Mi,k(α) is the message being
analyzed), we need to deal with one extra error probability
term, and thus the definition of Pfail (Eq. (2)) would be updated
accordingly. For example, with one additional switch, Pfail

would be defined as follows:

Pfail = T1 + T2 + T3 + T4 + T5 + T6 + T7 + T8, (7)
where T1 = C8,

T2 =

7∑
i=1

Pi(Ci − C8),

T3 = −
6∑
i=1

7∑
j=i+1

PiPj(Cj − C8),

T4 =

5∑
i=1

6∑
j=i+1

7∑
k=j+1

PiPjPk(Ck − C8),

T5 = −
4∑
i=1

5∑
j=i+1

6∑
k=j+1

7∑
l=k+1

PiPjPkPl(Cl − C8),

T6 =

3∑
i=1

4∑
j=i+1

5∑
k=j+1

6∑
l=k+1

7∑
m=l+1

PiPjPkPlPm(Cm − C8),

T7 = −
2∑
i=1

3∑
j=i+1

4∑
k=j+1

5∑
l=k+1

6∑
m=l+1

7∑
n=m+1

(
PiPjPkPlPmPn

(Cm − C8)

)
,

and T8 = P1P2P3P4P5P6P7(C7 − C8).
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