
Scalable Memory Reclamation for Multi-Core, Real-Time Systems

Yuxin Ren, Guyue Liu, Gabriel Parmer

The George Washington University

Washington, DC, USA

{ryx, guyue, gparmer}@gwu.edu

Björn Brandenburg

Max Planck Institute for Software Systems

Kaiserslautern, Germany

bbb@mpi-sws.org

Abstract—A core challenge in best utilizing an increasing
number of cores in real-time systems is addressing the problem
of efficient and predictable resource sharing. Traditional mech-
anisms for mutual exclusion, such as locks, limit parallelism due
to serialized resource access. Relaxing mutual exclusion, reader-
writer locks enable selective parallelism for a subset of accesses,
but can suffer from increased implementation overheads. In all
such implementations, the costs of cache-coherency alone can be
prohibitive for an increasing number of cores.

This paper investigates the use of techniques such as Read-
Copy Update (RCU) to enable truly parallel access to data-
structures. Such techniques optimize for data-structure read-
paths, and can completely avoid stores to shared structures,
thus avoiding cache-coherency overheads. We show that existing
implementations of preemptive RCU aren’t designed to provide
real-time latencies, and require a potentially unbounded amount
of dynamically allocated memory. Thus, we introduce two
new implementations that are both predictable and efficient,
and a matching analysis that establishes bounds on memory
consumption. We additionally provide a schedulability anal-
ysis that demonstrates the effectiveness of scalable read-side
operations, achieving consistently higher schedulability than
existing techniques. We further apply the analysis to provide
admission control for a soft real-time application to both achieve
higher throughput than existing approaches (up to 40% higher)
while limiting 99th percentile read-path latencies (4x lower than
existing techniques).

I. INTRODUCTION

The increasing utility and availability of multi-core pro-

cessors in embedded systems motivates efficiently and pre-

dictably harnessing their parallel computation capacity. Multi-

core systems promise a decrease in size, weight, and power

(SWaP) by effectively consolidating disparate functionalities

onto a single processor, while possibly increasing a system’s

capabilities. However, the use of multi-core processors in

real-time systems comes with a number of challenges, in-

cluding contention in hardware resources such as caches,

memory buses, and DRAM. In particular, prior work has

devoted significant attention towards developing effective

mechanisms and timing analyses for the controlled sharing

of software data-structures in cache-coherent architectures.

Such techniques are essential to effectively utilize multi-core

systems. However, most of this research is based on locks that

induce expensive cache-coherency traffic, and impose mutual

exclusion that sequences parallel operations. To achieve high

∗This material is based upon work supported by the National Science
Foundation under Grant No. CNS 1149675, ONR Award No. N00014-14-
1-0386, and ONR STTR N00014-15-P-1182 and N68335-17-C-0153. Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of
the National Science Foundation or ONR.

utilization with predictable behavior given an ever-increasing

number of cores, techniques are necessary that minimize

cache-coherency operations and avoid sequencing otherwise

parallel computation.

In a parallel development, high-end computation in data-

centers is seeing an increased need for predictable execution.

A single request from a client often results in cascades

of many sub-requests (often hundreds) [1]. The latency of

the client’s request is often dependent on some function of

the maximum latency for any of the sub-requests. This has

motivated work into reducing the heavy tail of latency in

data-centers [2]. These systems already contain many cores

(for example, HP Superdome systems with over 200 cores),

often spread across multiple sockets. Thus, there is benefit

to applying techniques that provide increased predictability

while effectively harnessing the system’s parallelism. From

embedded systems up to the data-center, predictably utilizing

parallel resources is a pervasive, important challenge.

This paper investigates real-time Scalable Memory Recla-

mation (SMR), which applies SMR techniques to real-time

systems. SMR enables unsynchronized concurrent access of

readers to data-structures. By eliding locks and other forms

of synchronization, shared resource access requires no spe-

cial treatment and is analytically an extension of sequential

code. However, this lack of synchronization causes obvious

challenges. Read-Copy-Update (RCU) [3] can be used for

data-structure updates that are made by copying (a part of)

the data-structure into newly allocated memory, updating the

copy, and atomically replacing the old version with the new.

This completely avoids synchronization in the read path, and

minimizes it in the update path. Unfortunately, it presents a

new problem: the memory for the old (parts of the) data-

structure must eventually be reclaimed for reuse, but only

after no reader is accessing it any longer. RCU converts a

scalability problem into a garbage collection problem.

SMR techniques solve the garbage collection problem

by conservatively ascertaining whether a memory node that

has recently been disconnected from a data-structure is still

possibly accessed by a concurrent thread via stale thread-

local references. This is determined based on the concept

of a grace period [3]. A grace period starting at time t1,

involves calculating – and often waiting for – a time t2,

where t2 is a time when certainly no references exist to

nodes removed from the data-structure before time t1. A

node made unreachable within the data-structure, and freed

at time t0 (< t1) can only be reclaimed and reallocated after

time t2. SMR techniques calculate a quiescence point – the

time when a grace period has elapsed. Before a quiescence

1



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  5  10  15  20  25  30  35  40

C
o
s
t 

(u
s
)

Number of Cores

(a) Read Path

U-RCU
RW ticket lock

Ticket lock
MCS lock

RT-ParSec
Temporal

 0.25

 1

 4

 16

 64

 256

 1024

 0  5  10  15  20  25  30  35  40
Number of Cores

(b) Update Path

Fig. 1: 99th percentile measured cost of synchronization primitives

point is reached and previously freed memory is reclaimed, a

potentially large amount of memory will accumulate. Clearly,

to be practical in a real-time system, the maximum amount

of accumulated garbage memory must be bounded a priori.

Contributions. This paper investigates three aspects of real-

time SMR. First, we introduce two real-time SMR implemen-

tations and show that real-time SMR increases scalability and

predictability by reducing worst-case blocking time. Second,

we determine the timing properties of quiescence calculations,

and integrate them into a response-time analysis of a hard

real-time system. Third, we calculate memory bounds for

the system and consider the trade-off between the overhead

of frequent quiescence calculation, and the memory build

up from infrequent quiescence calculation. With the goal of

system schedulability, we introduce a quiescence frequency

selection algorithm to minimize memory consumption.

Three SMR implementations are studied: (1) U-RCU [3] –

a preemptive version of RCU quiescence detection1, (2) RT-

ParSec – a variant of ParSec [4] focused on scalability and

adapted to real-time systems, and (3) Time-based quiescence

– which has been used in a non-preemptive environment

to achieve scalable predictability [5], and which we here

adapt to preemptive environments. We investigate all three

approaches as they each represent different trade-offs between

the necessary hardware and system support, and the realized

level of quiescence scalability.

In §VII, we evaluate these real-time SMR techniques in

two environments. First, using the response-time analysis

derived in §VI, we study their impact on system schedulability

compared to conventional techniques such as non-preemptive

spin-locks, while also investigating the resulting increase in

memory consumption due to the SMR facilities. Second,

we apply SMR to memcached, a popular cloud service that

is used in latency-sensitive environments [6]. We combine

admission control with our timing analysis to provide soft

real-time guarantees and bounded memory consumption.

II. BACKGROUND AND RELATED WORK

A. Locks and Reader-Writer Locks

Locks serialize critical section execution of data-structure

operations. This makes analysis of the operation’s correctness

as simple as for sequential code at the cost of losing par-

allelism. Reader-Writer (RW) locks allow readers to access

critical sections in parallel with each other, while updates are

1Note that RCU includes two separate functionalities. First, it provides
an SMR implementation. This is the main focus of this paper. Second,
it provides the read-copy-update namesake technique for updating data-
structures. We assume this latter technique is used with each of the studied
SMR implementations.

t

R

W

R

t

R

W

R

t

R

W

Re
x
e
c
u
ti

n
g

d
e
a
d
li
n
e

re
le

a
s
e

b
lo

c
k
e
d

(a)

(b)

(c)

c
o
m

p
le

ti
o
n

e
x
e
c
u
ti

n
g
 r

e
a
d

R
e
x
e
c
u
ti

n
g
 w

ri
te

w

1

2

3

1

2

3

1

2

3

Fig. 2: Example schedules of two readers (τ1, τ2) and one writer
(τ3). (a) mutex; (b) RW locks; (c) real-time SMR.

still mutually exclusive with other writers and readers. Past

research in the timing analysis of locks has considered many

different dimensions, such as should waiting tasks spin or

suspend [7], the impact of preemptive versus non-preemptive

critical sections [8], and how to analyze read-write locks [9].

B. Challenges with Locks

Cache-coherency overheads. An inherent limitation of lock-

ing algorithms is that they explicitly coordinate synchronizing

tasks with writes to flags, counters, or pointers managed

in shared control data-structures (i.e., the lock), which can

trigger a substantial amount of cache-coherency traffic, and

these hardware overheads inflate the worst-case overhead of

locks. Figure 1 details maximum overheads observed when

using different synchronization primitives including a ticket-

lock, an MCS lock [10], a RW ticket lock [9], U-RCU and two

real-time SMR variants using the hardware detailed in §VII.

The two real-time SMR primitives introduced in this paper

incur the least cost in the read path, while the maximum cost

of other lock-based approaches increases significantly as the

number of cores in the system increases. For the update-path,

as explained later, real-time SMR implementations utilize an

MCS lock, and thus exhibit the same cost as MCS locks.

Worst-case blocking. SMR is unique in that it attempts

to minimize synchronization between readers and writers.

Figure 2 shows how the blocking time of locks compares

to that of SMR. For example, with a mutex (Figure 2(a)),

thread (or task) τ1 delays both τ2 and τ3, and can cause

them to miss their deadlines. While RW locks (Figure 2(b))

reduce blocking time incurred by τ2, τ3 still must block for

all readers to finish, and still misses its deadline. For real-

time SMR (Figure 2(c)), the blocking time of τ3 is further

reduced by running readers concurrently with writers. As a

result, all tasks meet their deadlines. We next discuss how

real-time SMR achieves this.

2



ba ca

read(a)

lookup(b)

1

2

update(b)

read(b)

1

ba ca

process(b)

copy & modify(b')2

b'

a ca

process(b)

atomic_update(a)

1

2

b'

b a ca

process(b)

synchronize()

1

2

b'

b a ca

finish

reclaim(b)

1

2

b'

b

 free memory  live memory  zombie memory garbage

(a) (b) (c) (d) (e)
Fig. 3: Thread τ1 reads node b while thread τ2 concurrently updates node b. τ2 locates node b to update. Instead of directly changing b, τ2 allocates a
new object b’, copies b’s content to b’ and performs modification. During this modification, τ2 does not interfere with readers as its private copy is not
reachable within the linked list. After modifying b’, τ2 atomically both connects the new node b’ and unlink the old node b from the list. The atomicity of
this modification ensures data-structure consistency. Node b can be reclaimed after a grace period elapses, which guarantees no reader is still accessing b.

C. Non-blocking Data-structures with RCU

RCU (Read-Copy-Update) [3] is a technique that separates

the read path that involves only loads from shared cache-

lines, from the update path that modifies the data-structure.

Thus the read path includes no explicit synchronization with

concurrent modifications to the data-structure. However, since

readers do not synchronize, data-structure nodes cannot be

modified in a way that would provide readers with a snapshot

of the data-structure that is inconsistent, or that has invalid

pointers. Hence, care must be taken to make sure that updates

to the data-structure are atomic with respect to readers. Fig-

ure 3 illustrates an RCU-based linked list example of parallel

writers and readers. The update path for RCU (1) finds the

node to be modified (Figure 3(a)), (2) copies that node into a

newly allocated structure (Figure 3(b)), (3) modifies that node

with the intended changes (Figure 3(b)), and (4) atomically

both unlinks the old node from the data-structure while

linking in the new node (Figure 3(c)).

RCU cannot trivially be applied to every data-structure

as it has several constraints: (1) RCU requires writers to

allocate and copy a node’s memory, which can be prohibitive

if nodes require large amounts of memory; (2) RCU requires

updates to be performed by a single atomic instruction, which

implies that nodes should only be reachable by a single

pointer, a constraint that rules out, for example, doubly linked

lists; (3) Updates are often mutually exclusive. To illustrate

constraint (3), suppose that in Figure 3(b) another thread

concurrently inserts a node after b. This inserted node would

be lost as a result of disconnecting b (see Figure 3(c)). We

therefore assume mutual exclusion among writers to rule out

such race conditions. We note that research exists that lifts

this assumption [11], [12]. (4) Lastly, memory reclamation

(Figure 3(e)) is required, which is discussed next. Despite a

restrictive programming model, RCU has been shown to scale

well [3] and is used in more than 6500 API calls in the Linux

kernel [13].

D. Scalable Memory Reclamation

Although RCU improves scalability, it raises a new chal-

lenge – reclaiming old unlinked objects. For example, in

Figure 3, node b’s memory needs to be reclaimed eventually.

However, it cannot be reclaimed immediately after node b is

unlinked, since a concurrent reader may potentially access the

memory, as illustrated in Figure 3(c). Therefore, the memory

reclamation has to be delayed to a point when no readers

can potentially hold a reference to the old data. As shown

in Figure 3(d), node b can be safely freed after τ1 finishes

reading b. Thus, memory keeps accumulating before it can

be reclaimed, which obviously creates a challenge in real-

time systems. Dynamic memory allocation is often avoided,

and unless the amount of memory that accumulates awaiting

reclamation can be bounded, it is difficult to characterize

a system’s worst-case behavior. The SMR implementation

impacts the amount of accumulated memory by (1) the

amount of time SMR takes to finish, and (2) the amount

of memory SMR reclaims. Predictable memory utilization

requires bounds on both factors. However, no prior SMR

implementation provides such guarantees.

E. Memory States

In real-time applications, some portion of memory may

never be freed (e.g., a and c in Figure 3), but the amount

of such memory has to be upper-bounded in any system.

Instead of bounding total memory consumption, we focus on

the dynamic memory consumption introduced by updates and

real-time SMR. This part of dynamic memory goes through

a sequence of states:

• Live memory. Memory that is both allocated and reachable

in the data-structure, such as b and b’ in Figure 3(b).

• Zombie memory. Memory that has been unlinked from

the data-structure, but can still be referenced by others

(pending a grace period), such as b in Figure 3(c).

• Garbage. Unreachable, freed memory that has yet to be

reclaimed (b in Figure 3(d)).

• Freed memory. Memory has been reclaimed and is avail-

able to future allocation (b in Figure 3(e)).

F. SMR API

The primary goal of SMR implementations is to distinguish

garbage from zombie memory. Toward this, SMR implemen-

tations require that readers use explicit code annotations when

accessing the data-structure. Two common SMR interfaces are

provided for such annotations:

• enter() to declare the start of a code section in which

references to nodes can exist.

• exit() to declare the end of that section. No thread-local

references to nodes can remain after this.

The section between enter and exit is referred to as a “read-

side section” or “parallel section” interchangeably. Threads

are said to be in a quiescent state when they are not inside a

parallel section. A grace period is a time period during which

every thread becomes quiescent at least once. Another SMR

function is provided to detect the end of a grace period:

• synchronize() which enables the calling thread to wait

for a grace period to elapse.

3



1 void r e a d (D, i d e n t i f i e r ) {
2 enter ( ) ;

3 process ( lookup (D, i d e n t i f i e r ) ) ;

4 exit ( ) ;

5 }
6 void update (D, i d e n t i f i e r ) {
7 n = alloc_node ( ) ;

8 enter ( ) ;

9 e = lookup (D, i d e n t i f i e r ) ; / / f i n d e x i s t i n g node

10 copy ( n , e ) ; / / copy e t o n

11 modify ( n ) ; / / u p d a t e t h e c o n t e n t s

12 replace ( n , e ) ; / / add n and remove e

13 exit ( ) ;

14 free_node ( e ) ; / / f r e e a f t e r q u i e s c e n c e

15 }
16 void free_node ( e ) {
17 s y n c h r o n i z e ( ) ;

18 f r e e ( e ) ;

19 }

Fig. 4: Usage of a typical SMR API with a data-structure D.

writer

time

reader

reader

reader

grace periodenter exit

t0:unlink t1:sync t2

Fig. 5: Interaction between parallel sections, updates, & quiescence.

Figure 4 depicts example pseudocode illustrating the use

of SMR. Note that all read-path operations are delimited

by enter and exit, and free node must contain logic to

ensure a quiescence period has elapsed.

The key principle of SMR is that, if an object is unlinked

from the shared data-structure, it can be safely reused after a

grace period has passed. Because readers drop all references

to the object after they exit the read-side section, and it is no

longer linked within the data-structure, they cannot access the

object anymore. Figure 5 depicts SMR’s interaction between

parallel sections and quiescence detection. Read paths are

denoted as grey blocks. At time t0, a writer unlinks a node,

and at time t1, it calls synchronize to await the passage

of a grace period. The grace period extends past when any

reader active at time t1 has exited, and at that point (t2), the

system is quiescent. Thus, after time t2, it is safe to reclaim

the object unlinked at time t0.

G. Dynamic Memory Management

Real-time SMR requires dynamic memory management

(lines 7 and 18 in Figure 4), which is challenging in real-

time systems as it is both difficult to (1) reasonably bound

execution time, and (2) bound memory consumption due to

fragmentation. With SMR in real-time systems, we assume

size uniformity of the dynamic objects, and use a slab

allocator [14]. To avoid competing for access to a single

shared pool, the allocator uses hierarchical allocation with

thread-local memory caches, and then from within a global

allocation pool. That, combined with a slab allocator’s ability

to eliminate internal fragmentation, makes it appealing for

systems that require memory bounds. We further improve

the slab allocator by handling “remote frees” predictably.

However, as real-time memory allocation is out of scope,

these details can be found in the Appendix.

1 # d e f i n e RCU GEN CTR 0x2

2 s t a t i c pthread mutex t r c u s y n c l o c k ;

3 i n t r c u g e n c t r = 1 ;

4 i n t r c u r e a d e r c t r [NUMTHDS] ;

5 void r c u r e a d l o c k ( void ) { / / e n t e r

6 r c u r e a d e r c t r [ t h d i d ] = r c u g e n c t r ; / / r e c o r d c o u n t

7 }
8 void r c u r e a d u n l o c k ( void ) { / / e x i t

9 r c u r e a d e r c t r [ t h d i d ]−−; / / i n d i c a t e l e a v i n g

10 wake up wa i t e r s ( ) ;

11 }
12 void synchronize_rcu ( void ) {
13 lock ( r c u s y n c l o c k ) ;

14 / / suspend w a i t i n g f o r each r e a d e r t o c o m p l e t e

15 wait_for_readers ( ) ;

16 r c u g e n c t r ˆ= RCU GEN CTR; / / b i t w i s e xor

17 wait_for_readers ( ) ;

18 unlock ( r c u s y n c l o c k ) ;

19 }

Fig. 6: Simplified U-RCU implementation.

Summary. Although SMR avoids reader-side synchronization

and enables reader-writer parallelism, memory cannot be

reclaimed until quiescence has been achieved. Furthermore,

bounding memory utilization requires SMR to efficiently

reclaim garbage predictably. This makes it challenging to

naively apply existing SMR implementations in real-time

systems. Thus, this paper focuses on a real-time SMR im-

plementation (§IV), and its impact on both response times

and memory consumption in real-time systems (§VI).

III. SMR IMPLEMENTATION CASE STUDY: U-RCU

First, we introduce the preemptive quiescence detection in

User-level Read-Copy-Update (U-RCU) [3]. Figure 6 is the

simplified pseudo-code for this U-RCU implementation. A

global variable rcu gen ctr is initialized to 1 and a per-thread

variable rcu reader ctr is initialized to zero. The read path

simply records the global counter. When exiting, it unsets its

local counter, which signals that it has left the parallel section,

and wakes up threads waiting for quiescence (if any).

Toggled by synchronize rcu (line 16), the global

counter iterates through two states. These are used to deter-

mine if a read path started before or after the thread executing

the write path started waiting for a grace period to elapse.

The quiescing thread suspends in wait for readers wait-

ing for existing read paths to complete. Thus, returning

from synchronize rcu indicates a grace period elapses

and garbage can be reclaimed. For instance, in Figure 7,

synchronize rcu is invoked at t3, and then blocks awaiting

quiescence, which occurs at t4. When synchronize rcu

returns, it is safe to reclaim all memory freed before t3. A

lock ensures that only a single thread calculates quiescence

at a time (line 13). To reduce lock contention, a trick is

used: concurrently quiescing threads queue in a wait-free

queue, waiting for their quiescence to be calculated by the

head quiescing thread (not shown in the code). A detailed

explanation of U-RCU is provided by Desnoyers et al. [3].

Limitation. U-RCU has two challenges that limit its scala-

bility and predictability. From an implementation perspective,

when detecting quiescence, the modification of the global

counter causes cache-coherency traffic for all readers, and

the use of a lock increases overheads and blocking. From an

analytical perspective, without knowledge of when an object

became zombie memory, a quiescing thread has to suspend,

waiting for all pre-existing readers to complete their parallel

4



writer

reader

reader

reader

t1 t3: sync

U-RCURea-Time SMR

t4

RCU: block

t0: free(   ) t2: free(   )n1n0

Fig. 7: Example of quiescence calculation for different SMR approaches.
Three readers execute on separate cores, in parallel to an update path. At t0
(t2), node n0 (n1) is unlinked from the data-structure. At t3, the updating
thread attempts to quiesce (sync). U-RCU blocks awaiting quiescence which
occurs at t4 after all parallel sections active at t3 have exited. In contrast, RT-

ParSec calculates the most recent quiescence point, namely t1. RT-ParSec

does not block waiting for current readers to complete. Time t1 is the last
quiescence point: after that point a reader exists that prevents quiescence.
After this quiescence calculation, U-RCU can recycle objects unlinked before
t3 (n0 and n1), and RT-ParSec reclaims all garbage unlinked before the
calculated quiescence time t1 (n0).

sections. This couples the quiescence latency to each reader’s

worst-case response time.

IV. REAL-TIME SMR IMPLEMENTATION

We next introduce two real-time SMR implementations that

are both predictable, and provide bounds on garbage memory.

In contrast to U-RCU that blocks waiting for quiescence

among the currently active readers, real-time SMR instead

calculates the time most recently in the past when quiescence

was achieved. All memory deallocated before that time can be

reclaimed. Notably, this avoids the need for real-time SMR to

block on parallel readers, but possibly decreases the amount

of memory it can reclaim at a time.

A. RT-ParSec

RT-ParSec is a variant of ParSec [4] that has been

designed to provide guarantees on memory bounds, at the

expense of a decrease in scalability relative to ParSec. Simi-

lar to ParSec, RT-ParSec tags memory with the time that it

was freed, and each thread maintains the timing information

about when it enters and exits a parallel section. That timing

information is locally accessed via the timestamp counter (e.g.

Intel’s invariant timestamps described in §17.14.1 of [15]),

thus avoiding coherency traffic. To ensure that all queued

garbage memory is reclaimed, thus providing predictable

memory consumption, RT-ParSec calculates the most recent

time in the past when quiescence was achieved. In contrast, U-

RCU attempts await quiescence, thus it blocks waiting while

all current readers have left their read-side sections.

RT-ParSec pseudo-code is shown in Figure 8. RT-ParSec

and ParSec is the ps quiesce implementation. Specifically,

RT-ParSec only scans threads who are currently in their

parallel sections and returns the earliest time they entered

the parallel sections – the last quiescence time. This ensures

that all memory made unreachable before that returned time

point can be reclaimed (lines 27-30). In §VI, we show that

by controlling quiescence detection frequency, the amount of

collected garbage is bounded, which further guarantees that

the execution time of the reclamation loop is bounded (lines

27-30). In ParSec, each thread caches the timing information

of all other threads, and uses this cached information, where

possible, to determine if quiescence is achieved. Using cached

information avoids frequent access to remote cache lines, but

1 s t r u c t p a r s e c {
2 s t r u c t t h d d a t a {
3 t s c t e n t e r , e x i t ;

4 s t r u c t q u i e s c e q u e u e ∗q u i e s c e q ;

5 } t h d i n f o [NUM THDS ] ;

6 } ;

7 void ps_enter ( s t r u c t p a r s e c ∗ps ) {
8 s t r u c t t h d d a t a t = ps−>t h d i n f o [ thdid ] ;

9 t . e n t e r = rdtsc ( ) ;

10 }
11 void ps_exit ( s t r u c t p a r s e c ∗ps ) {
12 s t r u c t t h d d a t a t = ps−>t h d i n f o [ thdid ] ;

13 t . e x i t = t . e n t e r + 1 ;

14 }
15 t s c t ps_quiesce ( s t r u c t p a r s e c ∗ps ) {
16 t s c t q = rdtsc ( ) ;

17 f o r ( i n t i = 0 ; i < NUM THDS ; i ++) {
18 s t r u c t t h d d a t a t = ps−>t h d i n f o [ i ] ;

19 i f ( t . e x i t < t . e n t e r ) q = min ( t . e n t e r , q ) ;

20 }
21 re turn q ;

22 }
23 void ps smr ( s t r u c t p a r s e c ∗ps ) {
24 s t r u c t t h d d a t a t = ps−>t h d i n f o [ thdid ] ;

25 void ∗node = dequeue_peek ( t . q u i e s c e q ) ;

26 t s c t q = ps_quiesce ( ps ) ;

27 whi le ( node−>f r e e t s c < q ) {
28 free ( dequeue ( t . q u i e s c e q ) ) ;

29 node = dequeue_peek ( t . q u i e s c e q ) ;

30 }
31 }

Fig. 8: RT-ParSec SMR implementation adapted from ParSec

1 void ps_enter ( s t r u c t p a r s e c ∗ps ) {}
2 void ps_exit ( s t r u c t p a r s e c ∗ps ) {}
3 t s c t ps_quiesce ( s t r u c t p a r s e c ∗ps ) {
4 re turn rdtsc ( ) − PS GRACE PERIOD ;

5 }

Fig. 9: Temporal quiescence implementation. The struct

parsec and free node from Figure 8 are used directly.
PS GRACE PERIOD is computed from the task model, and timing
analysis (§VI).

leads to inaccurate quiescence calculation causing possibly

unbounded memory consumption. In contrast, RT-ParSec

directly gathers timing information from other cores, which

guarantees accurate quiescence calculation. On the other

hand, RT-ParSec causes more cache traffic, which decreases

scalability. A comparison of quiescence detection behavior

in U-RCU and RT-ParSec is depicted in Figure 7.

B. Temporal Quiescence

Hard real-time systems provide strong guarantees on the

execution properties of tasks in the system. This approach

to SMR calculates quiescence based entirely on the system

task model. The maximum parallel section length is known

a priori, and a response-time analysis can determine the

longest possible grace period (based on all task periods).

Thus, at a time t, the most recent quiescence point is simply

t minus this a-priori-calculated grace period. The pseudocode

is presented in Figure 9.

Temporal quiescence is used in the non-preemptive SPECK

kernel [5] to control the re-use of kernel data-structures.

However, an analysis of the worst-case data-structure access

time is comparably simple in a non-preemptive environment.

§VI demonstrates how to derive the longest-possible grace

period given a response-time analysis in the general case.

V. SYSTEM MODEL AND ASSUMPTIONS

Deferred memory reclamation will cause freed memory

to accumulate, which both inflates memory consumption

5



and increases garbage collection interference. Thus a co-

analysis of both memory consumption and response time is

mandatory to derive bounds necessary for predictable SMR.

This section introduces the system model, in preparation of

the corresponding analysis in §VI.

A. System Model

We consider a real-time workload consisting of N sporadic

tasks scheduled on M identical cores, τ = {τ0, . . . , τN}.

Each task consists of an infinite stream of jobs. Each task

τi is characterized by a tuple (ei, pi, ai). ei is the worst-case

execution time (WCET) of a job in τi, and pi is the minimum

inter-arrival time between jobs of τi. ai is the maximum

number of memory allocations made by one of τi’s jobs. Each

task has an implicit deadline equal to its period pi. A task’s

utilization is defined by ui =
ei
pi

. A job is pending from its

release until it completes. The response time ri denotes the

maximum duration that any job of τi remains pending. We

assume partitioned fixed-priority scheduling, as mandated, for

example, by AUTOSAR [16]. Each task is statically assigned

to a core, and each core schedules pending jobs in order of

decreasing task priority. The set of tasks with higher (lower)

priority than τi (on the same core as τi) is hpi (lpi).

B. Shared Resources

The tasks also share some global resources. When a job

is going to observe (update) a shared resource, it issues a

read (write) request, and is said to be a reader (writer). Γr
i

(Γw
i ) denotes the WCET of read (write) requests in task τi.

Similar to task response time, we define request response

time as the maximum duration from when a request is issued

until it completes. ∆r
i (∆w

i ) denotes the read (write) request

response time. For ease of notation, we make the simplifying

assumption that (1) there is one shared resource, (2) a job

issues at most one read and one write request, and that those

requests are not nested within each other. However, multiple

memory objects can be allocated or released during even one

write request. Note that these restrictions are not fundamental.

The presented analysis can be easily extended to multiple

resources and multiple non-nested requests per job by adding

up the blocking times of multiple requests or resource, as well

as the overall memory usage.

As discussed in §II, real-time SMR enables read requests to

run concurrently with other read or write requests. However

write requests use mutual exclusion. Similar to the RW-

FMLP [9], we assume non-preemptible task-fair mutexes

(such as ticket locks or MCS locks) are used to serialize

writers. When a job of task τi issues a write request,

τi becomes non-preemptive and executes the corresponding

locking protocol. The write request is satisfied once τi holds

the write lock, and preemption is disabled until τi completes

its write request. In contrast to the RW-FMLP under which

both read and write requests are both non-preemptive, only

write requests are non-preemptive in real-time SMR.

C. Memory Model

Hard real-time systems require predictable task execution

times to ensure deadlines are met, and bounded memory

requirements to prevent memory exhaustion. Though SMR

techniques show promise to enable low-overhead, predictable

parallelism, they do require both dynamic memory allocation,

and delayed reclamation. To bound the memory consumption

caused by SMR, every task must consume only a finite

amount of memory. To capture this constraint, we use the

release times of SMR memory operations to order all the

memory allocation and deallocation operations performed by

all tasks. Li is the maximum time interval between the ith

allocation and the ith deallocation (these two operations might

not refer to the same memory object). We use L∗ to represent

the maximum value of Li (i.e. L∗ = max
∀i

Li). L
∗ captures the

natural “ebbs and flows” of transient memory utilization in the

system, which is application and schedule specific. Between

the time the memory is freed, and the time it can be reused,

delayed memory reclamation further increases the amount of

required memory.

We assume that a job issues zero or more pairs of mem-

ory allocation and deallocation requests. This assumption is

consistent with the typical use of RCU where a new node

allocation is followed by the freeing of the old version of the

node. While write requests are done within non-preemptive

locks, memory operations are not necessarily protected by

the lock. Thus, L∗ is upper-bounded by the maximum re-

sponse time of writer tasks. Li can encode more complicated

allocation and free behaviors such as producer/consumer

or publisher/subscriber synchronization. Accurate L∗ bounds

can be computed with real-time calculus [17], but we leave

such extensions for future work.

With respect to memory consumption, this paper focuses

on bounding zombie and reclaimable memory, because the

amount of live memory is only determined by the applica-

tion’s memory usage patterns. The amount of zombie memory

is determined by the system’s scheduling policy and task’s

parallel section WCET. The SMR implementation and acti-

vation times determine the amount of garbage. SMR detects

quiescence, thus reclaims memory sporadically. The inter-

arrival time of quiescence detection for task τi is denoted by

qi. We assume that the quiescence detection is integrated into

the writer’s execution (i.e., as a function call). This is com-

monly the case. For example, the act of freeing memory can

trigger quiescence detection (line 17 in Figure 4). Separating

quiescience inter-arrivals from task inter-arrivals enables qui-

escence detection to be done infrequently to trade quiescence

overhead for larger accumulated amounts of non-reclaimed

memory. Quiescence detection could be implemented as a

separate task.

We make no assumptions about the locality of memory al-

locations and frees, thus assume all memory is remotely freed

in the worst-case. This means that the memory chunk is freed

on a core other than where it was allocated, a situation that

complicates per-core memory pools. We further assume that

memory can be balanced between local pools immediately in

case more memory is needed. This assumption is true for our

current slab allocator modulo external fragmentation in each

slab [14].

In the following analysis, we let r∗σ denotes the maximum

6



response time of quiescence tasks, α is the quiescence detec-

tion implementation overhead, and β is the implementation

cost of collecting a memory object.

VI. MEMORY AND RESPONSE-TIME ANALYSIS

Given the system model in §V and the system operation

overheads, we bound both the whole system’s worst-case

memory requirement and each task’s response time.

A. Worst-case Memory Consumption

A well-known upper bound on the number of jobs issued

by τi in any interval of length W is
⌈

W+ri
pi

⌉

(e.g. see [18]),

which implies a bound on the maximum memory needs.

Lemma 6.1: Within a time window W , the maximum

number of memory objects task τi can allocate is

Ai(W ) =

⌈

W + ri

pi

⌉

× ai. (1)

and the maximum number of memory objects allocated by

the whole system over a window W is

A(W ) =

N
∑

i=1

Ai(W ). (2)

Lemma 6.2: For any specific memory object allocation,

there will exist a memory object that can be reclaimed after

at most δ time, where

δ = L∗ +∆∗ + q∗. (3)

Proof Sketch: Based on the definition of L∗, for any

allocation, there is a corresponding deallocation within L∗.

That deallocated (zombie) memory will become garbage after

no later than when a grace period (∆∗) has elapsed. After

this time interval, all threads will have exited all parallel

sections. Hence, it will be collected by any following memory

reclamation, which happens at the latest when the next

quiescence task is released (q∗). We consider the maximum

of all qi to reflect that the memory could be reclaimed by any

task.

Because U-RCU will block for ∆∗ as part of its quiescence

detection (§III), a memory object can be reclaimed by U-

RCU even if ∆∗ has not elapsed before quiescence detection

is performed. For example, in Figure 7, memory node n1 can

be reclaimed by U-RCU. Thus, we have a simplified result

for the U-RCU case:

δU = L∗ + q∗. (4)

Theorem 6.3: The maximum total amount of zombie and

garbage memory objects in the whole system is upper-

bounded by:

G∗ = A(δ + r∗σ) =
N
∑

i=1

(

1 +

⌈

δ + r∗σ + ri

pi

⌉)

× ai. (5)

Proof Sketch: Recall that r∗σ captures the maximum

amount of time quiescence detection takes to finish. From

lemma 6.2, at any point in time t, the number of collected

objects is no less than the number of memory allocations

before t − (δ + r∗σ). Therefore the worst-case memory con-

sumption is the maximum amount of memory allocated by

all tasks during a time interval of length δ + r∗σ .

As an example, the maximum memory consumption is illus-

trated in Figures 3(b) - (d), where new objects have been

allocated while old ones are not reclaimed yet, thus zombie

and garbage memory keeps accumulating until SMR finishes

quiescence detection and garbage collection.

B. Response Time Analysis

Audsley et al. [19] established that a bound on τi’s response

time ri is given by the smallest positive solution of

ri = ei + bi +
∑

τk∈hpi

⌈

ri

pk

⌉

× ek. (6)

where bi denotes the total blocking time incurred by τi. Thus,

in order to calculate ri, first we need to bound the interference

from higher-priority tasks including SMR overheads, and then

determine the blocking time caused by writer’s mutex and

SMR operations (in case of U-RCU).

SMR Interference. To account for SMR overheads, we treat

quiescence detection as a separate task. For each writer

task τi, there is a derived memory reclamation task σi =
(e(σ)i, qi), whose priority is higher than τi but lower than any

task in hpi. ghpi represents the set of memory reclamation

tasks with higher priority than τi on the same core as τi.

Memory reclamation contains two steps – detecting quies-

cence and reclaiming garbage. The cost of the second step

depends on the amount of garbage. In the worst case, a

deferred memory reclamation task will collect all garbage,

thus leaving other quiescence tasks with nothing to reclaim.

Hence, the total amount of work of all deferred memory

reclamation tasks is upper-bounded by the maximum amount

of garbage. Given the response time ri, similar to theorem 6.3,

the maximum amount of garbage collected is bounded by

A(δ + ri), which implies the following bound.

Theorem 6.4: Interference on task τi from local higher-

priority SMR tasks is bounded by

I(σ)i =





∑

σk∈ghpi

⌈

ri

qk

⌉

× α



+A(δ + ri)× β. (7)

Recall that ∆∗ (the maximum read request response time) is

used to determine zombie memory’s liveness (lemma 6.2). In

Eq 8, ∆r
i is calculated similarly using Eq 6. In addition to

inflating SMR interference accordingly, we need to replace ei
with Γr

i and set bi to 0 (parallel section is non-blocking).

∆r
i =Γr

i +





∑

τk∈hpi

⌈

∆r
i

pk

⌉

× ek



+





∑

σk∈ghpi

⌈

∆r
i

qk

⌉

× α



+A(δ +∆r
i )× β.

(8)

Writer Mutex Blocking. Non-preemptive FIFO spin locks

are used to protect writers, and they also introduce blocking

overheads. [20] introduces an analysis framework based on

integer linear programming (ILP) to accurately bound the

maximum cumulative blocking time. This ILP-based method

explicitly accounts for every potential lock contention pattern,

and the resulting bound is directly used in equation 6 as a

blocking term. To determine writer mutex blocking overheads

7



in real-time SMR, we modify this analysis to consider only

write requests.

U-RCU Blocking. When trying to quiescence, neither Par-

Sec nor time-based quiescence are blocking (§IV). However,

in U-RCU, quiescence detection can be blocked by other tasks

either in parallel sections, or also attempting quiescence. To

make U-RCU more analysis-friendly, we consider a simplified

case with only one memory reclamation task. Hence, this

task only needs to wait for all readers to leave their parallel

section, and this waiting time is bounded by ∆∗. Such

self-suspension within the U-RCU memory reclamation task

will cause increased interference on lower-priority tasks,

which are not captured by the RTA (Eq 6). (Self-suspension

problems are extensively studied in [21].) As a result, the

presented analysis, though simple, will generate optimistic

schedulability results for U-RCU. As shown in section VII-B,

even with such optimism, U-RCU’s schedulability falls short

of real-time SMR. In contrast, real-time SMR incurs no self-

suspension due to its non-blocking quiescence detection.

C. Quiescence Frequency Calculation

The above analysis requires quiescence periods to be given

as input parameters. We present an algorithm for selecting

quiescent periods that attempts to minimize memory con-

sumption while maximizing schedulability. This is compli-

cated by the fact that the quiescence frequency’s impact on

schedulability is not monotonic. While longer quiescence pe-

riod causes less SMR interference, it incurs a higher garbage

collection cost (see Eq 7). Therefore, we linearly, in steps of

the minimum task period, search for the minimum quiescence

period that results in a schedulable system. Additionally, the

co-analysis of schedulability and memory bounds is also com-

plicated by the inter-dependency among many parameters.

For instance, SMR interference impacts ∆r
i (Eq 8), which

determines δ (Eq 3), and δ affects memory consumption,

which will contribute back to the SMR interference (Eq 7).

Thus, the schedulability test is performed by iteratively cal-

culating blocking times, parallel section response times and

task’s response times until a global fixed point is reached.

Figure 16 in the Appendix gives the algorithm’s details.

VII. EXPERIMENTAL EVALUATION

All experiments were run on a system consisting of four

Intel Xeon E7-4850 sockets, each with 10 cores, clocked

at 2.0 GHz. Version 3.10.10 of the Linux kernel was used

and hyper-threading was disabled, leading to 40 cores in

total. Though this system is not of the latest generation, it

enables an evaluation of many sockets. Benchmarks were run

on different core counts to measure scalability. The minimal

number of sockets was always used.

A. Micro Benchmarks

We conduct a set of micro-benchmarks to estimate the

worst-case overheads of various synchronization operations.

For each core count, we enumerated reader/writer ratios to

find the worst-case scenario. We use the 99th percentile

cost across 10 millions runs to exclude non-maskable and

other interrupts. U-RCU uses the urcu-mb implementation

 0

 2

 4

 6

 8

 10

 12

 14

 0  10  20  30  40

C
o
s
t 

(u
s
)

Number of Cores

(a) Quiescence Detection Cost

RT-ParSec
U-RCU

Temporal

 0

 2

 4

 6

 8

 10

 0  10  20  30  40
Number of Cores

(b) Memory Operation Cost

alloc ParSec
free ParSec

alloc RT-ParSec
free RT-ParSec

Fig. 10: 99th percentile costs of quiescence and memory operations.

from liburcu [22], and all locks are implemented in the

Concurrency Kit [23]. Though [24] provides a more efficient

queue-based phase-fair RW locks, the version we use still

shows the useful trends in RW lock behavior, as they share

analytical bounds.

Read path overheads are show in Figure 1(a). U-RCU

incurs the highest overhead because it uses Linux futexes to

wake up blocked quiescing threads. The temporal quiescence

approach has the lowest cost as it does not access any shared

cache lines at all. Though the tested RW lock incurs more

overhead than a ticket lock, the overhead of the queue-based

variant [24] is expected to be closer to the MCS lock.

Update path overheads have similar trends to the read path.

Both U-RCU and real-time SMR serialize the writers using an

MCS lock, which is the most scalable as shown in Figure 1(b),

Quiescence detection costs are shown in Figure 10(a). When

calculating quiescence, RT-ParSec iterates through all other

thread’s local data, which causes significant cache-coherency

traffic and inhibits its scalability. U-RCU incurs less overhead

because our model assumes there is only one quiescing thread,

while in RT-ParSec, the worst-case happens with multiple

concurrent quiescing threads (as explained in §VI-B).

Memory operation overhead (Figure 10(b)). As mentioned

in §II-G, SMR relies on dynamic memory management. Thus,

we need to confirm that memory related operations are also

predictable. The results demonstrate the improved predictabil-

ity resulting from the slab allocator optimizations detailed in

the Appendix, and that allocation and free operations scale

relatively well even in the 99th percentile.

B. Schedulability Tests

Task set parameters. We generated task sets with 10 tasks

per core using Emberson et al.’s task set generator [25].

Periods were uniformly selected from [10ms, 100ms]. Task

execution costs were calculated based on utilizations and

periods. The locking, SMR, and memory allocation overheads

inflate task execution cost. Only one global resource is shared

across all tasks. Readers (writers) are uniformly assigned to

tasks, they issue one read (write) request per period. We

study the following parameters. We consider platforms with

M ∈ {1, 5, 10 . . . 40} cores. We vary the per core task set

utilization across [0.6, 0.9] in steps of 0.05. The number

of concurrent readers (writers) is varied across {0, 5, 10,

15, 20}. The duration of read (write) requests is uniformly

distributed in [1µs, 300µs]. In total, we evaluated over 400

configurations. It is clearly not feasible to present all results,

so we chose a set of default parameters, and vary only one

8



 0

 20

 40

 60

 80

 100

 0.6  0.65  0.7  0.75  0.8  0.85  0.9

S
c
h
e
d
u

la
b
il
it

y
 (

%
)

(a) per-core task set utilization

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30  35  40
(b) number of cores

default parameters: utilization: 0.75, request duration: 100us, core count: 10, # of concurrent readers (writers): half of core count
RT-ParSec Temporal MCS lock w/ ILP MCS lock w/o ILP phase-fair RW lock U-RCU

 0

 20

 40

 60

 80

 100

 0  5  10  15  20
(c) number of concurrent readers

 0

 20

 40

 60

 80

 100

 0  50  100  150  200  250  300

S
c
h
e
d
u

la
b
il
it

y
 (

%
)

(d) read request duration (us)

 0

 20

 40

 60

 80

 100

 0  5  10  15  20
(e) number of concurrent writers

 0

 20

 40

 60

 80

 100

 0  50  100  150  200  250  300
(f) write request duration(us)

Fig. 11: Schedulability results for various configurations. The curves of RT-ParSec and Temporal largely coincide.

 0

 9

 18

 27

 36

 45

 0.6  0.65  0.7  0.75  0.8  0.85  0.9

#
 o

f 
m

e
m

o
ry

 o
b
je

c
ts

(a) per-core task set utilization

 0

 18

 36

 54

 72

 90

 0  5  10  15  20  25  30  35  40
(b) number of cores

default parameters: utilization: 0.75, request duration: 100us, core count: 10, # of concurrent readers (writers): half of core count
RT-ParSec Temporal RT-ParSec-single U-RCU

 24

 28

 32

 36

 40

 44

 0  5  10  15  20
(c) number of concurrent readers

 30

 32

 34

 36

 38

 40

 42

 0  50  100  150  200  250  300

#
 o

f 
m

e
m

o
ry

 o
b
je

c
ts

(d) read request duration(us)

 0

 18

 36

 54

 72

 90

 0  5  10  15  20
(e) number of concurrent writers

 30

 32

 34

 36

 38

 40

 42

 0  50  100  150  200  250  300
(f) write request duration(us)

Fig. 12: Memory consumption result. The curves of RT-ParSec and Temporal largely coincide.

parameter in each graph reported herein. The default core

count is 20 cores, half of them executing readers and the other

half executing writers. Such reader/writer ratio is commonly

considered to be write-heavy, and is not an obvious match

for SMR techniques that are usually only used in read-heavy

workloads. However, we choose this value to avoid artificially

favoring SMR, which excels at read-mostly workloads, thus

determining if it can compete even in write-heavy workloads.

The per core task set utilization is 0.75, and the default request

duration is 100µs. Unless otherwise stated, the quiescence

period is determined using the algorithm in §VI-C and each

writer allocates one memory object per period. For real-time

SMR implementations, the highest-priority writer on each

core detects quiescence and reclaims memory. While for U-

RCU, we randomly select only one core to collect garbage.

Experiment methodology. For each configuration, we ran-

domly generated 500 task sets to measure the schedulability

(the fraction of schedule task sets in the generated task

sets). For the schedulable task sets, we also calculated their

memory consumption in the SMR cases. The schedulability

test and blocking analysis code are taken from the SchedCAT

framework [26]. We used two mutex blocking analysis: the

inflation-based analyses [9], and the ILP-based approach [20],

while for RW locks, only an inflation-based analysis exists.

We try both techniques to analyze mutex blocking time. For

the SMR techniques, as only writers need mutual exclusion,

the difference between the two approaches is negligible. Thus,

we only show the results of ILP-based analysis in SMR cases.

Schedulability results. Figure 11 shows the schedulability re-

sults for various configurations. The two real-time SMR vari-

ants, RT-ParSec and temporal quiescence, are very similar,

and achieve the highest schedulability in all configurations.

Somewhat surprisingly, even in write-heavy workloads, the re-

duced mutex contention due to readers avoiding serialization

surmounts the allocation and quiescence overheads. Although

U-RCU increases parallelism in best effort environments,

its blocking quiescence detection causes the invoking task

to miss deadline, leading to low schedulability for real-

time tasks. Due to the pessimistic analysis and write-heavy

workload, RW locks have lower schedulability than mutex in

most cases with the exception being for low writer counts.

RW locks are not designed for such write-heavy workloads,

and we further investigate reader/writer ratios later.

The real-time SMR implementations exhibit high relative

scalability. With increasing core counts (Figure 11(b)), real-

time SMR has the smallest relative schedulability degradation.

With core counts above 25, lock-based synchronization has

lower schedulability than U-RCU, illustrating that the impact

of blocking between readers and writers at scale. Predictably,

Figures 11(c) and (d) show that real-time SMR schedulability

9



 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

S
c
h
e
d
u

la
b
il
it

y
 (

%
)

(a) per-task memory allocation

 0

 800

 1600

 2400

 3200

 4000

 0  20  40  60  80  100

#
 o

f 
m

e
m

o
ry

 o
b
je

c
ts

(b) per-task memory allocation

 0

 20

 40

 60

 80

 100

 20  40  60  80  100

S
c
h
e
d
u

la
b
il
it

y
 (

%
)

(c) quiescence period (ms)

per-task memory allocation: 40

 750

 1000

 1250

 1500

 1750

 2000

 20  40  60  80  100

#
 o

f 
m

e
m

o
ry

 o
b
je

c
ts

(d) quiescence period (ms)

per-task memory allocation: 40
 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30  35  40

S
c
h
e
d
u

la
b
il
it

y
 (

%
)

(e) number of cores

reader/writer ratio: 4

RT-ParSec-single
RT-ParSec

Temporal
MCS lock w/ ILP

MCS lock w/o ILP
phase-fair RW lock

U-RCU

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30  35  40

S
c
h
e
d
u

la
b
il
it

y
 (

%
)

(f) number of cores

reader/writer ratio: 1/4

Fig. 13: (a) and (b) study the impact of per-task memory allocation; (c) and (d) show the impact of quiescence period; (e) and (f) show the schedulability
under different reader/writer ratios. The curves of RT-ParSec and Temporal largely coincide.

is unaffected by the number of readers or the read request

length. With increasing read contention, both U-RCU and RW

locks increase schedulability relative to mutexes. With update-

mostly workloads, real-time SMR implementations decrease

in schedulability as write request contention becomes the

dominating factor. Figure 11(e) and (f) demonstrate this trend.

Memory and quiescence results are presented in Figure 12

and Figure 13. In studying the memory requirements of the

SMR implementations, Eq 5 gives us three factors that de-

termine the total memory consumption. They are the number

of writers (N ), the maximum number of memory allocations

during update (ai) and the amount of time memory keeps

accumulating (δ + r∗σ). Memory bounds increase linearly

with those factors as expected (Figure 12(b), Figure 12(e),

Figure 13(b) and Figure 13(d)). In the default setting, real-

time SMR consumes more memory than U-RCU. This is

because the maximum response time of the quiescence task

(r∗σ in Eq 5) in real-time SMR is larger than in U-RCU, as

U-RCU has only one thread for memory reclamation, while

real-time SMR has one quiescing thread per-core. If real-

time SMR also uses one memory reclamation thread (the

line labeled as “RT-PARSEC-single”), its memory bound is

roughly the same as U-RCU. In the meantime, schedulability

decreases with increasing memory usage due to collection

costs (Figure 13(a)). This confirms the empirical conclusion

that SMR can be prohibitive if updates require large amounts

of memory. By affecting the amount of time memory keeps

accumulating (δ+r∗σ), a longer quiescence period causes more

memory to be accumulated (Figure 13(d)). However, as ana-

lyzed in §VI-C, quiescence frequency impacts schedulability

in complex ways, which is demonstrated by Figure 13(c).

Last, we study how schedulability scales under different read-

er/writer ratios. In read-heavy cases (Figure 13(e)), real-time

SMR, U-RCU and the RW lock perform better than mutex

locks. However, with write-mostly workloads (Figure 13(f)),

all those techniques behave similarly.

C. Application Study: memcached

In this section we illustrate how real-time SMR provides

useful bounds for latency-sensitive applications, of which we

use memcached (https://memcached.org/) as a representative.

memcached implements a concurrent hash table providing

get and put requests for a cache of key-value pairs.

Memcached task model. In order to apply real-time SMR,

we create a task model (§V) to characterize memcached.

Formally, on each core, there are two tasks, τr and τw. τr
(τw) consists of a stream of jobs to send get (set) requests

periodically. The concurrent hash table is modeled as a global

shared resource shared by all tasks. τr (τw) issues non-nested

read (write) request for the hash table. Since a read-heavy

workload is a typical real-world workload [27], we assign

higher priority to τr. As memcached is not mission critical,

we consider its tasks to be soft real-time. According to [7],

[9], under partitioned scheduling, we can schedule an implicit-

deadline soft real-time task set by viewing it as hard, but using

average-case overheads. Thus, we apply the same analysis in

§VI to the memcached task set with the measured average

task and synchronization overhead.

Experiment set-up. To concentrate the evaluation on pre-

dictability, we run memcached in a single process, bypassing

the network and kernel. To avoid potential unpredictable

cache replacement policy, we also disable cache replacement

and give it sufficient memory to avoid cache eviction. Similar

to [28], a workload trace with 20% set requests is generated

using YCSB [29], following a zipfian distribution. The trace

contains 10 million requests (16-byte key and 32-byte value),

which is partitioned across memcached tasks on different

cores. memcached’s concurrent hash-table uses a separate

(unpredictable) spin lock for each entry (and the associated

linked-list of items). We modify memcached to use FIFO

MCS locks so as to not unfairly penalize it. We compare three

memcached implementations: using an MCS lock, a phase-fair

RW lock and RT-ParSec. We omit RCU given the results in

§VII-B. As the temporal quiescence SMR approach requires

a hard real-time environment, it cannot be used here.

Strict admission control. To make memcached tasks peri-

odic, we apply admission control based on the model, thus

limiting the rate of jobs. According to Eq 5, the rate of jobs

is the essential factor bounding memory utilization. Thus,

the key question is how to choose the period of get and

set requests to maximize throughput while still bounding

10



 0

 16

 32

 48

 64

 80

 5  10  15  20  25  30  35  40
 0

 50

 100

 150

 200

 250

G
e
t 

re
q
u
e
s
t 

(s
o
li
d
 l
in

e
s
)

S
e
t 

re
q
u
e
s
t 

(d
a
s
h
 l
in

e
s
)

number of cores

(a) Task Period (us)

 0.7

 1.4

 2.1

 2.8

 3.5

 4.2

 5  10  15  20  25  30  35  40
 0

 10

 20

 30

 40

 50

G
e
t 

re
q
u
e
s
t 

(s
o
li
d
 l
in

e
s
)

S
e
t 

re
q
u
e
s
t 

(d
a
s
h
 l
in

e
s
)

number of cores

(b) 99th Percentile Latency (us)

RT-ParSec/get MCS lock/get pf-RW lock/get RT-ParSec/set MCS lock/set pf-RW lock/set

 0

 30

 60

 90

 120

 150

 180

5 10 15 20 25 30 35 40

#
 o

f 
m

e
m

o
ry

 o
b
je

c
ts

number of cores

(c) Memory Consumption

memory usage
memory bound

Fig. 14: Memcached evaluation results: strict admission control.

 5

 10

 15

 20

 25

 30

 35

 5  10  15  20  25  30  35  40

M
il
li
o
n
 r

e
q
u
e
s
ts

 p
e
r 

s
e
c
o
n

d

number of cores

(a) Memcached Throughput

 0

 5

 10

 15

 20

 25

 30

 5  10  15  20  25  30  35  40
G

e
t 

re
q
u
e
s
t 

(u
s
)

number of cores

(b) 99th Percentile Get Latency

RT-ParSec MCS lock pf-RW lock

 0

 10

 20

 30

 40

 50

 60

 5  10  15  20  25  30  35  40

S
e
t 

re
q
u
e
s
t 

(u
s
)

number of cores

(c) 99th Percentile Set Latency

Fig. 15: Memcached evaluation results: relaxed admission control.

memory consumption. Based on the analysis (§VI), when the

update period is fixed, we can determine the minimal reader’s

period that makes the task set schedulable if it exists. This

provides an upper rate on the jobs for both updates and reads,

and thus bounds the system’s throughput. While larger update

periods decrease set request throughput, they allow higher

rates of readers, thus increasing get request throughput. Thus,

for each configuration, we choose the minimal update period

that maximizes the total throughput. Figure 14(a) shows

these calculated periods. RT-ParSec archives the smallest

get period (thus, largest get throughput), resulting from its

efficient read-path synchronization. The set period in RT-

ParSec is similar to that in MCS locks, as they use the same

lock to serialize updates. MCS locks have the same period for

get and set request, as it treats them the same. Figure 14(b)

gives the measured 99th percentile latency for get and set

requests. RT-ParSec has a larger get request tail latency than

both MCS and RW locks. The higher rate of parallel get

requests in RT-ParSec causes significantly more contention

on the memory bus and controller. The non-uniform memory

access in our system exacerbates this. RT-ParSec set request

tail latency is high due to its coherency-operations on quies-

cence. In summary, per-hash-table entry locks combined with

admission control result in less contention on shared cache

lines for MCS and RW locks, leading to lower tail latency,

while RT-ParSec achieves a higher rate of get requests.

Figure 14(c) verifies that the amount of memory consumed

by RT-ParSec is within its theoretical bounds.

Relaxed admission control. Although strict admission con-

trol lowers tail latency, its achieved overall throughput is not

practical (e.g., throughput of MCS lock on 40 cores is only

1.4 million requests per second). On the other hand, even if

we use average-case overheads for the analysis, the analysis is

still rather pessimistic. Given this, there is a large amount of

slack time that can be used to serve more requests. However,

we need to carefully use slack time to avoid interference

on existing requests. For instance, such slack time cannot

be used for set requests, as they need locks and modify

shared cache lines. Hence, we relax admission control on

get requests, allowing them to be served as long as there is

slack time. The corresponding results are shown in Figure 15.

Figure 15(a) and (b) show the most important benefit offered

by RT-ParSec: RT-ParSec enables unsynchronized readers

to run in parallel with all other requests. Thus increasing get

request rate has little impact on tail latencies. For example,

with 40 cores, tail latencies increase only 30% and 6% for get

and set request respectively. On the contrary, because of lock

contention for MCS and RW lock, both get and set request

tail latency increase significantly. For instance, with 40 cores,

get request tail latency increases 11 times and 9 times, for

MCS lock and RW lock respectively (Figure 15(b)). Set

request tail latency increases 8 times and 15 times, for MCS

lock and RW lock respectively (Figure 15(c)). By sacrificing

tail latency, MCS and RW locks increase their throughput.

However, their throughput fails to scale with more than one

socket as shown in Figure 15(a). In contrast, RT-ParSec not

only has the highest throughput, but also scales better than

the other two approaches.

VIII. CONCLUSIONS

We’ve studied SMR techniques for mediating shared data-

structure access. Since existing techniques such as U-RCU

are not a good fit for real-time systems, we introduced two

implementations that demonstrate high schedulability. We

introduced bounds on memory consumption that enable their

use in real-time systems. Unexpectedly, they perform well

even in the presence of write-heavy workloads. We have also

shown their applicability to control the tail latency while

maintaining high throughput in memcached. Though SMR-

based data-structures do require a restrictive programming

model, we believe they represent a promising mechanism for

resource sharing for scalable real-time computation.

Acknowledgments. We’d like to thank the anonymous re-

viewers for their helpful feedback, and our shepherd for

helping to significantly improve the clarity of this paper.

REFERENCES

[1] R. Kapoor, G. Porter, M. Tewari, G. M. Voelker, and A. Vahdat,
“Chronos: Predictable low latency for data center applications,” in
Proceedings of the Third ACM Symposium on Cloud Computing, 2012.

[2] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the

ACM, vol. 56, pp. 74–80, 2013.

11



[3] M. Desnoyers, P. E. McKenney, A. S. Stern, M. R. Dagenais, and
J. Walpole, “User-level implementations of read-copy update,” IEEE

Transactions on Parallel and Distributed Systems, 2012.

[4] Q. Wang, T. Stamler, and G. Parmer, “Parallel sections: Scaling system-
level data-structures,” in Proceedings of the ACM EuroSys Conference,
2016.

[5] Q. Wang, Y. Ren, M. Scaperoth, and G. Parmer, “Speck: A kernel for
scalable predictability,” in Proceedings of the 21st IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS), 2015.

[6] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
“Workload analysis of a large-scale key-value store,” in Proceedings

of the 12th ACM SIGMETRICS Joint International Conference on

Measurement and Modeling of Computer Systems, 2012.

[7] B. B. Brandenburg, J. M. Calandrino, A. Block, H. Leontyev, and J. H.
Anderson, “Real-time synchronization on multiprocessors: To block or
not to block, to suspend or spin?” in Proceedings of the 2008 IEEE

Real-Time and Embedded Technology and Applications Symposium

(RTAS), 2008.

[8] B. Brandenburg, “A fully preemptive multiprocessor semaphore proto-
col for latency-sensitive real-time applications,” in Proceeedings of the

25th Euromicro Conference on Real-Time Systems (ECRTS), 2013.

[9] B. B. Brandenburg and J. H. Anderson, “Reader-writer synchronization
for shared-memory multiprocessor real-time systems,” in Proceedings

of the 2009 21st Euromicro Conference on Real-Time Systems (ECRTS),
2009.

[10] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for scalable syn-
chronization on shared-memory multiprocessors,” ACM Trans. Comput.

Syst., 1991.

[11] M. Arbel and H. Attiya, “Concurrent updates with rcu: Search tree as an
example,” in Proceedings of the 2014 ACM Symposium on Principles

of Distributed Computing, ser. PODC ’14, 2014.

[12] A. T. Clements, M. F. Kaashoek, and N. Zeldovich, “RadixVM:
Scalable address spaces for multithreaded applications,” in EuroSys,
2013.

[13] P. E. McKenney, S. Boyd-Wickizer, and J. Walpole, “Rcu usage in the
linux kernel: One decade later,” Technical report, 2013.

[14] J. Bonwick, “The slab allocator: an object-caching kernel memory
allocator,” in Proceedings of the USENIX Summer 1994 Technical

Conference on USENIX Summer 1994 Technical Conference, 1994.

[15] Intel 64 and IA-32 Architecture Software Developers Manual, Volume

3B: System Programmers Guide, Intel Corporation.

[16] “AUTOSAR os specification: http://www.autosar.org/.”

[17] S. Chakraborty, S. Kunzli, and L. Thiele, “A general framework
for analysing system properties in platform-based embedded system
designs,” in DATE, 2003.

[18] B. B. Brandenburg, “Scheduling and locking in multiprocessor real-
time operating systems,” Ph.D. dissertation, The University of North
Carolina at Chapel Hill, 2011.

[19] A. N. Audsley, A. Burns, M. Richardson, and K. Tindell, “Applying new
scheduling theory to static priority pre-emptive scheduling,” Software

Engineering Journal, 1993.

[20] A. Wieder and B. B. Brandenburg, “On spin locks in AUTOSAR:
Blocking analysis of fifo, unordered, and priority-ordered spin locks,”
in Real-Time Systems Symposium (RTSS), 2013 IEEE 34th. IEEE,
2013.

[21] J.-J. Chen, G. Nelissen, W.-H. Huang, M. Yang, B. Brandenburg,
K. Bletsas, C. Liu, P. Richard, F. Ridouard, N. Audsley et al., “Many
suspensions, many problems: A review of self-suspending tasks in real-
time systems,” Technical Report, TU Dortmund, March, 2017.

[22] “Userspace RCU: http://liburcu.org/, retrieved 6/16,” 2016.

[23] “Concurrency Kit: http://concurrencykit.org, retrieved 9/21/12.”

[24] B. B. Brandenburg and J. H. Anderson, “Spin-based reader-writer syn-
chronization for multiprocessor real-time systems,” Real-Time Systems,
vol. 46, no. 1, pp. 25–87, 2010.

[25] P. Emberson, R. Stafford, and R. I. Davis, “Techniques for the synthesis
of multiprocessor tasksets,” in Proceedings 1st International Workshop

on Analysis Tools and Methodologies for Embedded and Real-time

Systems (WATERS), 2010.

[26] “SchedCAT schedulability test collection and toolkit: http://www.mpi-
sws.org/bbb/projects/schedcat.”

[27] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani, “Scaling memcache at facebook,” in NSDI, 2013.

[28] B. Fan, D. G. Andersen, and M. Kaminsky, “Memc3: Compact and
concurrent memcache with dumber caching and smarter hashing,” in
NSDI, 2013.

[29] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with ycsb,” in SoCC, 2010.

[30] S. Schneider, C. D. Antonopoulos, and D. S. Nikolopoulos, “Scalable
locality-conscious multithreaded memory allocation,” in ISMM, 2006.

APPENDIX

A. Predictable Slab Allocator

We briefly introduce the memory allocator used in real-

time SMR here. We adapted the slab allocator from ParSec.

Most modern multi-core memory allocators [30] optimize

for locality by using hierarchical allocation with thread-local

memory caches, and then from within a global allocation pool.

In addition, when memory is allocated on core i, and freed on

core j, it is placed a “remote” freelist (called a “remote free”)

in core i’s data-structures. When thread-local freelist cannot

satisfy an allocation request, a memory is reclaimed from the

remote freelist. Thus remote free is more expensive than local

free, and would cause contentions on the remote freelist’s

cache lines. In the ParSec slab allocator, each core maintains

separate remote freelists (also in separate cache lines) for each

other socket. Although highly scalable, this optimization still

suffers from contentions from the different cores within the

same sockets. To eliminate this unpredictability, we change to

per-core remote freelist. But we consolidate multiple remote

freelist headers into a single cache line. In this way, different

sockets still touch different cache lines, which guarantees

scalability, but different cores from the same socket use

different freelist headers within that cache line, which avoids

contention, thus, provides predictability. As shown in Fig-

ure 10(b), CAS contention in original slab allocator causes

some anomalies when measuring the worst-case overhead

of free. This is because the list header is updated within a

CAS loop whose number of CAS retries is unbounded due to

contention. Such contention is eliminated after we use per-

core remote freelist. More importantly, memory allocation

performance is unaffected even with more list headers. This is

because multiple list headers are consolidated into one cache

line without extra cache line access.

B. Quiescence Frequency Calculation Algorithm

1 bool schedulability_test ( TaskSe t t s , i n t q ) {
2 old δ = 0 ;

3 c a l c u l a t e δ based eq ( 3 ) o r ( 4 )

4 whi le δ 6= old δ :

5 whi le t h e r e e x i s t ri 6= old ri :

6 a p p l y ILP a n a l y s i s t o bound mutex b l o c k i n g

7 foreach τi i n t s :

8 c a l c u l a t e ri u s i n g eq and ( 6 ) and ( 7 )

9 whi le t h e r e e x i s t ∆
r

i
6= old ∆

r

i
:

10 foreach τi i n t s :

11 c a l c u l a t e ∆
r

i
u s i n g eq ( 8 )

12 foreach τi i n t s :

13 i f (ri > pi ) : re turn f a l s e ;

14 old δ = δ ;

15 c a l c u l a t e δ based eq ( 3 ) o r ( 4 )

16 re turn t ru e ;

17 }
18 i n t select_quiescence_period ( TaskSe t t s ) {
19 / / minimum ( maximum ) t a s k p e r i o d i n t s

20 i n t min q , max q ;

21 f o r qp i n r a n g e ( min q , max q ) :

22 i f ( schedulability_test ( t s , qp ) == t ru e ) :

23 re turn qp ;

24 re turn non−s c h e d u l a b l e ;

25 }

Fig. 16: quiescence period selection algorithm

12


