
A Comparison of Scheduling Latency
in Linux, PREEMPT RT, and LITMUSRT

Felipe Cerqueira Björn B. Brandenburg
Max Planck Institute for Software Systems (MPI-SWS)

Abstract
Scheduling latency under Linux and its principal real-time
variant, the PREEMPT RT patch, are typically measured us-
ing cyclictest, a tracing tool that treats the kernel as a black
box and directly reports scheduling latency. LITMUSRT, a
real-time extension of Linux focused on algorithmic improve-
ments, is typically evaluated using Feather-Trace, a fined-
grained tracing mechanism that produces a comprehensive
overhead profile suitable for overhead-aware schedulability
analysis. This difference in tracing tools and output has to
date prevented a direct comparison. This paper reports on a
port of cyclictest to LITMUSRT and a case study comparing
scheduling latency on a 16-core Intel platform. The main
conclusions are: (i) LITMUSRT introduces only minor over-
head itself, but (ii) it also inherits mainline Linux’s severe
limitations in the presence of I/O-bound background tasks.

1 Introduction
Real-time tasks are usually activated in response to external
events (e.g., when a sensor triggers) or by periodic timer
expirations (e.g., once every millisecond). At the kernel level,
both types of activations require the following sequence of
steps to be carried out:

1. the processor transfers control to an interrupt handler
to react to the device or timer interrupt;

2. the interrupt handler identifies the task waiting for the
event and resumes it, which causes the task to be added
to the ready queue;

3. the scheduler is invoked to check whether the resumed
real-time task should be scheduled immediately (and, if
so, on which processor); and finally,

4. if the resumed real-time task has higher priority than
the currently executing task, then it is dispatched, which
requires a context switch.

In theory, the highest-priority real-time task should be sched-
uled immediately when its activating event occurs, but in
practice, Step 1 is delayed if interrupts are temporarily
masked by critical sections in the kernel,1 Steps 2–4 are
delayed by cache misses, contention for memory bandwidth,
and (in multiprocessor systems) lock contention, Step 3 is
further delayed if preemptions are temporarily disabled by

1In Linux, via the local irq disable() interface.

critical sections in the kernel,2 and Step 4 generally causes
a TLB flush (on platforms without a tagged TLB), which
causes additional delays. Thus, even for the highest-priority
task, there is always a delay between the activating event
and the instant when the task starts executing. This delay,
called scheduling latency, affects the response times of all
tasks and imposes a lower bound on the deadlines that can
be supported by the system. Therefore, it is essential to con-
sider scheduling latency when determining whether a system
can provide the desired temporal guarantees. The focus of
this paper is an empirical evaluation of scheduling latency in
Linux and two of its real-time variants, PREEMPT RT and
LITMUSRT, using cyclictest, a latency benchmark.
PREEMPT RT and cyclictest. The importance of schedul-
ing latency has made it a standard metric for the evaluation
of real-time operating systems in general, and Linux and
its real-time extensions in particular. Concerning the latter,
the PREEMPT RT patch—the de facto standard real-time
variant of Linux—specifically aims to improve scheduling
latency by reducing the number and the length of critical
sections in the kernel that mask interrupts or disable preemp-
tions [21, 27]. The efficacy of these changes is commonly
quantified using cyclictest, a scheduling latency benchmark
originally created by Thomas Gleixner and currently main-
tained by Clark Williams [2].

A key feature of cyclictest is that it is easy to use, and as a
result it has been widely adopted as the universal benchmark
of real-time performance under Linux. For instance, it has
been applied to evaluate different hardware and software
platforms (e.g., [15, 25, 26, 29]) as well as various aspects of
the kernel (e.g., [16, 22, 24, 31]); the cyclictest approach has
even been extended to continuously monitor the scheduling
latency of real applications in a production environment [20].
In short, low scheduling latency as reported by cyclictest can
be considered the gold standard of real-time performance in
the Linux real-time community.
LITMUSRT. In contrast to the PREEMPT RT project,
which has been primarily driven by industry concerns, the
Linux Testbed for Multiprocessor Scheduling in Real-Time
Systems [1, 10, 13, 14] is a primarily algorithms-oriented
real-time extension of Linux. While PREEMPT RT aggres-
sively optimizes scheduling latency, LITMUSRT facilitates
the implementation and evaluation of novel scheduling and
locking policies, which it does by introducing a scheduler

2In Linux, via the preempt disable() interface.



plugin interface. That is, the PREEMPT RT patch reengi-
neers core parts of the kernel to avoid delaying Steps 1 and 3,
whereas LITMUSRT primarily modularizes the scheduling
logic that is invoked in Step 3, and leaves other aspects of
the kernel unchanged.

LITMUSRT has served its purpose well and has enabled
a number of studies exploring the tradeoff between system
overheads and analytical temporal guarantees across a di-
verse range of scheduling approaches (e.g., see [5, 7, 14,
19, 23]; a full list is provided online [1]). The key com-
ponent of LITMUSRT that enables such studies is Feather-
Trace [11], a light-weight event tracing toolkit for x86 plat-
forms that is used to collect fine-grained measurements of
kernel overheads. With Feather-Trace, it is possible to extract
detailed overhead profiles, which can then be incorporated
into overhead-aware schedulability analysis to formally val-
idate timing requirements under consideration of system
overheads (this process is discussed in detail in [10, Ch. 4]).

The overhead characteristics of LITMUSRT’s scheduling
policies are well documented and have been evaluated in
detail in prior work [5, 10]. However, because cyclictest can-
not be used (without modifications) to evaluate LITMUSRT

(see Sec. 2), and because Feather-Trace and cyclictest pro-
duce fundamentally different outputs (see Sec. 4), to date
it has unfortunately not been possible to directly compare
LITMUSRT with Linux and the PREEMPT RT patch.

In this paper, we present a comprehensive experimental
evaluation of scheduling latency under LITMUSRT based
on data obtained with a ported version of cyclictest. By com-
paring LITMUSRT against stock Linux and PREEMPT RT,
we seek to address two questions concerning the real-time
capabilities of the current LITMUSRT implementation:

1. Does the LITMUSRT scheduling framework introduce
a significant overhead in terms of scheduling latency?
And:

2. To what extent is LITMUSRT affected by high schedul-
ing latencies due to not (yet) incorporating the improve-
ments of the PREEMPT RT patch?

To answer the first question, we compared LITMUSRT

against the underlying Linux version; to answer the sec-
ond question, we compared LITMUSRT against the latest
stable version of the PREEMPT RT patch.

The rest of the paper is organized as follows. Sec. 2 re-
views how cyclictest operates and describes a faithful port of
cyclictest to LITMUSRT. In Sec. 3, we present our experi-
mental setup and discuss our results. In Sec. 4, we compare
cyclictest with Feather-Trace and remark on some of the
advantages and limitations of the cyclictest benchmark. In
Sec. 5, we conclude and mention future work directions.

2 Porting cyclictest to LITMUSRT

While cyclictest is a remarkably versatile utility, it cannot be
applied to LITMUSRT “out of the box”, since LITMUSRT

provides its own, non-standard system call and userspace
API, which must be used to configure a real-time task’s
scheduling parameters. In this section, we discuss the (few)
changes that were required to port cyclictest to LITMUSRT.

Since the validity of the measurements depends on a
correct and unbiased application of cyclictest, we begin
with a review of cyclictest in Sec. 2.1 and explain how its
scheduling parameters are configured under stock Linux
and PREEMPT RT in Sec. 2.2. In Sec. 2.3, we review
LITMUSRT’s task model and show how cyclictest was
mapped to it. Finally, Sec. 2.4 briefly discusses a simple, but
unexpected problem with the resolution of Linux’s one-shot
timers that we encountered during the experiments.

2.1 An Overview of cyclictest
The execution of cyclictest can be divided into three phases.
During the initialization phase, the program creates a con-
figurable number of threads (according to the specified pa-
rameters), which are then admitted as real-time tasks. The
processor affinity mask is also set, which enables migration
to be restricted. After that, each thread starts a periodic (i.e.,
cyclic) execution phase, during which cyclictest executes the
main measurement loop. An iteration (i.e., one test cycle)
starts when the thread’s associated one-shot timer expires.3

Once the thread resumes, a sample of scheduling latency
is recorded as the difference between the current time and
the instant when the timer should have fired. The timer is
then rearmed to start a new iteration and the thread suspends.
After a configurable duration, the thread is demoted to best-
effort status and exits, and the recorded scheduling latency
samples are written to disk.

The cyclic phase, during which the measurements are
collected, uses only standard userspace libraries (for ex-
ample, POSIX APIs to set up timers, synchronize threads,
etc.) and does not rely on scheduler-specific functional-
ity. Since LITMUSRT maintains compatibility with most
userspace APIs, only the code pertaining to task admis-
sion and exit must be adapted, i.e., it suffices to replace
sched setscheduler() system calls with LITMUSRT’s library
functions for task admission. Importantly, cyclictest’s core
measurement loop does not have to be changed, which helps
to avoid the inadvertent introduction of any bias.

The required modifications, which amount to only 18
lines of new code, are discussed in Sec. 2.3 below. To
illustrate how LITMUSRT’s interface differs from stock
Linux’s interface, we first review how cyclictest is config-
ured as a real-time task in Linux (either with or without the
PREEMPT RT patch).

2.2 Setting Task Parameters under Linux
In accordance with the POSIX standard, Linux implements
a fixed-priority real-time scheduler (with 99 distinct priority
levels). Tasks are dispatched in order of decreasing priority,

3cyclictest supports a large number of options and can be configured to
use different timer APIs. We focus herein on the tool’s default behavior.



and ties in priority are broken according to one of two poli-
cies: under the SCHED RR policy, tasks of equal priority
alternate using a simple round-robin scheme, and, under the
SCHED FIFO policy, multiple tasks with the same priority
are simply scheduled in FIFO order with respect to the time
at which they were enqueued into the ready queue. By de-
fault, tasks are allowed to migrate among all processors in
Linux, but it is possible to restrict migrations using processor
affinity masks, and cyclictest optionally does so.

Fig. 1 summarizes the relevant code from cyclictest that
is used to admit a thread as a SCHED FIFO real-time task
under Linux. First, the thread defines the CPU affinity mask,
which is assigned with pthread setaffinity np() (lines 6–13
in Fig. 1). To attain real-time priority, the thread calls the
sched setscheduler() system call with the desired scheduling
policy and priority as parameters (lines 17-20). Finally, after
the measurement phase, the thread transitions back to non-
real-time status by reverting to the SCHED OTHER best-
effort policy (lines 24-25).

In the experiments discussed in Sec. 3, cyclictest was
configured to spawn one thread per core and to use the
SCHED FIFO policy with the maximum priority of 99. Fur-
ther, processor affinity masks were assigned to fix each mea-
surement thread to a dedicated core. Since there is only one
task per core, the choice of tie-breaking policy is irrelevant.

Executing the initialization sequence depicted in Fig. 1
under LITMUSRT would not result in an error (LITMUSRT

does not disable SCHED FIFO); however, it would also not
achieve the desired effect because, for historical reasons,
real-time tasks must use a different API (which also allows
specifying more explicit and detailed parameters) to attain
real-time status in LITMUSRT. We thus adapted cyclictest
to use LITMUSRT’s API to create an analogous setup.

2.3 Setting Task Parameters under LITMUSRT

LITMUSRT implements the sporadic task model [28], in
which real-time tasks are modeled as a sequence of recurrent
jobs and defined by a tuple Ti = (ei, di, pi), where ei de-
notes the worst-case execution time (WCET) of a single job,
di the relative deadline, and pi the minimum inter-arrival
time (or period). Under LITMUSRT’s event-driven schedul-
ing policies, the parameter ei is optional and used only for
budget enforcement (if enabled). The parameter di, how-
ever, is required for scheduling plugins based on the earliest-
deadline first (EDF) policy, and the parameter pi is always
required to correctly identify individual jobs. In LITMUSRT,
all task parameters are expressed in nanosecond granularity
since this is the granularity internally used by the kernel.

As mentioned in Sec. 2.1, each thread in cyclictest exe-
cutes in a loop, alternating between resuming, measuring
latency, and suspending. The wake-up timer is armed peri-
odically, according to a configurable interval I (in microsec-
onds) defined as a parameter.4 cyclictest’s periodic pattern

4In fact, cyclictest allows two parameters: i, the timer interval of the

1 s t r u c t t h r e a d p a r a m * p a r ;
2
3 / * p a r c o n t a i n s t h e c y c l i c t e s t c o n f i g u r a t i o n
4 * and t h r e a d p a r a m e t e r s * /
5
6 i f ( par−>cpu != −1) {
7 CPU ZERO(&mask ) ;
8 CPU SET ( par−>cpu , &mask ) ;
9 t h r e a d = p t h r e a d s e l f ( ) ;

10 i f ( p t h r e a d s e t a f f i n i t y n p ( t h r e a d ,
11 s i z e o f ( mask ) , &mask ) == −1)
12 warn ( ” Could n o t s e t CPU a f f i n i t y ” ) ;
13 }
14
15 / * . . . * /
16
17 memset(& schedp , 0 , s i z e o f ( schedp ) ) ;
18 schedp . s c h e d p r i o r i t y = par−>p r i o ;
19 i f ( s e t s c h e d u l e r ( 0 , par−>p o l i c y , &schedp ) )
20 f a t a l ( ” F a i l e d t o s e t p r i o r i t y \n ” ) ;
21
22 / * measurement phase * /
23
24 schedp . s c h e d p r i o r i t y = 0 ;
25 s c h e d s e t s c h e d u l e r ( 0 , SCHED OTHER, &schedp ) ;

Figure 1: Task admission in Linux (original cyclictest).

of execution exactly matches the assumptions underlying the
sporadic task model and can thus be trivially expressed with
parameters di = pi = I . To avoid having to estimate the
per-job (i.e., per-iteration) execution cost of cyclictest, we
set ei to a dummy value of 1 ns and disable budget enforce-
ment, so that each thread can always execute without being
throttled by LITMUSRT.

The code necessary to realize admission of a cyclictest
thread as a real-time task under LITMUSRT is shown in
Fig. 2. The first step is defining the task parameters (in
particular, ei, di, and pi) in lines 3–8 and initializing the
userspace interface with init rt thread(). Budget enforce-
ment is disabled (line 7) and the maximum possible priority
is assigned (line 8). LITMUSRT’s fixed-priority plugin cur-
rently supports 512 distinct priorities; the priority field is
ignored by EDF-based plugins.

Next, if a partitioned scheduler is used, a scheduling ap-
proach where each task is statically assigned to a core, the
task must specify its assigned processor in the rt task struc-
ture (line 13) and perform this migration (line 14), which is
accomplished by calling be migrate to().5 Otherwise, if a
global scheduler is used, a scheduling approach where tasks
may migrate freely, a processor assignment is not required
(and ignored by the kernel if provided). The task parame-

first thread, and d, an increment which is added to the interval of each
consecutive thread. For example, if i = 1000 and d = 100, cyclictest
launches threads with intervals I ∈ {1000, 1100, 1200, . . .} µs. For
simplicity, we assume a single interval I . By default, and as employed in
our experiments, cyclictest uses i = 1000µs and d = 500µs.

5The function be migrate to() is currently implemented as a wrapper
around Linux’s processor affinity mask API, but could be extended to
incorporate LITMUSRT-specific functionality in the future. The “be ”
prefix stems from the fact that it may be called only by best-effort tasks.



1 s t r u c t r t t a s k r t t ; / * LITMUSˆRT API * /
2
3 i n i t r t t a s k p a r a m (& r t t ) ;
4 r t t . e x e c c o s t = 1 ;
5 r t t . p e r i o d = par−>i n t e r v a l * 1000 ;
6 r t t . r e l a t i v e d e a d l i n e = par−>i n t e r v a l * 1000 ;
7 r t t . b u d g e t p o l i c y = NO ENFORCEMENT;
8 r t t . p r i o r i t y = LITMUS HIGHEST PRIORITY ;
9

10 i n i t r t t h r e a d ( ) ;
11
12 i f ( par−>cpu != −1) {
13 r t t . cpu = par−>cpu ;
14 i f ( b e m i g r a t e t o ( par−>cpu ) < 0)
15 f a t a l ( ” Could n o t s e t CPU a f f i n i t y ” ) ;
16 }
17
18 i f ( s e t r t t a s k p a r a m ( g e t t i d ( ) , & r t t ) < 0)
19 f a t a l ( ” F a i l e d t o s e t r t p a r a m . ” ) ;
20
21 i f ( t a sk mode ( LITMUS RT TASK ) != 0)
22 f a t a l ( ” f a i l e d t o change t a s k mode .\ n ” ) ;
23
24 / * measurement phase * /
25
26 ta sk mode (BACKGROUND TASK) ;

Figure 2: Task admission in LITMUSRT (modified cyclictest).

ters are stored in the process control block (and validated
by the kernel) with the system call set rt task param() in
line 18. Finally, task mode(LITMUS RT TASK) is called
in line 21, which causes the thread to be admitted to
the set of real-time tasks. After the measurement phase,
task mode(BACKGROUND TASK) is used to give up real-
time privileges and return to SCHED OTHER status.

With these changes in place, cyclictest is provisioned
under LITMUSRT equivalently to the configuration exe-
cuted under Linux (both with and without the PREEMPT RT
patch). This ensures a fair and unbiased comparison.

2.4 The Effect of Timer Resolution on nanosleep()
Despite our efforts to establish a level playing field, we ini-
tially observed unexpectedly large scheduling latencies under
LITMUSRT in comparison with SCHED FIFO, even in an
otherwise idle system. This was eventually tracked down to a
systematic 50µs delay of timer interrupts, which was caused
by the fact that Linux subjects nanosleep() system calls to
timer coalescing to reduce the frequency of wake-ups. As
this feature is undesirable for real-time tasks, it is circum-
vented for SCHED FIFO and SCHED RR tasks. A similar
exception was introduced for LITMUSRT, which resolved
the discrepancy in expected and observed latencies.

It should be noted that LITMUSRT provides its own API
for periodic job activations, and that this API has never been
subject to timer coalescing, as it does not use the nanosleep
functionality. The issue arose in our experiments only be-
cause we chose to not modify the way in which cyclictest
triggers its periodic activations (since we did not want to
change the actual measuring code in any way).

3 Experiments
We conducted experiments with cyclictest to evaluate the
scheduling latency experienced by real-time tasks under
LITMUSRT in comparison with an unmodified Linux ker-
nel. The results were further compared with latencies as
observed under Linux with the PREEMPT RT patch. Our
testing environment consisted of a 16-core Intel Xeon X7550
2.0GHz platform with 1 TiB RAM. Features that lead to un-
predictability such as hardware multithreading, frequency
scaling, and deep sleep states were disabled for all kernels,
along with every kernel configuration option associated with
tracing or debugging. Background services such as cron
were disabled to the extent possible, with the notable excep-
tion of the remote login server sshd for obvious reasons.

We used cyclictest to sample scheduling latency under six
different kernel and scheduling policy combinations. Under
LITMUSRT, which is currently still based on Linux 3.0,
we focused our analysis on a subset of the event-driven
scheduler plugins: the partitioned EDF plugin (PSN-EDF),
the global EDF plugin (GSN-EDF), and the partitioned fixed-
priority plugin (P-FP).6 We did not evaluate LITMUSRT’s
Pfair [4] plugin, which implements the PD2 [3] scheduling
policy, since PD2 is a quantum-driven policy and hence not
optimized to achieve low scheduling latency.7

We further evaluated SCHED FIFO in three Linux ker-
nels: in Linux 3.0 (the stock version, without any patches),
Linux 3.8.13 (again, without patches), and Linux 3.8.13
with the PREEMPT RT patch. Though we compare schedul-
ing latencies of two different underlying versions of Linux,
both considered versions exhibit a similar latency profile (for
which we provide supporting data in Sec. 3.5), so our com-
parison of LITMUSRT and PREEMPT RT is valid despite
the difference in base kernel versions.

For each scheduling policy and kernel, we varied the set of
background tasks to assess scheduling latency in three scenar-
ios: (i) a system with no background workload, (ii) a system
with a cache-intensive, CPU-bound background workload,
and (iii) a system with an interrupt-intensive, I/O-bound
background workload. Of these three scenarios, scenario (i)
is clearly the best-case scenario, whereas scenario (iii) puts
severe stress onto the system. Scenario (ii) matches the back-
ground workload that has been used in prior LITMUSRT

studies (e.g., see [5, 6, 10, 12]).
cyclictest was executed with standard SMP parameters

(one thread per processor), with periods in the range of
I ∈ {1000µs, 1500µs, 2000µs, . . .} and the -m flag enabled,
which locks memory pages with mlockall() to prevent page
faults. The result of each execution is a histogram of ob-
served scheduling latencies, where the x-axis represents the

6The “S” and “N” in the plugin names PSN-EDF and GSN-EDF refer
to support for predictable suspensions and non-preemptive sections; see
[8, 10]. These algorithmic details are irrelevant in the context of this paper.

7Under a quantum-driven scheduler, worst-case scheduling latencies
cannot be lower than the quantum length, which in the current version of
LITMUSRT is tied to Linux’s scheduler tick and thus is at least 1ms .



measured delay and the y-axis the absolute frequency of the
corresponding value plotted on a log scale. Samples were
grouped in buckets of size 1 µs. Each test ran for 20 minutes,
generating around 5.85 million samples per configuration.

The outcome of the experiments is depicted in Figs. 3–7
and analyzed in the following sections. In Secs. 3.1–3.3, we
first discuss the differences and similarities in scheduling
latency incurred under LITMUSRT’s P-FP plugin, Linux 3.0,
and Linux 3.8.13 (both with and without the PREEMPT RT
patch), and then in Sec. 3.4 we compare the results of the
three considered LITMUSRT scheduler plugins with each
other. Finally, Sec. 3.5 compares Linux 3.0 and Linux 3.8.13.

3.1 Idle System

As a first step, we evaluated the latency of the system with-
out background tasks under P-FP and PREEMPT RT, both
running on Linux 3.0, and Linux 3.8.13 with and without the
PREEMPT RT patch. An idle system represents a best-case
scenario as non-timer-related interrupts are rare, because
kernel code and data is likely to remain cached between
scheduler activations, and since code segments within the
kernel that disable interrupts have only few inputs to process.

As can be seen in Fig. 3, the maximum observed schedul-
ing latency was below 20µs under each of the four sched-
ulers (insets (a)-(d)), and even below 12µs under the
PREEMPT RT configuration. The maximum observed
scheduling latency under stock Linux 3.8.13 is somewhat
higher than under both LITMUSRT and stock Linux 3.0. As
high-latency samples occur only rarely, we ascribe this dif-
ference to random chance; with a longer sampling duration,
latencies of this magnitude would likely be detected under
LITMUSRT and Linux 3.0, too. All three Linux variants
exhibited comparable average and median latencies, close to
2.8µs and 2.6µs, respectively. Scheduling latencies under
LITMUSRT’s P-FP scheduler were slightly higher with a me-
dian and average of roughly 3.4µs and 3.1µs, respectively.

Considering the overall shape of the histograms, all four
schedulers exhibit similar trends. Slight differences are vis-
ible in PREEMPT RT’s histogram, which resembles the
results for the other Linux versions in the initial 0-5µs in-
terval, but lacks higher latency samples. This suggests that
PREEMPT RT avoids outliers even in best-case scenarios.

Overall, as there are not many sources of latency in the
absence of a background workload (such as the disabling of
interrupts and contention at the hardware level), the observed
scheduling latencies are suitably low under each tested ker-
nel. While the LITMUSRT patch does appear to increase la-
tencies slightly on average, it does not substantially alter the
underlying latency profile of Linux as other factors dominate.
From this, we conclude that the LITMUSRT framework does
not inherently introduce undue complexity and overheads.

Next, we discuss the effects of increased processor and
cache contention.

3.2 CPU-bound Background Workload
Kernel overheads in general, and thus also the scheduling
latency experienced by real-time tasks, vary depending on
the contention for limited hardware resources such as mem-
ory bandwidth and shared caches. A cache-intensive, CPU-
bound background workload can thus be expected to result
in worsened latencies, as cache misses and contention in the
memory hierarchy are more likely to occur. To evaluate such
a scenario, we executed cyclictest along with CPU-bound
background tasks. For each processor, we instantiated a task
consisting of a tight loop accessing random memory loca-
tions to generate cache misses and contention. Each such task
was configured to have a working set of 20 MiB, to exceed
the size of each processor’s exclusive L2 cache, which has a
capacity of 18 MiB. This causes significant cache pressure.
Fig. 4 shows the recorded latencies for PSN-EDF, Linux 3.0,
and Linux 3.8.13 (with and without PREEMPT RT).

A pairwise comparison between the same policies in
Fig. 3 and Fig. 4 illustrates how scheduling latencies are
impacted by cache and memory issues. As expected, the aver-
age and maximum latencies under P-FP, Linux 3.0 and stock
Linux 3.8.13, depicted in insets (a), (b), and (c), respectively,
increased noticeably. While average and median scheduling
latencies increased by only one to two microseconds in ab-
solute terms, the increase in relative terms is significantly
higher, exceeding 45 percent in the case of average latency
under both LITMUSRT and Linux 3.0. Most significant is
the increase in observed maximum latency, which reached
roughly 48µs, 73µs, and 65µs under LITMUSRT, Linux 3.0,
and Linux 3.8.13, respectively. This shows that even a mod-
est, compute-only background workload can significantly
impact observable latencies in mainline Linux.

Interestingly, the advantages of PREEMPT RT (inset
(d)) become more apparent in this scenario: with the
PREEMPT RT patch, Linux was able to maintain low laten-
cies despite the increased load, both in terms of average as
well as maximum latency (3.4µs and 17.42µs, respectively).
The corresponding stock kernel incurred significantly worse
latencies (see the longer tail in Fig. 4(c)).

Comparing the distribution of samples, it can be seen
that the observed scheduling latency under LITMUSRT’s
P-FP plugin follows a slightly different pattern than either
Linux 3.0 or Linux 3.8.13. In particular, LITMUSRT’s dis-
tribution appears to be “wider” and “heavier,” with a less
rapid decrease in the frequency of samples in the range of
1µs–40µs. This explains LITMUSRT’s slightly higher aver-
age and median scheduling latencies, which are about 1µs
higher than under either Linux 3.0 or Linux 3.8.13. However,
note that LITMUSRT, Linux 3.0, and Linux 3.8.13 are all
similarly subject to long tails, which indicates that the ob-
served maximum latencies are caused by factors unrelated to
LITMUSRT (i.e., they are caused by issues in the underlying
Linux kernel, which the PREEMPT RT patch addresses).

Nonetheless, the histograms reveal that, in the average
case, LITMUSRT adds measurable (but not excessive) ad-



 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 1.00us)

LITMUS^RT P-FP: scheduling latency (no bg tasks)
min=1.96us  max=15.13us  avg=3.45us  median=3.10us  stdev=1.03us

samples: total=5854818

(a) LITMUSRT with the P-FP scheduler plugin

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 1.00us)

Linux 3.0: scheduling latency (no bg tasks)
min=1.87us  max=13.89us  avg=2.89us  median=2.77us  stdev=0.51us

samples: total=5854779

(b) Linux 3.0

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 1.00us)

Linux 3.8.13: scheduling latency (no bg tasks)
min=1.52us  max=19.73us  avg=2.89us  median=2.58us  stdev=0.69us

samples: total=5854801

(c) Linux 3.8.13 without the PREEMPT RT patch

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 1.00us)

Linux 3.8.13 w/ PREEMPT-RT: scheduling latency (no bg tasks)
min=1.55us  max=11.20us  avg=2.74us  median=2.57us  stdev=0.42us

samples: total=5854801

(d) Linux 3.8.13 with the PREEMPT RT patch

Figure 3: Histograms of observed scheduling latency in an otherwise idle system.

ditional overhead. We suspect two primary sources for this
additional overhead. First, LITMUSRT’s scheduling path
needs to acquire (at least) one additional spin lock com-
pared to stock Linux, which is especially costly in the pres-
ence of high cache and memory-bandwidth contention. This
additional spin lock acquisition stems from the fact that
LITMUSRT’s scheduling state is not protected by Linux’s
runqueue locks; however, Linux’s runqueue locks must
still be acquired prior to invoking LITMUSRT’s schedul-
ing framework. And second, the increased average-case
overheads might be due to a lack of low-level optimizations
in LITMUSRT (in comparison with the mature codebase
of Linux). Given that LITMUSRT is primarily a research-
oriented project focused on algorithmic real-time scheduling
issues, a certain lack of low-level tuning is not surprising.

As was already briefly mentioned, the CPU-bound back-
ground workload matches the setup that has been used in
prior LITMUSRT-based studies (e.g., [5, 6, 10, 12]). As
is apparent when comparing Fig. 3(a) with Fig. 4(a), our
data confirms that the CPU-bound workload generates suf-
ficient memory and cache pressure to magnify kernel over-
heads. Conversely, conducting overhead experiments with-
out a cache-intensive background workload does not yield
an accurate picture of kernel overheads. Next, we discuss
the impact of interrupt-intensive background workloads.

3.3 I/O-bound Background Workload
Interrupts are challenging from a latency point of view since
interrupt handlers typically disable interrupts temporarily

and may carry out significant processing, which both directly
affects scheduling latency. It should be noted that Linux
has long supported split interrupt handling (e.g., see [9]),
wherein interrupt handlers are split into a (short) top half
and a (typically longer) bottom half, and only the top half
is executed in the (hard) interrupt context, and the bottom
half is queued for later processing. However, in stock Linux,
bottom halves still effectively have “higher priority” than
regular real-time tasks, in the sense that the execution of bot-
tom halves is not under control of the regular SCHED FIFO
process scheduler8 and thus may negatively affect scheduling
latencies. Further, bottom halves may still disable interrupts
and preemptions for prolonged times.

Considerable effort has been invested by the developers of
the PREEMPT RT patch to address these very issues. This
is accomplished by forcing bottom half processing to take
place in kernel threads (which can be scheduled such that
they do not delay high-priority real-time tasks), and by iden-
tifying and breaking up code segments that disable interrupts
and preemptions for prolonged durations. In contrast, since
LITMUSRT is currently based on stock Linux, and since
the focus of LITMUSRT is the exploration and evaluation
of new scheduling policies (and not the reengineering of the
underlying Linux kernel), no such improvements are present
in LITMUSRT. A key motivation for our experiments was
to determine to which extent LITMUSRT is penalized by the

8Bottom halves are processed by so-called softirqs, which in stock Linux
are invoked from interrupt and exception return paths.



 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 1.00us)

LITMUS^RT P-FP: scheduling latency (CPU-bound bg tasks)
min=2.10us  max=47.59us  avg=5.17us  median=4.37us  stdev=2.75us

samples: total=5854719

(a) LITMUSRT with the P-FP scheduler plugin

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 1.00us)

Linux 3.0: scheduling latency (CPU-bound bg tasks)
min=2.04us  max=72.73us  avg=4.22us  median=3.86us  stdev=1.37us

samples: total=5854711

(b) Linux 3.0

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 1.00us)

Linux 3.8.13: scheduling latency (CPU-bound bg tasks)
min=2.14us  max=64.47us  avg=4.02us  median=3.67us  stdev=1.20us

samples: total=5854707

(c) Linux 3.8.13 without the PREEMPT RT patch

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 1.00us)

Linux 3.8.13 w/ PREEMPT-RT: scheduling latency (CPU-bound bg tasks)
min=1.73us  max=17.42us  avg=3.40us  median=3.02us  stdev=1.12us

samples: total=5854640

(d) Linux 3.8.13 with the PREEMPT RT patch

Figure 4: Histograms of observed scheduling latency in the presence of a CPU-bound background workload.

absence of such improvements.
We explored the impact of interrupt-intensive workloads

on scheduling latency with I/O-bound background tasks that
generate a large number of interrupts, system calls, and
scheduler invocations. To simulate such workloads, we used
a combination of the following three tools.

1. hackbench, a standard stress test for the Linux sched-
uler [30]. Under the employed default settings, it cre-
ates 400 processes that exchange tokens via (local) sock-
ets, thus causing frequent system calls and scheduler
invocations (due to blocking reads).

2. Bonnie++, a standard file system and hard disk stress
test [17]. Bonnie++ tests file creation, random and se-
quential file access, and file system metadata access.
We configured Bonnie++ to use direct I/O, which cir-
cumvents Linux’s page cache (and thus results in in-
creased disk activity). This workload results in a large
number of system calls, disk interrupts, and scheduler
invocations (due to blocking reads and writes).

3. wget, a common utility to download files via HTTP. We
used wget to download a 600 MiB file from a web server
on the local network in a loop. The downloaded file was
immediately discarded by writing it to /dev/null to avoid
stalling on disk I/O. One such download-and-discard
loop was launched for each of the 16 cores. This work-
load generates a large number of network interrupts
as Ethernet packets are received at the maximum rate
sustained by the network (with 1 Gib links in our lab).

In combination, these three workloads cause considerable
stress for the entire kernel, and can be expected to frequently
trigger code paths that inherently have to disable interrupts
and preemptions. While the three tools may not reflect any
particular real-world application, the chosen combination
of stress sources is useful to consider because it approaches
a worst-case scenario with regard to background activity.
The resulting distributions of observed scheduling latency
under P-FP, Linux 3.0, and Linux 3.8.13 with and without
the PREEMPT RT patch are depicted in Fig. 5.

Scheduling latencies are severely affected by the I/O-
bound background workload under LITMUSRT, Linux 3.0,
and stock Linux 3.8.13 alike. The corresponding histograms,
shown in insets (a)–(c) of Fig. 5, respectively, exhibit a long,
dense tail. Note that the x-axis in Fig. 5 uses a different
scale than Fig. 3 and 4: scheduling latencies in excess of
5ms were observed in this scenario, two orders of magnitude
worse than in the previous ones. Scheduling latencies in this
range clearly limit these kernels to hosting applications that
are not particularly latency-sensitive.

In contrast, Linux 3.8.13 with the PREEMPT RT patch
maintained much lower scheduling latencies, in the order
of tens of microseconds, despite the stress placed upon
the system, which can be seen in Fig. 5(d). Nonetheless,
the maximum observed scheduling latency did increase to
44µs, which shows that, even with the PREEMPT RT patch,
non-negligible latencies arise given harsh workloads. How-
ever, this maximum was still significantly lower than the
maximum latency previously observed under Linux 3.8.13



 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 150 300 450 600 750 900 1050 1200 1350

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 1.00us)

LITMUS^RT P-FP: scheduling latency (IO-bound bg tasks)
min=1.89us  max=3956.48us  avg=6.60us  median=5.17us  stdev=12.76us

samples: total=5854660

(a) LITMUSRT with the P-FP scheduler plugin

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 150 300 450 600 750 900 1050 1200 1350

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 1.00us)

Linux 3.0: scheduling latency (IO-bound bg tasks)
min=1.85us  max=4300.43us  avg=6.39us  median=4.98us  stdev=13.25us

samples: total=5854674

(b) Linux 3.0

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 150 300 450 600 750 900 1050 1200 1350

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 1.00us)

Linux 3.8.13: scheduling latency (IO-bound bg tasks)
min=1.85us  max=5464.07us  avg=6.23us  median=4.60us  stdev=15.91us

samples: total=5854773

(c) Linux 3.8.13 without the PREEMPT RT patch

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 150 300 450 600 750 900 1050 1200 1350

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 1.00us)

Linux 3.8.13 w/ PREEMPT-RT: scheduling latency (IO-bound bg tasks)
min=1.47us  max=44.16us  avg=4.12us  median=4.07us  stdev=0.99us

samples: total=5854748

(d) Linux 3.8.13 with the PREEMPT RT patch

Figure 5: Histograms of observed scheduling latency in the presence of an I/O-bound background workload.

without the PREEMPT RT patch in the presence of only
CPU-bound workloads, which is apparent when comparing
Fig. 4(c) with Fig. 5(d). Remarkably, the average and median
scheduling latency under PREEMPT RT worsened by less
than 0.7µs with the introduction of the I/O-bound workload.

Finally, we also ran two variations of the I/O-bound work-
load with varying degrees of disk activity. First, we disabled
bonnie++ altogether, which brought down the maximum
observed latencies under Linux 3.0, Linux 3.8.13 (without
the PREEMPT RT patch), and LITMUSRT to around 550µs,
which is still too high for practical purposes, but shows that
the extreme outliers are caused by disk-related code. And
second, we tried launching an instance of bonnie++ on each
core, which brought the disk I/O subsystem to its knees and
caused latency spikes in the range of 80–200 milliseconds (!)
under the three non-PREEMPT RT kernels. Remarkably, the
maximum observed scheduling latency under PREEMPT RT
remained below 50µs even in this case.

Overall, our experiment asserts the importance of
PREEMPT RT in turning Linux into a viable real-time plat-
form. Given the huge differences in maximum observed
latency, LITMUSRT would be substantially improved if it
incorporated PREEMPT RT. Though this will require con-
siderable engineering effort (both patches modify in part the
same code regions), there are no fundamental obstacles to
rebasing LITMUSRT on top of the PREEMPT RT patch.

3.4 Scheduling Latency of LITMUSRT Plugins

In the preceding sections, we have focused on LITMUSRT’s
P-FP plugin, since it implements the same scheduling policy
as SCHED FIFO (albeit with a larger number of priorities
and support for additional real-time locking protocols) and
thus allows for the most direct comparison. We also in-
vestigated how scheduling latency varies among the three
evaluated LITMUSRT scheduler plugins. Fig. 6 compares
the P-FP, PSN-EDF and GSN-EDF plugins in LITMUSRT,
under each of the three considered background workloads.

Comparing insets (g), (h), and (i), it is apparent that the
three plugins are equally subject to high scheduling latencies
(approaching 4ms) in the case of the I/O-bound background
workload. This is not surprising, since the long tail of high
scheduling latencies is caused by the design of the underlying
Linux kernel, and thus independent of the choice of plugin.

Further, comparing Fig. 6(a) with Fig. 6(b), and Fig. 6(d)
with Fig. 6(e), it is apparent that the PSN-EDF and P-FP plu-
gins yield near-identical scheduling latency distributions,
despite the difference in implemented scheduling policy.
This, however, is expected since the tests run only one real-
time task per processor; the real-time scheduler is hence not
stressed and the cost of the scheduling operation is so small
compared to other sources of latency that any differences
between fixed-priority and EDF scheduling disappear in the
noise. Differences emerge only for higher task counts [10].

However, looking at Fig. 6(f) and Fig. 6(i), it is apparent
that the scheduling latency is noticeably higher under GSN-



 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 1.00us)

LITMUS^RT P-EDF: scheduling latency (no bg tasks)
min=1.76us  max=26.17us  avg=3.45us  median=2.87us  stdev=1.24us

samples: total=5854783

(a) PSN-EDF (idle)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 1.00us)

LITMUS^RT P-FP: scheduling latency (no bg tasks)
min=1.96us  max=15.13us  avg=3.45us  median=3.10us  stdev=1.03us

samples: total=5854818

(b) P-FP (idle)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 1.00us)

LITMUS^RT G-EDF: scheduling latency (no bg tasks)
min=1.59us  max=14.34us  avg=3.06us  median=2.56us  stdev=1.18us

samples: total=5854797

(c) GSN-EDF (idle)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 1.00us)

LITMUS^RT P-EDF: scheduling latency (CPU-bound bg tasks)
min=2.40us  max=73.27us  avg=5.14us  median=4.21us  stdev=2.95us

samples: total=5854739

(d) PSN-EDF (CPU-bound)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 1.00us)

LITMUS^RT P-FP: scheduling latency (CPU-bound bg tasks)
min=2.10us  max=47.59us  avg=5.17us  median=4.37us  stdev=2.75us

samples: total=5854719

(e) P-FP (CPU-bound)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 1.00us)

LITMUS^RT G-EDF: scheduling latency (CPU-bound bg tasks)
min=1.91us  max=60.20us  avg=5.81us  median=5.39us  stdev=2.51us

samples: total=5854728

(f) GSN-EDF (CPU-bound)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 150 300 450 600 750 900 1050 1200 1350

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 1.00us)

LITMUS^RT P-EDF: scheduling latency (IO-bound bg tasks)
min=1.98us  max=3874.99us  avg=6.56us  median=5.11us  stdev=12.66us

samples: total=5854606

(g) PSN-EDF (I/O-bound)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 150 300 450 600 750 900 1050 1200 1350

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 1.00us)

LITMUS^RT P-FP: scheduling latency (IO-bound bg tasks)
min=1.89us  max=3956.48us  avg=6.60us  median=5.17us  stdev=12.76us

samples: total=5854660

(h) P-FP (I/O-bound)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 150 300 450 600 750 900 1050 1200 1350

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 1.00us)

LITMUS^RT G-EDF: scheduling latency (IO-bound bg tasks)
min=2.26us  max=3905.79us  avg=10.95us  median=7.38us  stdev=14.11us

samples: total=5854793

(i) GSN-EDF (I/O-bound)

Figure 6: Histograms of observed scheduling latency under LITMUSRT with the PSN-EDF, P-FP, and GSN-EDF plugins, under each of the
three considered background workloads.

EDF in the average case, which is due to its more complex
implementation. Issues such as contention caused by coarse-
grained locking, extra bookkeeping, and cache-coherence
delays when accessing shared structures increase both the
median and average observed scheduling latencies.

While this shows that LITMUSRT’s implementation of
global scheduling incurs higher overheads, there is little
reason to employ global scheduling when the number of
tasks does not exceed the number of available cores (which
is the case in the considered cyclictest setup). If the number
of tasks actually exceeds the number of available cores—that
is, if the scheduling problem is not entirely trivial—then
other factors such as the impact of interference from higher-
priority tasks or a need for bounded tardiness [18] can make
minor differences in scheduling latency a secondary concern,
with only little impact on overall temporal correctness.

3.5 Linux 3.0 vs. Linux 3.8

In this paper, we compared the latency of LITMUSRT and
Linux with the PREEMPT RT patch using the latest ver-
sions of each patch, which are based on Linux 3.0 and Linux
3.8.13, respectively. As already discussed in the preceding
sections, to verify that comparing the two patches is valid
despite the difference in the underlying kernel version, we
also measured the scheduling latencies exhibited by the two

underlying (unpatched) Linux versions. For ease of compari-
son, the results are repeated in Fig. 7.

A comparison of inset (a)-(c) with insets (d)-(f) shows
that, though the observed maxima vary (for example, from
13.89µs to 19.73µs in the scenario without background
tasks), the shapes of the distributions are largely similar. Fur-
ther, there are no substantial differences in the average and
median latencies of the two kernel versions. This indicates
that no significant improvements concerning latency and pre-
emptivity have been incorporated since Linux 3.0. Therefore,
a direct comparison between the LITMUSRT patch and the
PREEMPT RT patch is valid.

This concludes the discussion of our experimental results.
Next, we briefly discuss how the presented cyclictest experi-
ments differ from the overhead and latency tracing typically
used to evaluate LITMUSRT.

4 Limitations of cyclictest

As discussed in Sec. 1, LITMUSRT is normally evaluated
using Feather-Trace, not cyclictest. While cyclictest is a very
useful tool to assess and compare different kernel versions
(e.g., it can be used to test whether a proposed patch has
a negative impact on scheduling latency), it also has some
limitations if used as the sole metric for estimating a system’s



 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 1.00us)

Linux 3.0: scheduling latency (no bg tasks)
min=1.87us  max=13.89us  avg=2.89us  median=2.77us  stdev=0.51us

samples: total=5854779

(a) Linux 3.0 (idle)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 1.00us)

Linux 3.0: scheduling latency (CPU-bound bg tasks)
min=2.04us  max=72.73us  avg=4.22us  median=3.86us  stdev=1.37us

samples: total=5854711

(b) Linux 3.0 (CPU-bound)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 150 300 450 600 750 900 1050 1200 1350

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 1.00us)

Linux 3.0: scheduling latency (IO-bound bg tasks)
min=1.85us  max=4300.43us  avg=6.39us  median=4.98us  stdev=13.25us

samples: total=5854674

(c) Linux 3.0 (I/O-bound)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 1.00us)

Linux 3.8.13: scheduling latency (no bg tasks)
min=1.52us  max=19.73us  avg=2.89us  median=2.58us  stdev=0.69us

samples: total=5854801

(d) Linux 3.8.13 (idle)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 10 20 30 40 50 60 70 80 90

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 1.00us)

Linux 3.8.13: scheduling latency (CPU-bound bg tasks)
min=2.14us  max=64.47us  avg=4.02us  median=3.67us  stdev=1.20us

samples: total=5854707

(e) Linux 3.8.13 (CPU-bound)

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 150 300 450 600 750 900 1050 1200 1350

nu
m

be
r o

f s
am

pl
es

overhead in microseconds (bin size = 1.00us)

Linux 3.8.13: scheduling latency (IO-bound bg tasks)
min=1.85us  max=5464.07us  avg=6.23us  median=4.60us  stdev=15.91us

samples: total=5854773

(f) Linux 3.8.13 (I/O-bound)

Figure 7: Histograms of observed scheduling latency under Linux 3.0 and 3.8.13, under each of the three considered background workloads.

capability to provide temporal guarantees.
The primary advantage of cyclictest is that it provides

an easy-to-interpret metric that reflects various sources of
unpredictability as a single, opaque measure. That is, it treats
the kernel and the underlying hardware as a black box and
reports the actual cumulative impact of system overheads
and hardware capabilities on real-time tasks. For application
developers, this is convenient as it requires neither post-
tracing analysis nor a detailed understanding of the kernel.

In contrast, Feather-Trace yields a large number of (non-
human-readable) event timestamps that require matching,
filtering, post-processing, and a statistical evaluation. The
resulting overhead profile is primarily intended for integra-
tion into schedulability analysis and is less suitable to direct
interpretation. However, while cyclictest is arguably more
convenient, LITMUSRT’s Feather-Trace approach provides
a more complete picture since it yields the data required to
assess the impact of kernel overheads on tasks other than the
highest-priority task, as we explain next.

The main feature of Feather-Trace is that it integrates
many tracepoints in the kernel, which can be used to collect
fine-grained overheads. By measuring and considering the
various sources of delay individually, a detailed analysis of
the worst-case cumulative delay can be carried out.

For example, for a task other than the highest-priority
task, the cumulative delay incurred depends on the worst-
case scheduling latency and the delays due to preemptions
by higher-priority tasks, which in turn depends on context-
switching overheads, scheduling overheads in the presence of
potentially many ready tasks, and so on. With Feather-Trace
in LITMUSRT, it is possible to measure all these aspects
individually, and then account for them during schedulability
analysis (see [10, Ch. 3] for a comprehensive introduction
to overhead accounting), such that the observed worst-case

overheads are fully reflected in the derived temporal guaran-
tees for all tasks (and not just the highest-priority task).

As another example, consider how tasks are resumed
under partitioned schedulers such as the P-FP plugin (or
SCHED FIFO with appropriate processor affinity masks). If
a real-time task resumes on a remote processor (i.e., any pro-
cessor other than its assigned partition), an inter-processor in-
terrupt (IPI) must be sent to its assigned processor to trigger
the scheduler. IPIs are of course not delivered and processed
instantaneously in a real system and thus affect scheduling
latency if they arise. When scheduling cyclictest on hard-
ware platforms with processor-local timers (such as local
APIC timers in modern x86 systems), however, such IPIs
are not required because the interrupt signaling the expiry of
cyclictest’s one-shot timer is handled locally. If we simply
execute cyclictest under PSN-EDF, P-FP, or SCHED FIFO
with appropriate processor affinity masks to determine “the
worst-case latency,” it will never trace the impact of such
IPIs, even though an actual real-time application that is trig-
gered by interrupts from devices other than timers (e.g., such
as a sensor) would actually be subject to IPI delays. In con-
trast, in the methodology used to evaluate LITMUSRT (see
[10, Ch. 4]), Feather-Trace is used to measure IPI latencies,
which are then correctly accounted for in the schedulability
analysis to reflect the worst-case task-activation delay.

In summary, it is impossible to derive how real-time tasks
other than the highest-priority task are affected by overheads
from cyclictest-based experiments, because overhead-aware
schedulability analysis is fundamentally required to make
temporal guarantees for all tasks. Such an analysis is made
possible by Feather-Trace’s ability to extract specific over-
heads. While obtaining measurements in a fine-grained man-
ner is more involved than simply running cyclictest, Feather-
Trace’s fine-grained measurement approach provides a flexi-



bility that is not achievable with coarse-grained approaches
such as cyclictest. This, of course, does not diminish
cyclictest’s value as a quick assessment and debugging aid,
but it should not be mistaken to provide a general measure of
a system’s “real-time capability”; it can only show the lack
of such capability under certain circumstances—for instance,
by exposing scheduling latencies in excess of 5ms in the
presence of I/O-bound background tasks.

5 Conclusion and Future Work
We presented an empirical evaluation of scheduling latency
under LITMUSRT using cyclictest. We ported cyclictest to
LITMUSRT’s native API and collected samples of schedul-
ing latency under several of its event-driven scheduler plu-
gins, in three system configurations (an idle system, a sys-
tem with CPU-bound background tasks, and a system with
I/O-bound background tasks). For the purpose of compari-
son, we repeated the same measurements under Linux 3.0,
Linux 3.8.13, and Linux 3.8.13 with the PREEMPT RT
patch using the original, unmodified cyclictest version.

The results obtained from an idle system and in the pres-
ence of CPU-bound background tasks showed that while
LITMUSRT introduces some additional overheads, the dif-
ference is minor in absolute terms and manifests only
in the average and median scheduling latencies. Impor-
tantly, LITMUSRT was not observed to affect the maximum
scheduling latencies negatively, which is due to the fact that
other factors in mainline Linux have a much larger impact on
worst-case delays. We conclude from these observations that
LITMUSRT does not impose inherently impractical over-
heads. Further, we believe that the observed minor increase
in average and median scheduling latency is not fundamental,
but caused by a lack of low-level optimizations that could be
rectified with additional engineering effort.

However, our data also documents that LITMUSRT inher-
its mainline Linux’s weaknesses in the presence of I/O-bound
background tasks. Again, LITMUSRT did not increase the
observed maximum scheduling latency, but the latency pro-
file of the underlying Linux 3.0 kernel renders it unfit for se-
rious (hard) real-time applications. Further, our experiments
confirmed that this is still the case with the more recent
mainline Linux version 3.8.13. It would thus be highly de-
sirable to combine LITMUSRT’s algorithmic improvements
with the increased responsiveness under load achieved by
the PREEMPT RT patch, which remains as future work.

References
[1] The LITMUSRT project. http://www.litmus-rt.org.
[2] Real-time linux wiki. cyclictest - RTwiki. https://rt.wiki.

kernel.org/index.php/Cyclictest.
[3] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair scheduling of

synchronous periodic tasks. In Proc. of the 13th Euromicro Conference
on Real-Time Systems, pages 76–85. IEEE, 2001.

[4] S. Baruah, N. Cohen, C. Plaxton, and D. Varvel. Proportionate
progress: A notion of fairness in resource allocation. Algorithmica,
15(6):600–625, 1996.

[5] A. Bastoni, B. Brandenburg, and J. Anderson. An empirical compari-
son of global, partitioned, and clustered multiprocessor EDF sched-
ulers. In Proc. of the 31st Real-Time Systems Symposium, pages 14–24,
2010.

[6] A. Bastoni, B. Brandenburg, and J. Anderson. Is semi-partitioned
scheduling practical? In Proc. of the 23rd Euromicro Conference on
Real-Time Systems, pages 125–135, 2011.

[7] A. Block. Adaptive multiprocessor real-time systems. PhD thesis,
University of North Carolina at Chapel Hill, 2008.

[8] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible
real-time locking protocol for multiprocessors. In Proc. of the 13th
IEEE Conference on Embedded and Real-Time Computing Systems
and Applications, pages 47–57, 2007.

[9] D. Bovet and M. Cesati. Understanding The Linux Kernel. O’Reilly
& Associates Inc, third edition, 2005.

[10] B. Brandenburg. Scheduling and locking in multiprocessor real-time
operating systems. PhD thesis, The University of North Carolina at
Chapel Hill, 2011.

[11] B. Brandenburg and J. Anderson. Feather-trace: A light-weight event
tracing toolkit. In Proc. of the Workshop on Operating Systems Plat-
forms for Embedded Real-Time applications, pages 61–70, 2007.

[12] B. Brandenburg and J. Anderson. A comparison of the M-PCP, D-
PCP, and FMLP on LITMUSRT. In Proc. of the 12th Intl. Conference
on Principles of Distributed Systems, pages 105–124, 2008.

[13] B. Brandenburg, A. Block, J. Calandrino, U. Devi, H. Leontyev, and
J. Anderson. LITMUSRT: a status report. 9th Real-Time Linux
Workshop, 2007.

[14] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson.
LITMUSRT: A testbed for empirically comparing real-time multi-
processor schedulers. In Proc. of the 27th IEEE Real-Time Systems
Symposium, pages 111–123, 2006.

[15] G. Chanteperdrix and R. Cochran. The ARM fast context switch
extension for Linux. Real Time Linux Workshop, 2009.

[16] R. Cochran, C. Marinescu, and C. Riesch. Synchronizing the Linux
system time to a PTP hardware clock. In Proc. of the 2011 Intl. IEEE
Symposium on Precision Clock Synchronization for Measurement
Control and Communication, pages 87–92, 2011.

[17] R. Coker. bonnie++ — program to test hard drive performance. Linux
manual page.

[18] U. Devi. Soft real-time scheduling on multiprocessors. PhD thesis,
Chapel Hill, NC, USA, 2006.

[19] G. Elliott and J. Anderson. Globally scheduled real-time multiproces-
sor systems with GPUs. Real-Time Systems, 48(1):34–74, 2012.

[20] C. Emde. Long-term monitoring of apparent latency in PREEMPT RT
Linux real-time systems. 12th Real-Time Linux Workshop, 2010.

[21] L. Fu and R. Schwebel. Real-time linux wiki. RT PREEMPT
HOWTO. https://rt.wiki.kernel.org/index.php/
RT_PREEMPT_HOWTO.

[22] L. Henriques. Threaded IRQs on Linux PREEMPT-RT. In Proc. of
the 5th Intl. Workshop on Operating Systems Platforms for Embedded
Real-Time Applications, pages 23–32, 2009.

[23] C. Kenna, J. Herman, B. Brandenburg, A. Mills, and J. Anderson. Soft
real-time on multiprocessors: are analysis-based schedulers really
worth it? In Proc. of the 32nd Real-Time Systems Symposium, pages
93–103, 2011.

[24] J. Kiszka. Towards Linux as a real-time hypervisor. In Proc. of the
11th Real-Time Linux Workshop, pages 205–214, 2009.

[25] K. Koolwal. Investigating latency effects of the linux real-time pre-
emption patches (PREEMPT RT) on AMD’s GEODE LX platform.
In Proc. of the 11th Real-Time Linux Workshop, pages 131–146, 2009.

[26] A. Lackorzynski, J. Danisevskis, J. Nordholz, and M. Peter. Real-
time performance of L4Linux. In Proc. of the 13th Real-Time Linux
Workshop, pages 117–124, 2011.

[27] P. McKenney. A realtime preemption overview. 2005. LWN.
http://lwn.net/Articles/146861/.

[28] A. Mok. Fundamental design problems of distributed systems for the
hard-real-time environment. PhD thesis, 1983.

[29] M. Traut. Real-time CORBA performance on Linux-RT PREEMPT.
9th Real-Time Linux Workshop, 2007.

[30] C. Williams and D. Sommerseth. hackbench — scheduler bench-
mark/stress test. Linux manual page.

[31] B. Zuo, K. Chen, A. Liang, H. Guan, J. Zhang, R. Ma, and H. Yang.
Performance tuning towards a KVM-based low latency virtualization
system. In Proc. of the 2nd Internation Conference on Information
Engineering and Computer Science, pages 1–4. IEEE, 2010.

http://www.litmus-rt.org
https://rt.wiki.kernel.org/index.php/Cyclictest
https://rt.wiki.kernel.org/index.php/Cyclictest
https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO
https://rt.wiki.kernel.org/index.php/RT_PREEMPT_HOWTO

	Introduction
	Porting cyclictest to LITMUSRT
	An Overview of cyclictest
	Setting Task Parameters under Linux
	Setting Task Parameters under LITMUSRT
	The Effect of Timer Resolution on nanosleep()

	Experiments
	Idle System
	CPU-bound Background Workload
	I/O-bound Background Workload
	Scheduling Latency of LITMUSRT Plugins
	Linux 3.0 vs. Linux 3.8

	Limitations of cyclictest
	Conclusion and Future Work

