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Abstract—We consider the problem of scheduling a set of non-
preemptive periodic tasks in an embedded system with a limited
amount of memory. On the one hand, due to the memory limita-
tions, a table-based scheduling approach might not be applicable,
and on the other hand, the existing online non-preemptive schedul-
ing algorithms are either not efficient in terms of the schedulability
ratio, or suffer from considerable runtime overhead. To arrive at a
compromise, this paper proposes an online policy that is equivalent
to a given offline table to combine some of the advantages of both
online and offline scheduling: we first consider a low-overhead
online scheduling algorithm as a baseline, and then identify any
irregular situations where a given offline table differs from the
schedule generated by the online algorithm. We store any such
irregularities in tables for use by the online scheduling algorithm,
which then can recreate the table at runtime. To generate suit-
able tables, we provide an offline scheduling algorithm for non-
preemptive tasks, and a table-transformation algorithm to reduce
the number of irregularities that must be stored. In an evaluation
using an Arduino board and synthetic task sets, we have observed
the technique to result in a substantial reduction of scheduling
overhead compared to CW-EDF, the online scheduler that achieves
the highest schedulability ratio, while having to store on average
only a few dozen to a few hundreds of bytes of the static schedule.

I. INTRODUCTION

Embedded systems subject to severe cost, power, or energy
constraints usually have only very limited processing capacity
and small memories. For instance, the Atmel UC3A0512 micro-
controller, which is used in mission critical space applications [1],
has 64 KiB of internal SRAM, 512 KiB of internal flash memory,
and is clocked at 12 MHz. Similarly, an Arduino Uno uses an
ATmega328P microcontroller with a clock speed of 16 MHz,
2 KiB of SRAM, and 32 KiB of flash memory. With such limited
resources, these systems typically do not use a multitasking
operating system. Thus, non-preemptive execution is the natural
way (if not the only way) of executing real-time tasks.

A traditional way to realize non-preemptive scheduling in
real-time systems is to use static timetables, as used for example
in the classic time-triggered paradigm [2]. With respect to
runtime overheads, table-driven scheduling is attractive since
the scheduler performs only an O(1) table lookup. However,
in periodic task sets, the number of jobs in a hyperperiod (and
hence the size of the timetable) can be exponential in the number
of tasks, which can translate into prohibitive memory overheads.

For example, Anssi et al. [3] describe a powertrain ECU that
consists of six periodic tasks with periods {1, 5, 10, 10, 40, 100}.
Due to the relation of their periods and specified release offsets
(see [3] for details), a timetable for this ECU would have to
store information for more than 500 jobs. However, a table
with 500 entries of size 32 bits each requires about 2 KiB of
memory, which would completely fill Arduino Uno’s RAM or
take up a substantial part of its flash memory (see Sec. IV for an
explanation of typical table entry sizes).

As another example, consider an automotive benchmark
provided by Bosch [4], which reports tasks to have periods

in the set {1, 2, 5, 10, 20, 50, 100, 200, 1000}. Even if only one
runnable (function) of each period appears in an ECU, the
hyperperiod will contain 1,886 jobs (and up to 1,000 idle times,
which must also be encoded in the table). Further, the presence
of a single “inconvenient” period that is not harmonic, such as
a functionality invoked at roughly 30 frames per second, can
lead to rapid table growth: adding a 33 ms period to the Bosch
benchmark lets the table grow to 63,238 jobs in one hyperperiod.

Consequently, table-based solutions can be difficult to adopt
in resource-constrained embedded systems. And even if a large
table could be accommodated in principle by purchasing a
microcontroller with a sufficient amount of flash memory, in
deeply embedded, mass-produced systems where memories are
sized to fit a given application, saving even only a few kilobytes
of RAM or flash memory can translate into significant cost
savings at scale (i.e., if sold thousands or even millions of times).

Several works have tried to reduce the size of a timetable
by means of modifying the original periods. Ripoll et al. [5]
proposed a period assignment method to reduce the length of the
hyperperiod, and Nasri et al. [6, 7] presented two methods for
generating harmonic periods. Although these methods reduce
the number of jobs in the timetable, they are not applicable to
systems that must run with a predefined set of periods, e.g., if
a third-party component must be integrated, or if the period
is chosen based on the sampling period of a hardware device.
In some cases, changing periods may require redesigning the
application (e.g., a different control approach may become
necessary), or the period may be dictated by physical phenomena
that cannot be precisely observed with another sampling period.

An alternative solution is to use online non-preemptive
scheduling algorithms. Most of the well-known work-conserving
job scheduling policies such as earliest-deadline first (EDF) and
rate monotonic (RM) can be used in this case. It is also possible
to use recently developed non-work-conserving scheduling
solutions such as Precautious-RM [8] and critical time window
EDF (CW-EDF) [9]. However, there are two main disadvantages
to using online solutions in a resource-constrained embedded
system: first, the overhead of the scheduling algorithm is a bottle-
neck due to the system’s limited processing power, and second,
the existing online algorithms, which are non-optimal, may not
be able to schedule feasible task sets that can be scheduled with
a table-based approach. Moreover, the existing schedulability
tests for these online algorithms are either pessimistic if they are
applied to periodic tasks [9, 10], or restricted to a special type of
periods, e.g., harmonic periods [9, 10, 11].

In this paper, we propose an approach that combines the
advantages of both online and offline scheduling in order to
provide a solution for resource-constrained embedded systems.
Our idea is to identify those particular entries in the offline table
that are violating the policy of a baseline scheduling algorithm.
The baseline algorithm can be, for example, non-preemptive
RM (NP-RM), which has a relatively low runtime overhead.
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We identify two irregular types of table entries that make the
schedule stored in the table different from an NP-RM schedule.
The first type of irregular entries are priority inversions, i.e.,
when (according to the table) a low-priority task is dispatched
while a higher-priority task has a pending job. The second type of
irregular entries are those that violate the work-conserving nature
of NP-RM, i.e., when no task is scheduled in the table while
there are pending jobs. The idea is to store only the irregular
cases, and to modify the online algorithm to enact these stored
deviations from the baseline policy at runtime, thereby recreating
the given offline schedule without having to store it in its entirety.

Contributions. Since the success of our solution depends on
being able to generate an offline table for the given set of non-
preemptive periodic tasks, first we propose an efficient method
to construct such an offline table (Sec. III). Most of the existing
solutions are based on a branch-and-bound approach and iterate
over many potential orderings of the jobs [12], and thus do not
scale well if the number of jobs becomes large, which is often
the case for periodic task sets. However, we have observed that
during this search process, certain sets of jobs can only have a
few potential feasible schedules, and hence they only allow a
limited set of possibilities for other jobs to be added among or
around them. Exploiting this property, instead of keeping track
of individual jobs, we keep track of sequences of jobs that are
associated with (or chained to) an interval of time (we call it a
chained window), which allows us to better cope with the size of
the problem, and to more quickly find a feasible schedule.

The next contribution of the paper is to show how to identify
the irregular cases that make an NP-RM schedule different
from the offline table (Sec. IV). In particular, we provide a
table manipulation heuristic to reduce the number of priority
inversions with respect to the baseline policy.

Finally, we prototyped our solution on an Arduino Mega
2560 board to compare the runtime overhead and space require-
ment of different scheduling strategies. In Sec. V, we report on a
comparison of various ways to generate scheduling tables and
show that, after applying our table manipulation method, the best
method requires on average only a few dozen to a few hundred
bytes of irregularities to be stored, whereas traditional table-
driven approaches use several kilobytes for the same workloads.

II. SYSTEM MODEL AND NOTATIONS

We consider a uniprocessor system with a set of independent,
non-preemptive periodic tasks. The task set has n tasks denoted
by τ = {τ1, τ2, . . . , τn}. Each task τi is identified by τi =
(Ci, Ti, Di), where Ci is the worst-case execution time (WCET),
Ti is the period, and Di ≤ Ti is the deadline. Since the task
set is non-preemptive, we assume that sound WCET estimation
methods can be used, and hence tasks will not overrun their
WCET at runtime. The system utilization is denoted by U =∑n

i=1 ui, where ui = Ci/Ti is the utilization of task τi. The
hyperperiod H of this task set is the least common multiple
(LCM) of the periods. We assume that the tasks are indexed
according to their period so that T1 ≤ T2 ≤ . . . ≤ Tn. Each
instance of a task is called a job. We assume that the tasks do not
have release jitter. This is a reasonable assumption for periodic
tasks that are not triggered by interrupts and that run without an
OS (e.g., Arduino is typically one such system). Furthermore,
we assume that the tasks are released synchronously.

We define a job sequence as an enumerated collection of

Fig. 1. The only two differences between this schedule and NP-RM are an idle
interval [9, 10) and the execution of a job of τ2 before τ1 at time 30.

jobs (possibly of different tasks) that must be executed in an
order given by their index. Such a sequence is denoted by J =
〈J1, J2, . . . , Jm〉 (m ≥ 0), where J i denotes the ith job in the
sequence. The release time, WCET, and absolute deadline of
that job are denoted by ri, ci, and di, respectively. Here we use
superscripts to distinguish parameters of a job from those of
a task. Later in Sec. IV, we consider job priority, denoted by
pi (numerically lower values imply higher priorities). Next we
define a non-preemptive schedule for a job sequence.

Definition 1. Consider a set of jobs J = {J1, J2, . . . , Jm} and
a function S : J → R that maps any job J i ∈ J to a time instant.
The function S is a valid non-preemptive schedule iff:

∀i, j; S(J i) + ci ≤ S(Jj) ∨ S(Jj) + cj ≤ S(J i), and (1)

∀i; ri ≤ S(J i) ∧ S(J i) + ci ≤ di. (2)

Further, a job sequence schedule (JSS) is a valid non-preemptive
schedule for a job sequence that respects the given order.

Definition 2. For a job sequence J = 〈J1, . . . , Jm〉, a schedule
S is a valid JSS iff S is a valid non-preemptive schedule and

∀i, 1 ≤ i < m; S(J i) + ci ≤ S(J i+1). (3)

III. TIMETABLE GENERATION

In this section, we introduce our table generation algorithm
for non-preemptive periodic tasks. We start with the basic idea
and then present formal definitions and introduce the operations
that will be used to generate the timetable.

A. Motivations and Basic Idea
Most of the existing optimal solutions for non-preemptive

scheduling are based on the branch-and-bound strategy [12]; they
explore all possible combinations of job orderings to find the
one that minimizes a goal function, such as maximum tardiness.
If a solution with zero tardiness is found, the set of jobs is
schedulable. Even though in a periodic task set the number of
branches will be constrained (e.g., because no two jobs of a task
share the same time window), the traditional solutions still fail
to scale with the increases in the number of tasks or the ratio
between period values (some results are presented in Sec. V).
For example, for two tasks with a 1 ms and a 100 ms period, a
branch-and-bound heuristic must explore 99 possible job orders.

A basic observation is that some subsets of jobs can only
have one or a few possible valid schedules. For example, in
Fig. 1, from time 10 to time 40, there are only two possible ways
of scheduling jobs of tasks τ1 to τ3 in this interval. Thus, another
job with a larger period can only appear before or after this set of
jobs. As a result, instead of keeping track of individual jobs, we
keep track of a sequence of jobs that is chained to a window of
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Fig. 2. A chained window W = ([10, 30], 〈J1, J2, J3, J4〉, δ = 4). (a) Jobs
scheduled as soon as possible. (b) Jobs scheduled as late as possible.

time (i.e., an interval). We call such a sequence of jobs a chained
window (CW), which forms the building block of our solution.

Another observation is that an ordered subset of jobs has only
a limited amount of slack that can be arbitrarily placed before,
between, or after the jobs. Any attempt to add another job with a
WCET exceeding the slack will result in a deadline miss for one
of the jobs. We use this observation to keep track of the available
slack in chained windows. Fig. 2 shows a chained window (the
notation will be fully explained in Sec. III-B). In Fig. 2-(a), 4
units of slack are scheduled after J4, whereas in Fig. 2-(b), they
are scheduled before J1.

To reduce the number of chained windows, we merge two
neighboring chained windows (with intersecting time intervals)
whenever the slack between them allows for it. When merged,
a longer chained window results that includes an ordered set of
jobs from both chained windows (see Fig. 4-(b) in Sec. III-B for
an example). We hence can iteratively fill in chained windows
such that they progressively cover larger intervals, accumulate
more jobs, and have less slack. This reduces the number of
possibilities that exist when a new job is added to a job sequence.

Next we formally introduce chained windows and show how
to build the whole schedule for a set of tasks. It is worth noting
that our primary goal is to obtain a fast and scalable heuristic
for scheduling non-preemptive jobs. Consequently our method
is not optimal, i.e., it may not find a schedule for a feasible set
of tasks, since it does not explore all possible job orderings.

B. Chained Windows
We start by introducing the notion of a chained window,

which is a tuple that represents a job sequence, a window of time,
and a slack value. A key property of a chained window is that
any JSS for its job sequence that starts and ends in its associated
window of time will be valid. This property allows us to freely
move around slack in a JSS without affecting its validity.

Definition 3. Consider a tuple w = ([s, e], J, δ), where [s, e] is
an interval of time, J is a sequence of m jobs, and δ is the slack.
Let C =

∑m
i=1 c

i. The tuple w is a chained window iff

e− s− δ = C (4)

and any JSS S that satisfies

s ≤ S(J1) ∧ S(Jm) + cm ≤ e (5)

is a valid JSS (recall Definition 2).

Although by definition each CW has at least one schedule
that guarantees the timing constraints of its jobs, if we consider
multiple overlapping chained windows, then there might not be
any feasible solution for all jobs. Fig. 3-(a) shows a case where
no valid schedule exists for two chained windows w1 and w2,
while Fig. 3-(b) shows a case where such a schedule exists.

Fig. 3. (a) A case with no valid schedule. (b) A case with one valid schedule.

If we allow chained windows to completely cover another,
we again face the original scheduling problem since we then need
to find a feasible ordering among the jobs of different chained
windows. Hence, we choose the borders of new chained windows
such that chained windows are not fully contained in another.

To this end, we maintain all chained windows in a sequence
ordered by start times. Let W = 〈w1, w2, . . . , wl〉 be a sequence
of l chained windows and wi = ([si, ei], 〈J1

i , J
2
i , . . . , J

mi
i 〉, δi)

the ith chained window of W , and let mi denote the number
of jobs in wi. We ensure that any such sequence of chained
windows W always satisfies, ∀i, 1 ≤ i < l;

si ≤ si+1 ≤ ei ≤ ei+1 and (6)

[si, ei] ∩ [si+1, ei+1] 6= [si, ei] 6= [si+1, ei+1]. (7)

Next we state a simple sufficient schedulability condition for W .

Theorem 1. If there exists a function S :
⋃l

i=1 Ji → R such
that S(J1

1 ) = s1 and, ∀i, j, 1 ≤ i < l, 1 ≤ j < mi;

S(Jj+1
i ) = S(Jj

i ) + cji , (8)

S(J1
i+1) = max{si+1, S(Jmi

i ) + cmi
i }, and (9)

rji ≤ S(Jj
i ) ∧ S(Jj

i ) + cji ≤ d
j
i , (10)

then S is a valid JSS for the jobs contained in W and each such
job meets its deadline if scheduled according to S.

Proof: The schedule that is specified by (8) to (10) is a
special case of (3), where each job is scheduled right after the
previous job of its own chained window. Moreover, due to (9), the
jobs of neighboring chained windows are executing sequentially,
and hence their allocations do not overlap. The function S is
hence a valid JSS. That each job completes by its deadline is
implied by (10) and the fact that S is a valid JSS.

In the remainder of this section, we discuss how to iteratively
construct W so that such a valid JSS S exists.

C. Operations on Chained Windows
In this subsection, we (i) discuss how to compute the start

time of the first job in a chained window, (ii) define an update
operation to prune the boundaries of a chained window and to
remove subintervals of the time windows that can never be used
in any valid JSS, (iii) define a merge operation that allows us
to merge two chained windows without affecting their original
valid JSSs, (iv) define an add operation for adding a new job
to a set of chained windows while keeping all jobs schedulable,
and (v) show how to find a safe set of slack intervals that can be
used to build a chained window for a new job. Finally, we will
put everything together in Sec. III-D and show how to use these
operations to find a schedule for a set of tasks.
Start times. According to (9), the first job of a chained window
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Fig. 4. Examples of the (a) update and (b) merge operations.

wi cannot be started until all jobs of the previous chained
windows have been scheduled, and hence some parts of the
interval [si, ei] cannot be allocated by any valid JSS of Ji. These
inaccessible intervals are identified by the earliest possible finish
time of jobs in w1 to wi−1, denoted by tfi−1, and the latest
possible start time of jobs of wi to wl, denoted by tsi . These
values can be obtained with the following recursive equations:

tfi = max{tfi−1, si}+ Ci, and (11)

tsi = min{tsi+1, ei} − Ci, (12)

where tf1 = s1 + C1 and tsl = el − Cl.
Update operation. The purpose of the update operation is to
prune all chained windows after a job has been added to one of
the chained windows in W , and to ensure their consistency. It
works as follows: (i) for each chained window wi in W , set the
new starting point s′i to

s′i =

{
max{si, tfi−1} 1 < i ≤ l
s1 i = 1

; (13)

(ii) set the the new end point e′i to

e′i =

{
min{ei, tsi+1} 1 ≤ i < l

el i = l
; and (14)

(iii) set the new slack value δ′i to

δ′i = δi −max{0, tfi−1 − si} −max{0, tsi+1 − ei}. (15)

Fig. 4-(a) shows an example of an update operation. In this
example, the start time of w2 is updated because the earliest
finish time of w1 was already greater than s2. However, since
the latest start time of w2 is 25, there is no need to update e1.
Merge operation. Two chained windows w1 and w2 can merge
and create a new chained window w′, where s′ = s1, e′ = e2,
J ′ = J1 + J2, and δ′ = e′ − s′ − (C1 + C2), provided that

δ′ ≤ δ1 ≤ e1 − s2. (16)

By definition, δ′ = e2− s1− (C1 + C2) = e2− s1− (e1− s1−
δ1)−(e2−s2−δ2), which can be simplified to δ1+δ2−(e1−s2).
From (16), we have δ′ ≤ δ1, thus δ1 + δ2 − (e1 − s2) ≤ δ1 and

hence δ2 ≤ e1 − s2, or equivalently, s2 + δ2 ≤ e1. In w′, the
earliest start time of any job of J2 is e1 − δ1 ≤ s2 (due to (16)).
Similarly, the latest finish time of any job of J1 is s2 + δ2 ≤ e1.
Hence any JSS S that is constructed from J ′ is also a valid
JSS for both J1 and J2. Thus w′ is a chained window since any
possible JSS is valid. Fig. 4-(b) illustrates the merge operation.
Note that merging only works if conditions (6) and (7) hold.
Add operation. A job J ′ : (r′, c′, d′) can be added to a sequence
of chained windows W after a chained window wi if

tsi+1 − t
f
i ≥ c

′. (17)

The add procedure works as follows: (i) create a new chained
window w with s = max{r′, tfi }, e = min{tsi+1, d

′}, J = 〈J ′〉,
and δ = e − s − c′, (ii) insert w after wi and before wi+1 in
W , (iii) perform the update operation on W , and (iv) perform
the merge operation on all chained windows for which (16) is
satisfied, in order from the first to the last. Due to the way we
construct the new chained window w, it already satisfies (6) and
(7) as well as the conditions in Definition 3.
Finding slack intervals. To add a job J ′ to the schedule, we
need to find a suitable “gap” (or slack interval) between already
accepted jobs that can fit J ′. A slack interval αi is considered
safe if it satisfies three conditions: first, the job must fit (i.e.,
|αi| ≥ c′); second, αi must lie within the feasible window of J ′
defined by its release time and deadline; and third, if αi is used
to accommodate job J ′, then this does not cause a deadline miss
for any of the jobs of the existing chained windows. The latter
condition can be ensured by constructing αi based on the earliest
finish time and latest start times of two consecutive chained
windows wi and wi+1. Fig. 5-(d) shows an example.

If a safe slack interval αi is found, then J ′ can be successfully
scheduled in it. A set of suitable candidate intervals that can be
used to add a job J ′ to a given set of chained windows W is
obtained as follows: (i) if |W | = 0, then just add an artificial
chained window w0 = ([−∞,∞], 〈〉, δ = ∞); otherwise add
two artificial chained windows w0 = ([−∞, s1], 〈〉, δ =∞) and
wl+1 = ([el,+∞], 〈〉, δ =∞) toW . (ii) For each wi, obtain the
primary slack interval αi = (wi, [max{r′, tfi },min{d′, tsi+1}]).
Note that αi is a two-tuple. (iii) If the length of the interval in
αi is larger than or equal to c′, then add αi to the list of safe
slacks. (iv) Sort the list according to a slack selection policy
such as first-fit, best-fit, worst-fit etc. For example, the worst-fit
(respectively, first-fit) heuristic sorts the list of safe slacks by
decreasing interval length (respectively, by increasing start time).

Next, we use the just-defined operations to build a valid JSS
for all jobs in the hyperperiod of a given set of periodic tasks.

D. Constructing the Table
The first step is to sort all given jobs (e.g., all jobs in a

hyperperiod) according to a priority policy such as NP-RM
or NP-EDF. After sorting the jobs, we try to create a chained
window for each job while preserving the schedulability of the
previously accepted jobs. This process is shown in Algorithm 1.
This algorithm must be called with a parameter J that includes
all N input jobs and W =

{(
[−∞,+∞], 〈〉, δ = ∞

)}
, which

is an artificial chained window with no job.
Consider the task set in Fig. 1. Assume we use NP-RM to sort

the jobs. Thus, W corresponds to Fig. 5-(a) after adding all jobs
of τ1. Then for the first job of τ2, two slack intervals are available
as shown in Fig. 5-(b); the first one is α0 = (w0, [0, 7]) and
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Algorithm 1: CWinC: Chained Window Construction
Input :J : unscheduled jobs, W : existing chained

windows, N : total number of jobs.

1 if J is empty then
2 return W ;
3 end
4 J ′ ← the first job of J ;
5 Find and store the set of safe slack intervals for J ′ in A;
6 for each αj ∈ A do
7 Create a new chained window w for J ′ using αj ;
8 Add w after wi in W and create W ′;
9 Apply the update and merge operations on W ′;

10 W ′ ← CWinC
(
J − {J ′}, W ′

)
;

11 if |W ′| = N then
12 return W ′;
13 end
14 end
15 return ∅ . No solution is found;

the second one is α1 = (w1, [3, 12]). If we sort these intervals
according to the worst-fit heuristic, then the first job of τ2 will be
inserted between w1 and w2, which results in a chained window
w = ([3, 12], 〈J2,1〉, δ = 3). For the sake of simplicity, we
denote the xth job of τy by Jy,x. After applying the update and
merge operations, the new chained window is merged with w1,
which results in w1 = ([0, 12], 〈J1,1, J2,1〉, δ = 3). Fig. 5-(c)
shows the resulting W after adding all jobs of τ2. Fig. 5-(d)
shows the slack intervals that exist for scheduling the job of τ3.
Fig. 5-(e) shows the final set of chained windows.

It is possible to modify Algorithm 1 to avoid searching for all
possible αj ∈ A by just considering the first αj in A. Thus, the
for-loop in Line 6 of Algorithm 1 is replaced with αj ← A[0],
which is the first element in A. This changes the complexity of
Algorithm 1 toO(N×X), whereN is the number of jobs andX
is the maximum number of chained windows. In the worst case,
the number of chained windows can reach N if no two chained
window merge with each other. However, since in most cases
chained windows gradually merge, our algorithm is efficient in
practice (as it will be shown in Sec. V).

IV. ONLINE EQUIVALENCE OF AN OFFLINE TABLE

We now turn our attention to the problem of enacting a given
non-preemptive schedule or scheduling policy at runtime on a
resource-constrained platform. We first review pure table-driven
scheduling and pure priority-driven scheduling as starting points,
and then introduce our hybrid offline-equivalence approach.

A. The Baselines: Table-Driven and Fixed-Priority Scheduling
Once an offline table has been generated, it can be used to

schedule the system simply by looking up and dispatching the
job that is to be scheduled whenever the scheduler is invoked.
The main design choice is how to encode the table.

For example, one approach is to store only the task identifier
(TID) and the absolute start time of each job in the table,
e.g., (τ2, 1000), which means that a job of τ2 is scheduled to
start at time 1000 (relative to the beginning of a hyperperiod).
The advantage of this approach is that idle times are encoded
implicitly. However, since the time values are absolute (within
the hyperperiod), many bits may be required to store the start

Fig. 5. Steps of Algorithm 1 to schedule the task set in Fig. 1 with τ1 :
(3, 10, 10), τ2 : (6, 12, 12), and τ3 : (8, 60, 60).

time, depending on the system’s resolution of time and the
maximum hyperperiod length (which is unbounded in general
and can be large in practice). Assuming microsecond resolution,
we estimate that five bytes per entry would be required.

An alternative is to store relative time values that indicate
when the next scheduling event occurs, relative to the preceding
event. That is, we store the TID and the duration that the task may
use the processor, e.g., (τ2, 50), which means that τ2 is allowed
to be scheduled for its WCET, which is 50 microseconds. The
advantage is that fewer bits per entry suffice since in practice
the maximum WCET is obviously of much smaller magnitude
than any hyperperiod. A downside is that idle intervals must be
explicitly encoded (e.g., by inserting a record with an invalid
TID). In the worst case, there is an idle time between any
two jobs, but typically fewer idle-time entries are needed since
simultaneously released jobs are usually scheduled back-to-back.

In our prototype, we adopted the latter, relative-time encod-
ing scheme; our implementation is sketched in Algorithm 2. In
each iteration of the system’s main loop, the scheduler looks up
the next table entry (Line 3 of Algorithm 2). In Line 5, tnext, the
next time at which the scheduler must be activated, is determined.
If the current entry is not an idle-time entry, the indicated task
is run to completion (Lines 6–9). If the task finishes earlier than
tnext, or if an idle-time entry is encountered, the algorithm waits
in a spin loop (Lines 9–11) until time tnext is reached.

The modulo operations in Lines 4 and 5 guarantee that the
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Algorithm 2: Scheduling with an offline table
Input :Timetable O = 〈(τi,∆)|τi ∈ τ ∪ {τidle}〉

1 k ← 0; tnext ← 0;
2 while true do
3 (τi,∆)← read the kth item of O;
4 k ← (k + 1) mod |O|;
5 tnext ← (tnext + ∆) mod hyperperiod;
6 if τi 6= τidle then
7 Run task τi to completion;
8 end
9 while (now() mod hyperperiod) < tnext do

10 nothing(); . spin loop;
11 end
12 end

table “wraps around” at the end of each hyperperiod (i.e., if we
reach the end of the table, we start again from the first entry).
Since the scheduler is activated once per table entry, the total cost
of scheduling is O(1) per job. Note that now() is assumed to be a
system function that returns the current value of the system clock
(e.g., the number of microseconds since the system booted).

In practice, Algorithm 2 can be implemented with very low
overhead (Sec. V-A). The main drawback, however, is that the
table size is exactly proportional to the number of jobs, which can
be prohibitively large even for a small number of tasks, as already
discussed in Sec. I. In our implementation, we require 5 bits per
TID and use 27 bits to store the relative time in microsecond
granularity, for a total of 4 bytes per record.1 As even simple
ECUs with only a handful of tasks with harmonic periods [3]
can easily accumulate N = 500 entries, table sizes in the range
of (at least) a few kilobytes are not uncommon.

An alternative solution is to use an online scheduling
algorithm with low runtime overhead such as fixed-priority
scheduling. A straightforward implementation suitable for mi-
crocontrollers is sketched in Algorithm 3.

An array, denoted byA = {anext1 , anext2 , . . . , anextn }, is used
to store the next arrival time of each task. When the scheduler
is activated, it scans the array in order of decreasing priority
until it finds a task τi that has a next-arrival time in the past, i.e.,
tnow ≥ anexti . After dispatching the highest-priority ready task
τi, the scheduler updates anexti and then proceeds to rescan the
array of arrival times, starting again with the highest-priority
task τ1. The algorithm uses a linear traversal, rather than a
bitmap guided-lookup or a more advanced data structure, since
microcontrollers often do not have an instruction to quickly
determine the highest set bit in a word (e.g., this is the case with
the AVR processor family used in Arduino boards), and since
dynamic data structures such as min-heaps or red-black trees
typically do not improve runtimes for a small number of tasks.

With an online policy, there is no need to store the offline
table in memory. Furthermore, for small n, Algorithm 3 is quite
fast in practice (Sec. V-A). However, we now have a schedulabil-
ity problem: the schedulability ratio of simple, work-conserving
policies such as NP-RM or NP-EDF is very low if tasks have
relatively large execution times [9]. Conversely, employing the
non-work-conserving policy CW-EDF [9], which offers much
better schedulability in theory, results in unacceptably high

1If job WCETs can be guaranteed to never exceed (roughly) 524 ms, then this
can be further reduced to 3 bytes by using only 19 bits to store the relative time.

Algorithm 3: Non-preemptive fixed-priority scheduler
Input :Task periods T1, . . . , Tn

1 A = {anextj }nj=1 ← {0, . . . , 0};
2 while true do
3 tnow ← now(); . read system clock;
4 for i := 1 to n do
5 if tnow ≥ anexti then
6 Run task τi to completion;
7 anexti ← anexti + Ti;
8 break;
9 end

10 end
11 end

runtime overheads in practice (Sec. V-A).

B. Offline Equivalence: Idea and Challenges
In order to combine some of the benefits of both online and

offline approaches, we propose a new type of solution based on
the idea of storing only the crucial information that makes the
offline table different from a given baseline online policy such as
NP-RM. This information can then be used at runtime to produce
an online schedule that exactly follows the offline table.

For example, suppose that we seek to re-create the schedule
shown in Fig. 1 using NP-RM as the baseline policy, i.e., tasks
with shorter periods have higher priority. The schedule in Fig. 1
differs in two important ways from an NP-RM schedule. First,
in the interval [9, 10), no task is scheduled although there is
pending work, which is a non-work-conserving idle time. A
work-conserving algorithm such as NP-RM would schedule τ3
at time 9, which however would result in deadline miss for the
next job of τ2. Second, at time 30, τ2 is scheduled instead of the
(according to the NP-RM policy) higher-priority task τ1, which
is a priority inversion. Alternatively, the fourth job of τ1 can
also be seen as having an irregular start time, i.e., it can be seen
as being released at time 36 rather than at its regular periodic
release time at time 30. Either way, if the two jobs are swapped,
then τ2 misses its deadline at time 36. Both non-work-conserving
idle times and priority inversions (or irregular start times) are
thus essential and must be faithfully reproduced at runtime.

To prevent divergence of the online schedule from a given
table, we must address two main challenges. First, we need
to identify and detect the crucial difference information that
must be stored, and efficiently make use of this information
at runtime. Second, we must deal with early job completions,
i.e., the fact that jobs in practice tend to rarely (if ever) execute
for their full WCET due to input variations and the pessimism
inherent in WCET estimates. If jobs under-run their WCET, the
scheduler can be invoked “too early” before a high-priority job
is released that, according to the WCET-based table, should
have been scheduled next. As a result, the scheduler could pick
instead an already pending lower-priority job, which can result
in deadline misses (i.e., under non-preemptive scheduling, early
completions can induce scheduling anomalies).

It is worth noting that since jobs are not released by external
events, there is no release jitter (e.g., due to interrupt handling
since interrupts are not delivered and processed instantaneously).
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C. Building an Equivalent Online Schedule
Based on the sketched ideas, we present the offline equiv-

alence (OE) scheduler, which is given in its entirety in Algo-
rithms 4 and 5. In the following, we introduce the OE algorithm
step by step and discuss how it addresses the outlined challenges.

We use Algorithm 3 with rate-monotonic (or deadline-
monotonic) priorities as the starting point since it incurs com-
parably low runtime overhead. The first step then is to avoid
divergence due to WCET under-runs. Since the goal is to recreate
a fixed timetable, there is little benefit in starting jobs early, and
the OE scheduler simply ensures that all jobs consume their full
WCET with a spin loop (as in Lines 9–11 of Algorithms 2) to
fill any surplus time (Lines 33–35 of Algorithm 4).

The next step is to identify all instances where the given
reference table either deviates from the online priority order
or where it is not work-conserving. We call these two types of
irregularities priority-inversion irregularity (PII) and idle-time
irregularity (ITI), respectively.

First, consider ITIs, which are the simpler case. An ITI occurs
between two consecutive jobs J i and J i+1 if there is an idle
instant between the two jobs although there is a pending job Jj :

S(J i) + ci < S(J i+1) ∧ ∃Jj : rj < S(J i+1) ≤ S(Jj). (18)

If (18) holds, there is a gap in the schedule between jobs J i and
J i+1, but a job Jj is already pending and still incomplete strictly
before J i+1 is scheduled at time S(J i+1), which indicates a
non-work-conserving idle time.

For each such ITI, we add an entry consisting of the absolute
start time of the forced idle interval (4 bytes) and its length
(2 bytes) to the idle-time table (IT-table). The IT-table is sorted
by increasing start times. At runtime, the OE scheduler maintains
an index into the IT-table. Before every scheduling decision, it
consults the current ITI record to determine whether a forced
idle time must be inserted (Lines 11–14 of Algorithm 4).

Next, consider PIIs. Since the baseline policy NP-RM is non-
preemptive (and since each job is padded to consume its full
WCET), if a high-priority job is released while a lower-priority
job is running, there is no PII because even NP-RM will not to
schedule the high-priority job until the lower-priority job finishes
its execution. Thus, a PII exists only if, for any two jobs J i and
Jj with respective priorities pi and pj ,

S(J i) < S(Jj) ∧ pi > pj ∧ rj ≤ S(J i). (19)

(Recall that a numerically smaller value implies higher priority.)
We create a separate priority-inversion table (PI-table) for

each task, in which we note any of the respective task’s jobs that
have an elevated priority and possibly a modified start time. For
each of PII of a task, we add an entry that consists of the job
sequence number (2 bytes) and the arrival delay (4 bytes).2 Each
PI-table is sorted by increasing job sequence numbers.

The PI-tables are used at runtime as follows. For each
PI-table, the scheduler maintains a current index. Further, in
addition to the next-arrival times array A, the scheduler also
maintains an array of next-inter-arrival times B. In the regular
case, the entries in B just correspond to each task’s period.
However, when the current job has an irregular start time, then
the reduced inter-arrival time of the next job is recorded in B.

2Depending on the task set, the delay field can be reduced to 3 or 2 bytes.

Algorithm 4: OE scheduling algorithm
Input :Tasks τ1, . . . , τn, TI-table, and PI-tables

1 A = {anextj }nj=1 ← {0, . . . , 0} . arrival times;
2 B = {bnextj }nj=1 ← {T1, . . . , Tn} . inter-arrival times;
3 X ← ∅;
4 while true do
5 tnow ← now(); . read system clock;
6 if tnow > hyperperiod then
7 ∀i : anexti ← anexti − hyperperiod . wrap time;
8 tnow ← tnow− hyperperiod . wrap time;
9 Reset IT- and PI-table indices and job numbers;

10 end
11 if processor must idle at tnow according to IT-table

then
12 Get duration ∆ from table and advance index;
13 tnext ← tnow + ∆;
14 end
15 else
16 foreach τi ∈ X do
17 if tnow ≥ anexti then
18 tnext ← tnow + Ci;
19 Call Algorithm 5 for τi;
20 Run task τi to completion;
21 goto Line 33;
22 end
23 end
24 for i := 1 to n do
25 if tnow ≥ anexti then
26 tnext ← tnow + Ci;
27 Call Algorithm 5 for τi;
28 Run task τi to completion;
29 break;
30 end
31 end
32 end
33 while now() < tnext do
34 nothing(); . spin loop;
35 end
36 end

Finally, since the release of jobs mentioned in the PI-tables needs
to overrule the regular priority order, the OE scheduler maintains
a separate list X that contains tasks whose next jobs have an
irregular start time and priority.

When preparing the release of the next job of a task, the OE
scheduler consults the task’s PI-table by looking up the entry
pointed to by the current index. If the next job is indicated to be
irregular, the task is added to X and the job’s release is delayed.
To ensure that later jobs are released periodically, the inter-arrival
time bnexti is adjusted accordingly (Lines 3–8 of Algorithm 5).

When the OE scheduler is invoked and no idle time is
indicated by the IT-table, it first traverses X to see if any of
the upcoming irregular jobs must now be released and scheduled
(Lines 16–23 of Algorithm 4). It is worth noting that, at any time,
there will be only one irregular task in the system, among those
stored in X , that is eligible to be scheduled. Finally, if there is
no ready irregular job, the scheduler finds the highest-priority
task with a pending regular job by traversing the normal priority
array A (Lines 24–31 of Algorithm 4).
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Algorithm 5: OE job-release algorithm
Input :τi, anexti , bnexti , X

1 anexti ← anexti + bnexti ;
2 bnexti ← Ti;
3 if the next job of τi is irregular then
4 ∆← release delay of the next job of τi from PI-table;
5 Add τi to X;
6 anexti ← anexti + ∆;
7 bnexti ← bnexti −∆;
8 end

Finally, since the idle-time offsets and job sequence numbers
stored in the TI- and PI-tables are relative to the start of a
hyperperiod, whenever a hyperperiod boundary is passed, the
scheduler resets the pointers to the beginning of the tables. This
process happens in Lines 6–10 of Algorithm 4.

Algorithm 4 has O(n) computational complexity because of
the linear searches in Lines 16 and 24, which are bounded by the
number of tasks. Since resource-constrained systems typically do
not have a large number of tasks (i.e., rarely more than a dozen
or so), Algorithm 4 is reasonably fast in practice (Sec. V-A).

D. A Priority-Inversion Reduction Pass
We next discuss how to modify an offline table such that

the number of PII cases is reduced while guaranteeing that the
schedulability of all jobs is preserved in the resulting table. The
main idea is to swap any two jobs that form a PII.

Lemma 1. If two arbitrary jobs J i and Jj with respective
priorities pi > pj are scheduled at times S(J i) < S(Jj), then
swapping these two entries in the table will not introduce a dead-
line miss (for any job) provided that (i) the jobs J i+1, . . . , JN

remain schedulable after the swap, and (ii)

rj ≤ S(J i) and S(Jj) + ci ≤ di. (20)

Proof: Trivially, all jobs J i+1, . . . , JN remain schedulable
as (i) stipulates this as a necessary precondition. We show that the
ith entry, which is now taken by Jj is also schedulable. The new
starting time for Jj will be S ′(Jj)← S(J i), which according
to (20) is not smaller than the release time of Jj . Since according
to the assumptions, S(J i) < S(Jj), it follows that in a valid
table, dj must not be smaller than S(Jj) + cj , which is larger
than or equal to S(J i) + cj . Thus, Jj remains schedulable.

Based on this observation, it is possible to apply a sorting-
like algorithm similar to bubble sort or insertion sort to gradually
“bubble up” jobs with higher priority that are located later than
lower-priority ones in the schedule. Although this is only a best-
effort solution (i.e., the resulting table is not guaranteed to have
a minimal number of PIIs), we have found it to be an effective
first step. Note that this table preprocessing pass requires further
adjustments if job precedence or other type of constraints are
considered during the construction of the original table as we
assume that any two jobs can be freely reordered.

V. EXPERIMENTAL RESULTS

We conducted experiments to answer the following key
questions: (i) what is the overhead of our approach? (ii) How
effective is our table-generation approach at scheduling non-
preemptive tasks? And (iii) how much memory is needed?

A. Runtime Experiments on an Arduino Mega 2560 Platform
We implemented our solution on an Arduino Mega 2560

board, which has an ATMega2560 RISC microcontroller with a
clock speed of 16 MHz, no cache memory, 8 KiB SRAM, and
256 KiB flash memory. All reported overheads were measured
with Arduino’s built-in micros() clock, which has an accuracy of
eight microseconds according to the documentation.

We implemented five scheduling algorithms: online CW-
EDF (due to its good performance in theory), NP-EDF (as a
well-known baseline), NP-RM (as a representative fixed-priority
scheduler based on Algorithm 3), our proposed OE technique
(Algorithm 4), and table-driven scheduling (TD) according
to Algorithm 2. We chose CW-EDF as a baseline because
it is empirically one of the best (in terms of schedulability
ratio) online scheduling algorithms for non-preemptive periodic
task sets [9]. Briefly, CW-EDF improves schedulability by
considering the impact on future, not-yet-released jobs when
making scheduling decisions. Specifically, when CW-EDF finds
a job J i to have the earliest deadline, it considers the next job of
each non-pending task in the system to make sure that executing
J i will not cause a deadline miss for any of these future jobs.
If scheduling J i could result in a deadline miss, then CW-EDF
schedules instead an idle-time until the next job release. In the
worst case, CW-EDF considers at most n − 1 future jobs per
scheduling decision in this manner.

The tables for the TD and OE policies were stored either
on an attached SD card and then loaded into RAM during
initialization, or stored and accessed directly in flash memory
by compiling them into the system image. While RAM is much
more constrained and costly, reading table entries from RAM
takes 2 cycles (per byte), while flash memory accesses take 3 or
more cycles (per byte).

We evaluated the effect of the number of tasks on scheduling
overhead. Task sets were generated randomly as follows. For
a given number of tasks n ∈ {3, 6, 9, 12}, we selected periods
from a log-uniform distribution across the range [1, 1000] (in
milliseconds) as suggested by Emberson et al. [13]. We then
selected u1 uniformly at random from [0.01, 0.99]. Based on this
value, we obtained C1 = u1T1. For the other tasks, we selected
the execution time uniformly at random from [0.001, 2(C1−T1)],
because Ci ≤ 2(C1−T1) is a necessary schedulability condition
for non-preemptive task sets [14].

As discussed shortly in Sec. V-B, we evaluated several ways
of generating scheduling tables. To obtain ITI and PII entries for
use in the overhead experiments, we always chose the table with
the minimum number of irregularities. We discarded any task sets
for which none of the considered table-generation methods could
find a schedule, or if the number of jobs in the table exceeded
1,000 (due to RAM size limitations).

For each value of n, we generated 1,000 task sets. Each task
set was executed for 30 seconds under each tested scheduler (and
in the case of the OE and TD schedulers, once each using RAM-
and flash-based tables), which translates to over 33 hours of
runtime per scheduler, and more than 233 hours of total runtime.

Fig. 6 reports the minimum, maximum, and average observed
scheduling overhead under the different scheduling methods and
for different task-set sizes. For n = 3, the differences in overhead
are relatively minor. As n increases, however, it becomes clear
that CW-EDF exhibits much higher overheads than the other
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Fig. 6. Scheduling overhead (microseconds).

schedulers. As explained earlier, at each activation, CW-EDF
performs a forward scan that inevitably results in high overhead.

As expected, TD exhibits the lowest overhead, which is
also more or less independent of n due to its O(1) complexity.
(The minor measured differences are smaller in magnitude
than the resolution of the available clock device.) Considering
the available clock resolution (8 µs), we could not observe
significant differences between placing the tables in (the larger)
flash memory or in the (much scarcer) RAM.

The low overhead exhibited by NP-RM — the policy is
almost as efficient as the TD scheduler — validates our choice
to use it as the baseline policy for the OE approach.

For context, in terms of maximum and average overhead, the
OE scheduler is about twice as costly as either the TD or NP-
RM schedulers, and actually significantly more efficient than the
standard NP-EDF scheduler. Overall, our experiments confirm
the desired compromise between fast, but large offline tables,
and the slow, but memory-friendly CW-EDF policy: overheads
are indeed much lower than under CW-EDF, while only a small
fraction of the table must be stored, as we show next.

B. Table-Generation Experiments
In the following, we report on a comparison of different table-

generation approaches. We considered the algorithms NP-RM,
NP-EDF, CW-EDF [9], which are actually online policies that we
simulated until the end of the hyperperiod, naive back-tracking
(BB-Naive), which iterates over all possible job orderings [12],
and Moore’s branch-and-bound with pruning (BB-Moore) [15].

The BB-Moore algorithm tries to find a schedulable ordering
between a given set of jobs. It is based on a branch-and-bound
strategy; however, before branching, it calculates the maximum
tardiness of the remaining unscheduled jobs according to the
preemptive EDF algorithm. If the tardiness is larger than the
tardiness of one of the previously seen branches, the branch is
pruned, i.e., will not be further explored.

We further considered several instantiations of our proposed
solution introduced in Sec. III: CWin-RM WF, CWin-RM
WF+BK, CWin-EDF FF, and CWin-EDF FF+BK, where CWin
denotes the chained window technique, WF and FF are the worst-
and first-fit strategies for slack selection, and BK means that the
backtracking option is enabled as specified in Algorithm 1. When
backtracking is disabled, instead of iterating over all possible
slack intervals αi ∈ A (Line 6 of Algorithm 1), we just select
the first safe slack interval.
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It is worth noting that the two combinations of RM and WF
were producing the best results compared to other possible slack-
selection strategies for RM, while the first-fit strategy was the
best for EDF. To avoid clutter, we do not report on any other
slack-selection strategies such as random-fit, next-fit, best-fit, etc.
that were dominated by the displayed strategies.

The experiments were conducted on an Intel Xeon E7-8857
v2 machine clocked at 3 GHz, with 16 cores and 1.2 TiB RAM.
In the first experiment, we measured the effect of task set
utilization. Random task sets were generated as explained in
Sec. V-A. For a given target utilization U , we discarded any task
sets with a utilization other than U ± 0.01. In this experiment,
we considered six tasks due to the fact that systems with limited
resources usually do not have a large number of tasks. To ensure
overall progress, we set a time budget of one minute for the
table-generation algorithms, i.e., if an algorithm could find a
schedule within one minute, we report the task set as undecided.
We also explored other time limits, as discussed later (Fig. 12).

Fig. 7 shows the schedulability ratio, i.e., the fraction of
task sets for which a schedule could be found, relative to the
total number of generated task sets. For context, the figure also
shows a curve for a necessary schedulability condition [9], which
represents an upper bound on achievable schedulability ratio.
Fig. 8 shows the undecided ratio, i.e., the number of task sets
that could not be scheduled within the given time budget.

The configuration CWin-EDF FF+BK is capable to schedule
more task sets than the other algorithms. It also has the smallest
value of undecided tasks among the branch-and-bound and back-
tracking algorithms within the one-minute time limit. In Fig. 7,
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the gap between CWin-EDF FF and CWin-EDF FF+BK shows
the importance of slack interval selection for the EDF-based
chained-window scheduler. We see that the gap is smaller if the
jobs are ordered initially by RM.

The poor performance of NP-EDF and NP-RM is due to
the fact that they do not insert non-work-conserving idle times
to avoid causing large blocking times for future, soon-to-arrive
jobs with tight deadlines. Another observation is that BB-Naive,
which is based on an exhaustive search over all possible job
orderings, could not find schedules for many of the feasible task
sets within the one-minute time budget. Moreover, although CW-
EDF is a non-optimal heuristic, for high utilizations, it performs
as well as the branch-and-bound BB-Moore algorithm.

In Figs. 9 and 10, we show the time and memory consump-
tion of the table generation methods. As it can be seen, the
chained window technique is able to find schedules much faster
than other branch-and-bound algorithms. During the process of
construction of the schedule, it consumes more memory than
BB-Moore because it needs to store all chained windows (i.e.,
the list W ), but it still consumes far less memory than BB-Naive.

In our experiment, the size of the generated offline tables was
about 2 KiB on average for all of the considered table-generation
methods (recall that we use 4 bytes per record). Since the table
sizes were almost the same for all table-generation methods, we
omit a detailed discussion and instead focus on the sizes of the
derived IT- and PI-tables (which require 6 bytes per record).

Fig. 11 shows the average total size of the PI- and IT-tables
(called OE-tables here) after applying the PII reduction pass. At
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methods after applying the table manipulation algorithm in Sec. IV-D.
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Fig. 12. Schedulability ratio of the table generation algorithms as a function of
the available time budget. Note that the horizontal axis has logarithmic scale.

lower utilizations, the PII algorithm finds more opportunities to
swap jobs. CW-EDF generates schedules that are very close to
an NP-RM schedule, and hence is able to provide very small
OE-tables. In contrast, the tables that are produced by BB-Naive
and BB-Moore do not result in efficient OE-tables because they
inherently have a large number of priority inversions that cannot
be corrected by our best-effort PII reduction pass.

It is noteworthy that, in our experiment, NP-EDF and NP-
RM generated almost identical schedules, which implies that the
OE-tables resulting from NP-EDF have a very small size (almost
0 on average). Obviously, if a task set is already scheduable by
NP-RM, there is no need to use the OE technique in the first
place. However, as shown in Fig. 7, more than 50% of feasible
task sets are not schedulable by a non-preemptive fixed-priority
scheduler. The proposed OE approach allows us to fill this gap.

In a second experiment, we measured the schedulability ratio
of different table-generation algorithms as a function of the
available time budget. Task sets were generated as explained in
Sec. V-A with n = 10 tasks and a total utilization of U = 0.9.
Fig. 12 shows the results of the experiment for 1, 10, 100, and
1,000 seconds (per task set). For each setup, we have repeated
the experiment 1,000 times. In most cases, the exhaustive search
BB-Naive is unable to find a schedule. As can be clearly seen,
the chained-window technique has a high schedulability ratio
even with a rather limited time budget such as one second.

VI. RELATED WORK

A cyclic executive [16, 17] is one of the traditional execution
models for real-time systems in which the application is divided
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into a set of procedures that are executed non-preemptively.
The cyclic executives repeats its task list at a specified rate,
called major cycle, while each sub-part of a task is executed in a
minor cycle [18]. Minor cycles may or may not have different
length. In both cases, finding a feasible set of parameters for
the cyclic executives is computationally expensive and can have
exponential cost [17]. Overall, the approach closely resembles
table-based scheduling, and thus can also suffer from large
memory needs (i.e., long major cycles). Note that in our table-
generation approach, we do not have minor cycles, instead, we
have one major cycle as large as the hyperperiod.

Since the size of an offline table depends on the number of
jobs which in turn depends on the length of the hyperperiod,
several works have tried to reduce the size of the table by
manipulating the original set of periods, e.g., by reducing the
hyperperiod as proposed by Ripoll et al. [5], or by constructing
harmonic periods [6, 7]. However, these approaches are not
applicable if the given set of periods cannot be modified, or if
tasks are non-preemptive (as they rely on utilization-based tests).

The problem of minimizing the maximum tardiness, i.e.,
finding a schedule in which min{max{0,S(J i) + ci−di}}∀i is
minimized, has been studied in several works (see the survey by
Pinedo [12]). An optimal solution can be found by iterating over
all possible orderings. Moore [15] has presented a branch-and-
bound approach in which a branching happens only if the lower
bound on the tardiness of that branch is not larger than the cost of
sibling branches. This lower bound is obtained using preemptive
EDF. However, these approaches have limited scalability w.r.t.
the total number of jobs in a hyperperiod.

In the context of distributed time-trigerred networks, several
works have used a mixed-integer linear programming [19, 20]
or satisfiability modulo theory (SMT) solvers [21] to find the
scheduling table of the routers for a set of periodic messages.
These solutions are also subject to scalability issues w.r.t. the
number of messages, routers, hops, etc.

As a combination of offline and online scheduling, Fohler
[22] introduced the Slot Shifting method, which allows the
system to manipulate the offline table at runtime in order to
integrate aperiodic real-time jobs. In the context of field bus
scheduling, Almeida et al. [23] have introduced an online
admission test together with a table-manipulation method to
add a new non-preemptive periodic task to an offline table that
already includes a set of non-preemptive tasks. None of these
works have tried to reduce the memory consumption of a table-
based scheduler.

Deogun and Kong [24] and Cai and Kong [14] have presented
an approach with amortized costO(1) per job to schedule a set of
non-preemptive harmonic tasks, provided that the ratio Ti/Ti−1
is at least three. Nasri et al. [8] showed that, if periods are loosely
harmonic (i.e., each period is an integer multiple of T1) and the
ratio Ti/Ti−1 is at least three, then problem is solvable with an
online scheduler called Precautious-RM, which incurs only O(1)
overhead relative to NP-RM.

Precautious-RM [8] and CW-EDF [9] are online non-work-
conserving scheduling algorithms for non-preemptive tasks. In
these algorithms, the idle-time insertion policy (IIP) is separated
from the priority ordering policy. Each time the scheduler is
activated, the priority ordering policy determines the highest-
priority job J i at the moment, and then the IIP decides whether
to schedule J i or to leave the processor idle until the next release

event in the system. IIP decisions are based on verifying whether
scheduling J i will cause a deadline miss for a particular set of
jobs that will be released in future or not. In Precautious-RM,
IIP decides based on the next job of τ1 whilst in CW-EDF, it
decides based on the next job of any other task that does not have
a pending job at the moment. However, the currently existing
schedulability tests for both of these algorithms are limited to
the the task sets in which Ti/T1 ∈ N and Ti/Ti−1 ≥ 3.

To the best of our knowledge, hybrid offline-online non-
preemptive scheduling techniques that avoid storing the offline
table in its entirety have not yet been explored in prior work.

VII. EXTENSIONS AND OPEN QUESTIONS

In this section, we discuss how the proposed chained-window
technique could be extended for task sets with arbitrary deadlines,
dependencies, or release offsets.

As explained in Sec. III, chained windows are constructed for
a given set of jobs. Each job is known by its release time, WCET,
and deadline. Consequently, for the chained-window technique,
there is no significant difference between the jobs that stem from
a simple periodic task and those that are generated by a task with
a release offset and an arbitrary deadline.

The chained-window technique is trivially extensible to
tasks/jobs with precedence constraints since chained windows
preserve the ordering of already assigned jobs. Thus, to add a
new job to the set of previously accepted jobs, we just need to
consider its precedence constraint(s) when iterating over the list
of potential slack intervals for the current job.

If a task set has release offsets or arbitrary deadlines, then
one challenging issue that is common to all non-preemptive
table-generation methods is that there might be carry-out jobs
at the end of a hyperperiod that affect the schedule of the next
hyperperiod. Moreover, in the presence of release offsets or
arbitrary deadlines, different hyperperiods will have different
schedules (e.g., see [25]). For example, if τ1 in Fig. 1 has
a release offset of 14 time units, then the first and second
hyperperiods will have different schedules. From the second
hyperperiod onward, the schedule will become identical and
repeat forever. In general, the number of hyperperiods that must
be covered by the table depends on the relation between the
release offsets and periods of the tasks.

One way to avoid generating a large table in such cases is
to explicitly constrain the schedules such that no carry-out job
remains at the end of one (or a few) hyperperiod(s), which of
course comes with a tradeoff in terms of schedulability. In the
context of the chained-window technique, this can be done by
limiting the time interval at which the chained windows are
created, e.g., from time 0 to time 60 in the example in Fig. 5.

Goossens and Devillers [26] have shown that if a preemptive
periodic task set scheduled by a dynamic-priority scheduler has
release offsets, then it suffices to consider two hyperperiods
plus the maximum release offset in the schedulability analysis.
However, in the case of offline scheduling, two tables must be
stored; the prefix that does not repeat, e.g., the first hyperperiod
in the previous example, and the one that is repeatable.

Unfortunately, the result of Goossens and Devillers [26] does
not easily transfer to non-preemptive scheduling. In particular, it
is possible to construct examples in which the repeatable pattern
spans many hyperperiods due to (necessary) idle times that occur
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at different times in different hyperperiods. In general, it appears
to be difficult to bound the maximum number of hyperperiods
that must be considered. We leave the systematic exploration of
this issue to future work.

VIII. SUMMARY AND CONCLUSION

We have considered the problem of scheduling periodic real-
time tasks on severely resource-constrained embedded platforms
in a non-preemptive fashion. Motivated by the observation that
neither pure online nor pure offline solutions are ideal for such
systems—offline tables can easily consume too much memory,
and existing online solutions either offer poor schedulability or
suffer from excessive runtime overheads—we have developed
a hybrid strategy, called offline equivalence, that offers a
compromise of the two extremes.

For our method to work, one first needs to find a feasible
offline schedule. Motivated by the fact that branch-and-bound
methods struggle to scale to the large number of jobs encountered
in long hyperperiods, we have proposed a new, more scalable (but
non-optimal) table-generation heuristic based on a novel chained-
window abstraction. In summary, a chained window removes
a large number of possible job orderings from consideration
and thereby implicitly prunes the search tree. In experiments
with synthetic task sets, the proposed table-generation technique
proved effective, despite its theoretical non-optimality, and was
much quicker than branch-and-bound methods.

Once a feasible offline table is known, the proposed offline-
equivalence scheduler exactly recreates the table at runtime, at
a fraction of the memory requirements of a pure table-based
solution, and with much lower runtime overheads than well-
performing online policies (in terms of schedulability ratio).
This is achieved by running a fast online policy as a default
baseline, and by correcting its decision based on the information
stored in two irregularity tables whenever the online decision
would deviate from the offline table. As a result, only those parts
of the table that actually differ from the online policy must be
stored, while the incurred runtime overhead remains relatively
low, as demonstrated on an ATMega2560 microcontroller.
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