
Quantifying the Resiliency of Fail-Operational
Real-Time Networked Control Systems

Arpan Gujarati, Mitra Nasri, and Björn B. Brandenburg
Max Planck Institute for Software Systems (MPI-SWS)

Abstract—In time-sensitive, safety-critical systems that must be
fail-operational, active replication is commonly used to mitigate
transient faults that arise due to electromagnetic interference.
However, designing an effective and well-performing active repli-
cation scheme is challenging since replication conflicts with the
size, weight, power, and cost constraints of embedded applica-
tions. Quantifying the resiliency of a given active replication
scheme is thus the first step towards addressing this challenge. To
this end, we propose an analysis to quantify the resiliency of fail-
operational, CAN-based networked control systems. Since many
control systems are inherently robust to a few failed iterations,
e.g., one missed actuation does not crash an inverted pendulum,
traditional solutions based on hard real-time assumptions are
often too pessimistic. Our analysis reduces this pessimism by
modeling control robustness with (m,k)-firm specifications.

I. INTRODUCTION

Networked control systems (NCSs)—where sensors, con-
trollers, and actuators belonging to different control loops are
connected through a shared network such as a CAN bus—are
widely deployed in contemporary cyber-physical systems as
they offer many practical advantages over dedicated wiring so-
lutions, not the least of which are cost and weight savings [17].

Like other embedded systems, NCSs are susceptible to both
internal and external sources of electromagnetic interference
(EMI), e.g., spark plugs, collision-avoidance radar, TV tow-
ers, etc. [30]. In fact, the likelihood of soft errors due to EMI
across a fleet of devices should not be underestimated. For
example, Mancuso [27] observed that, assuming one soft error
per bit in a 1 MB SRAM every 1012 hours of operation, and
a worldwide population of 0.5 billion cars with an average
daily operation time of 5%, about 5,000 vehicles per day are
affected by a soft error. Since NCSs are time-sensitive, even
a few instances of failures due to these soft errors, such as
hangs, crashes, incorrect outputs, or message corruptions on
the network, can have potentially catastrophic consequences.

EMI-induced component failures must thus be anticipated
in the design of safety-critical systems, and are commonly
mitigated by means of either active or passive replication. In
the context of high-frequency control applications specifically,
passive replication, i.e., the use of hot/cold standbys, is in-
sufficient if the failure detection and view-change latencies
exceed the control frequency. System engineers thus devise
active replication (or static redundancy) schemes to ensure that
safety-critical NCSs are fail-operational (e.g., see [8, 14, 20]).

However, coming up with a good active replication scheme
is no easy task. Engineers face many questions, such as which
components, if made more or less resilient (e.g., by adding
an extra replica, or shielding), will most impact the overall

reliability? Alternatively, which components could be replaced
with cheaper consumer-grade parts with the least effect on
system reliability? Would dual modular redundancy suffice
if the control logic is robust to, say, 10% message loss or
would triple modular redundancy be needed? In general, none
of these questions (and many more like it) has an obvious
answer, and particularly not if size, weight, and power (SWaP)
as well as cost constraints must be taken into account, too.

The challenge is further exacerbated by the fact that most
well-designed control systems are inherently robust to a few
failed iterations, e.g., one missed actuation does not crash an
inverted pendulum. That is, requiring that all control loop
iterations must be correct and timely results in excessively
pessimistic answers with regard to the “true” needs of the
workload, and consequently in under-utilized, cost-inefficient
systems. This rules out the use of classical hard-real-time anal-
yses (see §VI)—to appropriately dimension a fail-operational
NCS, a robustness-aware reliability analysis is required.
This paper. We present a sound reliability analysis that quan-
tifies the resiliency of a given configuration of a CAN-based,
actively replicated NCS to EMI-induced transient component
failures. The objective is to provide system engineers with
a method to evaluate the reliability of an active replication
scheme (i.e., for a given number of replicas for each task
in the NCS) assuming the peak failure rates are known
from empirical measurements and/or environmental modeling.
Unlike prior approaches, our analysis leverages the robustness
of well-designed control systems: since robust control loops
tolerate a limited number of transient failures (which result
in degraded control performance, but not an unrecoverable
plant state), we characterize control loops with (m, k)-firm
specifications, where out of every k consecutive control loop
iterations, at least m must be “correct and timely” [18].

In a nutshell, the proposed analysis consists of three
steps. First, transient failures due to EMI are classified as
crash failures (resulting in message omissions), commission
failures (resulting in undetected message corruptions), and
transmission failures (resulting in retransmissions and hence
message delays). Each of these failure types is modeled
probabilistically (§II). Second, an intermediate analysis relates
the probability of individual message failure events to that of
a failed control loop iteration, i.e., where the controlled plant
is not actuated as expected in a failure-free iteration (§IV).
Third, a reliability analysis bounds the failures in time (FIT)
of the NCS, i.e., the expected number of control loop failures
in one billion operating hours, where a control loop failure is
defined as a violation of its (m, k)-firm specification (§IV).

II. FAULT MODEL AND ASSUMPTIONS

To lay the foundation for our analysis, we give below a
precise fault model and introduce key assumptions.

A. Failures-In-Time (FIT)
Any safety-critical NCS consists of multiple hardware com-

ponents, e.g., motors, cables, connectors, embedded comput-
ers, physical sensors, power sources, etc., as well as mul-
tiple software components, e.g., applications, OS services,
middleware services, clock synchronization protocols, etc.
Each of these can potentially cause the entire system to fail,
unless appropriate mechanisms are in place to tolerate their
respective failures. Thus, a reliability analysis of the whole
system must take all possible failure sources into account.
To make such an analysis manageable, a common approach
is to derive individual component FIT rates, which are then
added up to bound the overall FIT rate of the entire system.

The objective of this paper is to safely bound the FIT
rate of a CAN-based NCS, with a focus on the message
exchanges among the distributed hosts attached to the CAN
bus. Thus, the analysis evaluates EMI-induced transient faults
manifested as different message failure types, and assumes that
other system components are reliable, even though the CAN-
based NCS subsystem being analyzed may directly depend on
them, e.g., the CAN bus wires or the physical sensors. This
assumption does not imply that the proposed analysis is not
useful if a dependent component fails, rather it provides a FIT
rate for one subsystem, which can then be composed with the
FITs of other dependent, dependee, or unrelated subsystems.

B. EMI-Induced Transient Faults
Since safety-critical real-time systems are susceptible to

EMI, this work focusses on transient faults (also known as soft
errors or single-event upsets) as the primary considered source
of failures. We first model the raw EMI-induced transient
faults, and then consider the resulting program-visible effects.

Given a set of hosts H = {H1, H2, . . .}, let τ and λi denote
the peak rate of raw transient faults affecting the CAN bus and
each host Hi ∈ H , respectively. In practice, these rates are
empirically determined with measurements or derived from
environmental modeling assuming worst-possible operating
conditions, and typically include safety margins as deemed
appropriate by reliability engineers or domain experts.

We model the raw transient faults as random events fol-
lowing a Poisson distribution (other possible fault models are
discussed in §VI). Let P(x, δ, λ) denote the probability mass
function of the Poisson distribution, i.e., the probability that
x independent events occur in an interval of length δ when
the arrival rate is λ. Thus, given the peak rates τ and λi,
the probability that x raw transient faults affect the CAN bus
(respectively, host Hi) in any interval of length δ is bounded
by P(x, δ, τ) (respectively, P(x, δ, λi)).
C. Program-Visible Message Failures

Raw-transient faults, i.e., bit-flips on the network and in
host memory, may manifest as program-visible transmission,
crash, and commission failures, as described below.

As a result of the error detection and correction in CAN, raw
transient faults may result in automatic retransmissions [10],
which we refer to as transmission failures. In the worst case,
if the number of retransmissions exceed the number accounted
for during schedulability analysis of the CAN bus, transmis-
sion failures can delay messages beyond their deadlines.

As in Broster et al.’s analysis [4], we assume that every
transient fault on the CAN bus causes a retransmission. Thus,
the CAN bus retransmission-rate is also bounded by τ , and
the probability that x retransmissions occur in any interval of
length δ is bounded by P(x, δ, τ). This is a simplifying (but
safe) overestimation because a transient fault may occur when
the bus is idle, because multiple transient faults may result in
a single retransmission, and because the number of retrans-
missions in practice is limited, whereas a Poisson distribution
has a non-zero probability for any number of events.

We classify raw transient faults affecting hosts into crash
failures and commission failures. Crash failures occur if the
system suffers an EMI-induced transient corruption that causes
an exception to be raised and the system to be rebooted.
Although bit flips can cause unbounded hangs in principle
(e.g., loops that never terminate due to a bit flip in the
termination condition), we assume that each host is equipped
with a watchdog timer that reboots the system in case of a
hang, e.g., see [29]. A crashed system remains unavailable
for some time while it reboots and thus causes an interval in
which messages are continuously omitted. Ri denotes an upper
bound on this recovery interval for host Hi, and includes any
delays due to state re-synchronization.

Prior studies have shown that a large fraction of transient
faults have no negative effects [39]. We thus assume a derating
factor that accounts for masked transient faults, which can be
determined empirically [28]. Let fi denote the derating factor
for crash failures on host Hi; the peak rate of crash failures on
host Hi is then given by ρi = fiλi. Like raw transient faults,
we model crash failures as random events following a Poisson
distribution. Thus, the probability that x crash failures occur
in any interval of length δ is bounded by P(x, δ, ρi).

A commission failure occurs if a message is corrupted
during preparation before the CAN controller computes the
payload checksum included in the CAN header. For exam-
ple, bit flips in registers or memory of the CAN controller
may manifest as commission failures. Like crash failures,
we assume a host-specific derating factor f ′i for commission
failures. The average rate of commission failures on host
Hi is then given by κi = f ′iλi and the probability that x
commission failures occur in any interval of length δ is given
by P(x, δ, κi). Note that our notion of commission failures
does not refer to software bugs or Byzantine agents.

We refer to the interval during which a message is at risk of
corruption as its exposure interval. For stateful tasks such as
a PID controller, the message computation relies on both the
current input and the application state, and the latter could even
be affected by latent faults (i.e., state corruptions that have not
yet been detected). Thus, the exposure interval depends on the
mechanisms in place to tolerate (or avoid) latent faults.

If the hardware platform uses Error-Correcting Code (ECC)
memory and processors with lockstep execution (common in
safety-critical systems), then the built-in protections suppress
latent faults, and it suffices to consider the scheduling window
of a message (i.e., the duration from the message’s creation to
its deadline) as its exposure interval. If no such architectural
support is available, then any relevant state can be protected
with a data integrity checker task that periodically verifies the
checksums of all relevant data structures (and that reboots the
system in the case of any mismatch). The exposure interval
of a message then includes its scheduling window and (in the
worst case) an entire period of the data integrity checker.

Independence assumption. Based on the stochastic nature of
physical EMI processes, we consider EMI-induced transient
faults, and hence basic message failures, to be independent.
We do however account explicitly for correlated failures that
arise from the system model, e.g., deterministic replicas will
produce the same wrong output if given the same wrong input.

III. SYSTEM MODEL AND ASSUMPTIONS

We consider a single-input single-output (SISO) control
loop connected to a CAN bus that is shared with other traffic,
e.g., other control loops, clock synchronization protocol, etc.

A. SISO and FT-SISO Control Loops

Let L denote a control loop consisting of plant P and a
SISO controller C. The sensor output is generated periodically
and broadcasted over CAN by the sensor task, which is
denoted by S. The CAN message stream carrying the sensor
values is denoted Ms. The controller task C, upon periodic
activation, reads the latest sensor message received over CAN,
computes a new control command for the plant, updates its
local state (e.g., in a PID controller, the integrator), and
broadcasts the control command over CAN. C is assigned an
appropriate offset to ensure that the sensor message is available
before its activation. The CAN message stream carrying the
control commands is denoted Mc. The actuator task, denoted
A, is directly connected to the plant. Upon periodic activation,
it reads the latest control command received over CAN and
actuates the plant accordingly. Like C, task A is also assigned
an appropriate offset to ensure that the control command is
received before its activation. The control loop (i.e., all sensor,
control, and actuator tasks) has a period of T time units.

To remain fail-operational despite EMI-induced transient
faults, critical tasks in the SISO control loop may be actively
replicated on independent hosts. We consider an FT-SISO
control loop with multiple functionally identical replicas of
the sensor task and the controller task, denoted by sets
S = {S1, S2, . . .} and C = {C1, C2, . . .}, respectively (as a
convention, we let superscripts denote replica IDs). We do not
assume replicated actuator tasks for now because it requires
special hardware for the plant actuator to handle redundant
control commands [20]. The issue of replicated actuator tasks
is revisited in §VII. The ith runtime activation or job of any
sensor task replica Sx, controller task replica Cy , and actuator
task A is denoted Sxi , Cyi , and Ai, respectively. The sets of the

PlantSensor ActuatorP

Ta
sk

re
pl

ic
as

Msg. replicas

Ta
sk

re
pl

ic
as

Msg. replicas
A

M1
s CAN

C1 C2

S1 S2
M1

c M2
c

M2
s

Fig. 1: An FT-SISO control loop. Solid boxes denote hosts. Each dashed grey
box denotes a task replica set or a set of message streams transmitted by
a task replica set. Dashed arrows denote message streams transmitted over
CAN. Message streams directed to a task replica set are received by all tasks
in that set, e.g., M1

s and M2
s are received by all tasks in C.

ith jobs of all sensor task replicas in S and all controller task
replicas in C are denoted Si and Ci, respectively. All tasks
in S and C, as well as task A, are deployed on hosts in H .

Active replication causes additional message streams to be
transmitted over CAN. We let Ms = {M1

s ,M
2
s , . . .} and

M c = {M1
c ,M

2
c , . . .} denote the set of CAN message streams

carrying the sensor values and control commands sent by
task replicas in S and C, respectively. Each message stream
Mx
i ∈ Ms ∪ M c is characterized by its period Ti, relative

deadline Di, maximum release jitter Jxi , offset φxi , and priority
prioxi . The kth message in any message stream Mx

i is denoted
Mx
i,k. The sets of the kth messages of the message streams in

Ms and M c are denoted Ms,k and M c,k, respectively
Given all the message streams to be transmitted over CAN,

and an upper bound on the CAN bus retransmission rate τ , the
probabilities that messages Mx

s,i and My
c,i miss their deadlines

is denoted Bxs and Bxc , respectively. These can be derived,
for example, using Broster et al.’s analysis [5]. With respect
to commission failures, as discussed in §II-C, the exposure
interval for each message in a message stream Mx

i is assumed
to be upper-bounded by Exi . The exposure interval on the
actuator task A’s host is similarly defined and denoted Ea. A
block diagram of a sample FT-SISO control loop using the
notation introduced above is illustrated in Fig. 1.

B. Key Assumptions

We assume that hosts are synchronized using a clock
synchronization protocol, and that task and message offsets
have been chosen to account for the maximum clock synchro-
nization error. Without this assumption, it is much more chal-
lenging to ensure replica determinism (e.g., simply assigning
appropriate offsets to tasks and messages is insufficient) [31];
the fully asynchronous case remains future work.

We also assume that the CAN protocol guarantees atomic
broadcast (i.e., messages are received by either all hosts, or
none)—while there exists a theoretical corner case in the CAN
protocol that violates this assumption [26], it is of such low
likelihood that it is best modeled as a separate, additive failure
source and accounted for using its own FIT rate (recall §II-A).
We require the controller and the sensor task logic to be deter-
ministic. Thus, given identical inputs and identical states, any

Algorithm 1 A simple voting procedure at task activation.
1: procedure PERIODICTASKCOMPUTATION
2: Latesti ← ∅ . start voting protocol
3: for all Mk

i ∈M i do
4: if Mk

i not received by its deadline then
5: continue . also accounts for omissions
6: Latesti ← Latesti ∪ latestki
7: if Latesti = ∅ then return . omit output
8: resulti ← SimpleMajority(Latesti) . deterministic
9: main logic of the task starts

two functionally identical replicas produce identical outputs,
except when an output is corrupted due to commission failures.

Algorithm 1 summarizes the voting protocol used by tasks
at the start of every iteration to resolve the redundant inputs.
Since all inputs are available before the task is activated in
a failure-free scenario, message streams that are delayed or
omitted due to transmission or crash failures (respectively) are
ignored during voting (Line 5). In the worst case, if no input is
available to the voter on time due to failures, the task iteration
is skipped, i.e., its output for that iteration is omitted (Line 7).
Ties are broken deterministically e.g., by using message IDs.

In our analysis, we (pessimistically) assume that corrupted
message replicas are identical because it is a worst-case
scenario w.r.t. the voting protocol, even though it is highly un-
likely in practice. In particular, if the number of corrupted mes-
sages exceeds the number of correct messages, then assuming
identical corrupted messages implies that the voting outcome
is corrupted, while in the case of non-identical corrupted
messages there is a high likelihood that correct messages still
form the largest quorum. Whether or not corrupted messages
are likely to be identical is highly application-specific.

C. Correctness of an FT-SISO Control Loop

Commercially-used controllers are typically safeguarded
against disturbances and noise in their inputs using appropriate
limiting or clamping mechanisms to ensure that the error term
is within a reasonable limit, mechanisms to filter noise, etc.
Besides these safety mechanisms, well-designed controllers
can also withstand a few failed iterations, i.e., the plant remains
functional even if a few of the past control iterations were
incorrect due to, say, corrupted sensor values or because
the plant was actuated with a different value than what the
controller had commanded (or not actuated at all).

Prior works have characterized control system performance
in the presence of failures using an asymptotic requirement,
which mandates that, as the number of control loop iterations
approaches infinity, the failure rate should not exceed a given
threshold, (e.g., see [34]). Alternatively, a stronger robustness
requirement mandates that, out of any k consecutive control
loop iterations, a given fraction m

k must not fail (e.g., see [7]).
We similarly characterize control system robustness using

an (m, k)-firm specification [18]: for the plant to remain
functional, out of any k consecutive control loop iterations, at
least m must be correct. We consider a control loop iteration
to be correct if the plant actuation in that iteration is not
skipped and the control command used for the actuation was
not corrupted or computed using corrupted sensor values.

IV. PROBABILISTIC ANALYSIS

We first analyze the probability that the nth iteration of the
control loop fails, for any n. We then argue that the derived
probability of a given control loop iteration failing is, in fact,
identically and independently distributed (IID) w.r.t. n. In the
end, we describe in brief a procedure to obtain from this
probability an upper bound on the FIT rate of the control loop.

Let V yc,n denote the voter instance that resolves the redun-
dant inputs for controller job Cyn, and let V c,n denote the set
of all such voter instances of controller jobs in Cn. Similarly,
let Va,n denote the voter instance that resolves the redundant
inputs for the actuator job An, and let Un denote An’s output,
i.e., the final command issued to the actuator.

Recall from §III that appropriate offsets and deadlines
are assigned to tasks and messages such that, in a failure-
free scenario, messages in Ms,n are transmitted before the
corresponding consumers in Cn are activated, and so on.

As mentioned in §III, due to clock synchronization and the
atomic broadcast assumption, message replicas are identical
in a failure-free scenario, i.e., the messages in Ms,n carry
identical sensor values and the messages in M c,n carry iden-
tical control commands. However, due to commission failures,
one or more messages in Ms,n may be corrupted. If the voters
V c,n choose a corrupted sensor value, then all messages M c,n

carrying the control commands are also corrupted. Messages in
Ms,n could also be delayed or omitted due to transmission and
crash failures, in which case the voters V c,n work with fewer
inputs. But if all the messages in Ms,n are either delayed or
omitted, the controller jobs Cn have no inputs to work with, so
the messages M c,n are not prepared. Similarly, the controller
to actuator information flow may also be affected by failures,
resulting in An’s output Un being corrupted or omitted.

Next, we bound in small steps of a few lemmas each the
probability that the final output Un is corrupted or omitted.

Step 1: Analyzing Algorithm 1. What is the probability that
the simple majority voter in Algorithm 1 chooses an incorrect
value? The voting algorithm plays an important part in a
system with active replication and is independent of the actual
control logic; therefore, we evaluate it first.

Lemma 1. Given nc correct inputs and ni incorrect inputs,
an upper bound on the probability that the simple majority
procedure in Algorithm 1 selects an incorrect input is:

P
(

Algo. 1 output
incorrect

∣∣nc, ni) = {1 ni > nc ∨ ni = nc 6= 0,

0 ni < nc ∨ ni = nc = 0.
(1)

Proof. A simple majority algorithm chooses the largest-sized
quorum as its output. From §III, recall that correct message
replicas are identical, and that incorrect message replicas are
also identical. If ni > nc, the largest-sized quorum belongs to
incorrect messages, and Algorithm 1’s output is incorrect with
probability 1. If ni = nc 6= 0, then there are two largest-sized
quorums. Since Algorithm 1 breaks ties deterministically, in
the worst case, it may choose the incorrect quorum. If ni < nc,
the largest-sized quorum belongs to correct messages, and Al-

gorithm 1’s output is correct, i.e., incorrect with probability 0.
If ni = nc = 0, the voter has received no inputs, so it does
not choose any output (Algorithm 1, Line 7). The probability
of choosing an incorrect output is thus 0.

Step 2: Analyzing message failure probabilities. In the
following, we evaluate the probability that a sensor message
replica Mx

s,n or a controller message replica Mx
c,n is omitted,

delayed beyond its deadline, or corrupted before transmis-
sion, and then we evaluate similar probabilities for a set of
messages. Since the analysis is identical for both sensor and
controller message replicas, we let Mx

i,n denote any sensor or
controller message replica, i.e., either Mx

s,n or Mx
c,n.

The probability that message Mx
i,n is delayed beyond its

deadline is bounded by Bxi , which was defined in §III. Regard-
ing message omission, suppose that message Mx

i,n is expected
to arrive at time t, and that its sender task is deployed on host
Hh. Since Rh is the maximum time to recover from a crash
failure on host Hh, if there is at least one crash failure during
the interval [t−Rh, t), Mx

i,n’s arrival may be skipped. Thus,
the probability of there being at least one crash in the interval
[t−Rh, t) upper-bounds the probability that Mx

s,n is omitted.

P (Mx
i,n omitted) = 1− P(0, Rh, ρh) (2)

Regarding message corruptions due to commission failures
before transmission, recall from §III that the exposure interval
for any message Mx

i,n is upper-bounded by Exi . If there are
zero commission failures in this interval, then Mx

i,n cannot be
corrupted due to commission failures, but if there is at least one
commission failure in this interval, Mx

i,n may be corrupted.
Thus, the probability that Mx

i,n is corrupted due to commission
failures is upper-bounded by the probability that there is at
least one commission failure in an interval of length Exi .

P (Mx
i,n corrupted) = 1− P(0, Exi , κh) (3)

Eqs. 2 and 3 denote failure probabilities for an individual
message; in the following, we analyze joint failure probabili-
ties of sets of messages. As stated in §II-C, message failures
are assumed to be independent. Let S =M i,n for brevity.

The probability that messages in Oi ⊆ S are omitted
whereas the messages in S \ Oi are not omitted is simply
the product of the individual omission probabilities given by
Eq. 2 (for messages in Oi) and its complement (for S \Oi).

P (Oi omitted) = ∏
Mx

i,n
∈Oi

P(Mx
i,n omitted)

 ∏
Mx

i,n
∈S\Oi

1−P(Mx
i,n omitted)

 (4)

Let P (Di delayed | Oi omitted) denote the probability that
messages in Di ⊆ S are delayed, given that messages in Oi ⊆
S were omitted. Since an omitted message cannot be delayed
because it is not transmitted in the first place, if Di ∩Oi 6= ∅,
the probability that messages in Di are delayed is zero. If Di∩
Oi = ∅, the probability that messages in set Di are delayed
whereas those in S\Oi\Di are not delayed is uppper-bounded

by the product of the individual message delay probabilities.

P (Di delayed | Oi omitted) =0 Di ∩Oi 6= ∅(∏
Mx

i,n
∈Di

Bx
i

) (∏
Mx

i,n
∈S\Oi\Di

1−Bx
i

)
otherwise

(5)

The probability P (Ii corrupted | Oi omitted) that messages
in Ii ⊆ S are corrupted, given that messages in Oi ⊆ S were
omitted, is derived in a similar way. Since an omitted message
cannot be corrupted due to commission failures because it is
not prepared in the first place, if Ii ∩Oi 6= ∅, the probability
that messages in Ii are corrupted is zero. If Ii ∩ Oi = ∅, the
probability that messages in Ii are corrupted whereas those in
S \ Oi \ Ii are not corrupted is given by the product of the
individual message corruption probabilities from Eq. 3. Thus,

P (Ii corrupted | Oi omitted) =
0 Oi ∩ Ii 6= ∅(∏

Mx
i,n

∈Ii

P (Mx
i,n corrupted)

)
×(∏

Mx
i,n

∈S\Oi\Ii
1−P (Mx

i,n corrupted)

) otherwise.
(6)

Using Eqs. 4–6, we next derive the joint probability that
messages in any Oi ⊆ S are omitted, messages in any Di ⊆ S
are delayed, and messages in any Ii ⊆ S are corrupted.

Lemma 2. Given S = M i,n and its subsets Oi, Di, Ii ⊆ S,
the probability that messages in Oi are omitted whereas
messages in S \Os are not omitted, that messages in Di are
delayed whereas the messages in S \Oi \Di are transmitted
in time, and that messages in Ii are corrupted whereas the
messages in S \Oi \ Ii are not corrupted, is:

P (Oi omitted, Di delayed, Ii corrupted) =

P (Oi omitted)×P (Di delayed|Oi omitted)×P (Ii corrupted|Oi omitted). (7)

Proof. The conditional probability theorem for three events
A, B, and C states that P (A∩B∩C) = P (A)P (B|A)P (C|B,A). At-
tributing events A to messages in Oi being omitted, B to mes-
sages in Di being delayed, and C to messages in Ii being cor-
rupted, P (A) = P (Oi omitted), P (B|A) = P (Di delayed|Øi omitted), and
P (C|B,A) = P (Ii corrupted|Di delayed, Oi omitted). Furthermore, since
message corruptions are independent of delays, P (C|B,A) =

P (Ii corrupted|Di delayed, Oi omitted) = P (Ii corrupted|Oi omitted).

Step 3. Analyzing controller voter instance V y
c,n. We evalu-

ate the probability that a controller voter instance V yc,n chooses
a corrupted sensor value because the majority of its inputs
is corrupted (Lemma 3), or that it does not choose anything
because all its inputs are omitted or delayed (Lemma 4).

Similar to the previous step, let S =Ms,n denote the set of
all sensor message replicas that are inputs to each controller
voter instance V yc,n, Os denote the set of messages that are
omitted, Ds denote the set of messages that are delayed, and
Is denote the set of messages that are corrupted. Lemmas 3
and 4 require evaluating the output of voter instance V yc,n over
all possible sets Os ⊆ S, Ds ⊆ S, and Is ⊆ S.

Lemma 3. Given S = Ms,n, the probability that any voter
instance V yc,n chooses a corrupted sensor value is:

P (V yc,n output incorrect) =∑
∀Os,Ds,Is⊆S

(
P

(
Os omitted,
Ds delayed,
Is corrupted

)
P
(

Algo. 1 output
incorrect

∣∣nc,ni

))
, (8)

where nc = |S\Os\Ds\Is| and ni = |S\Os\Ds|−|S\Os\Ds\Is|.

Proof. By considering all possible values for Os ⊆ S,
Ds ⊆ S , and Is ⊆ S , and using the law of total probability,
P (V y

c,n output incorrect) =
∑
∀Os,Ds,Is⊆S φcase × φcond . In this

equation, φcase denotes the probability that messages in Os are
omitted, messages in Ds are delayed, and messages in Is are
corrupted, and φcond denotes the conditional probability, given
Os, Ds, and Is, that voter instances V yc,n’s output is incorrect.

From Lemma 2, φcase = P (Os omitted, Ds delayed, Is corrupted).
Probability φcond is derived using Lemma 1, as follows. Since
messages in Os and Ds are omitted and delayed, respectively,
the voter instance ignores those inputs. Thus, the majority is
computed over ntotal = |S \ Os \ Ds| inputs. Out of these,
only nc = |S \ Os \Ds \ Is| inputs are correct, whereas the
remaining ni = ntotal − nc inputs are corrupted. Thus, from
Lemma 1, φcond = P (Algo. 1 output incorrect | nc, ni).

Lemma 4 below deals with the special case in Algorithm 1
(Line 9) where the voter does not choose any output because
all its inputs were either delayed or omitted.

Lemma 4. Given S = Ms,n, the probability that any voter
instance V yc,n does not choose any value is:

P
(
V yc,n output omitted

)
=∑

∀Os,Ds,Is⊆S s.t. S\Os\Ds= ∅

P
(
Os omitted, Ds delayed,

Is corrupted

)
. (9)

Proof. Similar to the proof of Lemma 3, we consider all pos-
sible values for Os ⊆ S, Ds ⊆ S, and Is ⊆ S, with case prob-
abilities φcase = P (Os omitted, Ds delayed, Is corrupted), respectively.

For each case, if S\Os\Ds = ∅, the voter receives no inputs
on time and is guaranteed to not choose any output. Thus, the
conditional probability that V yc,n’s output is omitted for such
cases is 1. For the remaining cases where S \Os \Ds 6= ∅, the
voter receives at least one input on time and is guaranteed to
choose some output. For such cases, the conditional probabil-
ity that V yc,n’s output is omitted is 0. These cases are ignored.

Thus, the total probability that V yc,n’s output is omitted is
given by

∑
∀Os,Ds,Is⊆S s.t. S\Os\Ds=∅(φcase · 1).

Step 4: Analyzing actuator voter instance Va,n. We bound
the probability that an actuator voter instance Va,n chooses
a corrupted sensor value because the majority of its inputs
is corrupted (Lemma 5), or that it does not choose anything,
because all its inputs are either omitted or delayed (Lemma 6).
Let S =M c,n denote the set of all controller message replicas
that are inputs to the actuator voter instance Va,n.

Since all voter instances V c,n operate on the same input
values, if a correct voter instance V yc,n chooses a corrupted

sensor value because of wrong inputs, it implies that all correct
voter instances in V c,n chose a corrupted sensor value. In
such a scenario, the actuator voter is guaranteed to get only
corrupted inputs, since all of the control messages will be
prepared using the corrupted sensor values.

A similar property holds for the voter output omission.
Proper deadline and offset assignment guarantees that, in a
failure-free scenario, messages in Ms,n are transmitted before
the voter instances in V c,n are activated. Thus, each voter in-
stance can decide locally whether a message was received past
its deadline (in which case it is discarded, recall Algorithm 1).
As a result, if a voter instance V yc,n does not choose any value
because all its inputs are delayed or omitted, all voter instances
in V c,n do not choose any values, either. Thus, no output is
generated by the controller task replicas and the actuator voter
omits its output, too, which results in a skipped actuation.

Lemmas 5 and 6 below are thus conditioned on the as-
sumptions that the sensor inputs of the voter instances V c,n
do not result in a corrupted or omitted output, respectively. In
particular, they account for failures due to message corruptions
and crash failures on the hosts of the controller tasks, and
due to the delay of messages from controller replicas to the
actuator. The case that the sensor inputs of the voter instances
V c,n result in a corrupted or omitted output is accounted for
later in Step 5. The proofs of Lemmas 5 and 6 are omitted
because they are analogous to those of Lemmas 3 and 4.

Lemma 5. Given S = M c,n, the probability that voter
instance Va,n chooses a corrupted control value is:

P (Va,n output incorrect) =∑
∀Oc,Dc,Ic⊆S

(
P

(
Oc omitted,
Dc delayed,
Ic corrupted

)
P
(

Algo. 1 output
incorrect

∣∣nc,ni

))
, (10)

where nc = |S\Oc\Dc\Ic| and ni = |S\Oc\Dc|−|S\Oc\Dc\Ic|.

Lemma 6. Given S = M c,n, the probability that voter
instance Va,n omits its output is:

P (Va,n output omitted) =∑
∀Oc,Dc,Ic⊆S s.t. S\Oc\Dc= ∅

P
(
Oc omitted, Dc delayed,

Ic corrupted

)
. (11)

Step 5: Analyzing the final output Un. We first bound the
probability that Un is corrupted (Lemma 7), followed by the
probability that Un is omitted (Lemma 8), and finally the joint
probability of both events (Lemma 9). The proof of Lemma 8
is omitted because it is analogous to that of Lemma 7.

Lemma 7. Un is corrupted with a probability of at most

P (Un corrupted) = φcase1 + φcase2 ×
(
φcase2a + φcase2b
− φcase2a φcase2b

)
, (12)

where φcase1 = P (V y
c,n output incorrect), φcase2 = 1− φcase1 ,

φcase2a = P (Va,n output incorrect), φcase2b = 1− P(0, Ea, κa),
and Ha denotes actuator task A’s host.

Proof. We consider two cases based on whether the sensor
inputs to voter instances V c,n result in corruption of the

controller voter outputs (case 1) or not (case 2).
From Lemma 3, the probability that case 1 occurs is

given by φcase1 = P (V yc,n output incorrect) and the prob-
ability that case 2 occurs is given by φcase2 = 1 −
P (V yc,n output incorrect). For case 1, since the voters in
the controller tasks choose an incorrect output, all control
commands transmitted were incorrect, so it is guaranteed that
Un is corrupted. Thus, the conditional probability that Un is
corrupted is φcond1 = 1 in this case.

For case 2, the conditional probability that Un is corrupted
depends on two sources: (a) voter instance Va,n’s output
can be incorrect, and (b) A’s host can be affected by com-
mission failures. The probability for case (a) is φcase2a =
P (Va,n output incorrect), from Lemma 5. The probability for
case (b) is φcase2b = 1− P(0, Ea, κa), from Eq. 3.

Cases (a) and (b) are independent: (a) occurs because inputs
to Vn,a were corrupted due to commission failures on the
controller tasks’ hosts, whereas (b) occurs due to commission
failures on the actuator task’s host. Thus, using theorem
P (A ∪ B) = P (A) + P (B) − P (A)P (B) for independent
events A and B, the conditional probability for case 2 is
φcond2 = φcase2a + φcase2b − φcase2a φcase2b .

By law of total probability, the probability that Un is omitted
is given by φcase1 φcond1 + φcase2 φcond2 .

Lemma 8. Un is omitted with a probability of at most

P (Un omitted) = φcase1 + φcase2 ×
(
φcase2a + φcase2b
− φcase2a φcase2b

)
, (13)

where φcase1 = P (V y
c,n output omitted), φcase2 = 1− φcase1 ,

φcase2a = P (Va,n output omitted), φcase2b = 1− P(0, Ra, ρa),
and Ha denotes actuator task A’s host.

In Lemma 9, we compose the probabilities derived in
Lemmas 8 and 7 to derive the probability that the nth control
loop iteration fails, i.e., that actuator A’s output Un that is
applied to the controlled plant is omitted or corrupted. We do
not assume that the probabilities derived in Lemmas 7 and 8
are independent, since it is possible that an omitted control
message tilted the majority in favor of the correct quorum,
thereby reducing the probability that Un is corrupted.

Lemma 9. An upper bound on the probability that the nth

control loop iteration fails is:

P
(
nth control loop

iteration fails

)
= P (Un omitted) + P (Un corrupted). (14)

Proof. The control loop iteration fails if Un is either omitted or
corrupted. The probability of a control loop failure is thus up-
per bounded by the sum of the failure probabilities due to these
two sources, i.e. sum of P (Un omitted) and P (Un corrupted)
derived in Lemmas 7 and 8, respectively.

The IID property. The equation defined in Eq. 14 can be
iteratively unfolded until it consist only of terms of the form
P(x, δ, λ), each of which denotes the Poisson probability mass
function for one of the three failure types. Thus, it is indepen-
dent of any parameters that are specific to the nth control loop
iteration, i.e., it is identical for any control loop iteration.

In addition, Lemmas 1–9 are all derived under worst-case
assumptions w.r.t. interference from other CAN messages.
Failure of the nth control loop iteration, defined as a deviation
from a failure-free execution of that iteration, is independent of
whether past iterations encountered any failures or not. Thus,
the probabilities defined using Eq. 14 for any two iterations
n1 and n2 are mutually independent as well.

In summary, P (nth control loopiteration fails) satisfies the
IID (independent and identical distribution) property w.r.t. n.

Analysis complexity. Lemmas 3–6 require iterating over
all partitions of message replica set S corresponding to all
possible values of Oi ⊆ S, Di ⊆ S, and Ii ⊆ S (where i = s
for Lemmas 3 and 4 and i = c for Lemmas 5 and 6). The
analysis for each control loop in the NCS is thus exponential in
the number of sensor message streams |Ms| and the number of
controller message streams |M c|. However, since the number
of replicas of any task is likely small, i.e., typically under ten,
the analysis can be quickly computed.

FIT Analysis. We use the probability of a failed control loop
iteration, i.e., the result of Lemma 9, to derive the NCS’s
FIT rate. First, we derive a lower bound on the mean time
to failure (MTTF) of the control loop. Recall from §III-C
that a control loop iteration fails if it violates its (m, k)
specification. We model this problem in the form of a well-
studied a-within-consecutive-b-out-of-c:F system model [22],
and leverage existing results [36] (which depend on the IID
property of the iteration failure probability) on the reliability
analysis of this system model to safely lower-bound the
MTTF. The full derivation is available online [16]. Given
an MTTF lower bound MTTFLB in hours, the FIT rate is
computed as 109/MTTFLB [38].

V. EVALUATION

The objective of the evaluation is twofold. First, we demon-
strate the ability of our analysis to quantify and compare the
reliability of workloads with different (m, k) specifications
and failure rates. Second, we illustrate the utility of our
analysis by comparing FITs of different replication schemes.

To implement the analysis, we extended the SchedCAT [2]
library to support our system model for CAN-based NCSs, and
implemented the proposed analysis on top. All computations
were carried out at a precision of 200 decimal places using the
mpmath Python library for arbitrary precision arithmetic [21].

We used an active-suspension workload similar to the one
studied by Anta and Tabuada [1]. The system consists of four
control loops corresponding to the control of four wheels
with magnetic suspension (period 1.5ms), two hard real-
time messages that report the current in the power line cable
(period 4ms) and the internal temperature of the coils (period
10ms), and a soft real-time message responsible for logging
(period 100ms). In addition, the workload consisted of a
clock synchronization message with a period of 50ms [13].
The logging messages carried payloads of eight bytes each,
the control loop messages carried payloads of three bytes
each, and the remaining messages carried one byte payloads.

Considering a bus rate of 1mbit/s, the workload resulted in
a total bus utilization of 46.16%. The clock synchronization
message stream was assigned the highest priority, followed by
the current and temperature monitoring message streams, the
control message streams, and last, the logging message stream.

The recovery time from a crash failure was set to Rh = 1 s
for each host Hh ∈ H , and the data integrity checker period
was set to Tchecker = 100ms. The failure rates and the
(m, k) specifications used in each experiment are mentioned
in the corresponding graphs. All failure rates in the following
are reported as the number of failures per ms. Based on
prior work by Ferreira et al. [12] and Rufino et al. [33],
peak transmission failure rates range from 10−4 in aggressive
environments to 10−10 in lab conditions, and as per Hazucha
and Svensson [19], a 4 Mbit SRAM chip has a fault rate of
approximately 10−12. We thus use similar orders of magnitude
while varying the respective failure rate parameters. Since the
actuator task is not replicated, its host was assumed to be
heavily shielded and thus assigned extremely low failure rates.
Exp. 1: FIT for different parameters. We varied the number
of replicas of the sensor and the controller task of the wheel 1
control loop. Figs. 2(a)–2(d) illustrate the control loop’s FIT
as a function of its replication factor for different parameters.

In Fig. 2(a), m and k are varied as follows: 1 ≤ m ≤ 5,
and k = 5 or k = 2m; and in Fig. 2(b), m/k is 90%, 95%,
99%, or 100% (while minimizing m and k).

A hard specification, i.e., where m = k, yields an extremely
high FIT rate compared to all other specifications with m < k,
even the ones with m/k ≥ 0.9, which highlights the need for a
robustness-aware reliability analysis. For example, in Fig. 2(b),
if the desired reliability threshold is 10 FIT, a hard real-time
analysis requires the use of three replicas, whereas if a 90%
success rate is sufficient, then our analysis indicates that no
replication is required. Fig. 2(a) shows that increasing both
m and k while keeping m/k constant reduces the FIT rate,
which shows that an asymptotic specification that relies only
on the ratio m/k can be easily supported by our analysis.
Interestingly, different (m, k) specifications can result in very
similar FIT rates, e.g. (3, 5) and (2, 4).

Next, we varied the transmission failure rate τ across 10−4,
10−6, 10−8, and 10−10. The crash and commission failure
rates were set to ρi = κi = τ × 10−6. The results are
illustrated in Fig. 2(c). As expected, the FIT rates decrease as
the failure rates are lowered. The FIT rates also decrease with
increasing replication, but only up to three replicas, and then
start increasing. That is, as previously discussed in [15], active
replication becomes counterproductive in real-time systems
after some point, because it reduces the slack available for
fault-induced retransmissions and results in increased FIT
rates. In general, such graphs can help engineers to identify the
maximum reliability that they can extract out of a system by
increasing its replication factor, or conversely, the minimum
replication factor needed to achieve a desired reliability.

To further understand the effects of individual failure types,
we computed FIT values for three different scenarios. In each
scenario, only one of the three failure types was assigned a

significant rate, i.e., ρi = 10−12, κi = 10−12, and τ = 10−4,
respectively, whereas the others were assigned negligible val-
ues, i.e. 10−48. As apparent in Fig. 2(d), the FIT rates are
highest for crash failures. The FIT rates are also high for
commission failures. Unlike crash failures, increasing repli-
cation helps tolerate commission failures only if the number
of replicas is odd. This is expected, e.g., with two replicas,
the voting algorithm is unable to distinguish between a correct
and an incorrect input, and this scenario occurs with significant
probability if the commission failure rate is high. In contrast to
the first two cases, the FIT rates are very low for transmission
failures, despite a relatively high retransmission rate. This
indicates the relative importance of tolerating host failures,
at least when hard timeliness is not required.

Exp. 2: FIT for different replication schemes. To demon-
strate that the analysis helps to identify reliability bottle-
necks w.r.t. resource constraints, or to identify opportunities
to significantly increase the reliability at modest costs, we
analyzed four different replications schemes of the workload
for two different sets of failure rates: (i) τ = 10−4, ρi = 10−8,
κi = 10−12 and (ii) τ = 10−4, ρi = 10−12, κi = 10−12; sce-
nario (i) has a higher crash failure rate. To model practical
design constraints, we assumed that the rear wheels (1 and
2) were close to many electromechanical parts, and assigned
the hosts of the respective sensor tasks an order of magnitude
higher crash and commission failure rates. The four considered
replication configurations are summarized in the table below.

Config. # Wheel 1 Wheel 2 Wheel 3 Wheel 4 Period
1 3S, 1C 3S, 1C 1S, 1C 1S, 1C 1.50ms
2 2S, 1C 2S, 1C 2S, 1C 2S, 1C 1.50ms
3 2S, 2C 2S, 2C 2S, 1C 2S, 1C 1.75ms
4 2S, 2C 2S, 2C 2S, 2C 2S, 2C 2.00ms

Parameters xS and yC denote that x and y replicas were
provisioned for the sensor and the controller task of the
respective wheel-specific control loop. For configurations 3
and 4, the control loop periods were increased to T = 1.75ms
and T = 2ms, respectively, at the cost of degrading their
instantaneous quality-of-control (refer to [1] for details). The
benefit of increasing the periods is that, while configurations 1
and 2 allow adding up to four additional task replicas, relaxing
T to 1.75ms and 2ms allows adding up to six and eight
additional task replicas, respectively.

To tolerate the increased chances of crash and commis-
sion failures in the rear-wheel sensor tasks, configuration 1
replicates only the sensor tasks of wheels 1 and 2. Con-
figuration 2, in contrast, distributes the replication budget
uniformly, i.e., one extra sensor task replica for each loop. In
configurations 3 and 4, additional replicas are added for the
control tasks (at the cost of slightly degraded control quality).
The wheel-specific FITs and the combined FIT of all wheels
for each configuration are illustrated in Figs. 2(e) and 2(f)
corresponding to the failure rates in (i) and (ii), respectively.
The (m, k) specification for each loop is (9, 10).

For the higher crash failure rate in Fig. 2(e), configurations 2
and 3 yield a better overall FIT than configuration 1, but since

1 2 3 4 5

sensor and controller task replicas

10-120
10-108
10-96
10-84
10-72
10-60
10-48
10-36
10-24
10-12

100
1012

FI
T

(5,5)
(4,5)

(3,5)
(2,5)

(1,5)
(1,2)

(2,4)
(3,6)

(a) τ = 10−4, ρi = 10−12, κi = 10−12

1 2 3 4 5

sensor and controller task replicas

10-24

10-20

10-16

10-12

10-8

10-4

100

104

108

1012

FI
T

90.0%
95.0%
99.0%
99.99%

(b) τ = 10−4, ρi = 10−12, κi = 10−12

1 2 3 4 5

sensor and controller task replicas

10-40
10-35
10-30
10-25
10-20
10-15
10-10
10-5
100
105

FI
T

τ=10−04

τ=10−06

τ=10−08

τ=10−10

(c) m = 9, k = 10, ρi = κi = τ × 10−6

1 2 3 4 5

sensor and controller task replicas

10-100
10-90
10-80
10-70
10-60
10-50
10-40
10-30
10-20
10-10

100
1010

FI
T ρi =10−12

i =10−12 τ=10−04

(d) m = 9 and k = 10

Wheel 1 Wheel 2 Wheel 3 Wheel 4 Wheels 1-4
10-4
10-3
10-2
10-1
100
101
102
103
104
105
106
107
108
109

1010

FI
T

Config 1 Config 2 Config 3 Config 4

(e) τ = 10−4, ρi = 10−8, κi = 10−12

Wheel 1 Wheel 2 Wheel 3 Wheel 4 Wheels 1-4
10-2

10-1

100

101

FI
T

Config 1 Config 2 Config 3 Config 4

(f) τ = 10−4, ρi = 10−12, κi = 10−12

Fig. 2: (a, b) Parameters m and k are varied. (c, d) Failure rates τ , κi, and ρi are varied. (e, f) Replication factors of the different control loops are varied.

the FIT rates of the wheel 3 and 4 control loops are still high,
these improvements are insignificant overall. Configuration 4,
however, reduces the FIT rates of all control loops, which
shows that a substantial reduction of the overall FIT rate is
possible if the slightly degraded control quality is acceptable.

In scenario (ii), however, the overall FIT rates of the four
configurations exhibit a different pattern (Fig. 2(f)). Configu-
ration 2 significantly increases the FIT rates of the of wheel
1 and 2 control loops, thus negatively affecting the total FIT
rate. Configurations 3 and 4 reduce the total FIT, but not by
much. There is no change in the order of magnitude of the
overall FIT, and hence, in this scenario, it is not worthwhile
to degrade the control quality in favor of additional replicas.

In general, we observe that increasing the control period to
1.75ms is not a worthwhile tradeoff in either case, whereas
increasing the period to 2ms shows clear reliability benefits
in scenario (i), but not in scenario (ii). This simple case study
thus highlights the importance of identifying and strengthening
the weakest link of a system (in this case, the wheel 3 and 4
control loops), and that the proposed analysis is an effective
aid for doing so. In summary, the presented analysis enables
a systematic design-space exploration for the objective of
maximizing the overall system reliability.

VI. RELATED WORK

The (m, k)-firm model was first studied in the context of
real-time streams [18]. Since then, many analyses and system
designs have been proposed for applications with (m, k)-firm
specifications, mainly focussing on their temporal aspects (e.g.,
see [3]). We use the (m, k)-firm specification to model the
control system robustness, where the specification is a function
of control loop iteration failures, including failures in the time
domain as well as failures in the value domain.

With regard to real-time networks, several reliability anal-
ysis techniques have been proposed to date, particularly of
the CAN bus, under EMI-induced transmission errors. For
example, Punnekkat et al. [32] and Broster et al. [4] proposed
analyses to bound the response time of CAN messages assum-
ing a sporadic and a Poisson model for EMI, respectively, and
recently, Sebastian et al. [35] proposed using hidden Markov
models. We reuse Broster et al.’s results [4] in our work.

Related work in the NCS domain has focussed on evaluating
the criteria for control stability and performance, i.e., to what
extent a control system can deviate from ideal operating
conditions without jeopardizing its functionality, in the wake
of various network failures (e.g., [6, 25]). We solve an orthog-
onal problem of determining when and how frequently such
robustness criteria are not met, i.e., how likely it is that an
inherently robust control system deviates from ideal operating
conditions to such a degree that its correctness is at risk.

In related work targeting overall system reliability, Dugan
and Van Buren [11] evaluateds the reliability of fly-by-wire
systems with passive replication (hot standbys) using Markov
models to evaluate the state transition probabilities when
a system component fails, and fault trees to evaluate the
individual states. In contrast to our system model, their system
is not distributed and the analysis does not target general
control applications. Sinha [37] proposed a reliability analysis
of a fail-operational brake-by-wire system networked using
CAN and FlexRay buses, but, unlike ours, Sinha’s analysis is
not defined at the message granularity and does not consider
general control applications. Both works focus on specific
system designs, whereas our analysis is for a generic NCS.

An alternative approach for quantifying the reliability of
NCSs faced with transient component failures is the use
of probabilistic model checkers such as PRISM [23] and

Storm [9]. For example, Kwiatkowska et al. [24] have analyzed
the reliability of a very simple NCS model using PRISM. A
systematic comparison with model-checking approaches and a
thorough assessment of the respective benefits and limitations
is beyond the scope of this paper, and left as future work.

VII. CONCLUSION AND FUTURE WORK

We have proposed the first analysis to safely bound the FIT
rate of CAN-based SISO NCSs that employ active replication
to mitigate transient errors. Our analysis accounts for failures
in both the time and value domains, and exposes the inherent
robustness of NCSs in the form of (m, k)-firm constraints.

There is plenty of scope for future work, especially on more
complex system models. To tolerate failures in the actuator
task, it could be replicated like the sensor and controller tasks.
Assuming that the physical actuator has some mechanism for
redundancy suppression (e.g., a hardware voter), such a system
can be analyzed similarly to the presented analysis.

A fault-tolerant multi-input single-output (FT-MISO) sys-
tem can be analyzed by modifying Step 3 in §IV to account
for all replicas of the distinct sensor tasks in the system.
In contrast, a fault-tolerant multi-input multi-output system can
be analyzed as multiple independent FT-MISO systems, if an
(m, k)-firm specification is given for each actuator.

For adaptive systems that allow dynamic reconfiguration of
task replication factors based on runtime monitoring of the
error rates, our analysis can be used to evaluate the reliability
of different system modes. Similarly, in systems using passive
replication or subject to permanent failures, our analysis yields
a FIT rate for each state in the system’s lifetime, i.e., given a
set of alive/dead replicas for that state, as in [11].

REFERENCES

[1] A. Anta and P. Tabuada, “On the benefits of relaxing the periodicity
assumption for networked control systems over CAN,” in RTSS 2009.

[2] B. B. Brandenburg, “The schedulability test collection and toolkit,”
2017, available at https://github.com/brandenburg/schedcat.

[3] I. Broster, G. Bernat, and A. Burns, “Weakly hard real-time constraints
on controller area network,” in ECRTS 2002.

[4] I. Broster, A. Burns, and G. Rodrı́guez-Navas, “Probabilistic analysis of
CAN with faults,” in RTSS 2002.

[5] ——, “Timing analysis of real-time communication under electromag-
netic interference,” Real-Time Systems, vol. 30, no. 1-2, pp. 55–81, 2005.

[6] A. Cetinkaya, H. Ishii, and T. Hayakawa, “Networked control under
random and malicious packet losses,” IEEE Transactions on Automatic
Control, vol. 62, no. 5, pp. 2434–2449, 2017.

[7] K.-H. Chen, B. Bönninghoff, J.-J. Chen, and P. Marwedel, “Compensate
or ignore? meeting control robustness requirements through adaptive
soft-error handling,” in ACM SIGPLAN Notices, vol. 51, no. 5. ACM,
2016, pp. 82–91.

[8] C. I. Chihaia, “Active fault-tolerance in wireless networked control
systems,” Ph.D. dissertation, Universität Duisburg-Essen, Fakultät für
Ingenieurwissenschaften Elektrotechnik und Informationstechnik Au-
tomatisierungstechnik und komplexe Systeme, 2010.

[9] C. Dehnert, S. Junges, J.-P. Katoen, and M. Volk, “A storm is coming: A
modern probabilistic model checker,” preprint arXiv:1702.04311, 2017.

[10] M. Di Natale, H. Zeng, P. Giusto, and A. Ghosal, Understanding and
using the controller area network communication protocol: theory and
practice. Springer Science & Business Media, 2012.

[11] J. B. Dugan and R. Van Buren, “Reliability evaluation of fly-by-wire
computer systems,” Journal of Systems and software, vol. 25, no. 1, pp.
109–120, 1994.

[12] J. Ferreira, A. Oliveira, P. Fonseca, and J. Fonseca, “An experiment to
assess bit error rate in CAN,” in RTN, 2004.

[13] M. Gergeleit and H. Streich, “Implementing a distributed high-resolution
real-time clock using the CAN-bus,” in iCC 1994.

[14] A. Girault, H. Kalla, and Y. Sorel, “An active replication scheme that
tolerates failures in distributed embedded real-time systems,” in Design
Methods and Applications for Distributed Embedded Systems. Springer,
2004, pp. 83–92.

[15] A. Gujarati and B. Brandenburg, “When is CAN the weakest link? A
bound on failures-in-time in CAN-based real-time systems,” in RTSS
2015.

[16] A. Gujarati, M. Nasri, and B. Brandenburg, “Lower-bounding the
MTTF for systems with (m,k) constraints and IID iteration failure
probabilities,” 2017, available at https://people.mpi-sws.org/∼arpanbg/
papers pdf/gujarati2017mttf.pdf.

[17] R. A. Gupta and M.-Y. Chow, “Overview of networked control systems,”
in Networked Control Systems. Springer, 2008, pp. 1–23.

[18] M. Hamdaoui and P. Ramanathan, “A dynamic priority assignment
technique for streams with (m, k)-firm deadlines,” IEEE transactions
on Computers, vol. 44, no. 12, pp. 1443–1451, 1995.

[19] P. Hazucha and C. Svensson, “Impact of CMOS technology scaling on
the atmospheric neutron soft error rate,” IEEE Transactions on Nuclear
science, vol. 47, no. 6, pp. 2586–2594, 2000.

[20] R. Isermann, R. Schwarz, and S. Stolzl, “Fault-tolerant drive-by-wire
systems,” IEEE Control Systems, vol. 22, no. 5, pp. 64–81, 2002.

[21] F. Johansson, “mpmath - Python library for arbitrary-precision floating-
point arithmetic,” 2017, available at http://mpmath.org/.

[22] W. Kuo and M. J. Zuo, Optimal reliability modeling: principles and
applications. John Wiley & Sons, 2003.

[23] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of probabilistic real-time systems,” in CAV 2011.

[24] ——, “Controller dependability analysis by probabilistic model check-
ing,” Control Engineering Practice, vol. 15, no. 11, pp. 1427–1434,
2007.

[25] F.-L. Lian, J. Moyne, and D. Tilbury, “Analysis and modeling of
networked control systems: MIMO case with multiple time delays,” in
ACC 2001.

[26] G. M. Lima and A. Burns, “A consensus protocol for CAN-based
systems,” in RTSS 2003.

[27] R. Mancuso, “Next-generation safety-critical systems on multi-core
COTS platforms,” Ph.D. dissertation, University of Illinois at Urbana-
Champaign, 2017, available at http://hdl.handle.net/2142/97399.

[28] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin,
“A systematic methodology to compute the architectural vulnerability
factors for a high-performance microprocessor,” in MICRO, 2003.

[29] N. Nakka, G. P. Saggese, Z. Kalbarczyk, and R. K. Iyer, “An architec-
tural framework for detecting process hangs/crashes,” in EDCC 2005.

[30] J. Noto, G. Fenical, and C. Tong, “Automotive EMI Shielding–
Controlling Automotive Electronic Emissions and Susceptibility with
Proper EMI Suppression Methods,” Laird Technologies, White Paper,
2010.

[31] S. Poledna, Fault-tolerant real-time systems: The problem of replica
determinism. Springer Science & Business Media, 2007, vol. 345.

[32] S. Punnekkat, H. Hansson, and C. Norstrom, “Response time analysis
under errors for CAN,” in RTAS 2000.

[33] J. Rufino, P. Verissimo, G. Arroz, C. Almeida, and L. Rodrigues, “Fault-
tolerant broadcasts in CAN,” in FTCS. IEEE, 1998.

[34] I. Saha, S. Baruah, and R. Majumdar, “Dynamic scheduling for net-
worked control systems,” in HSCC 2015.

[35] M. Sebastian, P. Axer, and R. Ernst, “Utilizing hidden markov models
for formal reliability analysis of real-time communication systems with
errors,” in PRDC 2011.

[36] M. Sfakianakis, S. Kounias, and A. Hillaris, “Reliability of a consecutive
k-out-of-r-from-n:F system,” IEEE Transactions on Reliability, vol. 41,
no. 3, pp. 442–447, 1992.

[37] P. Sinha, “Architectural design and reliability analysis of a fail-
operational brake-by-wire system from ISO 26262 perspectives,” Re-
liability Engineering & System Safety, vol. 96, no. 10, pp. 1349–1359,
2011.

[38] S. Stanley, “MTBF, MTTR, MTTF & FIT explanation of terms,” IMC
Networks, 2011.

[39] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel, “Characterizing the
effects of transient faults on a high-performance processor pipeline,” in
DSN 2004.

https://github.com/brandenburg/schedcat
https://people.mpi-sws.org/~arpanbg/papers_pdf/gujarati2017mttf.pdf
https://people.mpi-sws.org/~arpanbg/papers_pdf/gujarati2017mttf.pdf
http://mpmath.org/
http://hdl.handle.net/2142/97399

	Introduction
	Fault Model and Assumptions
	Failures-In-Time (FIT)
	EMI-Induced Transient Faults
	Program-Visible Message Failures

	System Model and Assumptions
	SISO and FT-SISO Control Loops
	Key Assumptions
	Correctness of an FT-SISO Control Loop

	Probabilistic Analysis
	Evaluation
	Related Work
	Conclusion and Future Work

