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Abstract—Several suspension-based multiprocessor real-time
locking protocols for partitioned fixed-priority (P-FP) scheduling
have been proposed in prior work. These protocols differ in key
design choices that affect implementation complexity, overheads,
and worst-case blocking, and it is not obvious which is “best” when
implemented in a real OS. In particular, should blocked tasks
wait in FIFO or in priority order? Should tasks execute critical
sections locally on their assigned processor, or should resource
access be centralized on designated processors? This paper reports
on a large-scale, overhead-aware schedulability study comparing
four protocols, the MPCP, FMLP+, DPCP, and the DFLP, which
together cover each of the four possible combinations. The results
are based on a new, linear-programming-based blocking analysis
technique, which is explained in detail and shown to offer substan-
tial improvements over prior blocking bounds. The results reveal
that priority queuing (MPCP, DPCP) is often preferable if the
range of temporal constraints spans (at least) an order of magni-
tude, whereas FIFO queueing (FMLP+, DFLP) is preferable if the
ratio of longest to shortest deadlines is small. Further, centralized
resource access (DPCP, DFLP) is found to be preferable to local
critical sections (MPCP, FMLP+) for high-contention workloads.
Scheduling, cache, and locking overheads were accounted for as
measured in LITMUSRT on two 8- and 16-core x86 platforms. In
contrast to earlier LITMUSRT-based studies, no statistical outlier
filtering was performed, owing to improved tracing support.

I. INTRODUCTION

Predictable scheduling and mutual exclusion primitives are
two of the most essential facilities provided by multiprocessor
real-time operating systems (RTOSs). With regard to the former,
partitioned fixed-priority (P-FP) scheduling is a widespread
choice in practice today (e.g., it is supported by VxWorks,
RTEMS, Linux, and many other RTOSs). With regard to the
latter, binary semaphores (or mutexes) are a near-universally sup-
ported locking mechanism (e.g., their availability is mandated by
the POSIX real-time profile). How to “best” support predictable
semaphores under P-FP scheduling is thus a question of great
practical relevance; however, an answer is far from obvious and
several, quite different solutions have been proposed in prior
work (reviewed in Sec. VII). In particular, there are two key
design questions that any locking protocol must address:
Q1 in which order are blocked tasks queued; and
Q2 where are critical sections executed?

Concerning Q1, the use of either FIFO or priority queues has
been proposed [5, 22]. While priority queues may seem to be a

natural fit for real-time systems, they are susceptible to starvation
and thus, asymptotically speaking, give rise to non-optimal
maximum blocking for lower-priority tasks on multiprocessors
[6, 10], as explained in Sec. II. In contrast, FIFO queues are
somewhat simpler, avoid starvation, and yield asymptotically
optimal bounds [6, 10], albeit at the expense of increased delays
for higher-priority tasks. Both choices thus have advantages and
disadvantages, and from an RTOS designer’s point of view, it is
not immediately clear which is the “right one” to implement.

With regard to Q2, in shared-memory systems, it is common
for tasks to execute critical sections locally, in the sense
that each task accesses shared resources directly from the
processor to which it has been assigned, such that, over time,
resources are accessed from multiple processors. For example,
this is the case under the classic multiprocessor priority-ceiling
protocol (MPCP) [22, 23]. However, another plausible option
are distributed locking protocols such as the original distributed
priority-ceiling protocol (DPCP) [23, 24], where each resource
is accessed only from a designated synchronization processor.
Such protocols, which derive their name from the fact that they
could also be used in distributed systems (i.e., in the absence of
shared memory), require critical sections to be executed remotely
if tasks access resources not local to their assigned processor.
While distributed locking protocols require increased kernel
involvement and careful coordination among cores, they also
avoid the need to migrate resource state and have recently seen
renewed interest in throughput-oriented computing [20]. Again,
neither choice is “obviously” superior to the other.

This study. To shed light on these fundamental RTOS design
issues, we conducted a large-scale evaluation of the four possible
combinations of priority/FIFO queueing and local/remote criti-
cal section execution. In particular, we sought to identify which
approach (if any) is “best” from the point of view of hard real-
time schedulability under consideration of worst-case overheads
as they arise in an actual RTOS, namely LITMUSRT [1]. To this
end, we implemented and compared four semaphore protocols
from prior work: the aforementioned MPCP and the DPCP
combine priority queuing with local and remote critical sections,
respectively; the remaining two FIFO cases are covered by the
FIFO Multiprocessor Locking Protocol (FMLP+) [6], under
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which tasks execute critical sections locally, and the Distributed
FIFO Locking Protocol (DFLP) [7]. Intuitively, one might
assume distributed protocols to be inferior when overheads
are considered; surprisingly, this is not the case: our results,
discussed in Secs. IV and V, show that each of the considered
protocols offers a decisive advantage for certain workloads.
Improvements. The significance of any overhead-aware schedu-
lability study hinges upon two critical aspects: the accuracy of
the employed analysis, and the validity of the assumed overheads.
This work improves upon prior studies in both regards.

Concerning accuracy of analysis, in predictable real-time
systems, a protocol with good runtime properties is of little
use if its associated a priori bounds on worst-case blocking
are too pessimistic. However, blocking analysis is quite tedious
and error-prone in nature, and with conventional methods there
exists a tension between accuracy and clarity (i.e., the less
pessimistic the bounds, the harder they are to express), with
the result that prior ad-hoc analysis of locking protocols has
generally favored ease of exposition at the expense of precision.
To overcome this apparent dichotomy, we have developed a
new linear-programming-based analysis technique that is sound
by design, concise, simpler to reason about, and—as shown in
Sec. IV—significantly less pessimistic than prior approaches.

Considering the validity of measured overheads, outliers
and “noisy” data can be very problematic when approximating
worst-case overheads empirically. If left unchecked, outliers due
to untimely interrupts, trace buffer overflows, or intervening
preemptions can easily distort maxima to the point of being
useless (e.g., due to preemption-related reordering of timestamps,
it is possible to “observe” system call overheads on the order
of days, which is clearly implausible). To cope, all prior
LITMUSRT-based studies have applied statistical outlier filters
to remove erroneous samples from recorded data sets. However,
while effective, this approach has the downside that the choice
of statistical filter is essentially arbitrary, and that it is possible
for valid samples to be accidentally culled as well. In contrast,
no statistical filters were applied in this study, which became
possible due to several improvements to LITMUSRT’s tracing
support, which we detail in Sec. V.

In the following, we briefly introduce needed background
(Sec. II) before introducing the new analysis technique (Sec. III)
that underlies the results presented in Secs. IV and V. Further re-
finements of the efficiency of the proposed method are discussed
in Sec. VI. Finally, related work is surveyed in Sec. VII.

II. BACKGROUND AND DEFINITIONS

We consider a real-time workload consisting of n sporadic
tasks τ = {T1, . . . , Tn} scheduled on m identical processors
P1, . . . , Pm. We denote a task Ti’s worst-case execution cost as
ei and its period as pi, and let Ji denote a job of Ti. A task’s
utilization is defined as ui = ei/pi. A job Ji is pending from
its release until it completes. Ti’s worst-case response time ri
denotes the maximum duration that any Ji remains pending. For
simplicity, we assume implicit deadlines.

Besides the m processors, the tasks share nr serially-reusable
resources `1, . . . , `nr

(e.g., I/O ports, network links, data struc-

tures, etc.). We let Ni,q denote the maximum number of times
that any Ji accesses `q , and letLi,q denote Ti’s maximum critical
section length, that is, the maximum time that any Ji uses `q
as part of a single access (Li,q = 0 if Ni,q, = 0). We assume
that Ji must be scheduled in order to use `q, which is true for
shared data structures, but could be relaxed for I/O devices. We
further assume that jobs release all resources before completion
and that jobs request and hold at most one resource at any time.

Access to shared resources is governed by a locking protocol
that ensures mutual exclusion. If a job Ji requires a resource `q
that is already in use, Ji must wait and incurs acquisition delay
until its request for `q is satisfied (i.e., until Ji holds `q’s lock). In
this paper, we focus on semaphore protocols, under which jobs
wait by suspending (as opposed to spinning, see Sec. VII). The
worst-case execution cost ei includes critical sections under
shared-memory protocols, but not under distributed locking
protocols (where critical sections may be executed remotely).

A. Scheduling, Priority Inversions, and Blocking

Under P-FP scheduling, each task has a unique, fixed base
priority, and is statically assigned to one of the m processors;
we let P (Ti) denote Ti’s assigned processor. For brevity, we
assume that tasks are indexed in order of decreasing base priority.
Whether a task set is schedulable under P-FP scheduling in
the presence of locks (i.e., whether ri ≤ pi for each Ti) is
commonly determined using response-time analysis [3, 19], that
is, by solving the following recurrence for each Ti:

ri = ei + bli + bri +
∑

P (Th)=P (Ti)∧h<i

⌈
ri + brh
ph

⌉
· eh, (1)

where bli and bri denote bounds on the maximum local and remote
priority-inversion blocking (pi-blocking), respectively.

Intuitively, a priority inversion exists if a high-priority job
that should be scheduled is not scheduled (e.g., while waiting to
acquire a lock). Formally, a job Ji incurs a priority inversion at
time t if Ji is pending and neither Ji nor a higher-priority job
are scheduled on processor P (Ti) at time t [10], that is, if Ji is
delayed and no jobs of tasks contributing to the right-hand side
of Eq. (1) are scheduled.

Priority inversions are considered to cause “blocking” because
they lead to an undesirable increase in worst-case response time.
To avoid confusing such locking-related delays with other uses of
the word “blocking,” we use the more specific term “pi-blocking”
in this paper. Pi-blocking is local (i.e., accounted for by bli) when
caused by critical sections executed on processor P (Ti), and
remote (i.e., accounted for by bri ) otherwise.

B. Asymptotically Optimal PI-Blocking

The primary purpose of a real-time locking protocol is to
minimize the occurrence and duration of priority inversions,
which, however, cannot be avoided entirely in the presence of
semaphores. Recent work [6, 10] has explored the asymptotic
limits of pi-blocking in terms of maximum pi-blocking (formally,
maxTi∈τ b

l
i + bri ) and found that there exist two classes of

schedulability tests—called suspension-aware and suspension-
oblivious analysis, respectively—that give rise to different
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lower bounds on maximum pi-blocking. Although a detailed
discussion is beyond the scope of this paper, we note that
response-time analysis [3], that is, Eq. (1) above, belongs to
the class of suspension-aware analysis, which is subject to an
Ω(n) lower bound on maximum pi-blocking [6, 10]. In other
words, there exist pathological task sets such that pi-blocking is
linear in the number of tasks under any semaphore protocol.

To be asymptotically optimal, a locking protocol must ensure
that maximum pi-blocking is always within a constant factor of
the lower bound. In the suspension-aware case, O(n) maximum
pi-blocking is hence asymptotically optimal, which can be
realized with FIFO queues [6, 10]. In contrast, priority queues
are liable to non-optimal Ω(m · n) pi-blocking [6, 10].

C. Considered Protocols

We consider two classic and two recent semaphore protocols
in this paper. As mentioned in Sec. I, these protocols differ in
the order in which waiting jobs are queued and where critical
sections are executed. Further, they differ in how the effective
priority of lock holders is determined, which must exceed a
task’s base priority to prevent extended priority inversions.

a) DPCP: Rajkumar et al. were first to study real-time
locking on multiprocessors and proposed the DPCP [23, 24],
which does not require shared memory. Each resource `q is
assumed local (i.e., statically assigned) to a specific processor,
which we denote as P (`q), and may not be accessed from other
processors. To enable non-local resource access, resource agents
are provided to carry out requests on behalf of remote jobs.
Under the DPCP, there is one such agent, denoted Aq,i, for
each resource `q and each task Ti. Importantly, resource agents
are subject to priority boosting, which means that they have
effective priorities higher than any regular task (and thus cannot
be preempted by “normal” jobs), although resource agents acting
on behalf of higher-priority tasks may still preempt agents acting
on behalf of lower-priority tasks. After a job has invoked an
agent, it suspends until its request has been carried out.

On each processor, conflicting accesses are mediated using
the well-known uniprocessor priority-ceiling protocol (PCP) [23,
26]. The PCP assigns each resource a priority ceiling, which is
the priority of the highest-priority task (or agent) accessing the
resource, and, at runtime, maintains a system ceiling, which is the
maximum priority ceiling of any currently locked resource. A job
(or agent) is permitted to lock a resource only if its priority ex-
ceeds the current system ceiling, waiting jobs/agents are ordered
by effective scheduling priority, and priority inheritance [23, 26]
is applied to prevent unbounded priority inversion.

b) MPCP: In work on shared-memory systems, Rajkumar
proposed the MPCP [22, 23], which is based on direct resource
access. Similar to the DPCP, blocked jobs wait in priority order
and lock holders are preemptively priority-boosted (i.e., lock-
holding jobs can be preempted, but only by other lock-holding
jobs with higher effective priority). When acquiring a lock, a
job’s effective priority is immediately raised to the associated
priority ceiling, which is defined differently under the MPCP:
the priority ceiling of a resource `q on processor Pk is the highest
priority of any task accessing `q that is not assigned to Pk.

c) FMLP+: Block et al. were first to propose the use of
FIFO queuing in real-time semaphore protocols with their Flexi-
ble Multiprocessor Locking Protocol (FMLP) [5]. The protocol
considered herein, the FMLP+ [6], is a recent refinement of the
FMLP for partitioned scheduling. Like its precursor, the FMLP+

is a shared-memory locking protocol, uses simple FIFO queues
to order conflicting requests, and employs priority boosting to
expedite request completion. However, the original FMLP does
not ensure asymptotically optimal pi-blocking due to a non-
optimal assignment of effective priorities. The FMLP+ corrects
this with the following simple rule: lock holders are scheduled
in order of increasing lock-request time, that is, the effective
priority of a lock holder is the time at which it requested the
lock. This ensures that lock-holding jobs are never delayed by
later-initiated critical sections, which can be shown to ensure
asymptotically optimal O(n) maximum pi-blocking [6].

d) DFLP: The DFLP [7] is a recently developed cross of
the FMLP+ and the DPCP. As under the DPCP, resources are
assigned to designated synchronization processors and resource
access is mediated by priority-boosted agents. However, the
DFLP does not use the PCP and there is only a single agent
Aq for each resource `q. Similar to the FMLP+, agents serve
requests in FIFO order with respect to each resource and are
scheduled in order of decreasing lock-request time (with respect
to the request currently being served). Jobs that have invoked an
agent are suspended until their request is complete. An example
DFLP schedule is discussed in the next section.

This concludes the review of essential background. Next, we
introduce a new approach for bounding worst-case pi-blocking,
that is, for deriving suitable bli and bri bounds for use in Eq. (1).

III. A LINEAR MODEL OF PI-BLOCKING

To obtain pi-blocking analysis that is concise, extensible,
robust, and less pessimistic than prior ad-hoc approaches, we
formalize the goal of bounding maximum pi-blocking as a linear
optimization problem. That is, for a given task Ti, we derive
a linear program (LP) that, when maximized by an LP solver,
yields a valid bound bi = bri + bli on the maximum pi-blocking
incurred by any job of Ti. Concerning robustness, our approach
starts with basic bounds that enumerate all critical sections,
which are then incrementally refined by imposing constraints
inferred from the protocol. As a result, this approach is sound by
construction: omitting constraints may yield more pessimistic,
but still correct results. In other words, prior approaches require
the analyst to enumerate every critical section that can block,
whereas our approach first assumes that any request can block
and then enumerates critical sections that can be shown to not
block the task under analysis. The general idea is quite flexible
and not protocol-specific. In this section, we focus on the DPCP
and the DFLP; an analogous analysis of the MPCP and the
FMLP+ can be found in Appendix B and Appendix C.

To derive accurate bounds on pi-blocking, it is necessary to
analyze different causes of locking-related delays individually.
There are three kinds of delay common to all locking protocols,
and one specific to distributed locking protocols.

1) Direct request delay arises under any protocol whenever a
job Ji requests a resource that is currently not available.
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While Ji waits for the lock holder to finish its critical
section, it potentially incurs pi-blocking. Direct request
delay arises only via resources that Ji requests.

2) Indirect request delay occurs if Ji waits for another job Ja
to release a resource and Ja is preempted by a third job Jb
(or an agent acting on behalf of Jb), thus increasing Ji’s
total acquisition delay. Indirect request delay can arise due
to shared resources that Ji never accesses.

3) Preemption delay occurs when Ji is preempted by a
priority-boosted, lower-priority job (or agent). Unlike
direct and indirect request delay, preemption delay affects
even tasks that do not access shared resources.

4) Finally, agent execution delay characterizes the time that a
job is suspended under distributed locking protocols while
an agent carries out its request. Agent execution delay
is not contention-related, but it is a source of delay and
thus can cause priority inversions. Agent execution delay
does not arise in shared-memory locking protocols since
jobs execute critical sections themselves (recall that the
execution cost ei includes critical sections under shared-
memory, but not under distributed locking protocols).

Since any locking-related pi-blocking coincides with one of the
above kinds of delay, an upper bound on such delays also bounds
pi-blocking; in Sec. III, we will derive such a delay bound.

The example DFLP schedule depicted in Fig. 1 exhibits each
kind of delay. For simplicity, only one (i.e., the highest-priority)
job is shown on each processor. Two shared resources, `1 and
`2, are local to processor P4. Job J3 requests `2 at time 1, which
activates agent A2 on processor P4. Since A2 is subject to
priority boosting, it preempts J4 immediately. At time 2, J2
requests `1, which activates agent A1, but does not preempt A2

sinceA1 has lower effective priority (recall that the agent serving
the earliest-issued request has the highest effective priority under
the DFLP). Job J1 also requests `1 at time 3, but A1 is not
scheduled until time 4 when A2 finishes J3’s request. Since
the DFLP employs FIFO queues, A1 first serves J2’s request at
time 4, and J1’s request only at time 7. J4 suffers pi-blocking
throughout [1, 10) while A1 and A2 serve requests—an example
of preemption delay. Indirect request delay occurs during [2, 4),
where J2 and J1 are transitively delayed by J3’s (otherwise not
conflicting) request for `2. J1 is subject to direct request delay
during [4, 7) while A1 serves J2’s earlier-issued, conflicting
request. Finally, agent execution delay is incurred by J3 during
[1, 4), by J2 during [4, 7), and by J1 during [7, 10).

We next introduce the core idea underlying the proposed
approach by means of an analysis of the preceding example. In
the following, let Ji denote an arbitrary job of the task under
analysis, and, for each task Tx, letRx,q,v denote the vth request
for `q by jobs of Tx while Ji is pending.

A. Linearization with Blocking Fractions: An Example

Consider the pi-blocking incurred by J1 in Fig. 1. The
depicted schedule is not a worst-case scenario for J1 since
J3’s request R3,2,1 at time 1 overlaps with J1’s request R1,1,1

at time 3 only partially. To express such partial blocking, we
introduce the concept of “blocking fractions.” Consider a request

Task ei pi Ni,1 Ni,2 Li,1 Li,2 P (Ti)

T1 4 20 1 0 3 0 P1

T2 4 30 1 0 3 0 P2

T3 4 40 0 1 0 3 P3

T4 4 50 0 0 0 0 P4

scheduled

critical section

release/activation completion

suspendedpreempted

5 10 150

P1 :

P2 :

P3 :

P4 : J1J2

J3

J1

J2

J3

J4

A1

A2

Fig. 1. Example DFLP schedule of four jobs, with parameters as specified in
the above table. The two shared resources `1 and `2 are local to processor P4.

Rx,q,v, and let bx,q,vi denote the actual pi-blocking (of any
kind) that Ji incurred due to the execution of Rx,q,v. The
corresponding blocking fraction Xx,q,v , bx,q,vi /Lx,q relates
the pi-blocking actually incurred by Ji to the maximum pi-
blocking that Rx,q,v could have caused, where Xx,q,v ∈ [0, 1].
We analogously defineXD

x,q,v ,XI
x,q,v , andXP

x,q,v to denote only
the fraction of pi-blocking due to direct request delay, indirect
request delay, and preemption delay, respectively.

For example, in Fig. 1, R3,2,1 causes J1 to incur indirect
request delay during [3, 4) (i.e., b3,2,1i = 1). Since L3,2 = 3,
it follows that XI

3,2,1 = 1
3 , XD

3,2,1 = 0, and XP
3,2,1 = 0.

Similarly,R2,1,1 causes direct request delay during [4, 7), and
hence XI

2,1,1 = 0, XD
2,1,1 = 1, and XP

2,1,1 = 0. During [7, 10),
J1 waits for the agentA1 to finish; however, this agent execution
delay, which is bounded by L1,1, is not modeled as a blocking
fraction (since it is J1’s own request causing the delay).

The concept of blocking fractions is key to our analysis since
it allows total pi-blocking to be expressed as a linear function.
For example, in the schedule shown in Fig. 1, J1 is suspended
for a total of seven time units, which can be expressed as

L1,1 + (XD
2,1,1 +XI

2,1,1 +XP
2,1,1) · L2,1

+ (XD
3,2,1 +XI

3,2,1 +XP
3,2,1) · L3,1

(2)

to yield 3 + (1 + 0 + 0) · 3 + (0 + 1
3 + 0) · 3 = 7.

It is important to realize that Eq. (2) holds for any schedule
of the given task set: Eq. (2) remains structurally unchanged
even if the schedule is changed, and only the blocking frac-
tions’ numeric values vary (e.g., in a contention-free, best-case
scenario, all blocking fractions are simply zero). This allows
for two interpretations of Eq. (2). In the context of a specific,
fixed schedule S, blocking fractions denote specific, numeric
values and Eq. (2) yields the actual delay incurred by J1 in S.
However, in the context of all possible schedules, Eq. (2) can
also be understood as the objective function of a linear program
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that bounds the worst-case remote pi-blocking br1 (in this simple
example, J1 is not subject to local pi-blocking, i.e., bl1 = 0).

Specifically, a bound on br1 can be obtained by reinterpreting
each blocking fraction as a variable with domain [0, 1], and by
maximizing Eq. (2) subject to the constraints (i) XD

3,2,1 = 0
(since T1 does not access `2, i.e., N1,2 = 0) and (ii) XP

x,q,1 = 0
for each Tx and each `q (as there are no agents located on
J1’s processor). For the given constraints, a maximal solution
is XI

3,2,1 = XD
2,1,1 = XI

2,1,1 = 1, which yields a safe (but
pessimistic) upper bound of bri = 12. A more accurate bound
could be obtained by imposing additional constraints to rule
out variable assignments that reflect impossible schedules (e.g.,
R2,1,1 cannot indirectly block J1, which implies XI

2,1,1 = 0).
In a nutshell, our analysis works as follows: first enumerate

the lengths of all concurrent critical sections as coefficients of
blocking fractions in the objective function, which immediately
yields a sound, but grossly pessimistic bound, and then impose
constraints on blocking fractions (i.e., variables of the LP) to
discount impossible schedules. We formalize this technique next.

B. Objective Function and Basic Constraints

We begin with defining the objective function of the LP for
task Ti. Let rr(Ti) , {`q | P (`q) 6= P (Ti)} denote the set of
remote resources (w.r.t. Ti); analogously, let lr(Ti) denote the
set of local resources. Bounds on bli and bri can be expressed
as functions of blocking fractions with regard to resources in
lr(Ti) and rr(Ti), respectively. However, this requires a bound
on the maximum number of requests for each resource `q issued
by each task Tx while an arbitrary job Ji is pending. Recall that
ri denotes the maximum response time of Ti. For a sporadic
task Tx, the number of jobs that execute while Ji is pending
is bounded by d(ri + rx)/pxe (see e.g. [6, p. 406] for a formal
proof of this well-known bound), which implies that jobs of
Tx issue at most N i

x,q , d(ri + rx)/pxe · Nx,q requests for a
resource `q while Ji is pending. For brevity, let τ i , τ \ {Ti}
(see Table I for a summary of essential notation). Analogously
to Eq. (2), the objective is then to maximize bi = bli + bri , with

bli =
∑

`q∈lr(Ti)

(
Ni,q · Li,q +

∑
Tx∈τ i

Ni
x,q∑
v=1

(XD
x,q,v +XI

x,q,v +XP
x,q,v) · Lx,q

)
,

and bri defined analogously with regard to rr(Ti). Note that only
N i
x,q ties bi to the sporadic task model; by substituting an appro-

priate definition of N i
x,q, our analysis can be easily transferred

to more expressive task models (e.g., event streams [25]).
With the objective function in place, we next specify con-

straints that rule out impossible scenarios to eliminate pessimism.
We begin with the observation that direct request delay, indirect
request delay, and preemption delay are mutually exclusive.

Constraint 1. In any schedule of τ :

∀Tx ∈ τ i : ∀`q : ∀v : XD
x,q,v +XI

x,q,v +XP
x,q,v ≤ 1.

TABLE I
SUMMARY OF NOTATION

τ i set of all tasks except Ti

τ ll set of lower-priority tasks on processor P (Ti)

rr(Ti) set of resources on remote processors (w.r.t. Ti)
lr(Ti) set of resources on local processor (w.r.t. Ti)
R(Pk) set of resources local to processor Pk

pc(Ti) set of resources with priority ceiling at least i
pc(Ti, Pk) set of resources in pc(Ti) local to processor Pk

N i
x,q number of requests by Tx for `q while Ji is pending

Ni(Pk) number of requests by Ji for resources in R(Pk)

Proof: Suppose not. Then there exists a schedule in which
a request Rx,q,v causes Ji to incur multiple types of delay at the
same time. However, by definition, direct delay is only possible
if Ji has requested `q , whereas indirect delay is only possible if
Ji has not requested `q; further, preemption delay can only occur
when Ji is not suspended, whereas direct and indirect request
delay imply that Ji is suspended. Thus, at any time, Ji incurs at
most one kind of delay due to Rx,q,v . Contradiction.

Constraint 1 ensures that each request is accounted for at most
once. Next, we take into account that non-local agents cannot
preempt Ji, which we formalize with the following constraint.

Constraint 2. In any schedule of τ under the DPCP or DFLP:

∀Tx ∈ τ i : ∀`q ∈ rr(Ti) : ∀v : XP
x,q,v = 0.

Proof: Follows from the definitions of rr(Ti) and preemp-
tion delay, which only agents executing on P (Ti) cause.

Preemption delay due to local, lower-priority tasks is also
bounded since lower-priority tasks can issue requests only when
scheduled, which is limited to times when Ji is not scheduled.
Let τ ll , {Tx | P (Tx) = P (Ti) ∧ x > i} denote such tasks.

Constraint 3. In any schedule of τ under the DPCP or DFLP:

∀Tx ∈ τ ll :
∑

`q∈lr(Ti)

Ni
x,q∑
v=1

XP
x,q,v ≤ 1 +

∑
`u∈rr(Ti)

Ni,u

Proof: Jobs of a local, lower-priority task Tx are only
scheduled (and can issue requests) when no higher-priority jobs
(including Ji) or local agents are scheduled. Thus jobs of Tx
can only issue requests prior to Ji’s release, and when Ji is
suspended and no local agents are scheduled, which can only be
the case if Ji is waiting for a remote agent’s response (assuming
agents do not self-suspend). Since Ji is released once and waits
at most

∑
`u∈rr(Ti)

Ni,u times for remote agents, there does not
exist a schedule in which jobs of Tx cause preemption delay
more often (assuming jobs issue at most one request at once).

Constraints 1–3 are generic since they apply to any distributed
locking protocol. To reduce pessimism, protocol-specific proper-
ties must be modeled. We begin with DFLP-specific constraints,
which are simpler than those for the DPCP.

C. Direct and Indirect Delay under the DFLP

The key property of the DFLP is its use of FIFO ordering
to both serialize requests and to order priority-boosted agents
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(with regard to the currently served request). This ensures that
requests can only be delayed by earlier-issued requests.

Lemma 1. LetRi,q,v denote a request of Ji, and let Tx denote
another task (Tx 6= Ti). At most one request of Tx delaysRi,q,v .

Proof: Suppose there exists a schedule in which the
completion of Ri,q,v is (directly or indirectly) delayed by at
least two requests by jobs of Tx. Let Rx,u,w denote a request
that delaysRi,q,v and that is issued after Ri,q,v . Since tasks are
sequential, and since jobs issue no more than one request at any
time, at most one of Tx’s requests is incomplete when Ri,q,v
is issued. Therefore,Rx,u,w exists ifRi,q,v is delayed by more
than one request. To directly delayRi,q,v ,Rx,u,w must precede
Ri,q,v in the FIFO queue for `q, which is impossible ifRx,u,w
is issued afterRi,q,v . To indirectly delayRi,q,v , agent Au must
have a higher effective priority than agent Aq while serving
Rx,u,w, which implies thatRx,u,w must have been issued before
Ri,q,v . ThusRx,u,w does not exist.

The strict FIFO ordering of requests implies the following
simple, but accurate bound on direct request delay.

Constraint 4. In any schedule of τ under the DFLP:

∀`q : ∀Tx ∈ τ i :

Ni
x,q∑
v=1

XD
x,q,v ≤ Ni,q.

Proof: Suppose not. Then there exists a schedule such
that

∑Ni
x,q

v=1 X
D
x,q,v > Ni,q for some Tx and `q. If Ni,q = 0,

direct delay due to requests for `q is impossible; hence assume
Ni,q > 0. This implies that a requestRi,q,v is directly delayed
by multiple requests of Tx. By Lemma 1, this is impossible.

Constraint 4 implies that Ji never incurs direct delay due
to resources that it does not access (i.e., Ni,q = 0 implies
XD
x,q,v = 0). While Ni,q = 0 does not rule out indirect delay

due to requests for `q (when Ji accesses other resources on the
same processor), by design, a bound on indirect delay is implied
by Lemma 1. In the following, let R(Pk) , {`q | P (`q) = Pk }
denote the set of resources local to processor Pk, and let
Ni(Pk) ,

∑
`q∈R(Pk)

Ni,q denote the maximum number of
requests issued by Ji for resources in R(Pk).

Constraint 5. In any schedule of τ under the DFLP:

∀Pk : ∀Tx ∈ τ i :
∑

`q∈R(Pk)

Ni
x,q∑
v=1

XD
x,q,v +XI

x,q,v ≤ Ni(Pk)

Proof: Suppose not. If Ni(Pk) = 0, then Ji cannot be
delayed by critical sections executed on processor Pk, so assume
Ni(Pk) > 0. Then there exists a schedule in which a task Tx
delays one of Ji’s requests for resources in R(Pk) with at least
two requests. By Lemma 1, this is impossible.

Note that Constraints 4 and 5 do not imply each other, that
is, either one may be more limiting than the other, depending
on the resource requirements of Ti and conflicting tasks. This
highlights the compositional, declarative nature of our analysis:
each constraint can be reasoned about in isolation, and the LP
solver will implicitly determine the most limiting one.

Next, we derive constraints specific to the DPCP, which are of
a somewhat different structure due to the use of priority ceilings.

D. Direct and Indirect Delay under the DPCP

Recall from Sec. II that, under the DPCP [24], agents in each
cluster access resources on behalf of their clients according to
the rules of the PCP [26]. As discussed in Sec. II, under the
PCP, a job (or agent) is granted access to a resource only if
its priority exceeds the current (processor-local) system ceiling.
Crucial to the analysis of the DPCP is thus the set of resources
with priority ceilings equal to or higher than the priority of
Ji’s agent. We let pc(Ti) , {lq | x ≤ i ∧Nx,q > 0} denote
the set of potentially conflicting resources, and further define
pc(Ti, Pk) , pc(Ti)∩R(Pk) to denote the subset of potentially
conflicting resources local to processor Pk. Importantly, the PCP
ensures that Ti never incurs direct or indirect request delay due
to resources not in its conflict set.

Constraint 6. In any schedule of τ under the DPCP:

∀Tx ∈ τ i : ∀lq 6∈ pc(Ji) : ∀v : XD
x,q,v +XI

x,q,v = 0.

Proof: By the definition of pc(Ti), any resource `q /∈ pc(Ti)
is requested only by lower-priority tasks. Since agent priorities
correspond to task priorities under the DPCP, all agents for any
such `q have priorities lower than any agent executing on Ji’s
behalf, which implies XD

x,q,v = 0 and XI
x,q,v = 0.

With regard to resources in pc(Ti), the PCP famously limits
ceiling blocking due to lower-priority jobs to one critical section.
Under the DPCP, this implies a bound on direct and indirect
request delay with regard to all resources on each processor.

Constraint 7. In any schedule of τ under the DPCP:

∀Pk :
∑

`q∈pc(Ti,Pk)

∑
x>i

Ni
x,q∑
v=1

XD
x,q,v +XI

x,q,v ≤ Ni(Pk).

Proof: Suppose not. Then there exists a schedule in which
Ji’s at most Ni(Pk) requests for resources local to processor
Pk are delayed by more than Ni(Pk) requests by lower-priority
jobs. This is only possible if an agent of a lower-priority task
acquires a resource while Ji’s agent is already waiting. Under
the PCP, this is impossible [23, 24, 26].

Note that Constraints 6 and 7 do not limit direct and indirect
request delay due to requests issued by higher-priority tasks. In
protocols based on priority queues, such requests are problematic
since any single request issued by Ji can in principle be delayed
by requests of all higher-priority jobs. In fact, the original
analysis of the DPCP [23, 24] did not establish any limit on such
delays, that is, under the classic analysis, Ji’s blocking bound
bi includes each request that any job of any higher-priority task
may issue while Ji is pending. This assumption, however, is
in many cases quite pessimistic since a single critical section
likely does not overlap with more than one or two jobs of each
higher-priority task, which was first pointed out by Schliecker
et al. [25] and Lakshmanan et al. [19] in the context of the MPCP.
They proposed to apply response-time analysis [3] to each
individual request—that is, to essentially analyze each resource
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as a non-preemptive uniprocessor—to bound the maximum
interval during which a request is susceptible to delays caused
by higher-priority tasks, which reduces pessimism considerably.
Fortunately, it is not difficult to incorporate per-request response-
time bounds into our LP-based analysis, as shown next.

In the following, let Wi,q denote a bound on the maximum
wait time of Ji when requesting `q, which is the maximum
duration that Ji remains suspended after requesting `q (i.e.,
essentially the maximum response time of Ji’s request). From an
LP point of view, eachWi,q is a task-set-specific constant, which
must be determined as part of generating the LP. This can be
easily accomplished by applying response-time analysis [3] to
individual requests (instead of whole jobs) [19, 25]. To this end,
let WL

i,q (WH
i,q) denote the maximum direct and indirect request

delay caused by lower-priority (higher-priority), respectively. A
bound on the total maximum wait time is then given by

Wi,q ,WL
i,q +WH

i,q + Li,q.

Since the PCP allows at most one lower-priority request to
block Ji’s agent, WL

i,q is simply the maximum lower-priority
request length that causes ceiling blocking:

WL
i,q = max {Lx,v | x > i ∧ `v ∈ pc(Ti, P (`q))} .

(As a simplifying abuse of notation, we assume max ∅ = 0.)
The higher-priority “demand” for resources on processor

P (`q), WH
i,q, is given by the following adaptation of the classic

response-time recursion given in Eq. (1), which can be solved
iteratively.

WH
i,q =

∑
x<i

⌈rx +Wi,q

px

⌉
·

∑
`y∈pc(Ti,P (`q))

Nx,y · Lx,y


The rationale is that there exist at most

⌈
rx+Wi,q

px

⌉
jobs of each

higher-priority task Tx during an interval of length Wi,q, of
which each issues at most Nx,y requests for each resource in the
conflict set on processor P (`q).

The maximum wait time Wi,q is crucial because it implies a
bound on the maximum number of interfering, higher-priority
requests that can exist concurrently with one of Ji’s requests.
To state this bound, we let Dx,y

i,q denote the maximum number
of requests for a resource `y issued by jobs of a task Tx during
the interval that a single request of Ji for resource `q remains
incomplete; formally Dx,y

i,q ,
⌈
rx+Wi,q

px

⌉
· Nx,y. With these

definitions in place, it is possible to constrain direct and indirect
delays due to higher-priority tasks.

Constraint 8. In any schedule of τ under the DPCP:

∀`y : ∀Tx ∈{Tx | Tx ∈ τ ∧ x < i} :

Ni
x,y∑
v=1

XD
x,y,v +XI

x,y,v ≤
∑

`q∈R(P (`q)))

Ni,q ·Dx,y
i,q .

Proof: Each time that Ji accesses some resource `q local
to processor P (`y), it can be blocked by requests for `y issued
by a higher-priority task Tx. Each such request by Ji for any

`q remains incomplete for at most Wi,q time units. During an
interval of length Wi,q, jobs of task Tx issue at most Dx,y

i,q

requests for `y . Hence, Ji is delayed, directly or indirectly, by at
most Dx,y

i,q requests for `y issued by jobs of Tx each time that it
accesses a resource `q local to processor P (`y). Since Ji issues
at most Ni,q requests for each such `q ∈ R(P (`q))), at most∑
`q∈R(P (`q)))

Ni,q ·Dx,y
i,q requests of jobs of Tx for resource `y

directly or indirectly delay Ji.
Constraint 8 has considerable impact and improves schedu-

lability noticeably. This is explained by the fact that Dx,y
i,q is

typically small (i.e., in most task sets Dx,y
i,q = Nx,y) since Wi,q

is commonly much shorter than typical task periods (i.e., in well-
behaved task sets, px > rx +Wi,q). Constraint 8 then ensures
that at most one job per higher-priority task is considered to
interfere with each of Ji’s requests. This concludes our analysis
of the DFLP and the DPCP; LP-based analysis of the FMLP+

and the MPCP is presented in Appendix B and Appendix C.
In summary, our LP-based analysis of the DPCP and the

MPCP incorporates the key insights of prior analyses [19, 22–
25], and further reduces pessimism by ensuring that each request
is accounted for at most once (by means of blocking fractions,
recall Constraint 1). Further, since it is based on the well-
established formalism of linear programming, we believe that
our blocking analysis is less tedious to understand and to
implement than prior approaches, although this admittedly may
be a matter of personal taste. Most importantly, our analysis
results in substantially improved schedulability, as shown next.

IV. EMPIRICAL EVALUATION

We implemented the proposed LP-based analysis using IBM’s
CPLEX LP solver and conducted a large-scale schedulability
study to (i) quantify whether the proposed analysis improves
upon prior approaches and to (ii) determine when (if ever)
the DPCP, MPCP, DFLP, and FMLP+ perform best. Our
implementation of the LP-based locking analysis is freely
available as part of the SchedCAT open source project [2].

A. Experimental Setup

We considered two multicore platforms with 8 and 16 proces-
sors and, for each platform, generated task sets ranging in size
from n = m to n = 10m. For a given n, tasks were generated
by randomly choosing a period pi and utilization ui, and then
setting ei = pi · ui (rounding to the next-largest microsecond).
Periods were chosen from three uniform distributions ranging
over [10ms, 100ms] (short), [100ms, 200ms] (homogenous),
and [10ms, 1000ms] (heterogeneous); utilizations were chosen
from two exponential distributions ranging over [0, 1] with mean
0.1 (light) and mean 0.25 (medium), and two uniform distri-
butions ranging over [0.1, 0.2] (light) and [0.1, 0.4] (medium).
Heterogeneous periods are commonly found in the automotive
domain, and computer vision and multimedia applications
frequently have constraints in the short and homogeneous period
ranges; however, while they are inspired by such applications,
the parameter ranges were primarily chosen to expose algorith-
mic differences in the studied locking protocols.

Critical sections were generated according to three parameters:
the number of resources nr, the access probability pacc , and the
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Fig. 2. Comparison of schedulability under the DFLP, the DPCP with LP-based
analysis, and the DPCP with Rajkumar et al.’s classic analysis [23, 24].

maximum requests parameter Nmax . Each of the nr resources
was accessed by a task Ti with probability pacc and, if Ti was
determined to access `q, then Ni,q was randomly chosen from
{1, . . . , Nmax}, and set to zero otherwise. In our study, we
considered nr ∈ {1, 8, 16, 24}, pacc ∈ {0.1, 0.2, 0.3}, and
Nmax ∈ {1, 3, 5}. For each Ni,q > 0, the corresponding max-
imum critical section length Li,q was randomly chosen using
two uniform distributions ranging over [10µs, 50µs] (short) and
[50µs, 150µs] (moderate). Finally, under the FMLP+ and the
MPCP, the execution cost ei was increased by

∑
`q
Ni,q · Li,q

to reflect that jobs execute critical sections locally in shared-
memory semaphore protocols (under the DPCP and the DFLP,
agent execution costs are included in the pi-blocking bounds).

Tasks were assigned rate-monotonic priorities (i.e., i < x
if pi < px) and partitioned using the worst-fit decreasing
heuristic, which ensures that all processors are roughly equally
utilized. Schedulability was tested on each processor with Eq. (1)
after bounding local and remote pi-blocking. There is a cyclic
dependency between Eq. (1), which yields ri given bli and bri for
each Ti, and the LP-based analysis, which yields bli and bri given
ri for each Ti (to compute each N i

x,q). This was resolved by
iteratively computing ri, bli, and bri starting from ri = ei until ri
converged for each task. Task sets that could not be partitioned,
or where ri > pi for some Ti, were counted as unschedulable.

We tested at least 1,000 task sets for each n and each of the
1,728 possible combinations of the listed parameters, for a total
of more than 100,000,000 task sets. All results are available
online (see Appendix D); the following discussion highlights
major trends.

B. Algorithmic Comparison
In the first part of the study, we evaluated schedulability

(i.e., the fraction of task sets deemed schedulable) without
consideration of overheads to focus on algorithmic differences.
Naturally, the choice of locking protocol and analysis method is
not always relevant: if contention is negligible, then virtually any
protocol will do, and, if contention is excessive, the system will
be overloaded regardless of the protocol. However, in between
the two extremes, there exist many scenarios with significant,
but manageable contention. Here, LP-based analysis yields
substantial improvements. Importantly, with regard to priority vs.
FIFO queuing, the new analysis often changes the conclusion!

One such example is shown in Fig. 2, which depicts schedu-
lability under the DFLP and the DPCP using both classic and
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Fig. 3. Comparison of schedulability under the FMLP+, the MPCP with
LP-based analysis, and the MPCP with Lakshmanan et al.’s analysis [19].

LP-based analysis, assuming uniform light utilizations, short
periods, m = 8, nr = 16, Nmax = 1, and pacc = 0.2. For
instance, consider n = 30: under the new, LP-based analysis,
all of the generated task sets can be supported using the DPCP,
whereas less than 40% are claimed schedulable under the old
analysis. Crucially, the DFLP performs clearly better than the
DPCP under classic analysis, but (slightly) worse than the DPCP
under LP-based analysis. This shows that our LP-based analysis
is substantially less pessimistic, and that it has a decisive effect
on relative performance in this and many other scenarios.

Even larger gains are apparent in Fig. 3, which shows
schedulability under the FMLP+ and the MPCP using both
new and old analysis, assuming exponential light utilizations,
short periods, m = 16, nr = 16, Nmax = 5, pacc = 0.1.
Whereas schedulability pessimistically declines at n ≈ 50 under
the old analysis, virtually all task sets with up to 80 tasks are
found schedulable under the new, LP-based analysis—a more
than 50% increase in the number of supported tasks. Again, the
FMLP+ performs much better than the MPCP under old analysis,
but not quite as well as the MPCP under new analysis. This is not
to say that the MPCP always performs better—it does not—but
the new analysis clearly prevents a lopsided result in favor of
the FMLP+. In the following, we consider the MPCP and the
DPCP only in conjunction with the new, LP-based analysis.

Most surprisingly (to us), our data reveals that schedulability
can be much higher under distributed locking protocols than
under shared-memory protocols. This is apparent in Fig. 4,
which shows schedulability under the four considered protocols
assuming uniform light utilizations, homogeneous periods,
m = 16, nr = 16, Nmax = 1, and pacc = 0.3. Additionally,
schedulability assuming zero pi-blocking (i.e., without resource
sharing) is shown to put the capacity loss due to pi-blocking into
perspective. The curves of the MPCP and the FMLP+ overlap
and exhibit deteriorating schedulability at n ≈ 50, whereas
without contention, most task sets with up to 70 tasks are
schedulable, that is, the system’s capacity is (on average) reduced
by 20 tasks under the FMLP+ and the MPCP. Notably, under the
DPCP and the DFLP, this capacity loss is halved: schedulability
starts to decrease only at n ≈ 60. To the best of our knowledge,
this is the first study to show that distributed locking protocols
can actually be superior in terms of schedulability. However,
overheads are decidedly not negligible in semaphore protocols
and must be considered to obtain practically meaningful results.
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Fig. 4. Comparison of shared-memory and distributed semaphore protocols.
The curve labeled “w/o locks” indicates P-FP schedulability without pi-blocking.

V. IMPACT OF OVERHEADS

We implemented the DFLP in LITMUSRT [1], which already
included implementations of the MPCP, DPCP, and FMLP+

from prior work [6], and used it to estimate worst-case overheads.
To measure overheads, LITMUSRT records timestamps before
and after an overhead-inducing code segment is executed.
Timestamps are written into a wait-free trace buffer, which is
periodically flushed to disk. This method is prone to outliers,
which prior LITMUSRT-based studies have addressed with
statistical filters, which can be problematic, as discussed in
Sec. I. We instrumented the tracing code to analyze how outliers
arise and found four causes: (i) interrupts in between recorded
timestamps, (ii) preemptions in kernel space while recording
a timestamp, (iii) preemptions in user space before reporting a
timestamp to the kernel, and (iv) “holes” in the record due to
buffer overruns. Of these, causes (ii) and (iv) were easy to fix: to
avoid preemptions in the tracing code, it is sufficient to (briefly)
disable interrupts, and buffer overflows were addressed by
correlating recorded sequence numbers, timestamps, processor
IDs, and process IDs to reliably detect discontinuities.

Causes (i) and (iii) proved more challenging because inter-
rupts and preemptions cannot be disabled between the recording
of timestamps, that is, such outliers cannot be avoided, but
instead must be reliably detected and discarded. We therefore
introduced a per-processor interrupt counter that is incremented
by each interrupt handler. When recording a sample, the counter
is reset and, if it was non-zero, the occurrence of interrupts is
indicated with a flag in the trace record, which allows rejecting
such samples. Finally, to address cause (iii), we exported another
interrupt counter to user-space processes. When reporting a
timestamp observed in user space (e.g., this is required to trace
the beginning of a system call), the process also submits a
snapshot of the interrupt counter. This exposes preemptions that
occur between the observation and the recording of a timestamp
since involuntary preemptions are triggered by interrupts.

While these improvements are conceptually simple, consider-
able effort was required to correctly identify all causes of outliers
and to realize the described countermeasures. Fortunately, they
completely remove the need for statistical outlier filtering.

A. Scheduling, Locking, and Cache-Related Overheads

To obtain a realistic overhead model, we traced scheduling,
locking, and cache-related overheads on two configurations of a
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Fig. 5. Histogram of system call entry overhead (i.e., the cost of trapping into
the kernel) on a 16-core, 2.0 GHz Intel Xeon X7550 system. Note the log scale;
the linear slope indicates an exponential decrease in frequency. More than 1.69
billion valid samples were recorded; no statistical outlier filter was applied.

2.0 GHz Intel Xeon X7550 system, once with 8 and once with
16 cores enabled, following the methodology described in [6].
In short, we executed task sets ranging in size from 2 to 20 tasks
per core (generated similarly to the procedure in Sec. IV-A)
and, for each task set size and each locking protocol, traced ten
task sets for 30 seconds each. In total, we recorded more than
400 GB of trace data, which contained more than 15.4 billion
undisturbed samples reflecting more than 20 hours of real-time
execution. The complete set of results, including histograms
for each recorded overhead, is presented in Appendix E; a
representative example histogram of system call entry overheads
is shown in Fig. 5. No statistical outlier filter was applied—the
reported worst-case cost of 32.02µs is indeed the maximum
observed cost during more than 1.69 billion locking-related
system calls. A summary of all measured kernel overheads (not
including cache-related preemption delay) is illustrated in Fig. 6.
The cost of lock acquisition does not differ much among the four
evaluated protocols; however, overheads are significantly higher
in the 16-core configuration than in the 8-core system.

Next, we extended the schedulability experiments using
standard techniques (discussed in [6, ch. 3]) to account for
worst-case scheduling, locking, and cache-related overheads. For
example, to lock and unlock a contended semaphore [6, ch. 7], a
job must enter the kernel, suspend, wait, resume, exit the kernel,
execute its critical section, enter the kernel, resume the next job,
exit the kernel, and finally reestablish cache affinity, which it lost
while waiting to acquire the semaphore. Taken together, these
overheads have three effects [6, ch. 7]: they increase the critical
section length (locks are not released as quickly), they increase
the critical section latency (jobs are suspended for longer), and
they increase each task’s worst-case execution cost (system calls
are not free, recall Fig. 5). Table II lists the resulting increases
under each of the considered locking protocols, in both the 8-
and the 16-core system. The main differences are that distributed
locking protocols entail higher latency increases (due to the need
to invoke remote agents) and that overheads are much higher in
the 16-core configuration, which is also apparent in Fig. 6 (and
likely due to contention in the memory hierarchy).

B. Overhead-Aware Schedulability Results
We repeated the study described in Sec. IV under considera-

tion of the empirically determined worst-case overheads. Since
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Fig. 6. Summary of individual kernel overheads (in microseconds). A description of each measured type of overhead and individual histograms are provided in
Appendix E. The overall costs per lock acquisition are given in Table II, as computed using the analysis derived in [6, ch. 7].

TABLE II
LOCKING COSTS PER REQUEST (IN MICROSECONDS, ON 8/16 CORES)

Protocol CS Increase Latency Increase WCET Increase

MPCP 136.66 / 504.58 25.69 / 47.68 150.46 / 623.01
FMLP+ 135.65 / 507.74 25.69 / 47.68 151.04 / 627.53

DPCP 111.20 / 496.43 162.58 /591.79 89.97 / 378.34
DFLP 159.70 / 583.96 108.32 / 488.60 89.97 / 378.34

distributed locking protocols incur higher latencies, one might
suspect that the theoretical advantages reported in Sec. IV disap-
pear in practice. However, this is not the case, for two reasons:
first, the MPCP and FMLP+ are subject to considerable worst-
case overheads, too, and second, the algorithmic differences can
be so large that overheads play only a minor role.

One such example is shown in Fig. 7, which depicts overhead-
aware schedulability under the four considered protocols assum-
ing exponential light utilizations, homogeneous periods, m = 8,
nr = 8, Nmax = 5, and pacc = 0.30. Notably, the DFLP,
which is subject to the largest increase in critical section length,
performs best, followed by the DPCP. Further, the FMLP+

performs better than the MPCP: FIFO queuing is preferable
to priority queuing in this scenario since, with homogeneous
periods, all tasks have similar temporal constraints, which makes
it advantageous to distribute pi-blocking equally among tasks.

That FIFO queues are favored by homogeneous periods is
also apparent in Fig. 8, which depicts schedulability assuming
exponential light utilizations, homogeneous periods, m = 16,
nr = 1,Nmax = 5, and pacc = 0.2. However, here, the FMLP+

performs best, followed by the MPCP: since there is only a single
resource, it is preferable to allow tasks to access the resource
from multiple processors, lest the synchronization processor
becomes overloaded. Again, FIFO queuing is preferable to
priority queuing due to the homogeneous periods.

Overall, enabled by the improved LP-based analysis, there
also exist many scenarios in which either the DPCP or the MPCP
yield higher schedulability than either FIFO-based protocol.
While it is difficult to generalize all 1,728 scenarios (see
Appendix D), we found that, in broad terms,
• FIFO queuing performs well for homogeneous periods (i.e.,

if the ratio of the shortest and longest period is small);

• conversely, priority queuing is a better choice for hetero-
geneous periods (i.e., if some tasks have much tighter
temporal constraints than others);

• distributed locking protocols perform well in scenarios with
many resources and high contention; and

• shared-memory locking protocols perform better in scenar-
ios with few resources.

The choice of critical section length had little impact; long
critical sections reduce schedulability under any protocol. We
note that there are exceptions to these rough guidelines since
schedulability is influenced by multiple factors, and aspects other
than pi-blocking may be the bottleneck. Nonetheless, we have
identified that the range of temporal constraints and the number
of resources strongly affect which protocol performs best.

Finally, we hasten to add that our results pertain to worst-case
overheads; when considering average-case overheads, shared-
memory protocols likely have an advantage since they require
invocation of the scheduler only in the case of contention,
whereas distributed locking protocols require kernel intervention
even in the uncontended case.

VI. EFFICIENCY CONSIDERATIONS

Solving an LP is a rather heavyweight operation, and solving
multiple LPs per task may seem computationally prohibitive.
However, as evidenced by the presented empirical evaluation,
which involved millions of task sets and was carried out on about
40 nodes of a commodity compute cluster, this is not a problem
for a modern LP solver provisioned on current hardware.

Nonetheless, using LPs may not be an option if pi-blocking is
to be bounded as part of online admission control in embedded
systems, either due to the unavailability of LP solvers for the
target platform or due to insufficient computational resources.
We posit that LP-based analysis is still beneficial in such cases.
First, it is possible (with some effort) to implement a more
efficient “problem-specific solver” by simply enumerating all
critical sections and then marking individual instances as “not
blocking” based on the invariants underlying the constraints
of the LP. And second, the concise, declarative nature of the
LP-based analysis makes it an ideal baseline against which a
hand-coded, imperative implementation can be tested.
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Fig. 7. Overhead-aware schedulability under the FMLP+, MPCP, DFLP,
and the DPCP. The curve labeled “w/o locks” indicates schedulability without
pi-blocking. Distributed locking protocols are preferable in this example.

A second optimization opportunity pertains to the number of
variables. As specified in Sec. III, the number of variables (and
hence the LPs complexity) depends on the ratio of the maximum
response time and the minimum period due to the definition of
each N i

x,q, which gives rise to pseudo-polynomial complexity.
From a practical point of view, this is not a problem: in our ex-
periments, the generated LPs could on average be solved within
a few tens to hundreds of milliseconds, even with a pseudo-
polynomial number of variables. However, it is also possible
to rewrite the LP into an equivalent (but slightly less intuitive)
form using fewer variables: by collapsing the blocking fractions
XD
x,q,1, . . . , X

D
x,q,Ni

x,q
into a single variable XD

x,q with domain
[0, N i

x,q] (and analogously collapsing all XI
x,q,v variables into

XI
x,q and allXP

x,q,v variables intoXP
x,q), the number of variables

per task and per resource is reduced to three, such that only
O(n · nr) variables are required in total. Of course, this requires
the constraints and objective function to be adjusted accordingly.
For example, Constraint 1 would be equivalently written as
∀Tx ∈ τ i : ∀`q : XD

x,q +XI
x,q +XP

x,q ≤ N i
x,q .

To summarize, even in its unoptimized form with a pseudo-
polynomial number of variables, we were able to apply the LP-
based analysis to millions of task sets on commodity hardware,
and further implementation and runtime complexity improve-
ments are possible. We thus believe the proposed approach to be
fast enough to be practical even for large task sets.

VII. RELATED WORK

Real-time locking has garnered much interest in recent years;
in the interest of conciseness, we focus our review on the most
relevant prior work. As mentioned in Sec. II, Rajkumar et al.
were the first to study semaphores in multiprocessor real-time
systems and developed the DPCP [23, 24] and the MPCP [22,
23] for use under P-FP scheduling. Of the two, the MPCP has
received more attention in recent years and improved blocking
bounds based on response-time analysis [3] were independently
developed by Lakshmanan et al. [19] and Schliecker et al. [25].
The key insight in these analyses, which we have adopted in our
analysis of the DPCP and the MPCP (see Appendix C), is to
consider the “response time” of low-priority requests to avoid
the pessimistic assumption that each such request is repeatedly
blocked by all higher-priority requests.

Striving for simplicity in implementation and analysis, Block
et al. [5, 8] devised the FIFO-based FMLP, which consists of
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Fig. 8. Overhead-aware schedulability under the FMLP+, MPCP, DFLP,
and the DPCP. The curve labeled “w/o locks” indicates schedulability without
pi-blocking. Shared-memory locking protocols are preferable in this example.

both a spinlock and a semaphore variant. As implied by its name,
the FMLP+ [6] considered in this paper is a direct descendant
of the FMLP’s semaphore variant. A prior LITMUSRT-based
study [9] evaluated the MPCP, DPCP, and the FMLP; these
earlier results are superseded by the results presented herein due
to the improved analysis of the MPCP and the DPCP, and since
the FMLP+ reduces blocking compared to the original FMLP.

Hsiu et al. [17] recently studied the problem of finding task
and resource assignments that optimize certain criteria (e.g., the
number of synchronization processors), assuming P-FP schedul-
ing and a distributed, priority-queue-based semaphore protocol
similar to the DPCP. The mapping problem is complimentary to
the problem studied in this paper, which is to bound pi-blocking
for a given task and resource assignment.

In work on component-based systems, Nemati et al. [21]
developed a semaphore protocol for partitioned scheduling
that allows predictable resource sharing among independently
developed (legacy) applications, where each component is
provisioned on a dedicated core. The provided blocking bounds
assume P-FP scheduling and structurally resemble earlier anal-
yses of the MPCP and the FMLP, and thus could likely be
tightened (in some cases) with our LP-based analysis technique.

In very recent work, Kim et al. [18] applied linear program-
ming to the task of determining tight response-time bounds
in distributed systems under P-FP scheduling with precedence
constraints (and without locking). In contrast to our LP-based,
approach, in which a (not necessarily tight) upper bound on
pi-blocking is expressed by means of non-integral blocking
fractions, Kim et al. use integer linear programs (ILPs) to find
schedules that maximize response times. While Kim et al.’s
approach yields exact response-time bounds, it is also much
more costly and does not scale to the number of task sets
considered in our study. We are not aware of prior efforts to
analyze locking in multiprocessor real-time systems with LPs.

Numerous real-time locking protocols have been proposed
for non-P-FP environments, including global fixed-priority
scheduling (e.g., [14]), suspension-oblivious analysis (e.g., [11]),
and reservation-based scheduling (e.g., [15]); see [6] for a recent
survey. Notably, Ward and Anderson [27] recently showed how
to support nested critical sections without loss of asymptotic
optimality (e.g., their technique can be used with the FMLP+).
Nesting is beyond the scope of this paper; however, we believe
that our LP-based analysis can be extended to support nesting
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and seek to explore this interesting direction in future work.
Finally, spinlocks, in which blocked jobs wait by executing

a delay loop, are a well-studied alternative to semaphores (e.g.,
see [5, 6, 13, 16]). While spinning is conceptually undesirable,
it avoids the scheduling and cache overheads caused by suspen-
sions, and recent studies have shown spinlocks to be preferable
for short critical sections [6, 12, 16]. Nonetheless, semaphores
are widely used in practice and can be more appropriate if long
wait times cannot be ruled out, or in the presence of background
tasks that could benefit from the cycles wasted by spinning.
LP-based analysis can be easily adopted to spinlocks as well.

VIII. CONCLUSION

This work makes three major contributions concerning the
analysis and evaluation of real-time locking protocols, a key
component in virtually all modern multicore RTOSs. First, we
have proposed a novel, compositional, and much more accurate
analysis technique based on linear programming, which allows
reasoning about individual protocol properties in isolation. Cru-
cially, the burden of understanding the interplay of constraints
is shifted from the human analyst to the optimizer. We have
empirically shown that, compared to prior bounds, pessimism
is greatly reduced through the novel use of blocking fractions,
which ensure that each potentially conflicting critical section is
accounted for at most once (which is difficult to express with
ad-hoc methods). Finally, bounds expressed as LPs are arguably
more concise and easier to communicate.

Second, based on the improved analysis, we have compared
two key locking protocol design choices—how to order con-
flicting requests, and where to execute critical sections—and
have demonstrated that none of the considered protocols can
be claimed to be the “best protocol” for all workloads. Perhaps
surprisingly, we have identified that, even in shared-memory
systems, distributed locking protocols are competitive under
heavy contention. This is a timely observation as distributed
locking protocols are well-suited to platforms without cache
coherence, which is often too costly to support in multicore
designs targeted at embedded systems (e.g., this is the case in
Infineon’s AURIX multicore platform for automotive systems).

Third, we have implemented each protocol and empirically es-
timated worst-case overheads by recording more than 15 billion
valid overhead samples. By incorporating observed worst-case
overheads into schedulability experiments involving more than
100 million task sets, we have confirmed that distributed locking
protocols remain a viable choice even if realistic overheads
are considered. Importantly, we have improved LITMUSRT’s
tracing infrastructure such that statistical outlier filtering is no
longer required. These improvements have been contributed
to the main version of LITMUSRT [1], thereby significantly
improving the accuracy of all future LITMUSRT-based studies.

There are numerous avenues for future work. This study ex-
plored fundamental algorithmic differences among the protocols
using randomly generated task sets; going forward, it would also
be interesting to investigate locking protocol design choices in
the context of specific applications. We further plan to apply our
new analysis technique to additional semaphore and spinlock

protocols, and seek to extend the LP-based analysis method to
incorporate nested critical sections and critical sections with
I/O-related self-suspensions (see Appendix F for a possible
approach). Finally, it is interesting to explore the design of
“generalized” locking protocols that can be tailored to a task
set’s needs. (e.g., by splitting locking priorities from scheduling
priorities).
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APPENDIX

In the following, we provide supplemental material that was
omitted from the conference version of the paper due to space
constraints:

• Appendix A introduces the LP analysis setup for shared-
memory semaphore protocols;

• Appendix B presents FMLP+-specific constraints;
• Appendix C presents MPCP-specific constraints and con-

siderations;
• Appendix D explains where to obtain the full set of

schedulability results;
• Appendix E reports on the full set of recorded overheads,

visualized as histograms; and finally
• Appendix F comments on ongoing work to support the

analysis of lock-holders that may self-suspend as part of
executing a critical section (e.g., due to I/O operations).

A. Shared-Memory Analysis Setup

In the following appendices, we derive constraints that bound
pi-blocking under the shared-memory protocols FMLP+ and
MPCP. To begin, we introduce common constraints and the
objective function for the analysis of shared-memory protocols,
which must be adjusted since there is no fixed assignment of
resources to processors as under the DPCP and the DFLP

Since resources are accessed from (potentially) all processors
under a shared-memory protocol, whether a delay is classified
as “remote” or “local” depends only on the assignment of
tasks to processors. With respect to the task under analysis
Ti assigned to processor P (Ti), local delays arise only due
to critical sections of tasks also assigned to processor P (Ti).
Further, recall that the execution cost of critical sections are
already accounted for in each ei parameter since jobs ex-
ecute critical sections directly. The objective function must
thus be adjusted when analyzing shared-memory protocols.
To this end, let τ l denote the set of local tasks (i.e., τ l ,
{Tx | P (Tx) = P (Ti) ∧ i 6= x}), and let τ r denote the set of
remote tasks (i.e., τ r , {Tx | P (Tx) 6= P (Ti)}). This yields
the following definitions of bli and bri , respectively.

bli =
∑
Tx∈τ l

nr∑
q=1

Ni
x,q∑
v=1

(XD
x,q,v +XI

x,q,v +XP
x,q,v) · Lx,q

bri =
∑
Tx∈τr

nr∑
q=1

Ni
x,q∑
v=1

(XD
x,q,v +XI

x,q,v +XP
x,q,v) · Lx,q

Next, we establish basic constraints that apply to any shared-
memory semaphore protocol under P-FP scheduling. By design,
Constraint 1 also applies in the shared-memory case and is not
repeated here; however, we note that it is essential to avoiding
pessimism.

First, local higher-priority tasks do not cause pi-blocking
(since no priority inversion exists while they are executing).
In the following, let τ lh , {Tx | P (Tx) = P (Ti) ∧ x < i}
denote the set of local, higher-priority tasks.

Constraint 9. In any P-FP schedule of τ under a shared-
memory semaphore protocol:

∀Tx ∈ τ lh :

nr∑
q=1

Ni
x,q∑
v=1

XD
x,q,v +XI

x,q,v +XP
x,q,v = 0.

Proof: Follows from the fact that jobs execute critical
sections directly and the definition of s-aware pi-blocking: if Ji
is waiting for a local, higher-priority job to release a resource,
it does not incur a priority inversion since a higher-priority job,
namely the lock-holding job, is scheduled on Ji’s processor.

Next, it is trivial to rule out preemption delay due to remote
tasks (i.e., tasks in τ r) since they cannot preempt Ji.

Constraint 10. In any P-FP schedule of τ under a shared-
memory semaphore protocol:

∀Tx ∈ τ r :

nr∑
q=1

Ni
x,q∑
v=1

XP
x,q,v = 0.

Proof: By definition of τ r, tasks in τ r do not execute on
processor P (Ti) and thus cannot preempt Ji.

Finally, analogously to Constraint 3, a bound on pi-blocing
due to local lower-priority tasks is implied by the number of
times that Ji gives lower-priority jobs a chance to execute. Recall
that τ ll denotes the set of local, lower-priority tasks.

Constraint 11. In any P-FP schedule of τ under a shared-
memory semaphore protocol:

∀Tx ∈ τ ll :

nr∑
q=1

Ni
x,q∑
v=1

XD
x,q,v +XI

x,q,v+X
P
x,q,v

≤ 1 +

nr∑
u=1

Ni,u.

Proof: In order to request a lock, a job must be scheduled.
Local, lower-priority jobs, are only scheduled when Ji is either
not yet pending, or when Ji is suspended. Assuming Ji does not
suspend for locking unrelated reasons (and not while holding
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a resource), Ji suspends only due to lock contention, that is, at
most

∑nr

u=1Ni,u times. When Ji is released, and each time Ji
resumes, each other local, lower-priority task Tx can delay Ji
with at most one critical section. Hence, jobs of each other local,
lower-priority task Tx have at most 1+

∑nr

u=1Ni,u opportunities
to delay Ji in any way by executing a critical section.

Next, we derive protocol-specific constraints to limit direct
and indirect request delay under the FMLP+ and the MPCP.

B. Analysis of the FMLP+

Like its sibling protocol DFLP, the defining characteristic of
the FMLP+ is its pervasive use of FIFO queuing to resolve all
job ordering, with regard to both lock contention and processor
contention (among priority-boosted jobs). In fact, most of the
analysis pertaining to the DFLP applies analogously to the
FMLP+; we briefly state the applicable constraints here.

Constraint 12. In any schedule of τ under the FMLP+:

∀`q : ∀Tx ∈ τ i :

Ni
x,q∑
v=1

XD
x,q,v ≤ Ni,q.

Proof: Analogously to Constraint 4: due to FIFO queueing,
other jobs can directly delay Ji at most once per request.

Next, we introduce a constraint that limits the total ex-
tent of both direct and indirect delay due to each remote
task, similarly to Constraint 5. To this end, we let τ(Pk) ,
{Tx | P (Tx) = Pk } denote the set of tasks assigned to proces-
sor Pk, such that τ(P (Tx)) is the set of tasks local to task Tx.

Constraint 13. In any schedule of τ under the FMLP+:

∀Tx ∈ τ i :

nr∑
q=1

Ni
x,q∑
v=1

XD
x,q,v +XI

x,q,v

≤
nr∑
u=1

min

Ni,u, ∑
Ty∈τ(P (Tx))

N i
y,u


Proof: Under the FMLP+, each other task can block Ji at

most once per request, either directly or indirectly, but not both
[6]. Further, jobs of Tx can indirectly delay Ji only when a job
of another task Ty (local to Tx, i.e., P (Tx) = P (Ty)) directly
delays one of Ji’s requests (for some resource). Thus, the number
of Ji’s requests (for any resource) that are directly delayed by
any task on Tx’s processor implies a bound on the total number
of critical sections of Tx that directly or indirectly delay Ji.
For each resource `u, Ji issues at most Ni,u requests. Further,
tasks on processor P (Tx) issue at most

∑
Ty∈τ(P (Tx))

N i
y,u

conflicting requests for `u while Ji is pending. Thus at most
min

(
Ni,u,

∑
Ty∈τ(P (Tx))

N i
y,u

)
of the requests issued by Ji

for `u are directly delayed by some task on processor P (Tx).
Thus, at most

∑nr

u=1 min
(
Ni,u,

∑
Ty∈τ(P (Tx))

N i
y,u

)
of Ji’s

requests for any resource are directly delayed by some task on
processor P (Tx), which yields the stated constraint.

Finally, we bound indirect request delay on a per-processor
basis based on analysis of direct request delay analogous to
Constraint 13 above. The key difference between Constraint 13

above and Constraint 14 below is that Constraint 14 pertains to
only indirect request delay, whereas Constraint 13 pertains to
both direct and indirect request delay.

Constraint 14. In any schedule of τ under the FMLP+:

∀Tx ∈ τ i :

nr∑
q=1

Ni
x,q∑
v=1

XI
x,q,v

≤
nr∑
u=1

min

Ni,u, ∑
Ty∈τ(P (Tx))

Ty 6=Tx

N i
y,u

 .

Proof: Under the FMLP+, a job Jx causes Ji to incur
indirect request delay at most once per request, and only if
Jx preempts or delays another job Jy that causes Ji to incur
direct request delay. Hence the maximum number of requests
of Ji that are directly delayed by jobs of tasks on processor
P (Tx) other than task Tx implies a bound on the number
of times that jobs of Tx indirectly delay Ji. A bound on
the maximum number of times that a request of Ji for `u
is directly delayed by some task Ty other than Tx is given
by
∑nr

u=1 min
(
Ni,u,

∑
Ty∈τ(P (Tx))∧Ty 6=Tx

N i
y,u

)
. The stated

constraint follows.
Even though Constraints 13 and 14 are structurally very simi-

lar, they do not imply each other (i.e., they are not redundant).
For a given task Tx, since Tx is not included in the right-
hand side of Constraint 14, it can be more constraining than
Constraint 13 if Tx is responsible for the majority of times that
Ji directly conflicts with tasks on processor P (Tx).

This concludes our analysis of the FMLP+.

C. Analysis of the MPCP

The analysis of the MPCP uses the same basic setup described
in Appendix A. Major differences to the FMLP+ arise, however,
due to the MPCP’s use of priority queues and priority ceilings.
This necessitates a slightly different use of the objective function,
which we explain after first introducing the MPCP-specific
constraints.

1) MPCP-Specific Constraints: To begin with, we limit direct
request delay caused by lower-priority tasks.

Constraint 15. In any schedule of τ under the MPCP:

∀`q :
∑
Tx∈τ i

x>i

Ni
x,q∑
v=1

XD
x,q,v ≤ Ni,q.

Proof: Under the MPCP, jobs gain access to contended
resources in priority order. This implies that at most one lower-
priority task (i.e., a task Tx with x > i) directly delays Ji each
time that it requests a resource. Hence, with respect to each `q,
the total number of critical sections of lower-priority tasks that
cause Ji to incur direct request delay is limited by Ni,q .

Further, Ji is never directly delayed due to resources that it
does not require.
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Constraint 16. In any schedule of τ under the MPCP:

∀`q s.t. Ni,q = 0 :
∑
Tx∈τ i

Ni
x,q∑
v=1

XD
x,q,v = 0.

Proof: Follows from the definition of direct request delay,
which occurs only due to resources that Ji requests. Hence,
direct request delay cannot be caused by critical sections
accessing resources that Ji does not require (Ni,q = 0).

Next, we bound indirect request delay. Recall that jobs execute
critical sections with raised effective priority equal to the priority
ceiling of the resource that they access. For a job Jx to cause
indirect request delay, it must preempt a job executing a critical
section that directly delays Ji. Under the MPCP, this is only
possible if Jx holds a resource with a higher priority ceiling,
which in turn implies a limit on indirect request delay.

To express constraints on indirect request delay, some addi-
tional notation is required. In the following, we let Π(`q, Pk)
denote the priority ceiling of resource `q on processor Pk, where

Π(`q, Pk) , min {j | Tj ∈ τ ∧ P (Tj) 6= Pk ∧Nj,q > 0} .

We further let

Π̂(Tx) , min {Π(`q, P (Tx)) | Nx,q > 0}

denote the highest priority ceiling of any resource accessed by
Tx. Finally, we let DDx,q denote a bound on the maximum
number of times that jobs of Tx cause Ji to incur direct request
delay with requests for `q , where

DDx,q =


0 if Ni,q = 0,
Ni,q if x > i ∧Ni,q > 0, and
N i
x,q if x < i ∧Ni,q > 0.

The rational for the definition of DDx,q is that if Ti does not
access `q (i.e., if Ni,q = 0), then requests for `q never directly
delay Ji, if Tx has lower priority than Ti (i.e., if x > i), then at
most one critical section of Tx directly delays Ji each time that
Ji accesses `q , and, finally, if Tx has higher priority than Ti (i.e.,
if i < x), then potentially each critical section of jobs of Tx can
cause Ji to incur direct request delay.

With the additional notation in place, we bound indirect
request delay as follows.

Constraint 17. In any P-FP schedule of τ under the MPCP:

∀Tx ∈τ i :

nr∑
q=1

Ni
x,q∑
v=1

XI
x,q,v ≤ POx ,

where

POx =
∑

Ty∈τ(P (Tx))
Ty 6=Tx∧Ty 6=Ti

∑
`v∈Vy

DDy,v and

Vy = {`v | Ty ∈ τ(P (Tx)) \ {Tx, Ti} ∧Ny,v > 0

∧Π(`v, P (Tx)) > Π̂(Tx)}.

Proof: For a job of a task Tx to cause Ji to incur indirect
request delay, it must preempt a job of some local task Ty

accessing a resource with a lower priority ceiling. Hence, the
number of “preemption opportunities” POx imposes a limit on
the total number of times that Tx can cause indirect request
delay via any resource (assuming lock-holding jobs do not
self-suspend). The maximum number of such “preemption
opportunities” is upper-bounded by the number of times that
each other task Ty on processor P (Tx) directly delays Ji via
some resource `v in Vy , that is, via some resource with a priority
ceiling lower than Π̂(Tx) that is being accessed by a task on
processor P (Tx) (other than Ti and Tx).

The advantage of Constraint 17 is that it bounds indirect
request delay across all resources accesses by each Tx. However,
it does so with a rather coarse-grained bound on the number
of “preemption opportunities.” To augment this bound, we next
introduce a constraint that limits indirect request delay on a per-
resource basis, which takes each resource’s priority ceiling into
account (but which does not limit total indirect request delay).

Constraint 18. In any P-FP schedule of τ under the MPCP:

∀Tx ∈τ i : ∀`q :

Ni
x,q∑
v=1

XI
x,q,v ≤ POx ,q , where

POx ,q =
∑

Ty∈τ(P (Tx))
Ty 6=Tx∧Ty 6=Ti

∑
`v∈Vy,q

DDy,v and

Vy,q = {`v | Ty ∈ τ(P (Tx)) \ {Tx, Ti} ∧Ny,v > 0

∧Π(`v, P (Tx)) > Π(`q, P (Tx))}.

Proof: With respect to each other task Ty on processor
P (Tx), the set of resources Vy,q contains all resources that can be
preempted by jobs of Tx while accessing `q , that is, all resources
accessed by Ty with priority ceilings lower than Π(`q, P (Tx)).
The sum of the number of times that each other task directly
delays Ji by executing a critical section accessing some `v ∈ Vq
limits the number of “preemption opportunities,” that is, the
maximum number of times that jobs of Tx cause indirect delay
due to requests for `q (if lock holders do not self-suspend).
Hence, the sum of the direct delay bounds of the resources in
each Vy,q bounds the occurrence of indirect request delay.

Constraints 17 and 18 do not imply each other, and either one
can be more constraining than the other, depending on a given
task set’s resource requirements.

Finally, we incorporate response-time analysis to limit direct
request delay, analogously to Constraint 8. The following
considerations are in large parts based on the analysis of the
MPCP presented by Lakshmanan et al. [19].

To bound direct request delay due to higher-priority tasks,
a bound on the maximum total per-request delay due remote
higher- and lower-priority tasks is required, which we denote
as W r

i,q in the following. Bounding W r
i,q, in turn, requires

bounding each task’s maximum resource-hold time with respect
to `q, denoted Hx,q, which is the maximum time that any Jx
holds `q before unlocking it (w.r.t. a single critical section).
Lakshmanan et al. observed that a bound on Hx,q can be
easily obtained because, assuming that lock-holders do not self-
suspend, new lock requests cannot be issued once a critical
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section is in progress (since the resource-holder executes with
boosted priority) [19]. This implies that each local task can affect
Hx,q with at most one critical section. With respect to each task
Ty local to task Tx, let

Ay,q = {`v | Ny,v > 0 ∧Π(`v, P (Tx)) ≤ Π(`q, P (Tx))}

denote the set of resources accessed by task Ty that have
priority ceilings higher or equal to Π(`q, P (Tx)). Following
Lakshmanan et al. [19], we define Hx,q as follows:1

Hx,q = Lx,q +
∑

Ty∈τ(P (Tx))
Tx 6=Ty

max {Ly,v | `v ∈ Ay,q } .

Given each Hx,q, it is possible to derive a bound on W r
i,q

applying response-time analysis with respect to a single request.
Lakshmanan et al. [19] observed that W r

i,q can be expressed in
terms of resource-hold times based. This is because Ji incurs
remote delays only after it has already managed to issue its
request, and only before Ji locks `q. Local delays are not
relevant during this interval because any preemptions of Ji
after Ji acquired `q do not affect remote delays (Ji already
holds the lock), and any delays due to local critical sections
that shift the point in time at which Ji requests `q do not affect
Ji’s exposure to remote critical sections (which can delay Ji
only after Ji issued its request). This observation leads to the
following recurrence2 akin to response-time analysis:

W r
i,q = max

Tl∈τcs
q,i

l>x

{Hl,q}+
∑

Th∈τcsq,i

h<x

⌈
rh +W r

i,q

ph

⌉
·Nh,q ·Hh,q,

where τcsq,i = {Tx | Nx,q > 0 ∧ i 6= x} denotes the set of tasks
that access `q (excluding Ti).

With a sound approximation of W r
i,q in place, it is possible to

bound direct request delay due to higher-priority tasks.

Constraint 19. In any P-FP schedule of τ under the MPCP:

∀Tx ∈{Tx | x < i} : ∀`q ∈ {`q | Ni,q > 0} :

Ni
x,q∑
v=1

XD
x,q,v ≤

⌈
rx +W r

i,q

px

⌉
·Nx,q ·Ni,q

Proof: Each time that Ji requests a resource `q, it can be
subject to repeated direct request delay due to higher-priority
jobs. The maximum duration during which one request of Ji is
delayed by remote critical sections is bounded by W r

i,q . During

an interval of length W r
i,q, at most

⌈
rx+W

r
i,q

px

⌉
jobs of each

higher-priority task Tx execute. Each such job issues at most
Nx,q requests for `q. Hence, across its Ni,q requests for `q, Ji
is directly delayed by at most

⌈
rx+W

r
i,q

px

⌉
·Nx,q ·Ni,q requests

issued by jobs of each higher-priority task Tx.
The benefit of Constraint 19 is that W r

i,q is typically short,

such that often
⌈
rx+W

r
i,q

px

⌉
= 1, which reduces the pessimism

associated with the possibility of starvation in priority queues.

1The definition of Hx,q is analogous to Equation (2) in [19].
2The definition of W r

i,q is analogous to Equation (3) in [19].

Finally, we bound the total direct and indirect request delay
due to remote tasks in conjunction (i.e., we impose a constrain
on the sum XD

x,q,v + XI
x,q,v for all remote tasks Tx ∈ τ r).

Recall that W r
i,q denotes a bound on the maximum time that

Ji is suspended while waiting for remote tasks to release `q
(each time that Ji requests `q). A simple, coarse-grained bound
on the total maximum remote delay across all of Ji’s requests
for any resource is then given by W r

i ,
∑nr

q=1Ni,q · W r
i,q.

This observation can be integrated into the LP-based analysis
by imposing another constraint on the total remote blocking
duration. Recall that τ r denotes the set of remote tasks.

Constraint 20. In any P-FP schedule of τ under the MPCP:

∑
Tx∈τr

nr∑
q=1

Ni
x,q∑
v=1

(XD
x,q,v +XI

x,q,v) · Lx,q ≤W r
i .

Proof: Under the LP-based analysis, the bound on the total
direct and indirect request delay due to remote tasks is deter-
mined by the sum

∑
Tx∈τr

∑nr

q=1

∑Ni
x,q

v=1 (XD
x,q,v+XI

x,q,v)·Lx,q .
(Note the presence of the coefficient Lx,q, as in the objective
function.) Based on Lakshmanan et al.’s analysis [19], a valid
bound on said sum is given by the coarse-grained bound W r

i .
Typically, Constraint 20 is much less constraining than Con-

straints 17–19; however, in some cases in which large differences
among the maximum resource-hold times on different cores
exist, and if Ti is the highest-priority task accessing `q, then
Constraint 20 can tighten the bound on remote request delay
for individual tasks. However, in a small-scale experiment, we
found that Constraint 20 has only a negligible impact on overall
schedulability in the considered parameter ranges. Nonetheless,
it reduces pessimism in special cases and is not expensive to
compute; hence we recommend to include it in the final set of
constraints.

As mentioned at the start of the section, in addition to protocol-
specific constraints, the analysis of the MPCP also requires a
protocol-specific treatment of the LP’s objective function.

2) Objective Function: The MPCP requires requires the
specified LP to be evaluated twice with two different objective
functions. This is because, in the case of the MPCP analysis,
the expression bri is not necessarily maximal if the expression
bli + bri is maximal, as variable assignments maximizing bli may
constrain bri .

Notably, this is not the case under the DPCP, the DFLP, and
the FMLP+, where bli and bri are independent of each other. The
difference arises because the MPCP ensures that each of Ji’s
requests is delayed by at most one lower-priority request—this
lower-priority request could be due to either a local or a remote
task. In contrast, FIFO ordering avoids such dependencies under
the FMLP+, and resource locality, not task locality, determines
local and remote blocking under the DPCP and the DFLP.

Crucially, the response-time analysis equation reproduced in
Eq. (1) requires maximal estimates of both bli + bri (for the task
under analysis) and brh (for each higher-priority task Th). Under
the DFLP, DPCP, and the FMLP+, solving the specified LP
for the objective function bli + bri yields correct answers for
both uses, but, under the MPCP, the two expressions must be
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obtained individually. That is, the specified LP must be solved
for each task once assuming bli + bri as the objective function (as
is the case with the three other protocols), and once assuming
bri as the objective function. The former result is substituted for
bli + bri in Eq. (1), whereas the latter result is used to evaluate
the expression brh in Eq. (1).

This concludes our analysis of the MPCP.

D. Schedulability Results

The schedulability experiments described in Secs. IV and V
evaluated 1,728 parameter combinations, once with and once
without consideration of overheads. Each resulting schedulabil-
ity data set was plotted in several ways, resulting in more than
6,000 graphs. In the interested of full disclosure, we make the
entire dataset available online. Due to its large size (>70Mb),
the full set of schedulability results is provided as a separate
download at

https://www.mpi-sws.org/∼bbb/papers/data/rtas13.zip.

E. Overheads

As described in Sec. V-A, we measured overheads in two
configurations of a 64-core, 2.0 GHz Intel Xeon X7550 system,
once with 8 and once with 16 cores enabled. For each configura-
tion, we measured overheads related to scheduling, system calls,
and lock acquisitions under each of the four locking protocols
as implemented in LITMUSRT. Due to technical limitations,
overheads were measured in two separate runs (of the same task
sets): in the first run, all scheduling overheads were recorded;
and in the second run, system-call and locking-related overheads
were recorded. Figs. 9–14 depict histograms of each recorded
source of overhead and provide the number of samples and the
minimum, average, median, and maximum recorded values.

Fig. 11 shows histograms of scheduling-related overheads as
measured in the 8-core system:
• Fig. 11(a) shows measured scheduling overhead, that is,

the time required to select the next task to be executed;
• Fig. 11(b) shows measured context-switch overhead, that

is, the time required to enact a scheduling decision;
• Fig. 11(c) shows measured post-scheduling overhead, that

is, scheduling-related maintenance carried out after a
context switch;

• Fig. 11(d) shows measured timer-tick overhead, that is,
the invocation of the scheduler and time management
subsystems once every millisecond;

• Fig. 11(e) shows measured interrupt latency, that is, the
delay in interrupt delivery due to hardware limitations and
code sections in which interrupt delivery is disabled;

• Fig. 11(f) shows measured release overhead, that is, the
time required to add one or more newly released jobs to the
ready queue and to check whether a preemption is required;
and

• Fig. 11(g) shows measured inter-processor interrupt (IPI)
latency, that is, the delay between the sending and the
reception of an IPI.

Analogously, Fig. 12 shows histograms of the same scheduling-
related overheads as measured in the 16-core configuration. Note

that average-case, median, and worst-case overheads are given
in each graph. See Chapter 3 in [6] for a review of how these
overheads are accounted for during response-time analysis.

Figs. 9 and 13 show histograms of system-call and locking-
related overheads as measured in the 8-core system:

• Fig. 9(a) shows measured kernel-entry overhead, that is,
the time required to transition to kernel mode to carry out a
system call;

• Fig. 9(b) shows measured kernel-exit overhead, that is, the
time required to return from kernel model to user mode;

• Fig. 13(a) shows measured locking overhead under the
FMLP+, that is, the time required to acquire a semaphore
under the FMLP+ (not including suspensions);

• Fig. 13(b) shows measured unlocking overhead under the
FMLP+, that is, the time required to release a semaphore
and to resume the next lock-holder under the FMLP+;

• Fig. 13(c) shows overhead under the MPCP;
• Fig. 13(d) shows unlocking overhead under the MPCP;
• Fig. 13(c) shows locking overhead under the MPCP;
• Fig. 13(d) shows unlocking overhead under the MPCP;
• Fig. 13(e) shows locking overhead under the DFLP;
• Fig. 13(f) shows unlocking overhead under the DFLP;
• Fig. 13(g) shows locking overhead under the DPCP; and
• Fig. 13(h) shows unlocking overhead under the DPCP.

Figs. 10 and 14 show histograms of the same overheads as
measured in the 16-core configuration. See Chapter 7 in [6]
for a review of how overheads related to system calls and lock
acquisitions are accounted for.

Table III shows cache-related preemption delay (CPRD) as
a function of a task’s working-set size (WSS), as measured
in the test system using the synthetic method described in [4]
and [6, Ch. 3]. The measured worst-case CPRD, which describes
the increase in execution cost due to the need to reestablish
cache affinity after a suspension or preemption, is given in
microseconds and is dependent on the WSS (given in KiB).
CPRD is roughly twice as high in the 16-core system than
in the 8-core system due to increased contention for memory
bandwidth. The overhead-aware schedulability experiments
reported on in this paper assumed a WSS of 128 KiB.

F. Outlook: Incorporating Self-Suspensions

A primary reason to favor semaphores over spinlocks is that
spinlocks may be wasteful if critical sections are long, and
particularly so if critical sections may contain self-suspensions.
For example, critical sections with self-suspensions are common
if the protected resource is an I/O device such as a disk or flash
storage device, or if the resource is a co-processor such as a
GPU. Nonetheless, to the best of our knowledge, none of the
analyses from prior work consider the case of self-suspending
lock holders.

We believe our LP-based approach to be particularly suited
to tackling the problem of deriving efficient analysis of critical
sections with self-suspensions, and have already started pre-
liminary work on extending our analysis to this end. There
are two important parts to this work: first, it is essential to
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TABLE III
CACHE-RELATED PREEMPTION DELAY (IN MICROSECONDS)

WSS 8 Cores 16 cores

1 0.86 1.06
2 0.91 2.57
4 1.02 1.38
8 4.16 1.65

16 1.43 2.20
32 2.15 3.58
64 5.72 22.99

128 10.63 41.07
256 56.38 74.34
512 104.26 206.60

split the notion of “critical section length” into a processor-
using and a non-processor-using part, which must then be
integrated appropriately into the LP setup; and second, some of
the constraints must be extended to take self-suspensions into
account. In particular, the assumption that lock holders do not
self-suspend is used in Constraints 3, 11, 17, and 19, which
will need to be augmented in future work to incorporate self-
suspensions. Concerning the former, it is possible to elegantly
characterize the beneficial effect of self-suspensions (i.e., of
not busy-waiting while holding a lock) by imposing additional
constraints on indirect request delay and preemption delay
(notably, direct request delay is unaffected by self-suspensions),
which we briefly sketch next.

Recall that Li,q denotes the maximum critical section length
(including any self-suspensions) with respect to task Ti and
resource `q. Let Lcpui,q denote the maximum processor service
that a job using `q (or an agent handling a request on behalf of
Ti) requires, where Lcpui,q ≤ Li,q. If Lcpui,q < Li,q, then indirect
delay and preemption pi-blocking can be further constrained
as they express pi-blocking due to preemptions, and thus only
depend on processor unavailability.

Constraint 21. In any schedule of τ :

∀Tx ∈ τ i : ∀`q : ∀v : XI
x,q,v +XP

x,q,v ≤
Lcpui,q
Li,q

Proof: By definition of the processor-dependent critical
section length Lcpui,q and the blocking fractionsXI

x,q,v andXP
x,q,v

(which are defined in terms of the total critical section length
including any self-suspensions, but which reflect delays due to
preemptions), it follows that (XI

x,q,v + XP
x,q,v) · Li,q ≤ Lcpui,q ,

which implies the stated constraint.
Constraint 21 can greatly reduce preemption-related pi-

blocking due to priority boosting under any protocol. Further,
it can also greatly reduce pessimism related to indirect delay
under the DFLP, the FMLP+, and the MPCP. However, under
the DPCP, indirect delay is dominated by direct delay in many
situations since system ceilings remain elevated even when
agents self-suspend.

In any case, Constraint 21 highlights the ease with which our
analysis can be extended if additional information is available,
due to the fact that linear constraints can be freely composed.
We plan to explore this and other refinements of our LP-based
analysis approach in future work.
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(a) kernel-entry overhead

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08
 1e+09

0.00 3.00 6.00 9.00 12.00 15.00 18.00 21.00 24.00 27.00
nu

m
be

r o
f s

am
pl

es
overhead in microseconds (bin size = 0.25us)

P-FP: measured system call exit overhead (host=nanping-8)
min=0.09us  max=4.85us  avg=0.31us  median=0.25us

samples: total=492655981
[IQR filter not applied]

(b) kernel-exit overhead
Fig. 9. Histograms of system call overheads as observed on an 8-core, 2.0 GHz
Intel Xeon X7550 system, with a bin size of 0.25µs: (a) kernel-entry overhead
and (b) kernel-exit overhead.
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(a) kernel-entry overhead
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(b) kernel-exit overhead
Fig. 10. Histograms of system call overheads as observed on a 16-core, 2.0 GHz
Intel Xeon X7550 system, with a bin size of 0.5µs: (a) kernel-entry overhead
and (b) kernel-exit overhead.
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(a) scheduling overhead
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(b) context-switch overhead
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P-FP: measured post-scheduling overhead (host=nanping-8)
min=0.08us  max=4.90us  avg=0.17us  median=0.11us
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[IQR filter not applied]

(c) post-scheduling overhead
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(d) tick overhead
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P-FP: measured event latency (host=nanping-8)
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(e) interrupt latency

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0.00 3.00 6.00 9.00 12.00 15.00 18.00 21.00 24.00 27.00

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 0.25us)

P-FP: measured release interrupt overhead (host=nanping-8)
min=0.24us  max=17.06us  avg=2.26us  median=2.00us

samples: total=20389111
[IQR filter not applied]

(f) release overhead
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P-FP: measured IPI latency (host=nanping-8)
min=0.10us  max=25.69us  avg=1.06us  median=1.05us

samples: total=164378463
[IQR filter not applied]

(g) IPI latency

Fig. 11. Histograms of scheduling overheads as observed on an 8-core, 2.0 GHz Intel Xeon X7550 system, with a bin size of 0.25µs: (a) scheduling overhead;
(b) context-switch overhead; (c) post-scheduling overhead; (d) timer-tick overhead; (e) interrupt latency; (f) release overhead; and (g) IPI latency. Note the log
scale; no statistical outlier filter was applied.
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P-FP: measured scheduling overhead (host=nanping-16)
min=0.18us  max=55.36us  avg=2.55us  median=<OOM>

samples: total=3078977574
[IQR filter not applied]

(a) scheduling overhead
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P-FP: measured context-switch overhead (host=nanping-16)
min=0.26us  max=40.99us  avg=2.72us  median=2.15us

samples: total=1511236394
[IQR filter not applied]

(b) context-switch overhead
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P-FP: measured post-scheduling overhead (host=nanping-16)
min=0.07us  max=26.84us  avg=1.09us  median=0.51us

samples: total=1529219489
[IQR filter not applied]

(c) post-scheduling overhead
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P-FP: measured timer tick overhead (host=nanping-16)
min=0.14us  max=30.18us  avg=1.30us  median=0.54us

samples: total=187292735
[IQR filter not applied]

(d) tick overhead
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P-FP: measured event latency (host=nanping-16)
min=0.72us  max=72.11us  avg=7.56us  median=7.74us

samples: total=38609451
[IQR filter not applied]

(e) interrupt latency
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P-FP: measured release interrupt overhead (host=nanping-16)
min=0.22us  max=36.37us  avg=6.85us  median=6.50us

samples: total=38583326
[IQR filter not applied]

(f) release overhead
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P-FP: measured IPI latency (host=nanping-16)
min=0.02us  max=47.68us  avg=2.40us  median=2.10us

samples: total=520116042
[IQR filter not applied]

(g) IPI latency

Fig. 12. Histograms of scheduling overheads as observed on a 16-core, 2.0 GHz Intel Xeon X7550 system, with a bin size of 0.5µs: (a) scheduling overhead;
(b) context-switch overhead; (c) post-scheduling overhead; (d) timer-tick overhead; (e) interrupt latency; (f) release overhead; and (g) IPI latency. Note the log
scale; no statistical outlier filter was applied.
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P-FP/FMLP: measured lock overhead (host=nanping-8)
min=0.16us  max=9.81us  avg=0.44us  median=0.39us

samples: total=61610409
[IQR filter not applied]

(a) FMLP+ locking overhead

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08

0.00 3.00 6.00 9.00 12.00 15.00 18.00 21.00 24.00 27.00

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 0.25us)

P-FP/FMLP: measured unlock overhead (host=nanping-8)
min=0.16us  max=11.90us  avg=0.52us  median=0.24us

samples: total=55394839
[IQR filter not applied]

(b) FMLP+ unlocking overhead
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P-FP/MPCP: measured lock overhead (host=nanping-8)
min=0.15us  max=8.22us  avg=0.42us  median=0.38us

samples: total=61612999
[IQR filter not applied]

(c) MPCP locking overhead
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P-FP/MPCP: measured unlock overhead (host=nanping-8)
min=0.16us  max=12.91us  avg=0.55us  median=0.25us

samples: total=57235186
[IQR filter not applied]

(d) MPCP unlocking overhead
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P-FP/DFLP: measured lock overhead (host=nanping-8)
min=0.17us  max=5.44us  avg=0.63us  median=0.59us

samples: total=61512045
[IQR filter not applied]

(e) DFLP locking overhead
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P-FP/DFLP: measured unlock overhead (host=nanping-8)
min=0.18us  max=4.82us  avg=0.63us  median=0.56us

samples: total=59438924
[IQR filter not applied]

(f) DFLP unlocking overhead
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P-FP/DPCP: measured lock overhead (host=nanping-8)
min=0.14us  max=5.95us  avg=0.65us  median=0.59us

samples: total=61385084
[IQR filter not applied]

(g) DPCP locking overhead
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P-FP/DPCP: measured unlock overhead (host=nanping-8)
min=0.24us  max=7.19us  avg=0.77us  median=0.68us

samples: total=59321554
[IQR filter not applied]

(h) DPCP unlocking overhead

Fig. 13. Histograms of locking-related overheads as observed on an 8-core, 2.0 GHz Intel Xeon X7550 system: (a) locking overhead under the FMLP+;
(b) unlocking overhead under the FMLP+; (c) locking overhead under the MPCP; (d) unlocking overhead under the MPCP; (e) locking overhead under the DFLP;
(f) unlocking overhead under the DFLP; (g) locking overhead under the DPCP; and (h) unlocking overhead under the DPCP. Note the log scale; no statistical outlier
filter was applied.
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P-FP/FMLP: measured lock overhead (host=nanping-16)
min=0.73us  max=35.51us  avg=2.33us  median=1.69us

samples: total=231054080
[IQR filter not applied]

(a) FMLP+ locking overhead
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P-FP/FMLP: measured unlock overhead (host=nanping-16)
min=0.74us  max=40.67us  avg=2.53us  median=1.34us

samples: total=177466385
[IQR filter not applied]

(b) FMLP+ unlocking overhead
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P-FP/MPCP: measured lock overhead (host=nanping-16)
min=0.15us  max=34.15us  avg=1.53us  median=0.86us

samples: total=232106079
[IQR filter not applied]

(c) MPCP locking overhead
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P-FP/MPCP: measured unlock overhead (host=nanping-16)
min=0.74us  max=37.51us  avg=2.58us  median=1.40us

samples: total=193316371
[IQR filter not applied]

(d) MPCP unlocking overhead
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P-FP/DFLP: measured lock overhead (host=nanping-16)
min=0.75us  max=35.96us  avg=3.08us  median=2.48us

samples: total=190269633
[IQR filter not applied]

(e) DFLP locking overhead
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P-FP/DFLP: measured unlock overhead (host=nanping-16)
min=0.75us  max=33.25us  avg=3.00us  median=2.43us

samples: total=186193398
[IQR filter not applied]

(f) DFLP unlocking overhead

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07
 1e+08

0.00 7.50 15.00 22.50 30.00 37.50 45.00 52.50 60.00 67.50

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 0.50us)

P-FP/DPCP: measured lock overhead (host=nanping-16)
min=0.14us  max=39.28us  avg=2.58us  median=1.92us

samples: total=182559755
[IQR filter not applied]

(g) DPCP locking overhead
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P-FP/DPCP: measured unlock overhead (host=nanping-16)
min=0.82us  max=37.76us  avg=3.39us  median=2.81us

samples: total=177798348
[IQR filter not applied]

(h) DPCP unlocking overhead

Fig. 14. Histograms of locking-related overheads as observed on a 16-core, 2.0 GHz Intel Xeon X7550 system: (a) locking overhead under the FMLP+;
(b) unlocking overhead under the FMLP+; (c) locking overhead under the MPCP; (d) unlocking overhead under the MPCP; (e) locking overhead under the DFLP;
(f) unlocking overhead under the DFLP; (g) locking overhead under the DPCP; and (h) unlocking overhead under the DPCP. Note the log scale; no statistical outlier
filter was applied.
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