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Abstract
In the seL4 microkernel and other capability-based OSs, the
right to use resources is managed using abstract capabili-
ties (i.e., tokens). Capability systems for fungible resources
such as memory are well understood, but it has proven diffi-
cult to integrate time—i.e., real-time scheduling—into this
model, since timeliness (i.e., system-wide schedulability) is a
property that is inherently difficult to isolate (without intro-
ducing prohibitive inefficiencies). This paper presents FlaRe,
a temporal capability system that ensures schedulability and
temporal isolation by design. Crucially, FlaRe is shown to be
efficient, both analytically (FlaRe does not cause utilization
loss) and in practice (two prototypes in seL4 and LITMUSRT

were found to incur only negligible overheads). The key
technique employed is the flattening of a hierarchical tree of
reservations to regular, non-hierarchical EDF scheduling.

1 Introduction
In a capability-based operating system [15, 27, 34], the right
to use certain resources (e.g., memory pages, I/O ports, IPC
ports etc.) is managed using abstract capabilities, which are
unforgeable tokens that can be passed freely among tasks to
grant and revoke access to resources in a secure and decen-
tralized way. Notably, this technique is the de facto standard
approach to resource management in state-of-the-art kernels
for high-integrity embedded systems such as Fiasco-OC [24],
OKL4 [22], seL4 [23], Nova [36], and Composite OS [31].

Capability-based resource management is attractive be-
cause it has numerous conceptual and practical advantages—
it is simple, principled, makes access control explicit, and
it can be used to enforce strict isolation [17] and thus lends
itself well to compositional system design and formal anal-
ysis [17, 23]. Overall, it is a mature and proven technique.
In particular, capability management is well-understood for
multi-unit resources that can be trivially partitioned (e.g.,
memory and disks), for logical resources that can be du-
plicated (e.g., IPC ports), and for virtualizable resources
that can be shared by coarse-grained multiplexing (e.g., I/O
bandwidth and CPU shares in throughput-oriented systems).

Unfortunately, in a real-time systems context, capability-
based resource management is still subject to a crippling lim-
itation: the crucial resource time, that is, the ability to guaran-
tee timely processor availability, has so far eluded an elegant
integration into capability systems. To overcome this limi-
tation, we propose FlaRe, an efficient and simple approach

to implementing temporal capabilities based on flattened
reservations. A key aspect of FlaRe is that it does not re-
quire or introduce any new scheduling theory. Rather, we
show how predictable processor scheduling can be integrated
into a seL4-style capability system on top of a conventional
earliest-deadline first (EDF) scheduler. The key technique
underlying FlaRe is that a hierarchy of processor reservations
can be flattened without utilization loss, while preserving the
isolation and compositional properties afforded by hierarchi-
cal allocations (a similar approach was recently used in [25]).
We explain the challenges involved and our solution in more
detail after establishing some needed background.
Capabilities. As mentioned above, capabilities are unforge-
able tokens that enable a process to access (or consume)
specific resources. Importantly, capabilities realize access
control, that is, all resource access is fully mediated and
accounted for, and permitted to proceed only if the accessing
process holds an appropriate capability.

In the seL4 model [17, 23], the three principal operations
on capabilities (aside from use of the associated resource)
are the granting and revocation of existing capabilities, and
the derivation of new (sub-)capabilities. For instance, con-
sider how memory is managed in seL4 [23]. A process is
granted one or more capabilities giving it exclusive access
to some region(s) of memory. As long as the process holds
the capability, it is permitted to use this memory in any way
it chooses (via an operation called retyping, where untyped
memory is first split and then “cast” into typed objects [23]).
In particular, it can allocate a part of its memory for use by
others by deriving a sub-capability, which it can then grant
to another process (e.g., to provide memory for a new child).
A capability once granted can later be revoked to reclaim
the associated memory, which can recursively trigger fur-
ther revocations, as a tree of derived sub-capabilities (or
sub-allocations) may be associated with each capability.

Decentralized resource management allows for strong iso-
lation guarantees, a desirable property for capability based
systems. For instance, instead of having a single, global page
allocator (e.g., as in Linux), the available memory can be
split among subsystems and managed locally within each
subsystem according to application-specific needs. This is
possible because the management policy (e.g., whom to al-
locate memory to) is cleanly separated from the underlying,
mediated mechanism (e.g., updating page tables), and be-
cause full isolation is ensured (allocations in one subsystem
do not affect any other subsystem).
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Our objective is analogous: to design a scheduling mech-
anism that allows the decentralized, fully isolated manage-
ment of timely processor access—a scarce, physical resource.
Managing timeliness. Seen as a resource, timeliness is in-
herently different from interchangeable resources such as
memory in that no two processor allocations are alike. That
is, memory pages can typically be substituted for one another,
and in principle all memory requirements can be met unless
the total available memory is exhausted. In contrast, it is not
possible to service two tasks that need immediate processing
at the same time (on the same processor), regardless of how
low the overall processor utilization is. This has profound
effects, as an allocation in one subsystem (e.g., admission of
a task with a tight deadline) can potentially prevent a later
allocation in another, supposedly isolated subsystem. That is,
if implemented naı̈vely, use of one temporal capability could
render another, “independent” temporal capability invalid,
which clearly violates accepted capability semantics.

Fundamentally, “timely access to the processor” is a re-
source that is not easily metered, budgeted, or accounted for,
because the ability to meet all deadlines of all admitted tasks
in any subsystem—overall schedulability—is fundamentally
a global, system-wide property that is not easily amenable to
local reasoning and enforcement, and thus full isolation.

Another challenge arises due to the inherently hierarchi-
cal nature of decentralized capability systems like that of
seL4. As discussed above, to facilitate decentralized re-
source management, it must be possible for local resource
managers to split a “large” temporal capability into several
“smaller” capabilities for use by subsystems, which, if ap-
plied recursively, can result in deep capability trees. This
is a key feature, but it is quite challenging to support from
a scheduling point of view. A straw-man solution would
be to apply known hierarchical scheduling techniques (e.g.,
such as periodic resource abstractions [35]); however, most
hierarchical scheduling techniques were not designed with
deep hierarchies in mind and could result in considerable
utilization loss and prohibitive runtime overheads if applied
in this context. Instead, it is desirable to support temporal ca-
pabilities on top of regular (i.e., non-hierarchical) schedulers,
as such schedulers are already highly optimized.
Contributions. To this end, we present FlaRe, a capabil-
ity system for the decentralized management of real-time
scheduling on uni- and partitioned multiprocessors. The
primary contributions of this work are as follows.

1. We show how to support seL4’s capability semantics—
including full isolation and derivation trees—on top of
a regular, non-hierarchical EDF scheduler (Sec. 3).

2. We provide a formal definition of temporal capabili-
ties and the associated operations (Sec. 3.2). To the
best of our knowledge, ours is the first such definition
inherently amenable to accurate schedulability analysis.

3. FlaRe is efficient from a schedulability perspective: as
we show in Sec. 3.5, FlaRe’s support of hierarchical
sub-capability trees does not cause any utilization loss.

4. FlaRe is efficient in practice: in Secs. 4 and 5, we report
on two FlaRe prototypes, one in LITMUSRT (a Linux-
based research platform for multiprocessor real-time
systems), and one in seL4 (a true capability-based mi-
crokernel for high-integrity embedded systems). In both
environments, FlaRe proved to be easy to support and
to have no significant impact on scheduling overheads.

We begin with a review of needed background in Sec. 2
and then present our main results in Secs. 3–5. Related work
is discussed in Sec. 6; Sec. 7 discusses remaining challenges.

2 Background
We use partitioned earliest-deadline first (P-EDF) schedul-
ing as the basis of our design. We chose P-EDF because EDF
is optimal with respect to each individual processor, because
it has been shown to have low run-time overheads in prac-
tice [5], and because accurate schedulability analysis of EDF
is available [4]. When discussing analytical aspects of FlaRe,
we consider a recurrent real-time workload modeled as a
task set τ = {T1, · · · , Tn} consisting of n sporadic tasks.
Each task Ti = (ei, pi, di) is characterized by a worst-case
per-job execution time (WCET) ei, a minimum inter-arrival
separation (or period) pi and a relative deadline di. The
utilization of a task Ti is defined as ui = ei

pi
; its density is

defined as δi = ei/min(di, pi). The total utilization of a
set of tasks τ is defined as U(τ) =

∑
Ti∈τ ui. We focus

on sporadic tasks for the sake of simplicity, but note that
FlaRe is applicable to arbitrary process-based workloads
since each real-time task (or process) is temporally isolated
using a server abstraction, which we discuss next. Temporal
guarantees could thus also be readily derived using other,
more expressive formalisms such as event streams [37].
Constant bandwidth server. Abeni and Buttazzo [1] pro-
posed the constant bandwidth server (CBS) algorithm, a
two-level hierarchical scheduling framework where a set of
CBS reservations, each encapsulating one or more tasks, is
scheduled with a top-level EDF scheduler. The advantage of
CBS is that tasks are temporally isolated: if a task within a
CBS reservation overruns its budget, it does not affect the
timing correctness of tasks outside the CBS reservation.

FlaRe uses CBS-based reservations with two restrictions
and one extension: (i) each CBS reservation contains only
a single task, (ii) the parameters of each CBS reservation,
as discussed next, are identical to the parameters of the
contained task, and (iii) FlaRe extends the original CBS
rules [1] to support tasks with constrained deadlines.

A CBS reservation Rs = (Qs, Ps, Ds) is defined by a
maximum server budgetQs, a server period Ps and a relative
server deadline Ds. The density of a CBS reservation is
defined as δs = Qs/min(Ds, Ps). A CBS is also associated
with a current server budget Cs and a current server deadline
Dk
s (for the k’th server deadline), which are both initially

zero. In accordance with (i) and (ii) above, we assume that
each CBS reservation Rs contains exactly one task Ti =
(ei, pi, di) and that Qs = ei, Ps = pi, and Ds = di.
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Rs is active if Ti has any pending jobs. That is, Rs is
active at time t if there exists a job Ji of Ti with arrival time
ta and finish time tf such that ta ≤ t < tf . If there are no
pending jobs, a CBS is inactive or idle. If a new job of task
Ti is released at time ta and Rs is already active, then the
job is queued. If a job arrives when Rs is idle, two cases
are possible; if Cs ≥ (Dk

s − ta)δs, the server assigns a new
deadline Dk

s = ta +Ds and the server budget is replenished
to the maximum Cs = es; otherwise, it executes the job
immediately (and its parameters remain unchanged).

Rs’s budget Cs is consumed by one unit for every unit
of time a job of the contained task Ti executes. Further,
we assume suspension-oblivious reservations that treat job
suspensions as regular execution time, that is, jobs that are
suspended but incomplete continue to consume budget. If
the current server budget Cs reaches zero while Rs is active,
it is immediately replenished (Cs = Qs) and a new server
deadline is assigned: Dk+1

s = Dk
s + Ps. It should be noted

that assigning a single task Ti = (ei, pi, di) to a reservation
Rs with parameters Qs = ei, Ps = pi and Ds = di ensures
that the deadline will not be postponed unless the task over-
runs its budget. In the case of an overrun, Rs continues to
execute at a lower priority (i.e., with a postponed deadline)
without impacting the timeliness of other tasks.

A key feature of the original CBS [1] is that it is work-
conserving, that is, Rs always remains eligible for execution
while active, as the budget Cs is immediately replenished
(and the deadline postponed) when it reaches zero. Following
the terminology established by Rajkumar et al. [33] in their
work on resource kernels, we refer to this version of CBS as
soft CBS. A variant of CBS, called hard CBS [11], cuts a task
off from further supply until the current server deadline has
been reached. That is, in the case of hard CBS, the budget is
only recharged (and the deadline postponed) after the current
server deadline has passed. Intuitively, soft reservations are
appropriate for sporadic real-time tasks that should complete
as soon as possible in case of an overrun, whereas hard CBS
is more appropriate for encapsulating potentially backlogged
applications that require rate limiting.

Strictly speaking, a collection of CBS reservations is
schedulable if each server is guaranteed to be able to con-
sume its entire budget before its current deadline. Since we
assume that each task is encapsulated in a CBS reservation
with matching parameters, this is equivalent to stating that all
tasks that do not exceed their provisioned budget will meet
all deadlines; we therefore use the terms CBS reservation
and task interchangeably in the remainder of this paper.

Schedulability analysis. In the seminal work on uniproces-
sor EDF schedulability analysis [4], Baruah et al. gave an
exact processor demand test. They showed that a task set τ
of n sporadic tasks is schedulable on a uniprocessor under
EDF if and only if U(τ) ≤ 1 and

∀t ≥ 0

n∑
i=1

DBF (Ti, t) ≤ t, (2.1)

where DBF (Ti, t) = max(0, b t−dipi
c+ 1) · ei is the demand

bound function of task Ti [4]. Intuitively, DBF (Ti, t) upper-
bounds the cumulative execution requirement of all jobs of
Ti that both arrive and have a deadline within any contiguous
interval of length t. Crucially, Baruah et al. established a
bound on t for which Eq. (2.1) must be checked [4]. This
interval was further reduced in subsequent work (e.g., [38]).
Approximation of DBFs. Working with precise DBFs can
be computationally expensive. Albers and Slomka proposed
a method of approximating DBFs [2], which we adopt in our
implementation to improve runtime efficiency and reduce
memory overheads. The basic idea behind their scheme is
that after a certain number of steps k, the DBF of a task
is bounded by a straight line with a slope equal to the
task’s utilization. The k-steps approximation of the DBF
of a task Ti = (ei, pi, di) is denoted DBF (Ti, t, k), where
DBF (Ti, t, k) = DBF (Ti, t) if t < di + (k − 1)pi, and
DBF (Ti, t, k) = ui(t− di) + ei otherwise. Importantly, for
any t ≥ 0, DBF (Ti, t, k) ≥ DBF (Ti, t).

In summary, Abeni and Buttazzo’s CBS [1] and Baruah
et al.’s processor demand analysis [4] constitutes FlaRe’s
analytical foundation, as we describe next.

3 FlaRe Capabilities
In a nutshell, FlaRe realizes seL4’s hierarchical isolation
and sub-capability derivation semantics [17, 23]—with re-
gard to timely processor access—on top of flat (i.e., non-
hierarchical) P-EDF. Full isolation is ensured using per-task
CBS reservations [1] based on Baruah et al.’s exact schedu-
lability condition [4]. We begin with an overview of FlaRe
and discuss the intuition behind its design in Sec. 3.1, and
then formally define the semantics of temporal capabilities
(Sec. 3.2) and describe FlaRe’s runtime support (Sec. 3.3).

3.1 Intuition and Overview
First of all, what does it mean to use a temporal capability?
In FlaRe, using a temporal capability means creating a new
CBS reservation on a particular processor. The limited re-
source controlled by FlaRe’s temporal capabilities is thus
processor demand, as defined by Baruah et al. [4].

Intuitively, a process that holds a temporal capability may
thus “become” a real-time task by first creating a CBS reser-
vation with arbitrary parameters, but subject to the limits on
maximum processor demand represented by its capability,
and by then attaching itself to the reservation. That is, analo-
gous to seL4’s memory capabilities, a process may “cast” (a
part of) its unallocated (i.e., “untyped”) processor demand
into a specific (i.e., “typed”) CBS reservation with concrete
parameters. Similarly to seL4’s memory capability seman-
tics, which ensure that the total amount of typed memory
never exceeds the total memory supply, FlaRe maintains
Eq. (2.1) on each processor, that is, FlaRe ensures that the
total demand never exceeds the total processor capacity.

The most challenging operation to support is the splitting
of capabilities (i.e., the derivation of sub-capabilities), which
is central to seL4’s hierarchical resource management seman-
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tics and essential for truly decentralized resource allocation.
In particular, it must be possible to split a temporal capability
into two or more sub-capabilities and/or CBS reservations
such that no processor capacity is lost. Returning to the mem-
ory analogy, when a memory allocation is split, we expect
the sum of the parts to equal the whole. Similarly, dividing a
temporal capability should not cause processor capacity to
be lost to analytical inefficiencies, which, from a scheduling
point of view, is difficult to ensure if done naı̈vely.

Structurally, a temporal capability in FlaRe consists of
one or more CPU allocations, each of which represents “a
fraction of demand” on a particular processor. Analytically,
each CPU allocation is described using an allowance func-
tion and an allowed total utilization.

Each such CPU allocation in turn contains a set of CBS
reservations. Since FlaRe is based on P-EDF, each reserva-
tion must be created on a specific processor (i.e., each CBS
reservation belongs to exactly one CPU allocation); however,
since a temporal capability can consist of more than one CPU
allocation, it is possible to represent several processors worth
of “processor capacity” with a single temporal capability.

Hierarchy is supported by allowing each CPU allocation
to contain sub-allocations, subject to the constraint that the
sub-allocations may together not represent more processor
demand than the parent allocation does. More precisely, the
total processor demand due to (i) all sub-allocations and (ii)
the set of client CBS reservations may not exceed the total
processor demand represented by the parent CPU allocation.
Sub-capabilities can then be derived by creating one or more
sub-allocations and “bundling” them into a new capability.

On each processor, there is a root allocation that anchors
the tree of (local) CPU allocations. The root allocations are
created during system initialization and each represent the
entire capacity of one processor. By enforcing that the CPU
allocation hierarchy on each processor never represents more
processor demand than available in the root allocation—and
by requiring that real-time tasks hold temporal capabilities—
FlaRe ensures that the set of all CBS reservations is always
schedulable. This can be seen as safely flattening the de-
centralized, hierarchical resource allocation policy onto a
non-hierarchical reservation mechanism, namely CBS. In
effect, FlaRe consists of two views of the system: an allo-
cation view, which is the tree of CPU allocations, for the
purpose of mediating resource access (i.e., admission con-
trol), and a flattened view, which is simply the set of all
admitted reservations, for the purpose of online scheduling.

To stay with the memory analogy, the relationship be-
tween the allocation view and the flattened view is akin to
memory capabilities and the frame table in seL4: the capa-
bility derivation tree in seL4 is inherently hierarchical and
can represent arbitrary allocation policies, and describes how
parts of the “flat” physical memory are mapped.

We formalize these ideas next, discuss how the two views
are managed at runtime in Sec. 3.3, and then provide exam-
ples of common use cases in Sec. 3.4 thereafter.

3.2 The Semantics of Temporal Capabilities in FlaRe
In FlaRe, a temporal capability CAPC is a set of lC
CPU allocations, where lC ≥ 1.1 Each CPU allocation
Ak = (AFk(t), ak, τk,∆k) reserves a fraction of processor
capacity on a single processor and is characterized by an
allowance function AFk(t), an allowed total utilization ak,
a set of sub-allocations ∆k, and a set of CBS-based client
reservations τk. τk is a set of CBS-based reservations, each
containing a single task. Each CBS-based reservation can be
either a hard or soft CBS instance, depending on the require-
ments of the contained task. A CPU allocation also contains
a set of sub-allocations ∆k. Each (sub-)allocation can thus
be understood as the root of a (sub-)tree of CPU allocations.

∆k and τk together represent the workload encapsulated
byAk and contribute to the cumulative demand ofAk, which
is constrained by its allowance functionAFk(t). Specifically,
as made explicit in Invariants 1 and 2 below, the allowance
function AFk(t) defines the upper bound on permitted cu-
mulative demand, and the allowed total utilization ak defines
the upper bound on the permitted total utilization.
AFk(t) is a user-specified parameter and given as a func-

tion of interval length (analogous to DBFs). In theory,
AFk(t) may be any non-negative, monotonically increas-
ing function; in practice, it is represented as a piece-wise
linear function akin to Albers and Slomka’s approximation
method [2] using a finite number of points and a slope of ak.

The parameters AFk(t) and ak are specified when the
CPU allocation is created (and remain unchanged thereafter);
the sets ∆k and τk are initially empty. Crucially, any addi-
tions to ∆k and τk are governed by two invariants, which
are essential to FlaRe’s analytical guarantees.

Invariant 1. For any allocation Ak = (AFk, ak, τk,∆k),
the total cumulative utilization of its sub-allocations and
reservations never exceeds its allowed total utilization:

ak ≥
∑

Aj∈∆k

aj +
∑
Ti∈τk

ui.

Invariant 2. For any allocation Ak = (AFk, ak, τk,∆k),
the cumulative processor demand of its sub-allocations and
reservations never exceeds the upper bound specified by its
allowance function, that is, for any t ≥ 0:

AFk(t) ≥
∑

Aj∈∆k

AFj(t) +
∑
Ti∈τk

DBF (Ti, t).

Based on Invariants 1 and 2, we define four basic oper-
ations on a given Ak = (AFk, ak, τk,∆k) for the addition
and removal of sub-allocations and CBS reservations.

A1 Adding a new CBS-based reservation. A new reser-
vation for a given task Ti = (ei, pi, di) may be added
to τk if and only if the addition of Ti to τk does not
violate Invariants 1 and 2.

1 Note that lC has no relation to m, the number of processors in the
system. We permit temporal capabilities to contain multiple CPU allocations
on the same processor, as there is no analytical requirement to prohibit this.
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A2 Adding a new sub-allocation. A new sub-allocation
Aj = (AFj(t), aj , ∅, ∅), whereAFj(t) and aj are spec-
ified as parameters to the operation, may be added to
∆k if and only if the addition does not violate Invariants
1 and 2. Arbitrary trees of hieararchical allocations can
be created with this operation.

A3 Removing an existing reservation. Removal of an ex-
isting CBS reservation for a task Ti ∈ τk can always
be initiated as it only reduces demand and thus cannot
violate Invariants 1 and 2. Removing a CBS reservation
from a CPU allocation demotes the contained task to
best-effort status. This removal is delayed until the cur-
rent server deadline ds,k has expired, to avoid corner
cases in which a task quickly switches between best-
effort and real-time status (i.e., it should not be possible
to replenish a server’s budget ahead of time by destroy-
ing and recreating it; see, e.g., [6] for a more nuanced
discussion of such reweighting issues).

A4 Removing an existing sub-allocation. An existing
sub-allocation Aj can be removed from ∆k if and only
if ∆j = ∅ and τj = ∅. The pre-condition requires the
recursive removal of all reservations and sub-allocations
of Aj prior to removal of Aj (which is analogous to the
recursive revocation of memory in seL4 [23]).

Capability derivation. As discussed in Sec. 3.1, in FlaRe,
new capabilities can be derived by creating one or more
sub-allocations (using operation A2) and “bundling” them
into a new capability. To define this precisely, we de-
fine the aggregate allocation set of an allocation Ak, de-
noted as ∆agg(Ak), as the set of all allocations recur-
sively reachable from Ak; formally ∆agg(Ak) = ∆k ∪(⋃

Aj∈∆k
∆agg(Aj)

)
. The derivation of a new capability

is then defined as follows: given a capability CAPC , a new
capability CAPD may be derived from CAPC such that

CAPD = {Ay | Ay ∈ ∆agg(Ax) ∧Ax ∈ CAPC}. (3.1)

In other words, the allocations that constitute the derived ca-
pability CAPD must stem from (sub-)allocations reachable
from the original capability CAPC . Derived capabilities are
thus never more permissive than the capability from which
they were derived. The operation also permits a single CPU
allocation to be a part of multiple capabilities. That is, there
can be two distinct capabilities, each containing the same
CPU allocation within them, which allows CPU allocations
to be selectively shared among multiple processes (just like
memory pages may be shared among multiple processes).

Having established a precise definition of the resource
allocation rules in FlaRe, we next describe how they are
combined to ensure schedulability at runtime.

3.3 The Scheduling of Flattened Reservation Trees
FlaRe enforces Invariants 1 and 2 for all CPU allocations.
To guarantee schedulability, FlaRe further ensures that all
CPU allocations stem from known root allocations, which

are special CPU allocations that represent the total capacity
available on one processor. There is one such allocation
per processor, and the root allocation of the ν th processor
is denoted as Aroot

ν = (AF root
ν , arootν , τ rootν ,∆root

ν ), where
AFν(t) = t and aν = 1. The m root allocations are cre-
ated during system initialization. Importantly, these are the
only CPU allocations created from scratch; all other CPU
allocations must be derived directly or indirectly from a root
allocation using operation A2.
Allocation view. The m root allocations thus form a set of
m trees from which all CPU allocations are reachable; we
refer to this set of hierarchies as the allocation view of the
system. The allocation view can be understood as a form of
metadata that provides insight into the current hierarchical
reservation structure. Importantly, the allocation view is used
only during task admission, but not for online scheduling.
Flattened view. Instead, the hierarchical allocation view is
flattened by combining the reservations from all CPU alloca-
tions at any level into a single task set (on each processor). To
this end, we define the aggregate reservation set of an alloca-
tion Ak as τagg(Ak) = τk ∪

(⋃
Aj∈∆k

τagg(Aj)
)

. The flat-

tened view on the ν th processor is then simply τagg(Aroot
ν ),

the aggregate reservation set of the root allocation.
In FlaRe, the P-EDF scheduler schedules the flattened

view. That is, on each of the m processors in the system,
it schedules the set of aggregated CBS-based reservations
τagg(Aroot

v ) corresponding to the local root allocation Aroot
v .

By explicitly splitting the allocation view from the flattened
view, the allocation policy (which is reflected in the allo-
cation view) and the scheduling mechanism (which only
considers the flattened view) are cleanly separated in FlaRe.

Finally, the root capability CAP0 = {Aroot
1 , . . . , Aroot

m }
describes the entirety of the system’s processing capacity.
CAP0 is created during the boot sequence; all other capabil-
ities must stem directly or indirectly from the root capability.

Together with Invariants 1 and 2, these simple allocation
and scheduling rules guarantee that the flattened sets of reser-
vation are indeed schedulable under P-EDF. We establish
this property formally in Sec. 3.5, after first providing some
examples to illustrate the utility of FlaRe.

3.4 Example Uses of FlaRe: Choosing ak and AF k(t)

When creating a new sub-allocation Ak, the parameters ak
and AF k(t) are specified by the invoking process. This
naturally poses the question—what are appropriate values?

The allowed total utilization ak is the simpler of the two
parameters. It simply provides a hard upper limit on the
maximum utilization of all tasks and sub-allocations. Thus,
if the intention is to limit a subsystem to reserve at most 20%
of a processor, the choice ak = 0.2 would be appropriate.

Determining an appropriate allowance function AF k(t) is
slightly more involved. In the simplest case, if the intention
is to simply reserve a fraction of processor capacity for best-
effort or implicit-deadline tasks, it is appropriate to choose
AF k(t) = ak · t. (This also makes for an apt default value
in concrete implementations of FlaRe.)
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If, however, real-time tasks with constrained deadlines
are to be supported, it is advisable to choose a more ex-
plicit AF k(t). For instance, suppose that a subsystem ini-
tialization task is to create a capability for a set τs of (hard)
real-time tasks that comprise the subsystem. Assuming the
requirements of all tasks in τs are known, a well-chosen al-
lowance function would be AF k(t) =

∑
Ti∈τs DBF (Ti, t).

In other words, for known task sets, FlaRe can be configured
to yield exactly matching allocations, which helps to avoid
pessimism, as we establish in Theorem 2 below.

3.5 Temporal Correctness in FlaRe
A key feature of FlaRe is that, by enforcing Invariants 1 and 2
locally within each allocation, the schedulability of all reser-
vations comprising the flattened view is always guaranteed.
This is accomplished without imposing any additional utiliza-
tion loss (besides that inherent in any partitioned scheduling
approach). That is, FlaRe’s hierarchical capability system
does not impose any additional limitations on the workloads
that can be supported. We begin by showing that Invariants
1 and 2 imply schedulability.

Lemma 1. Let τagg(Ak) denote the aggregate reservation
set of a CPU allocation Ak. Then U(τagg(Ak)) ≤ ak.
Proof. Let h denote the height of the sub-allocation tree
rooted at Ak. We prove the lemma by induction over h.

Base case: if h = 0 (i.e., if Ak is a leaf), then the claim
follows from Constraint 1 since ∆k = ∅ in leaf nodes.

Induction step: suppose the claim holds for h− 1. Then:

U(τagg(Ak)) = U(τk) +
∑

Aj∈∆k

U(τagg(Aj))

{ induction hypothesis }
≤ U(τk) +

∑
Aj∈∆k

aj

{ definition of U(τk) }
=

∑
Tj∈τk

uj +
∑

Aj∈∆k

aj

{ Invariant 1 }
≤ ak.

The same relationship applies to allowance functions,
which we summarize as follows.

Lemma 2. Let τagg(Ak) denote the aggregate reserva-
tion set of a CPU allocation Ak. Then AFk(t) ≥∑
Tj∈τagg(Ak) DBF (Tj , t) for all t ≥ 0.

Proof. Omitted; follows analogously to Lemma 1.
The flattened view is thus always schedulable in FlaRe.

Theorem 1. Let τagg(Aroot
ν ) denote the aggregated set of

reservations scheduled on the ν th processor with root allo-
cation Aroot

ν . Under FlaRe, the flattened set of reservations
τagg(Aroot

ν ) is schedulable under EDF.

Proof. From Lemma 1, it follows that

U(τagg(Aroot
ν )) ≤ arootν = 1. (3.2)

From Lemma 2, and since AF root
ν (t) = t, it follows that

∀t : AF root
ν (t) = t ≥

∑
Tj∈τagg(Aroot

ν )

DBF (Tj , t). (3.3)

Recall that FlaRe employs P-EDF, and recall from Sec. 2
that Eqs. (3.2) and (3.3) together are Baruah et al.’s [4] exact
schedulability test for uniprocessor EDF, see Eq. (2.1). The
aggregated set of reservations τagg(Aroot

ν ) is thus schedula-
ble under EDF, which FlaRe employs on each processor.

Theorem 1 shows that FlaRe’s capability system ensures
temporal correctness. The second key feature of FlaRe is
that there is no need to over-provision resources.

Theorem 2. FlaRe can be configured to have arbitrarily
small utilization loss w.r.t. each processor.

Proof. By design, for any desired CPU allocation Ak,
it is possible to compute each AFk(t) and ak such that
ak =

∑
Aj∈∆k

aj +
∑
Tj∈τk uj , and, for all t, AFk(t) =∑

Aj∈∆k
AFj(t) +

∑
Tj∈τk DBF (Tj , t) Thus, any feasible

task set (i.e., any task set that passes Baruah et al.’s schedula-
bility condition [4]) can be arranged into a hierarchy of CPU
allocations of arbitrary structure and depth.

To summarize, FlaRe provides a capability system for
timely processor access that has several attractive concep-
tual properties: it is compliant with the accepted notion of
hierarchical isolation and sub-capabilities in seL4 [23], its
admission control rules (Invariants 1 and 2) require only
capability-local information (i.e., AF k(t), ak, ∆k, and τk)
to ensure system-wide schedulability, it reduces to simple,
non-hierarchical online scheduling, and finally, it does not
impose any additional utilization loss beyond that inherent
in partitioned scheduling (which is highly attractive from a
scheduling overhead point of view [5]).

However, to be a viable solution in practice, it must be
possible to implement FlaRe in a real OS with little difficulty
and low overheads. To evaluate this aspect, we implemented
prototypes of FlaRe in two (quite different) real-time OSs.

4 Proof of Concept: FlaRe in LITMUSRT

To evaluate FlaRe in a multiprocessor context, we imple-
mented it in LITMUSRT [10], a real-time extension of the
Linux kernel. Although LITMUSRT is not a capability-
based operating system, it is a suitable proving ground for
demonstrating the simplicity and practicality of FlaRe in a
non-trivial OS environment; LITMUSRT further provides
some of the required scheduling infrastructure. In particular,
we used the P-EDF scheduler and benchmarking framework
available in LITMUSRT to implement and evaluate FlaRe.
We begin by describing key choices in the implementation
of FlaRe in LITMUSRT (hereafter FLRT for brevity) and
then discuss the practicality of FlaRe based on experimental
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results from FLRT. We also discuss the notion of implicit ca-
pabilities, an extension of the basic capability-based model
that simplifies the integration of FlaRe into legacy systems.

4.1 Implementation

We implemented FlaRe in the latest version of LITMUSRT,
based on Linux 3.0. When the system boots up, a root al-
location is created for each of the processors in the system
along with the root capability, which is granted to all privi-
leged (root) processes (discussed in more detail in Sec. 4.3
below). FLRT provides a system call interface for user pro-
grams which consists of (i) system calls that implement op-
erations A2 and A4 to allow user-space processes to create
arbitrary CPU allocation hierarchies, (ii) a system call for de-
riving a new capability from an existing one (which enforces
Eq. (3.1)), and (iii) a system call for granting a capability to
a particular process. LITMUSRT already provided system
calls for real-time tasks to join and leave the system (i.e.,
to create and destroy reservations), which we retrofitted to
support operations A1 and A3. We also modified the existing
P-EDF scheduling plugin in LITMUSRT to ensure that real-
time processes are admitted into the system only if they hold
a capability with sufficient unallocated processor demand.
Further, FLRT implements both hard and soft reservations,
and user processes are free to choose either type.

A key component of FlaRe is the admission control test
that is part of operations A1 and A2. The overhead of this
test, which checks Invariants 1 and 2, depends primarily
on the efficiency of adding and comparing (approximated)
DBFs and allowance functions. To control the runtime and
memory costs of admission control, the number of points
k used to approximate these functions is a configurable,
userspace-specified parameter in FLRT.

Like most OSs, Linux (and consequently LITMUSRT)
does not support floating-point operations in the kernel. In
FLRT, we implemented all operations on allowance func-
tions and demand bound functions using integer arithmetic.
The use of integer arithmetic causes a loss of precision in
the calculations due to rounding errors. Care must be taken
to ensure that these errors do not result in an unschedulable
system during task admission. In FLRT, we deal with this
by rounding values pessimistically, which consequently in-
troduces some utilization loss. However, this utilization loss
is negligible in practice as LITMUSRT uses nanoseconds
to express all temporal parameters; rounding errors are thus
minuscule in relation to typical task parameter magnitudes.

FLRT supports both hard and soft CBS reservations. At
first, it may seem like implementing these requires significant
scheduling machinery. However, due to the constraints FlaRe
places on the use of CBS reservations, their implementation
is trivial. Recall that in FlaRe, each CBS reservation contains
exactly one task and has parameters identical to the contained
task. Implementing per-task CBS reservations in FLRT thus
consists of initializing a per-job timer which detects when
a job has exhausted its budget (using LITMUSRT’s precise
budget enforcement for real-time tasks). At this point, if the
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Figure 1: Worst- and average-case scheduling overheads due to
regular P-EDF without FlaRe, FlaRe with soft CBS reservations,
and FlaRe with hard CBS reservations, as measured in LITMUSRT

on a 16-core Intel Xeon X7550 2.0 GHz platform.

job is still incomplete (that is, it has overrun its budget), the
hard and soft CBS rules (as described in Sec. 2) are applied
to extend the deadline and replenish the budget appropriately.

In summary, FLRT is a feature-complete prototype of
FlaRe and thus sufficient for providing realistic overheads.

4.2 Overheads
There are two main runtime overheads in FLRT to be con-
sidered: scheduling overheads arising from the use of per-
task CBS-based reservations, and task admission overheads
caused by the introduction of the admission control test.
While the former is a recurring, per-job overhead, the latter
is a one-time cost that arises only once during task admis-
sion. Any increases in scheduling overhead are thus highly
undesirable, whereas admission costs are more flexible. For
this reason, FlaRe is intentionally designed such that most
costs are incurred during task admission.
Scheduling overhead. Due to the simplified implementa-
tion of CBS, we expected the scheduling overhead from the
use of per-task CBS containers to be negligible. To con-
firm this, we measured the overhead of scheduling a varying
number of tasks under three different configurations of P-
EDF: regular P-EDF without FlaRe, and FlaRe with hard
and soft CBS reservations (the experimental setup is de-
scribed in Appendix A). Fig. 1 depicts the observed worst-
and average-case scheduling overheads. As is apparent, any
scheduling overhead added due to per-task CBS reservations
is negligible—no increase in overheads is apparent, that is,
the overheads are entirely subsumed by measurement noise.
This shows that per-task CBS reservations are indeed an
efficient method of ensuring isolation among tasks.
Admission and memory overhead. Due to space con-
straints, the results from our evaluation of task admission and
memory overheads in FlaRe can be found in Appendix A.
To summarize our results, both admission and memory over-
heads vary depending on k, the number of points used to
represent allowance functions and DBFs. We checked val-
ues of k up to 20, considerably greater than the minimum
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value we estimated as sufficient to avoid utilization loss (see
Appendix A), and the overheads are within an acceptable
range for both admission time and memory usage. Admis-
sion overhead was on the order of tens of milliseconds for
k = 20 (recall that this is a one-time cost and that task ad-
mission is a rare event in comparison to job scheduling). The
memory overhead of storing 3,000 allocations with k = 20
was around 2.5 MiB of memory, a low cost relative to the
memory typically available in modern multicore platforms.

4.3 Implicit Capabilities
In a normal capability-based system, processes must explic-
itly grant a capability to each of their child processes during
creation. However, this is cumbersome to support in legacy
systems such as Linux, as modifying the entire software
stack to use the new FlaRe interfaces would be burdensome.

To overcome this issue, we introduced the notion of im-
plicit capabilities. The idea behind implicit capabilities is
that a process may be admitted into the system as a real-time
task, even in the absence of an explicitly granted capability,
if another process, termed the implicit capability supplier, is
assigned to grant its capability to the process “on demand.”

For example, with a simple change to X11, all GUI tasks
in the system are assigned the X11 server process as their
implicit capability supplier. Further, by default, the parent
process becomes the implicit capability supplier when a new
child is forked. Thus, without further setup and without
modification of the shell, a real-time task launched from a
shell running within a terminal emulator would transitively
have access to X11’s temporal capability.

As another example, all privileged (root) processes in the
system are assigned the “init” process, a process granted the
root capability at system initialization, as their implicit capa-
bility supplier. Thus, all privileged processes are implicitly
granted the root capability in FLRT.

Using implicit capabilities, FlaRe can be integrated into
complex legacy systems with few changes to existing soft-
ware. Next, we discuss a prototype implementation of FlaRe
within a truly capability-based microkernel.

5 Proof of Concept: FlaRe in seL4
To show that FlaRe is practical in a capability-based OS, we
developed a prototype in seL4. Multiprocessor features in
seL4 are still experimental, so we only deal with the unipro-
cessor case here. In true microkernel fashion, the seL4 im-
plementation of FlaRe separates policy and mechanisms, by
implementing the former at user-level and only the latter in-
side the kernel. Specifically, the kernel provides scheduling
capabilities and enforces their semantics, while the admis-
sion procedure and data (DBFs) are contained in a trusted
user-level process. Note that the FlaRe implementation is a
prototype that is not yet formally verified.

5.1 seL4 Scheduling
Original seL4 uses a priority-based round-robin scheduler
with 256 priorities. We introduce a new highest priority level

where threads are scheduled according to EDF. To implement
the EDF scheduler, we added two binary heaps: a release
queue of tasks waiting for job release and a ready queue
of released tasks waiting to execute. To prevent interrupts
aimed at the round-robin scheduler from disrupting EDF-
priority tasks, we disabled timer ticks for non-EDF tasks
(making non-EDF priorities non-preemptive), allowing us
to use a single 64-bit timer for the EDF implementation (a
comprehensive implementation would restore preemption).
We have also added a CBS implementation to the kernel.

5.2 Scheduling Capabilities
We introduce two new types of capabilities: scheduling capa-
bilities, and a scheduling control capability. Standard seL4
capability operations apply: these capabilities can be moved,
copied, revoked, recycled and deleted.

Scheduling capabilities acts as access tokens to in-kernel
scheduling contexts, analogous to CPU allocations in FlaRe.
Scheduling contexts are either bindable or not, and specify
hard or soft CBS. Bindable scheduling contexts can be bound
to a single thread, which will then be scheduled by EDF using
the parameters of that context. If a bindable context becomes
unbindable, a bound thread will revert to its previous priority.

The scheduling control capability is granted to the initial
task in a seL4 system via the startup protocol and gives the
possessor complete control over the EDF scheduler. Three
operations are possible when invoking this capability: Con-
figure (set parameters in a scheduling context), Bind (bind a
scheduling context to a thread) and SetBindable (change the
bindable bit in a scheduling context). A process with access
to the scheduling control capability can distribute scheduling
capabilities throughout the system and revoke at will.

Like other seL4 objects, any user process can create a
scheduling context (with all parameters set to 0) by re-typing
an untyped object (representing a right to use memory). How-
ever, scheduling contexts cannot be configured or bound to
threads without invoking the scheduling control capability.

Unlike the FLRT, seL4 provides no in-kernel admission
test, this policy is implemented in a user-level server (the
holder of the scheduling-control capability), similarly to the
memory-management policy. This server is trusted, as it can
configure the system in an overload state, causing deadlines
to be missed, which is again analogous to servers managing
memory, which can corrupt the managed (sub-)system.

5.3 Admission Control
For our FlaRe implementation on seL4, task admission is
performed by a trusted time manager, which possesses the
scheduling control capability and runs at the highest non-
EDF priority. This ensures that admission control cannot
interfere with existing EDF tasks, separates policy from
mechanism and supports the use of floating-point arithmetic.

The time manager implements the hierarchical allocation
tree and provides split and revoke to clients. Capabilities
in the tree are assigned a unique ID by which client and
server can identify them (the root has ID 0 and a 100% CPU
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Figure 2: Scheduling overheads in seL4, as measured on a single
core of a SabreLite 1 GHz ARM Cortex-A9 MPCore platform.

allocation). During a split operation, the server performs the
admission test; if successful, it returns the ID of a capability
to a bindable scheduling context. The manager also sets the
parent capability as unbindable, to preserve the integrity of
the tree. To implement revoke, the manager keeps copies of
all capabilities, so they can be revoked without contacting
clients. Appendix B illustrates a sample system.

5.4 Evaluation
Admission tests in seL4 use the same code as in FLRT, so
their cost is the same (modulo the very small inter-process
communication cost and performance differences in the hard-
ware); we did not evaluate them again. Instead, we focus
on scheduling overhead, comparing the seL4 EDF sched-
uler with and without CBS (see Appendix C for full details).
Scheduling in seL4 is about four times faster than in FLRT
(despite the slower processor), which increases the relative
impact of FlaRe. Figure 2 shows that the CBS implementa-
tion adds a small (˜0.09µs) constant overhead to a scheduling
decision an overhead to small to be observed in FLRT. We
observe no difference between CBS types.

6 Related Work
Capability-based access control is a classic concept that
dates back to Dennis and Van Horn [15], and which has long
been employed in OSs [20, 29, 34]. (A detailed historical
overview of capability-based access control can be found
in [27].) As discussed in Secs. 1 and 3, our work on tem-
poral capabilities is explicitly inspired by seL4 [23] and its
resource-management model [17]. In particular, the primary
objective in the design of FlaRe was the efficient support of
arbitrary derivation trees as they arise naturally from seL4’s
sub-capability semantics. In FlaRe, this goal is achieved by
flattening all allocation hierarchies prior to scheduling.

A similar notion of flattening was recently applied by
Lackorzynski et al. [25] to the problem of real-time vir-
tualization (and implemented in Fiasco.OC [24]). Lacko-
rzynski et al. observed that the hierarchical scheduling of

VMs (where the host scheduler selects a VM to execute,
and then the VM-internal scheduler selects the actual task
to dispatch) can lead to inefficiencies. This is because a
single, per-VM host-level processor reservation can be insuf-
ficient to express the varied timing requirements of encap-
sulated workloads [25], especially in a multi-VM scenario.
By exporting sufficient scheduling metadata from the virtual
machines to the host—that is, by flattening the hierarchical
scheduler—the utilization loss from over-provisioning was
reduced [25]. FlaRe also uses the flattening idea, but signifi-
cantly expands on it by providing formal, provably efficient
semantics for sub-capabilities that ensure that the system
remains schedulable at all times. (Lackorzynski et al. [25]
do not provide details on how they integrated flattening into
Fiasco.OC’s capability system [24], nor do they consider
how to enforce schedulability in a non-centralized and ef-
ficient manner, which are the two cornerstones of FlaRe.)
Another difference is that their system uses fixed-priority
scheduling, whereas FlaRe derives its efficiency w.r.t. utiliza-
tion loss from EDF. We consider Lackorzynski et al.’s work
to be complementary to FlaRe as their proposal is both very
much in alignment in its motivation and also ideally suited
to hosting VMs on top of a FlaRe-equipped hypervisor.

While Lackorzynski et al. identified benefits in avoiding
hierarchical scheduling, there are nonetheless cases where
it is explicitly desired as a means of integrating and iso-
lating (legacy) subsystems; consequently, there has been
considerable research into hierarchical scheduling in recent
years (e.g., see [12–14, 16, 19, 26, 35]). Compared to FlaRe,
hierarchical scheduling differs in two ways. First, FlaRe
has been designed from the ground up for capability-based
systems, and therefore supports arbitrarily deep allocation
hierarchies without utilization loss. This is important as ca-
pabilities can be derived any number of times. On the other
hand, FlaRe cannot support application-specific schedulers,
as a primary motivation for hierarchical scheduling is the
integration of multiple (legacy) applications, each with its
own dedicated local scheduler. Second, as FlaRe is based on
a single-level scheduler, it has a (slight) advantage in runtime
efficiency. In contrast, a hierarchical scheduler traverses the
entire hierarchy until a suitable leaf node is found, which
adds to scheduling overheads (especially in deep hierarchies).
While FlaRe technically still uses “hierarchical scheduling”
in the form of CBS reservations [1], there are no schedul-
ing decisions to be made at the second “level” since FlaRe
uses per-task reservations. Thus, while hierarchical schedul-
ing could conceivably be repurposed to support temporal
capabilities, FlaRe is simpler and more efficient in practice.

A key technique in FlaRe is the use of allowance functions
to characterize the permissible aggregate demand of entire
subtrees; Baruah and Fisher [3] similarly applied DBFs to
entire hierarchical component trees in an analysis of a com-
ponent system hosted on top of global EDF.

Finally, Parmer and West [30] recently presented HiRes,
a complete system architecture for the hierarchical manage-
ment of processor reservations, memory, and I/O resources.
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Similar to the seL4 model [23] adopted in FlaRe, HiRes
allows the granting and revocation of resources and can thus
be considered to be a capability system. In terms of scope,
Parmer and West’s work [30] is complementary to ours:
whereas FlaRe does not address I/O and memory resources
(although seL4 [23] does), HiRes does not address schedula-
bility or the semantics of hierarchical processor reservations.
It would thus be interesting to combine both approaches.

7 Conclusion, Limitations, and Future Work
We presented FlaRe, a simple and efficient temporal capabil-
ity system for secure, safe, and decentralized management of
timely processor access. The defining characteristic of FlaRe
is that it supports arbitrary sub-capability derivation trees
without utilization loss, which it accomplishes by flattening
them prior to scheduling. The simplicity of this approach
translates into low runtime overheads, as evidenced by the
two implementations in LITMUSRT and seL4.

FlaRe provides isolated temporal capabilities based on
sound scheduling theory, but it is certainly not the only piece
of the isolation and predictability puzzle. In particular, vari-
ous other factors such as cache interference (e.g., [28]) and
bus contention (e.g., [21]) need to be taken into account.
These issues, however, are orthogonal to the problem ad-
dressed by FlaRe, and proper temporal capabilities are still
useful even if some level of hardware interference remains.

We did not consider the issue of overhead accounting in
detail. In addition to cache interference, scheduling and inter-
rupt overheads must be accounted for. Scheduling overheads
can be dealt with by inflating execution budgets [7]; in FlaRe,
such overheads are implicitly accounted for by charging all
preemption costs to the budget of the preempting reservation.

Hard interrupts associated with job releases are more
challenging, and similar issues are encountered in hierar-
chical scheduling as well, as observed by Phan et al. [32].
A pragmatic solution in LITMUSRT is to use a dedicated
core for interrupt handling to shield real-time tasks [7]. A
more sophisticated solution, left to future work, similar to
Phan et al.’s approach, associates each task with a sepa-
rate CPU allocation describing the arrival characteristics of
task-related interrupts. We also seek to introduce support
for locking and/or IPC primitives that guarantee temporal
isolation across reservations despite budget overruns [8].
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A FLRT: Extended Evaluation
In this appendix, we present an extended evaluation of
FLRT. We first describe the experimental setup for obtaining
scheduling overheads and then present results of experiments
measuring the memory and admission overheads in FLRT.
Finally, we present results from an experiment measuring the
utilization loss under FlaRe as a function of k, the number
of points used to represent allowance functions and DBFs.

A.1 Scheduling Overheads – Experimental Setup
To measure scheduling overheads, we generated 25 task sets
with n ∈ [16, 32, . . . , 160] tasks (for a total of 250 samples),
using the randfixedsum algorithm [18], with periods rang-
ing from 10-100ms (log-uniform distribution) and implicit
deadlines. The First-Fit DU partitioning heuristic was used
to partition tasks. We used Feather-Trace [9] to trace the
execution time of scheduling decisions under regular P-EDF,
FLRT with soft CBS reservations, and FLRT with hard CBS
reservations (each task set was executed for one minute in
each configuration). We measured these overheads on a 16-
core Intel Xeon X7550 2.0GHz platform with 1TiB RAM,
after disabling CPU features that affect predictability (e.g.
Turbo Boost and Hyper-threading). The entire experiment
lasted 12.5 hours and produced 42 GiB of binary data that
was used to extract the scheduling overheads.

A.2 Admission Overheads
In order to understand the overhead of enforcing admission
control in FlaRe, we must consider the factors that contribute
to the time complexity of the admission decision. Recall that
when a new task is being admitted, the introduced demand
must not violate the schedulability of the system, subject to
the allowance function and the maximum utilization of the
allocation to which it is being added (see Invariants 1 and 2).
Thus the admission cost is a function of the time taken to
add and compare allowance functions and DBFs. The time
complexity of these operations depends on the number of
points k used in their representation.

We evaluated the runtime costs of adding a new sub-
allocation to an allocation with different numbers of existing
sub-allocations (respectively 50, 100 and 150), while vary-
ing k between 2 and 20. As illustrated in Fig. 3, the time
taken to perform the admission control is reasonable (≈55ms
when there are 150 existing sub-allocations and k = 20.).
This can be trivially improved by caching the final summed
function, so that future operations avoid the recalculation.
This would make the overhead independent of the number
of sub-allocations in a particular allocation and only depend
on k, which can be tuned for the desired accuracy.

A.3 Memory Overheads
In FLRT, each CPU allocation object contains an allowance
function and DBFs for tasks are stored in memory to improve
the speed of the admission test. Storing these functions
is the primary source of memory overhead. We analyzed
these costs by varying the total number of allocations in the
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Figure 3: Admission overhead for adding a new allocation into an
existing one, plotted as a function of the number of points k in each
allowance function and demand bound function. The graph shows
three curves based on how many sub-allocations are previously
present in the allocation, as this affects overheads. The evaluation
was performed on 16 Intel Xeon X7550 2.0GHz cores.
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Figure 4: Memory overhead of storing 500, 1500 and 3000 allo-
cations as a function of k, the number of points used to represent
allowance functions and demand bound functions.

system (500, 1500 and 3000) and the parameter k (as in the
admission overheads evaluation). From Fig. 4, it can be seen
that the cost of storing 3000 allocations, each with 20 points
in their respective functions, is around 2.6MiB, a low amount
given the memory in modern multicore machines.

A.4 Utilization Loss
Since FlaRe approximates allowance functions and DBFs,
it is important to understand the tradeoff between k, the
number of points used to represent these functions, and the
utilization loss in the system. To measure this, we checked
the schedulability of 19,200 task sets, generated by the rand-
fixedsum algorithm with utilizations ranging from 0 to 1 (in
increments of 0.1). The number of tasks per task set varied
in increments of 5 between 5 and 150. The periods of the
tasks were log-uniform between 10-100ms, and deadlines
were chosen uniformly within the first half of the interval
between the execution cost and the period.

Fig. 5 shows the percentage of task sets schedulable un-

11



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

fra
ct

io
n 

of
 s

ch
ed

ul
ab

le
 ta

sk
 s

et
s

utilization of the task set

Schedulability with approximated DBFs

QPA
FlaRe (k=2)
FlaRe (k=3)
FlaRe (k=4)

Figure 5: This graph shows the utilization loss in FlaRe for differ-
ent values of the parameter k. It shows the percentage of schedula-
ble task sets as a function of task set utilization. The results from
FlaRe were compared against the QPA algorithm.

der FlaRe with different values of k, as a function of task
set utilization. We compared our results with the QPA al-
gorithm [38], which is an exact test. As can be seen from
Fig. 5, the fraction of schedulable task sets converges with
the results of the QPA algorithm for k > 2. This shows
that, in the evaluated scenario, the utilization loss arising
from the use of approximated allowance functions and DBFs
is negligible even for small values of k. This result, along
with the previous discussion on overheads, makes a strong
case for the minimal utilization loss of FlaRe, and for its
practicality in terms of admission time and memory usage.

B seL4: Implementation Example

This section supports the seL4 implementation presented
in Section 5. Figure 6 shows the layout of a system just
after system initialization. The initial process started with
capabilities to untyped memory and the scheduling control
capability. It creates two threads: the client and the time
manager, and transfers the scheduling control capability to
the time manager, before exiting. The client makes a split
call to the time manager, who performs the admission test,
retypes some memory to create a capability to a scheduling
context. It then configures the scheduling context, and makes
a copy which is transferred to the client. The client binds this
capability to a newly created thread and resumes it, creating
the real-time task.

C seL4: Extended Evaluation

In this appendix, we present more details about the evalua-
tion of seL4. First, we describe the experimental setup for
obtaining scheduling overheads. And then we present the
results of analyzing the standard scheduling overheads of
seL4 without EDF.

ClientTime 
Manager

Real-
time 

thread

Kernel

User

seL4

DBF etc.
Scheduling 

control 
capability

Scheduling context

Figure 6: A sample seL4 system with FlaRe.

C.1 Scheduling Overheads – Experimental Setup
The scheduling overhead experiment involved adding trace-
points to the kernel before and after a scheduling decision.
These tracepoints consisted of reading the cycle count reg-
ister of the ARM performance monitor unit, located on the
coprocessor. The impact of measurement was quantified to
be 4 cycles as coprocessor access is fast on the Cortex A9.

Our test environment consists of a SabreLite development
board with a quad-core ARM Cortex A9 MPCore. As indi-
cated, we ran tests with only one core enabled, the number of
tasks per core as the same is in the FLRT benchmarks. The
difference between the x-axis scales in Figure 1 and Figure 2
reflect this. We generated the same number of task sets with
the same parameters used to evaluate FLRT and ran them on
seL4 to obtain overhead numbers.

C.2 Original seL4 Scheduler
The original seL4 scheduler was not implemented for per-
formance and conducted a linear search of 256 priorities,
which is inefficient for all but the highest priority. We have
measured the overhead of an optimized (unverified) version
of the scheduler for comparison with the EDF implementa-
tion in seL4. The optimized version uses a 2-level bitmap
to find the highest priority thread. We measured the cost of
this lookup 1000 times and found it to be on average 0.27µs,
with a standard deviation of 0.1µs – we put the variation
down to branch mispredictions, as the variance goes down
as the benchmark progresses.
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