
Swayam: Distributed Autoscaling to Meet SLAs of Machine
Learning Inference Services with Resource Eiciency
Arpan Gujarati

MPI-SWS, Germany

arpanbg@mpi-sws.org

Sameh Elnikety

MSR, USA

samehe@microsoft.com

Yuxiong He

MSR, USA

yuxhe@microsoft.com

Kathryn S. McKinley

Google, Inc., USA

ksmckinley@google.com

Björn B. Brandenburg

MPI-SWS, Germany

bbb@mpi-sws.org

ABSTRACT
Developers use Machine Learning (ML) platforms to train ML mod-

els and then deploy these ML models as web services for inference

(prediction). A key challenge for platform providers is to guarantee

response-time Service Level Agreements (SLAs) for inference work-

loads while maximizing resource eciency. Swayam is a fully dis-

tributed autoscaling framework that exploits characteristics of pro-

duction ML inference workloads to deliver on the dual challenge of

resource eciency and SLA compliance. Our key contributions are

(1) model-based autoscaling that takes into account SLAs and ML

inference workload characteristics, (2) a distributed protocol that

uses partial load information and prediction at frontends to provi-

sion new service instances, and (3) a backend self-decommissioning

protocol for service instances. We evaluate Swayam on 15 popular

services that were hosted on a productionML-as-a-service platform,

for the following service-specic SLAs: for each service, at least

99% of requests must complete within the response-time threshold.

Compared to a clairvoyant autoscaler that always satises the SLAs

(i.e., even if there is a burst in the request rates), Swayam decreases

resource utilization by up to 27%, while meeting the service-specic

SLAs over 96% of the time during a three hour window. Microsoft

Azure’s Swayam-based framework was deployed in 2016 and has

hosted over 100,000 services.

CCS CONCEPTS
•Computer systems organization→Cloud computing;Avail-
ability; • Software and its engineering → Cloud computing;
Message oriented middleware; • General and reference→ Evalu-
ation; Experimentation;

KEYWORDS
Distributed autoscaling, machine learning, SLAs

ACM Reference Format:
ArpanGujarati, Sameh Elnikety, YuxiongHe, Kathryn S.McKinley, and Björn

B. Brandenburg. 2017. Swayam: Distributed Autoscaling to Meet SLAs

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for prot or commercial advantage and that copies bear this notice and the full citation

on the rst page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA
© 2017 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-4720-4/17/12.

https://doi.org/10.1145/3135974.3135993

of Machine Learning Inference Services with Resource Eciency. In Pro-
ceedings of Middleware ’17 . ACM, New York, NY, USA, 12 pages. https:

//doi.org/10.1145/3135974.3135993

1 INTRODUCTION
The increasing eectiveness of Machine Learning (ML) and the ad-

vent of cloud services is producing rapid growth of Machine Learn-

ing as a Service (MLaaS) platforms such as IBM Watson, Google

Cloud Prediction, Amazon ML, and Microsoft Azure ML [1, 2, 5, 7].

Clients of these platforms create and train ML models, and publish

them as web services. End-users and client applications then query

these trained models with new inputs and the services perform

inference (prediction) [24]. As a typical example, consider a mobile

tness application that collects sensor data and sends a request to

an inference service for predicting whether a person is running,

walking, sitting, or resting. Such inference requests are stateless

and bound by Service Level Agreements (SLAs) such as “at least 99%

of requests must complete within 500ms.” SLA violations typically

carry an immediate nancial penalty (e.g., clients are not billed for

non-SLA-compliant responses) and must thus be minimized.

To meet the service-specic SLAs, MLaaS providers may thus

be tempted to take a conservative approach and over-provision

services with ample hardware infrastructure, but this approach

is impractical. Since the services and the overall system exhibits

highly uctuating load, such over-provisioning is economically

not viable at cloud scale. For example, while tens of thousands of

services may be deployed, many fewer are active simultaneously,

and the load on active services often varies diurnally.

Resources must thus be allocated dynamically in proportion to

changing demand. Provisioning resources, however, represents a

major challenge for MLaaS providers because the processing time of

an inference request is typically in the range of tens to hundreds of

milliseconds, whereas the time required to deploy a fresh instance

of an ML service to handle increasing load is signicantly larger

(e.g., a few seconds)—a slow reaction to load changes can cause

massive SLA violations.

Naive over-provisioning approaches are economically not viable

in practice, whereas naive, purely reactive resource provisioning

heuristics aect SLA compliance, which decreases customer satisfac-

tion and thus also poses an unacceptable commercial risk. A policy

for predictive autoscaling is thus required to hide the provisioning

latency inherent in MLaaS workloads.

Prior autoscaling and prediction solutions for stateless web ser-

vices [10, 12, 16, 19, 31] typically perform centralized monitoring of

https://doi.org/10.1145/3135974.3135993
https://doi.org/10.1145/3135974.3135993
https://doi.org/10.1145/3135974.3135993

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA A. Gujarati et al.

request rates and resource usage to make accurate request rate pre-

dictions, and then proactively autoscale backend service instances

based on the predicted rates. However, due to a number of mis-

matches in assumptions and target workloads, these approaches do

not transfer well to the MLaaS setting. For one, they assume that

setup times are negligible, whereas ML backends incur signicant

provisioning delays due to large I/O operations while setting up

newML models. Further, the lack of a closed-form solution to calcu-

late response-time distributions even for simple models with setup

times makes the problem more challenging. Prior solutions also

assume a centralized frontend. In contrast, large ML services must

be fault-tolerant and handle cloud-scale loads, which necessitates

the use of multiple independent frontends.
In this paper, motivated by the needs and scale ofMicrosoft Azure

Machine Learning [5], a commercial MLaaS platform, we propose

Swayam, a new decentralized, scalable autoscaling framework that

ensures that frontends make consistent, proactive resource alloca-

tion decisions using only partial information about the workload

without introducing large communication overheads.

Swayam tackles the dual challenge of resource eciency and

SLA compliance for ML inference services in a distributed setting.

Given a pool of compute servers for hosting backend instances of
each service, Swayam ensures an appropriate number of service

instances by predicting load, provisioning new instances as needed,

and reclaiming unnecessary instances, returning their hardware

resources to the global server pool (see Fig. 1 for an illustration).

Swayam is fully distributed, i.e., frontends execute the protocol in

parallel without anymutual coordination. Each frontend obtains the

number of active frontends F gossiped from backends and combines

it with its local load to independently predict the global request

rate and estimate the total number of backends required to meet

SLAs. Despite small dierences in frontend estimates, the protocol

generally delivers a consistent global view of the number of back-

ends required for the current load, leaving unnecessary backends

idle. The request-assignment strategy used by the frontends then

restricts requests to active “in-use” backends, so that “non-in-use”

backends self-decommission passively in a distributed fashion.

The model-based and SLA-aware resource estimator in Swayam

exploits ML inference workload properties as derived from the

production logs, such as request arrival patterns, execution time

distributions, and non-trivial provisioning times for each service. It

combines these factors analytically with the service-specic SLA,

accounts for delays due to the underlying distributed load balancing

mechanism, and accurately estimates the minimum number of

service-specic backends required for SLA compliance.

While this protocol is deployed in the Microsoft Azure MLaaS

platform, to comply with public disclosure rules, this paper reports

on an independent re-implementation deployed in a server farm

consisting of eight frontend and up to a hundred backend servers.

For comparison, we simulate a clairvoyant system that knows the

processing time of each request beforehand and uses it to make

intelligent SLA-aware scheduling decisions. The clairvoyant system

can travel back in time to setup an ML instance in the past, so as

to “magically” provision new ML instances without latency. It thus

represents a near-optimal, but unattainable baseline. We evaluate

Swayam using production traces of 15 of the most popular services

hosted on the production MLaaS platform, while imposing the SLA

H
/W

 B
ro

ke
r

G
lobal pool of BEs

Global resource allocator / control plane

FE

FE

FE

MLaaS Inference
Architecture

Swayam

C
lie

nt
s

C
lie

nt
s

C
lie

nt
s

Service 1 BEs

Service N BEs

Figure 1: System architecture of an ML as a service platform
for handling inference requests corresponding to N distinct
services. The global resource allocator periodically assigns
idle backends (BEs) from the global pool to each of the ser-
vices. The frontends (FEs) setup service-specic ML mod-
els on these idle backends before using them for inference.
Swayamminimizes the number of provisioned backends “in
use” (black squares) while remaining SLA compliant, and en-
sures that redundant “non-in-use” backends (grey squares)
self-decommission themselves to the global pool.

that, for each service, at least 99% of requests must complete within

a service-specic response-time threshold.

The results show that Swayam meets SLAs over 96% of the

time during a three hour window, while consuming about 27%

less resources than the clairvoyant autoscaler (which by denition

satises all SLAs 100% of the time). In other words, Swayam sub-

stantially improves resource eciency by trading slight, occasional

SLA-compliance violations in a way that does not violate client

expectations, i.e., only when the request rate is extremely bursty.

To summarize, we present the design and implementation of

Swayam, a fully distributed autoscaling framework for MLaaS in-

frastructure with multiple frontends that meets response time SLAs

with resource eciency. Our main contributions are as follows:

(1) Comparison of distributed load balancing algorithms showing

that a simple approach based on random dispatch, requiring no

state on the backends, is sucient to optimize for tail latencies.

(2) An analytical model for global resource estimation and predic-

tion that takes into account local frontend loads, delays due to

the random-dispatch-based distributed load balancer, SLAs, and

other specic characteristics of ML inference workloads.

(3) Novel mechanisms that proactively scale-out backends based

on the resource estimation model, and passively scale-in back-

ends by self-reclamation. The scale-out mechanism seamlessly

integrates with an underlying request-response mechanism.

(4) A simple gossip protocol for fault-tolerance and that scales well

with load and infrastructure expansion.

(5) Workload characterization of 15 popular services hosted on the

Microsoft Azure MLaaS platform, and evaluation of Swayam

against a clairvoyant baseline for this production workload.

Paper organization. We discuss related work in §2. The MLaaS

platform architecture, workload characterization, SLA denition,

and system objectives are discussed in §3. The design of Swayam,

Swayam: Distributed Autoscaling to Meet SLAs of ML Inference Services Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA

including request rate prediction, model-based autoscaling, dis-

tributed protocol, and comparison of dierent load balancing strate-

gies is discussed in §4. Implementation details and evaluation results

are presented in §5. Concluding remarks are given in §6.

2 RELATEDWORK
Jennings et al. [20] and Lorido-Botran et al. [22] survey a wide

range of resource management systems, focusing on horizontal and

vertical scaling, stateless and stateful services, single- and multi-

tier infrastructure, etc. Since Swayam specically aims for SLA-

aware autoscaling of ML backends for stateless inference services,

in a horizontally distributed, large-scale MLaaS infrastructure, we

compare and contrast it against systems with similar objectives.

Urgaonkar et al. [31] target multi-tier e-commerce applications

with a tier each for HTTP servers, Java application servers, and

a database. They assume centralized and perfect load balancing

at each tier, and model every server in each tier using a G/G/1
queuing theory model. Swayam explicitly accounts for the non-

zero waiting times due to non-ideal load balancing in its resource

estimation model, considers the challenge of multiple frontends

making distributed autoscaling decisions, and also handles crash

failures. To meet SLAs, Urgaonkar et al. employ long-term predic-

tive provisioning based on cyclic variations in the workload (over

days or weeks) and reactive provisioning for short-term correc-

tions. In contrast, Swayam is designed for short-term predictive

provisioning to satisfy SLAs while minimizing resource waste.

The imperial Smart Scaling engine (iSSe) [19] uses a multi-tier

architecture similar to Urgaonkar et al. [31] and explicitly mod-

els the provisioning costs in each tier for autoscaling. It uses the

HAProxy [3] network load balancer and a resource monitor in

each tier; the proling data obtained by the resource monitor is

stored in a central database, and is queried by a resource estimator.

This centralized design scales only to a handful of heavyweight

servers, e.g., for Apache, Tomcat, and MySQL, but not the tens of

thousands of lightweight containers required by large-scale MLaaS

providers. SCADS [30], an autoscaler for storage systems, also uses

a centralized controller with sequential actions and suers from

similar drawbacks.

Zoolander [28], a key-value store, reduces tail latency to meet

SLAs using replication for predictability. Redundant requests sent
to distinct servers tolerate random delays due to OS, garbage col-

lection, etc. Google Search [15] uses a similar approach, but delays

sending the redundant requests to limit useless work. Swayam

solves an orthogonal eciency problem: scaling backends to meet

SLAs of multiple services in a resource-constrained environment

because there may be insucient resources to run all published

services. Replication for predictability can be incorporated into

Swayam with minor changes to its analytical model.

Adam et al. [9] andWuhib et al. [32] present distributed resource

management frameworks organized as a single overlay network.

Similar to Swayam, their frameworks are designed to strive for scal-

ability, robustness, responsiveness, and simplicity. But an overlay

network needs to be dynamically recongured upon scaling and

the reconguration must propagate to all nodes. Swayam is a better

t for large-scale datacenter environments because scaling-in and

scaling-out of backends is free of conguration overheads. Swayam

uses a simple protocol based on a consistent backend order to im-

plement a passive distributed scale-out mechanism. Realizing such

a design in an overlay network is fairly nontrivial as frontends do

not have a complete view of all backends.

Recent frameworks such as TensorFlow [8] and Clipper [14] op-
timize the training and inference pipeline for ML workloads. For

example, TensorFlow uses dataow graphs to map large training

computations across heterogenous machines in the Google cluster.

Clipper reduces the latency of inference APIs through caching, use

of intelligent model selection policies, and by reducing the accuracy

of inference for straggler mitigation. Swayam is complementary to

these frameworks, focusing on infrastructure scalability and e-

ciency for ML inference services. In addition, Swayam relies on a

black box ML model—it does not leverage ML model internals, but

uses externally-proled ML model characteristics.

Autoscaling is closely related to load balancing. Many distributed

load balancers dispatch incoming requests randomly to backends.

Random dispatch is appealing because it is simple and stateless,

but it incurs non-zero waiting times even in lightly-loaded systems.

The power-of-d approach reduces this waiting time by querying

d > 1 servers independently and uniformly at random from the n
available servers, sending a request to the backend with the smallest

number of queued requests [25, 26], which reduces the expected

waiting time exponentially over d = 1. Join-Idle-Queue (JIQ) load-

balancing further reduces waiting times by eliminating the time to

nd an idle backend from the critical path [23]. Both the power-of-d

and JIQ policies optimize for mean waiting times, whereas Swayam

must optimize for tail latencies. (e.g., 99th percentile response times).

Swayam thus uses random dispatch for load balancing. It performs

better in terms of the 99
th
percentile waiting times, and it is also

amenable to analysis (§4.5).

3 ARCHITECTURE, WORKLOAD, AND SLAS
Large-scale MLaaS providers generally support end-to-end train-

ing of ML models, such as for linear regression, cluster analysis,

collaborative ltering, and Bayesian inference. Developers pub-

lish the trained models as a web service that users directly query.

Users may submit real-time and batch requests. Batch APIs process

a set of requests asynchronously, and may have response times

in hours. We focus on the real-time APIs for which the expected

response time is low, e.g., 100ms. Providers charge clients for real-

time requests based on the number of responses that complete

under a given response time threshold stipulated by an SLA. Thus,

to optimize protability, the goal for the provider is to minimize

the resources dedicated to each service while still satisfying the

SLA, so that more services can be deployed on the same infrastruc-

ture. However, achieving this goal is challenging due to varying

service demands.

For example, an application for wearable devices may give real-

time feedback on exercise routines, computing whether a person is

running, walking, sitting, or resting using sensor data. This problem

is computationally intensive and challenging [6], and therefore is

typically performed server-side, rather than on the device. The

application developer decides on a suitable learning algorithm,

trains it using a data set (which includes the ground truth and a set

of sensor values from the accelerometer, gyroscope, GPS, etc.), and

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA A. Gujarati et al.

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250 300 350 400

N
or

m
al

iz
ed

 F
re

qu
en

cy
 (%

)

Service Times (ms)

Trace 1

Data from trace (bin width = 10)
Fitted lognormal distribution

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 100 200 300 400 500 600 700

N
or

m
al

iz
ed

 F
re

qu
en

cy
 (%

)

Service Times (ms)

Trace 3

Data from trace (bin width = 10)
Fitted lognormal distribution

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 20 40 60 80 100 120 140 160 180

N
or

m
al

iz
ed

 F
re

qu
en

cy
 (%

)

Service Times (ms)

Trace 2

Data from trace (bin width = 10)
Fitted lognormal distribution

Figure 2: Processing time histogram for three services over a three-hour period (truncated at the 99th percentile for clarity).

then publishes the trained model as an ML web service. End users

(or applications) query the model directly with requests containing

sensor data from their wearable device. The request arrival rates

for this service depend on the number of users, time of day, etc.,

since users may be more likely to exercise in the morning and early

evening. The provider thus needs to provision enough backends to

respond to requests during daily peaks. It must also simultaneously

manage many such ML services.

This section describes the MLaaS provider infrastructure, work-

load characteristics of ML inference requests, SLA denitions, and

the system objectives of Swayam.

3.1 System Architecture
The cloud provider’s overall system architecture for serving the ML

inference requests consists of a general pool of servers, a control

plane to assign a set of backends to each service for computation, a

set of frontends for fault-tolerance and scalability, and a broker (see

Fig. 1). Such a horizontally scalable design with multiple frontends

and backends is common in distributed systems [29]. A similar ar-

chitecture exists for batch requests and for the training APIs, which

uses backends from the same general pool of servers, but which is

driven by dierent objectives, such as ensuring a minimum training

accuracy, minimizing the makespan of batch jobs, etc. In this paper,

we focus on autoscaling the ML inference serving architecture.

The broker is an ingress router and a hardware load balancer.

Frontends receive requests from the broker, and act as a software-

based distributed dynamic load balancer (and in case of Swayam,

also as a distributed autoscaler). Each frontend inspects the request

to determine the target ML service, and then selects one of the back-

ends assigned to the service to process the request. Since all fron-

tends perform the same work and their processing is lightweight,

we employ a standard queuing theory algorithm to autoscale the

total number of frontends based on load [29].

Each backend independently processes ML inference requests.

ML inference requests tend to have large memory footprints and
are CPU-bound [4, 13, 27]. This constraint limits the number of

backends that each chip multiprocessor (CMP) machine can host.

A backend is encapsulated in a container with an ML model and

pre-loaded libraries with dedicated CPU and memory resources

on the host machine. Each backend can execute only one request

at a time, all requests are read-only, and any two requests to the

same or dierent services are independent. As none of the existing

ML platforms currently perform online (or incremental) learning,

clients must redeploy their service to update the model. We assume

that backends are assigned to CMP machines by the control plane

using a packing algorithm that considers the service’s memory and

CPU requirements, and do not consider this problem further.

3.2 Workload Characterization
We describe the characteristics of MLaaS deployments by examin-

ing 15 popular services hosted on Microsoft Azure’s MLaaS plat-

form. The services were chosen based on the number of requests

issued to each of them during a three hour window. To design

Swayam, we study the ML model characteristics that can be pro-

led externally by the provider, i.e., we consider the ML models

as a black box. In particular, we leverage the per-request com-

putation times, the provisioning times, and the number of active

services hosted by the provider.

To characterize MLaaS computation (or service) times we mea-

sured the CPU time used by each backend while serving a request,

since it is the dominant bottleneck. Figure 2 depicts the computation

time distribution for three representative services out of the chosen

15. Variation is low because requests consist of xed-sized feature

vectors, and since popular ML models exhibit input-independent

control ow. Non-deterministic machine and OS events are thus the

main source of variability. The computation times closely follow

log-normal distributions, which has been previously observed in

similar settings [11, 18]. We use this observation for designing the

analytical model for resource estimation (see §4.3 and 4.5).

Another key characteristic of MLworkloads is the non-negligible

provisioning times (also known as deployment times), which can be

much larger than request processing times. They rule out purely

reactive techniques for scale-out, and motivate the need for pre-

dictive autoscaling, where the prediction period is a function of

the provisioning times (§4.2). Provisioning a backend requires a

signicant amount of time since it involves creating a dedicated

container with an instance of the service-specic ML model and

supporting libraries obtained from a shared storage subsystem.

MLaaS providers host numerous ML services concurrently, and

each service requires a dedicated service instance due to its mem-

ory and CPU requirements. Consecuently, a static partitioning of

resources is infeasible. Even though only a fraction of the total num-

ber of registered services are active at any time, this set uctuates.

Swayam: Distributed Autoscaling to Meet SLAs of ML Inference Services Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA

Cold

Warm
Not in-use

Idle

Warm
In-use

Idle

Warm
In-use
Busy

Provision
ML model

New
request Request

ends
Garbage
collection Idle for a while

New request Idle

Idle

Busy

Busy Idle

Busy

In-useNot in-use

WarmCold

Figure 3: State transition diagram for backends, and an ex-
ample scenario for eight backends assigned to a service.

Autoscaling is thus essential for MLaaS providers to meet SLAs of

all services with ecient resource usage.

3.3 Service Level Agreements (SLAs)
SLA is dened w.r.t. a specic ML service, forming an agreement

between its publisher and the provider. We dene three common

SLA components as our overall objective. (1) Response-time thresh-
old: Clients are only charged if the request response time is below

this upper bound, denoted RTmax . Thus, the provider can prune a
request that will not meet its deadline. Alternatively, clients can

mark in the SLA if they do not want requests to be pruned. (2) Ser-
vice level: Clients are charged only if at least SLmin percent of all

requests are completed within the response-time threshold, where

SLmin denotes the desired service level, because otherwise the

overall service is not considered responsive. (3) Burst threshold:
Providers must tolerate an increase in request arrival rate by a

factor of up toU , over a given short time interval, without violating

objectives (1) and (2), whereU denotes the burst threshold.

The burst threshold determines the service’s resilience to short-

term load variations and the required degree of over-provisioning.

It depends on the average time to provision a new backend for

this service. Notice that when the load increases by, say, 50%, the

system still needs sucient time to provision additional backends

to maintain the same burst threshold at the new higher load. The

higher the burst threshold, the more likely it is for a service to

satisfy objectives (1) and (2), albeit at the cost of requiring more

resources to be held back in reserve.

4 SWAYAM
Autoscaling involves two main decisions:when to scale-out or scale-
in, and how many backends to use. This section describes our dis-

tributed, scalable, and fault tolerant solution to these problems.

We rst give an overview of Swayam (§4.1), describe request rates

prediction (§4.2) and backend resource estimation (§4.3), and then

explain Swayam’s fully distributed protocol to integrate them (§4.4).

Last, we explore dierent load balancing policies for Swayam (§4.5).

4.1 Overview
Swayam assigns a cold or a warm state to each backend associated

with any service. A cold backend is not active (i.e., either not allo-

cated, starting up, or failed) and cannot service requests. A warm
backend is active and can service requests. It is either busy, if it is
currently servicing a request, or is idle otherwise. A warm in-use
backend is frequently busy. A warm not-in-use backend has been

idle for some time, and becomes a cold backend after a congurable

idle-time threshold when it releases its resources. See Fig. 3 for an

illustration of the dierent state transitions. Swayam relies on these

states for passive scale-in and proactive scale-out of backends.
Frontends and backends communicate with a simple messaging

protocol. When a frontend receives a request from the broker, it

forwards the request to a warm in-use backend corresponding to

the requested service. If the backend is cold or busy, it declines the

request and returns an unavailability message to the frontend. If the

backend is idle, it executes the request and returns the inference

result to the same frontend.

Each frontend periodically invokes the request rate predictor

and demand estimator. Since the provisioning time for ML services

(say tsetup) is much higher than the time to service a request, the

demand estimator locally computes the demand at least tsetup time

in advance. If the predicted demand exceeds the current capacity

of warm backends, the frontend increases the number of in-use

backends by sending requests to the cold backends, which then

start warming up in advance. Swayam thus proactively scales out

backends without any coordination between the prediction and

estimation procedures on each frontend.

In contrast to the proactive scale-out procedure, backends are

scaled in passively. If a backend has been set up for a service S , but
it has remained unused for longer than a given threshold, say T , it
decommissions (or garbage-collects) itself and transitions into the

cold state. The threshold T is a small multiple of the request rate

prediction period at the frontends.

The advantages of our design include simplicity, distribution

of scale-in decisions, and tolerance to unpredicted load increases.

(1) When frontends determine they need fewer backends, they

simply stop sending requests to backend(s), transitioning them from

warm-in-use to warm-not-in-use; they do not need to communicate

with each other. (2) If load increases unexpectedly or is imbalanced

across frontends, frontends instantaneously transitionwarm-not-in-

use backends to warm-in-use backends by sending them requests.

With this design, the objective of Swayam is tominimize resource

usage across all services while meeting the service-specic SLAs. To

achieve this goal, Swayam greedily minimizes the number of warm

backends used by each service, while ensuring SLA compliance

for that service. Therefore, in the remainder of this section, we

describe Swayam’s design in detail w.r.t. a single service.

4.2 Request Rate Prediction
Swayam predicts loads over short time periods to tolerate the rapid

changes that we observe in MLaaS workloads. Let nF denote the

total number of frontends. Let λ denote the global request arrival

rate for a service observed at the provider, and let λi denote the
local request arrival rate for that service observed at frontend Fi .
Swayam uses linear regression to predict the request arrival rate

tsetup time units from now, where tsetup is an upper bound on the

backend service provisioning time. Because requests are uniformly

distributed among nF frontends, each frontend can independently

compute the global request rate as λ = nF · λi . If some frontend

fails, load at the other frontends will increase. If it takes longer to

detect the new correct value of nF the resulting estimates for λ will

conservatively over provision the warm number of backends.

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA A. Gujarati et al.

 Waiting Time Distribution

Response Time Modeling

fCDF

“convolution
with”

M

U · �

RTTavg

percentileSLth
min

response time

(initial value)

Yes

 RTmax?

n = 1

No

n = n + 1
n

compliance)
(min. for SLA

nB

4

3
1

2

5

Figure 4: Procedure to compute the minimum number of
backends nB required for SLA compliance, based onU and λ.

We use a gossip protocol to communicate nF to frontends. When

a backend returns a response to an inference request, it includes the

number of frontends from which it had received requests during

the last tsetup time units. When new frontends come online or fail,

other frontends are thus quickly notied by the backends without

any special communication rounds. Alternatively, the broker could

periodically communicate nF to all frontends, but we avoid using

this approach since the broker is assumed to be a hardware load

balancer with limited functionality.

Users dene a burst threshold, denotedU , to cope with abrupt

load increases (U ≥ 1). If one expects the request rate to double

within tsetup time, U = 2 would ensure SLA-compliance during

the transient period of sharp load increase, at the cost of over-

provisioned resources. To account for U , the predicted rate λ is

multiplied with thresholdU before using it for resource estimation.

4.3 Backend Resource Estimation Model
Weuse amodel-based approach to estimate theminimumnumber of

backends nB required for SLA compliance. Compared to using con-

trol theory or learning, a model-based approach quickly produces a

high-delity prediction. Since prior model-based autoscalers using

queuing-theoretic models assume ideal load balancing, we propose

a new model that takes into account the non-zero waiting times

due to load balancing, the SLA parameters, and the ML workload

characteristics. The model is illustrated in Fig. 4.

Each frontend uses the model to independently arrive at a con-

sistent view of backend resource demands, using the following

input parameters: the expected request arrival rate U · λ, the cu-
mulative density function fCDF of the request computation times,

the average round trip time RTTavд between the frontends and

the backends, the minimum expected service level SLmin , and the

response time threshold RTmax specied in the SLA.

As per the model, the expected request response time assuming

n warm backends is estimated as follows. Based on the underlying

load balancing policy, 1 the waiting time distribution is computed

and 2 convoluted with the measured computation time distribu-

tion to calculate the response-time distribution (see §4.5 for details).

We then compute the minimum number of backends nB required

for SLA compliance. Starting with n = 1 potential backends in

each iteration, 3 we compute the SLthmin percentile response time

assuming n warm backends, 4 compare this value with RTmax to

check for SLA compliance, and 5 repeat steps 3 and 4 for increas-

ing values of n to nd the smallest value nB that satises the SLA.

If n can be potentially very large, we can use binary search and/or

cache values.

4.4 Distributed Autoscaling Protocol
This section presents the Swayam distributed frontend protocol, in

which (1) all frontends operate independently, without communicat-

ing with any other frontends, and (2) the system globally complies

with the SLA. If the global load requires n backends, then each

frontend locally arrives at this same estimate and sends requests

only to the same set of n warm backends, such that no backends

remain warm unnecessarily. The protocol oers SLA compliance—

by performing globally consistent, short-term, prediction-based

provisioning—and resource eciency—by globally minimizing n.
Algorithm 1 presents a pseudocode of the frontend protocol for

a single service. It relies on two key assumptions. (1) All frontends
have the same orderedmapB (Line 1) of the set of backends assigned

to the service, for example, through a conguration le in a fault-

tolerant service registry. (2) The map uniquely orders the backends,

say, based on their unique host IDs. Parametern denotes the number

of warm backends in B as estimated by the local instance of Swayam

in the frontend, and is initialized to one (Line 2).

The ExecReq(r) procedure is invoked when a new request r
arrives or if a busy or a failed backend rejects request r that was
earlier sent to it by the frontend. The later policy limits the eects of

backend failures. If the request has already exceeded its maximum

response time (Line 4), the algorithm triggers autoscaling (Line 5)

and optionally prunes (drops) the request (Line 6). Otherwise, the

frontend dispatches the request to an idle backend Bidle from the

prex {B1,B2, . . . Bn } of the ordered set B (Lines 7-10).

After dispatching a request, the frontend updates the request

history for the purpose of arrival-rate prediction (Line 11). It then

invokes the autoscaling part of the protocol if needed, i.e., if the

request exceeds its maximum response time (and violates the SLA),

or if the periodic timer for autoscaling (not shown in Algorithm 1)

expires (Line 12). The autoscaling logic consists of three steps:

(a) request-rate prediction (Line 13), (b) model-based resource esti-

mation (Line 14), and (c) autoscaling actions (Lines 16 and 19).

Since the set of available backends B is ordered and since fron-

tends generally agree on n, the load balancer almost always chooses

Bidle from the rst n backends in B. Scaling decisions are thus con-
sistent, despite being fully distributed. For example, if an increase

in the workload requires x additional backends, and assuming each

frontend independently arrives at the same value of x , then all fron-

tends start sending warmup requests to the same set of x backends

{Bn+1,Bn+2, . . . ,Bn+x }. By updating their local copies of variable

n, frontends seamlessly migrate to the new consistent system cong-

uration without any explicit communication. Similarly, if a decrease

in workload reduces the number of required backends by y, then,
by virtue of backend ordering, all frontends stop dispatching re-

quests to backends {Bn−y+1, . . . ,Bn−1,Bn }. These backends thus
gradually transition into warm-not-in-use state, and eventually

garbage-collect themselves, without any explicit signal from the

frontends or from other backends.

A practical problem may arise from short-term, low-magnitude

oscillations due to small variations in the incoming workload and

due to the discrete nature of the resource. That is, if n frequently

oscillates between, say, x and x + 1, the extra backend Bx+1 is

neither garbage collected nor utilized continuously for request

execution. To avoid making such frequent small adjustments in n,

Swayam: Distributed Autoscaling to Meet SLAs of ML Inference Services Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA

Algorithm 1 Frontend protocol for receiving the requests.

1: B ← {B1,B2, . . . Bmax } . available backends

2: n ← 1 . single backend used initially

3: procedure ExecReq(r)
4: if RequestExceedsMaxRT(r) then
5: AutoScalingRequired← true
6: TimeOut(r) . if request pruning is enabled

7: if RequestHasNotTimedOut(r) then
8: Bidle ← LoadBalancer(B, N)

9: . guarantees that Bidle ∈ {B1, . . . ,Bn }
10: DispatchReq(r , Bidle)

11: UpdateReqHistory(r) . used for prediction

12: if AutoScalingRequired() then
13: rate ← PredictRate()

14: nnew ← AnalyticalModel(r , rate)
15: if nnew > n then
16: SendWarmupReqsTo(Nn+1, . . . Bnnew)
17: n ← nnew
18: else if nnew < n then
19: n ← RegulateScaleDown(nnew)

RegulateScaleDown(nnew) (Line 21) smoothes out oscillations in

n by enforcing a minimum time between two consecutive scale-in

decisions. Although this aects the resource eciency slightly (for

genuine cases of scale-in), it prevents undue SLA violations.

The order of operations in Algorithm 1 ensures that autoscaling

never interferes with the critical path of requests, and the idempo-

tent nature of model-based autoscaling ensures that strict concur-

rency control is not required. Nonetheless, we can prevent multiple

threads of a frontend from sending concurrent warmup requests to

the same set of backends by simple mechanisms, such as by using

a try_lock() to guard the autoscaling module.

4.5 Load Balancing
Load balancing (LB) is an integral part of Swayam’s resource estima-

tion model and its distributed autoscaling protocol. We experimen-

tally analyzed the best distributed LB algorithms in the literature,

and based on the results, chose to use random dispatch in Swayam.

An ideal LB policy for Swayam (1)must eectively curb tail wait-
ing times (rather than mean waiting times) since the target SLAs

are dened in terms of high response-time percentiles, (2) may not

use global information that requires communication or highly accu-

rate workload information to ensure unhindered scalability w.r.t.

the number of frontends and backends, and (3) must be amenable
to analytical modeling for the model-based resource estimation

to work correctly. Based on these criteria, we evaluated the fol-

lowing three distributed LB policies: Partitioned scheduling (PART),
Join-idle-queue (JIQ) [23], and Random dispatch (RAND).

• PART: Backends are partitioned evenly among all frontends.

Pending requests are queued at the frontends. Each partition

resembles an ideal global scheduling system with a single queue.

• JIQ: Requests are queued at the backends. To help frontends

nd idle or lightly loaded backends, a queue of idle backends is

maintained at every frontend that approximates the set of idle

backends. A frontend dispatches a request to a backend in the

idle queue, or to a random backend if the queue is empty.

• RAND: Frontends forward any incoming request to a random

backend. If the backend is busy, it rejects the request and sends it

back to the frontend, which then retries another random backend.

• Baseline: As a baseline, we used a global scheduler, where a single
request queue is served by all the backends. Global scheduling

thus represents a lower bound on actually achievable delays.

We simulated these policies in steady state assuming that re-

quests arrive following a Poisson distribution, and that the request

computation times follow a lognormal distribution. The distribu-

tion was derived from one of the production workload traces with

a mean computation time of 117ms . Fig. 5(a) illustrates the ob-

served 99
th
percentile waiting times as a function of the number

of backends n. Additionally, a threshold of 350ms (the dashed line)

illustrates a typical upper bound on acceptable waiting times.

We observed three trends. First, PART performs closest to the

global baseline. Second, 99
th
percentile waiting times under both

JIQ and RAND initially drop quickly as n increases, but there exists

a point of diminishing returns close to n = 40, which results in long

tails (albeit well below the threshold). Third, 99
th
percentile waiting

times under JIQ are almost twice as high as those under RAND.

The last observation was unexpected. JIQ is designed to ensure

that requests do not bounce back and forth between frontends

and backends, and that the time to nd an idle backend does not

contribute to the critical path of a request. Thus, mean waiting

times under JIQ are close to mean waiting times under the global

scheduling baseline [23]. However, we found that this property

does not extend to JIQ’s tail waiting times. It is further nontrivial

to analytically compute percentile waiting times in JIQ.

PART exhibited desirable tail waiting times, but it is not a good

t for Swayam, as it requires heavyweight, explicit measures to deal

with frontend crashes, such as partition reconguration. That is,

PART is not implicitly fault tolerant or tolerant of small variations

in local predictions of n.
We thus chose RAND (1) due to its simplicity and obliviousness

to host failures, (2) because the resulting tail waiting times are

comfortably below typically acceptable thresholds (they are good

enough for ML inference workloads), and (3) the percentile waiting
times can be analytically derived (see below). We modify RAND to

maintain a congurable minimum delay between two consecutive

retries of the same request to prevent message storms during times

of transient overload. RAND can also be enhanced with the power-

of-d approach to reduce variances in the percentile waiting times

without aecting other components of Swayam [26, 30].

Under the modied RAND policy, the pth percentile waiting time

of a request when there are n active backends is approximated as:

ωp = d1 +

(
ln (1 − p/100)

ln (λ/nµ)
− 1

)
· (d1 + d2 + ∆), (1)

where d1 is the mean time required to send a request from the

frontend to the backend, d2 is the mean time required to send a

request from the backend to the frontend, ∆ is the enforced delay

between consecutive retries, λ is the mean arrival rate, and µ is

the mean service rate. Parameters d1, d2, and µ are derived from

system measurements, and λ is determined as explained in §4.2.

The pth percentile response time for the ML inference request is

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA A. Gujarati et al.

 0
 100
 200
 300
 400
 500
 600
 700

 30 40 50 60 70 80 90 100

W
ai

tin
g

Ti
m

e
(m

s)

#Backends

Threshold (350ms)
Global Scheduling

Partitioned Scheduling
Join-Idle-Queue

Random Dispatch

(a) LB policies comparison

101

102

103

104

 30 40 50 60 70 80 90 100

Ti
m

e
(m

s)

#Backends

RAND WT (analysis)
RAND RT (analysis)

RAND WT (simulation)
RAND RT (simulation)

(b) Simulation vs. analysis for RAND LB policy

Figure 5: (a) Comparing 99th percentile waiting times of dierent LB policies. The threshold of 350ms is a ballpark gure
derived from production traces to provide a rough estimate of the maximum waiting time permissible for SLA compliance.
(b) 99th percentile waiting (WT) and response times (RT) predicted by the analytical model versus simulation results. The
model predicts the trends with sucient accuracy.

approximated by convoluting the derived waiting time distribution

with the measured computation time distribution of the respective

ML service. Derivation of Eq. 1 and the convolution procedure are

provided in the online appendix [17]. The analysis results are close

to the measurements obtained from the simulator, demonstrating

the high accuracy of our model (see Fig. 5(b)).

5 EVALUATION
As we are unable to report results from the production system,

we prototyped Swayam in C++ on top of the Apache Thrift li-

brary, using its RPC protocols and C++ bindings. Each component,

i.e., frontends, backends, and the broker, is a multi-threaded Apache

Thrift server, and communicates with other components through

pre-registered RPC calls.

We used a cluster of machines networked over a 2x10GiB Broad-

com 57810-k Dual Port 10Gbit/s KR Blade. Each machine consists

of two Intel Xeon E5-2667 v2 processors with 8 cores each. We used

a pool of one hundred backend containers, eight frontend servers,

one server for simulating clients, and one broker server.

The client machine replays production traces by issuing requests

to the broker based on recorded arrival times. The broker, which

simulates the ingress router, forwards the requests to the frontends

in a round-robin fashion. The frontends then dispatch requests as

per Swayam’s autoscaling policy or a comparison policy. Since we

do not have access to the actual production queries, but only their

computation times, to emulate query computation, the backend

spins for the duration equivalent to the request’s computation time.

Similarly, to emulate setup costs, it spins for the setup time duration.

Workload. We obtained production traces for 15 services hosted

on Microsoft Azure’s MLaaS platform that received the most re-

quests during a three-hour window (see §3.2). Each trace contained

the request arrival times and the computation times. For a detailed

evaluation of Swayam, we chose three traces with distinct request

arrival patterns that are the most challenging services for autoscal-

ing due to their noisiness and burstiness. Their mean computation

times are c̄1 = 135ms , c̄2 = 117ms , and c̄3 = 167ms . The provision-
ing time was not known from the traces. We assumed it to be 10s for

each service based on discussions with the production team. For

resource eciency experiments, all 15 traces were used.

Conguration parameters. Unless otherwise mentioned, we

congured Swayam to satisfy a default SLA with a desired ser-

vice level of 99%, a response time threshold of 5c̄ , where c̄ denotes
the service’s mean computation time, a burst threshold of 2x, and

no request pruning. We chose 2x as the default burst threshold to

tolerate the noise observed in the arrival rates of the production

traces, e.g., see the oscillatory nature of trace 1 in Fig. 6(a), and to

tolerate frequent bursts in the arrival pattern, e.g., see the spikes at

time 6000s and 7500s in Fig. 6(b).

Request pruning was disabled by default even though it actually

helps improve the overall SLA compliance during spikes or bursts

in the request arrivals (as shown below in §5.2). Based on conversa-

tions with the production team, most client applications seem to

time out on requests that take a long time to complete, but requests

that complete within a reasonable amount of time, despite violating

the stated SLA, are useful to the clients.

Since the employed traces represent already active services, each

service was pre-provisioned with ve backends before replaying

the trace, for bootstrapping. Traces 1 and 2 were congured with

the default SLA. Trace 3 was congured with a higher burst factor of

8x to tolerate very high bursts in its request rates. The default SLA

conguration is just a suggestion. In practice, the SLA is determined

by the client who has better information about the workload.

Interpreting the gures. We illustrate results using three types

of gures: request rate gures, resource usage gures, and SLA

compliance gures. Each of these is explained in detail below.

Figs. 6(a)–6(c) illustrate the actual request rates and the predicted
request rates at one frontend to evaluate the prediction accuracy.

We computed actual request rates oine using trailing averages

over a 100s window in steps of 10s. Swayam predicted request

rates online over a window of size 100s, using linear regression and

request history from the past 500s. The system forecasted request

rates 10s and 100s into the future, i.e., the request rates predicted

for time t are computed at time t − 10s and t − 100s .

Swayam: Distributed Autoscaling to Meet SLAs of ML Inference Services Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2000 4000 6000 8000 10000

R
eq

ue
st

 R
at

es
 (r

eq
s/

se
c)

Time (sec)

Actual
Predicted by FE0 (100s in advance)

Predicted by FE0 (10s in advance)

t2 ⇡ 7500s

t1 ⇡ 4500s

(a) Request rates (trace 1)

 0

 5

 10

 15

 20

 0 2000 4000 6000 8000 10000

R
eq

ue
st

 R
at

es
 (r

eq
s/

se
c)

Time (sec)

Actual
Predicted by FE0 (100s in advance)

Predicted by FE0 (10s in advance)

t3 ⇡ 6300s

(b) Request rates (trace 2)

 0

 5

 10

 15

 20

 25

 30

 0 2000 4000 6000 8000 10000

R
eq

ue
st

 R
at

es
 (r

eq
s/

se
c)

Time (sec)

Actual
Predicted by FE0 (100s in advance)

Predicted by FE0 (10s in advance)

(c) Request rates (trace 3)

Figure 6: Actual and predicted request rates at FE0 for production traces 1, 2, and 3. Results for other frontends are similar.

Figs. 7(a)–7(c) illustrate the total numbers of backends that are

warm and the total number of backends that are in-use by a frontend.
We keep track of state changes on the backend to report warm

backends. We report warm-in-use backends for any frontend Fi
based on its local state that its load balancer uses for dispatching. For

both request rate and resource usage gures, results for remaining

frontends were similar (and not shown to avoid clutter).

Response times and SLA compliance over time are illustrated in

Figs. 7(d)–7(f). Trushkowsky et al. [30] measured SLA compliance

by computing the average 99
th
percentile latency over a 15 minutes

smoothing interval. In contrast, we measure SLA compliance over

a xed number of requests, i.e., we use a set of 1000 requests as the

smoothing window. We slide the window in steps of 10 requests,

and report the SLA achieved for each step. Our metric is actually

stricter than prior work since during load bursts, prior metrics

might report only a single failure.

5.1 Mechanisms for Prediction and Scaling
Although both actual and predicted request rates are measured

over an interval of 100s, Figs. 6(a)–6(c) show that predicted request

rate curves are smoother in comparison. This is because the pre-

dictor relies on data from the past 500s, and forecasts based on

the trend observed in that data (which acts as an averaging fac-

tor). Second, we observe that despite the noise in the production

traces 1 and 2, the predictor is able to track the actual request rates

closely. The predictor is also able to track intermittent spikes in

these request rates. To understand the predictor’s behavior in detail,

a portion of Fig. 6(a) corresponding to time interval [1000s, 2500s]
is magnied and illustrated in the gure below.

 30

 35

 40

 45

 50

 1000
 1200

 1400
 1600

 1800
 2000

 2200
 2400

R
eq

ue
st

 R
at

es
 (r

eq
s/

se
c)

Time (sec)

Actual
Predicted (100s in advance)

predicted at
time 1800s

using request history
of last 500 seconds

We observe that there are small frequent oscillations in the re-

quest rates, and that the peaks and troughs in the predicted request

rate corresponding to those in the actual request rate are slightly

shifted to the right. Swayam ensures that this behavior does not

aect the end results since the system smoothes the eect of os-

cillations on the estimated resource demand (§4.4). In particular,

the number of warm-in-use backends does not change frequently

and it is reduced only if the drop in request rates is observed over

a longer period of time (e.g., ten minutes). Furthermore, Swayam

holds in reserve some servers (warm not-in use) for a while before

they self-decommission.

Figs. 7(a)–7(c) validate the ecacy of the distributed scale-in

and scale-out mechanisms used by Swayam. For example, at time

t1 ≈ 4500s , due to a spike in the request rates as seen in Fig. 6(a),

the frontend decides to scale-out the number of backends to fteen

(see Fig. 7(a)). As a result, the number of warm backends increases

from thirteen to fteen, i.e., two additional backends are warmed

up. But the spike lasts only for few minutes, and so the frontends

scale-in locally, i.e., they start using a reduced number of backends.

Once all frontends scale-in locally to thirteen or fewer backends, the

two additional backends idle, and are eventually collected. If at least

one frontend had continued using more than thirteen backends for

a longer period of time, or if at least one frontend used a dierent

set of thirteen backends, then the two additional backends would

not have been garbage collected.

5.2 SLA Compliance with Autoscaling
As illustrated in Fig. 7(d), Swayam complies with the SLA for almost

the entire duration of trace 1. There are some SLA violations in

the beginning because the ve backends initially setup for boot-

strapping fall short of the expected resource demand of twelve

backends, but Swayam quickly scales-out to account for this dif-

ference. The SLA is also briey violated at times t1 ≈ 4500s and
t2 ≈ 7500s when there are sudden increases in the request rate.

Even though these increases were within the over-provisioning

factor of 2x, the instantaneous rate at the time of increase was much

higher, resulting in SLA violations. Results for trace 2 (see Fig. 7(e))

are similar, i.e., a few SLA violations occur during the steep spike

at time t3 ≈ 6300s , and SLA compliance otherwise. Results for trace

3 (see Fig. 7(f)), however, are dierent owing to its unique arrival

pattern. In Fig. 6(c), requests in trace 3 arrive almost periodically. In

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA A. Gujarati et al.

 0

 5

 10

 15

 20

 0 2000 4000 6000 8000 10000

#B
ac

ke
nd

s

Time (sec)

Active (warm)
Used by FE0t1 ⇡ 4500s

t2 ⇡ 7500s

(a) Number of backends (trace 1)

 0

 2

 4

 6

 8

 10

 0 2000 4000 6000 8000 10000

#B
ac

ke
nd

s

Time (sec)

Active (warm)
Used by FE0

t3 ⇡ 6300s

(b) Number of backends (trace 2)

 0

 5

 10

 15

 20

 25

 30

 0 2000 4000 6000 8000 10000

#B
ac

ke
nd

s

Time (sec)

Active (warm)
Used by FE0

(c) Number of backends (trace 3)

(d) SLA Compliance (trace 1) (e) SLA Compliance (trace 2) (f) SLA Compliance (trace 3)

Figure 7: Figs. 7(a)–7(c) illustrate the number of backends active (warm) and the number of backends used by one of the
frontends (i.e., FE0) for production traces 1, 2, and 3, respectively. Results for other frontends are similar and not illustrated
to avoid clutter. Figs. 7(d)–7(f) illustrate the SLA compliance for production traces 1, 2, and 3, respectively. Response time
thresholds for the three traces are 5c̄1 = 675ms, 5c̄2 = 583ms, and 5c̄2 = 833ms.

fact, upon a closer look at the logs, we found that the request trace

consists of periods of absolutely no request arrivals alternating

with periods where many requests arrive instantaneously, result-

ing in more SLA violations than for traces 1 and 2. Note that it

is impossible to schedule for an instantaneous arrival of so many

requests unless the necessary resources are already provisioned

and perfectly load balanced. Overall, while SLAs are violated less

than 3% of the time for traces 1 and 2, they are violated about 20%

of the time for trace 3, which pushes Swayam to its limits due to

its extremely bursty nature.

To understand the benets of request pruning on SLA compli-

ance, we replayed trace 2with the pruning option turned on. Fig. 8(a)

shows that request pruning improves SLA compliance signicantly

during spikes without compromising on the SLA compliance dur-

ing the steady states (w.r.t. Fig. 7(e)). This improvement is because

(1) Swayam does not have strict admission control at its entry point,

but it prunes a request only after its waiting time in the system has

exceeded the response time threshold of its service; and (2) in a ran-

domized load balancer like Swayam’s, requests accumulated during

spikes aect the requests that arrive later, which is prevented in this

case by pruning tardy requests. To the client, a pruned request is

similar to a timed-out request (i.e., the client is not charged for the

request) and can be handled by reissuing the request or by ignoring

the request, based on the application semantics.

5.3 Fault Tolerance
Swayam tolerates crash failures by incorporating a gossip protocol

on top of the underlying request-response protocol, which ensures

that all frontends have a consistent view of the total number of

active frontends for each service. If a backend crashes, each frontend

independently discovers this using the RAND LB policy, when an

RPC to that backend fails.

Fig. 8(b) shows the eect of two frontend crashes on the predicted

request rates when trace 2 is replayed for 3000s. We used only three

frontends to maximize the impact of failures. A frontend failure

causes the broker to redirect load to the other live frontends. After

the rst failure, the live frontends over-estimate the global request

rate by 1.5x (and after the second failure, by 2x) until they nd out

about the failures through backend gossip (recall from §4.2). Since

the period of over-estimation is small, the impact on resource usage

is minimal. In addition, since the frontends do not explicitly queue

requests locally, frontend failures directly impact only the requests

waiting for a retry. We did not see any impact of frontend failures

on the SLA compliance of trace 2.

We repeated the experiment with backend failures instead of

frontend failures. Fig. 8(c) shows that the frontends quickly recover

from backend failures by reconguring their respective load bal-

ancers to use additional warm backends. The number of warm

in-use backends (as suggested by the analytical model) remains

at three, the total number of warm backends (including the failed

backends) increases to four after the rst crash, and then to ve

after the second crash. Since backends do not explicitly queue pend-

ing requests, a failure aects the request being processed and may

increase the waiting time of other requests by a single RTT each.

But we did not see any noticeable eect on SLA compliance.

5.4 Autoscaling and Resource Usage
Recall that Swayam’s objective is to greedily minimizing the num-

ber of warm backends used by each service, while ensuring SLA

compliance for that service. In the following, we thus measure

Swayam: Distributed Autoscaling to Meet SLAs of ML Inference Services Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA

(a) Trace 2 with request pruning

 0

 5

 10

 15

 20

 0 500 1000 1500 2000 2500 3000

R
eq

ue
st

 R
at

es
 (r

eq
s/

se
c)

Time (sec)

Actual
Predicted by FE0 (100s in advance)

Predicted by FE0 (10s in advance)

FE1 crashed
at t1 = 1331s

FE2 crashed
at t2 = 2122s

(b) Trace 2 with frontend failures

 0

 2

 4

 6

 8

 10

 0 500 1000 1500 2000 2500 3000

#B
ac

ke
nd

s

Time (sec)

Warm
Warm-in-use by FE0:

BE0 crashed
at t1 = 1331s

BE1 crashed
at t2 = 2122s

(c) Trace 2 with backend failures

Figure 8: (a) SLA compliance for production trace 2 with request pruning enabled. (b) and (c) Eect of frontend crash failures
and backend crash failures on production trace 2, respectively.

resource usage in terms of the gross warm-backend-time, which
is dened as the cumulative duration for which backends remain

warm across all services. This includes time that backends spend

while provisioning new service instances.

We compare the resource eciency of Swayam with that of a

clairvoyant autoscaler, ClairA. The clairvoyant autoscaler ClairA has

two special powers: (1) it knows the processing time of each request

beforehand, which it can use to make intelligent scheduling deci-

sions; and (2) it can travel back in time to provision a backend, elim-

inating the need for proactive autoscaling (and for rate-prediction

and resource estimation). Using these powers, ClairA follows a

“deadline-driven” approach to minimize resource waste (similar

to [21]). For example, if a request arrives at time t , since ClairA
knows the processing time of the request in advance (from (1)),

say c , and since the response time threshold of the corresponding

service is also known, say RTmax , it postpones the execution of the

request as late as possible, i.e., until time t+RTmax −c . It guarantees
that there is an idle backend ready to execute the request at time

t + RTmax − c by provisioning it in the past, if required (using (2)).

Moreover, backends can be scaled-in either instantly after pro-

cessing a request or lazily using periodic garbage collection (like

in Swayam). We evaluate two versions: ClairA1, which assumes

zero setup times and immediate scale-ins, i.e., it reects the size

of the workload, and ClairA2, which is Swayam-like and assumes

non-zero setup times with lazy collection. Both ClairA1 and ClairA2

always satisfy the SLAs, by design.

In Fig. 9, we illustrate the resource usage for all 15 produc-

tion traces, when replayed with autoscalers ClairA1, ClairA2, and

Swayam. The traces were each executed for about 3000s. We also

denote in Fig. 9 the frequency with which Swayam complies with

the SLA for each service. For example, out of all the windows con-

sisting of 1000 consecutive requests (recall our SLA compliance

metric), if Swayam complied with the SLA in only 97% of these

windows, then its SLA compliance frequency is 97%.

Both ClairA1 and ClairA2 signicantly dier in terms of their

resource usage, which shows that setup costs are substantial and

should not be ignored. Moreover, reducing startup times has large

eciency benets. Comparing ClairA2 to Swayam, for certain ser-

vices (traces 1, 2, and 12-15), we oberve that Swayam is more re-

source ecient but at the cost of SLA compliance. This shows that

guaranteeing a perfect SLA comes with a substantial resource cost.

For trace 3, despite provisioning signicantly more resources

than ClairA2, SLA compliance is very poor because: (1)Wemeasure

SLA compliance with respect to a nite number of requests and not

with respect to a nite interval of time. Hence, during instantaneous

bursts, we record signicantly many SLA compliance failures, as

opposed to just one (i.e., our evaluation metric is biased against
Swayam). (2) ClairA2’s deadline-driven approach, which takes into

account the request computation times and their response-time

thresholds before dispatching, is unattainable in practice. Trace 4

is similar to trace 3, but relatively less bursty.

For all other traces, Swayam always guarantees SLAs while

performing much better than ClairA2 in terms of resource usage.

This is again because of ClairA2’s deadline-driven approach, due to

which it occasionally ends up using more backends than Swayam,

but then these extra backends stay active until they are collected.

Overall, Swayam uses about 27% less resources than ClairA2 while
complying with the SLA over 96% of the time.

Providing perfect SLA irrespective of the input workload is too

expensive in terms of resource usage, as modeled by ClairA. Prac-

tical systems thus need to trade o some SLA compliance, while

managing client expectations, to ensure resource eciency. Our

results show that Swayam strikes a good balance by realizing sig-

nicant resource savings at the cost of occasional SLA violations.

6 CONCLUSION
This paper introduces a new distributed approach for autoscaling

services that exploits ML inference workload characteristics. It

derives a global state estimate from local state and employs a glob-

ally consistent protocol to proactively scale-out service instances

for SLA compliance, and passively scale-in unused backends for

resource eciency. Since guaranteeing all SLAs at all times is eco-

nomically not viable in practice, a practical solution must nd a

good tradeo between SLA compliance and resource eciency. Our

evaluation shows that Swayam achieves the desired balance — it still

meets most SLAs with substantially improved resource utilization.

In future work, it will be interesting to extend Swayam for het-

erogeneous frontends by gossiping request rates observed at the

backends to the frontends for prediction, and to incorporate long-

term predictive provisioning by determining burst threshold as

a function of diurnal workload patterns. In addition, Swayam’s

resource-estimation model can be extended to account for verti-

cal scaling, by modeling concurrent execution of requests in the

Middleware ’17, December 11–15, 2017, Las Vegas, NV, USA A. Gujarati et al.

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
es

ou
rc

e
us

ag
e

(n
or

m
al

iz
ed

)

Trace IDs

ClairA1
ClairA2

Swayam (frequency of SLA compliance)

97
%

98
%

64
%

95
%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0%

10
0% 87
%

91
%

89
%

97
%

Figure 9: Total resource usage (in terms of warm-backend-time, normalized with respect to the maximum resource usage)
for all 15 traces when run with autoscalers ClairA1, ClairA2, and Swayam. Trace IDs 1, 2, and 3 correspond to Figs. 6(a)–6(c),
respectively. For Swayam, we also denote for each trace the frequency of SLA compliance, i.e., how often does Swayam comply
with the SLAs over the entire experiment duration. Note that ClairA1 and ClairA2 are designed to always comply with the
SLAs (i.e., a 100% SLA compliance frequency). The garbage collection period was ve minutes.

backend. Swayam’s approach is applicable to other stateless web

services, if they have characteristics similar to that of ML inference

requests. Note that supporting online or incremental updates of the

ML model is orthogonal to the autoscaling problem, since it may

require recompilation of the service containers.

The appendix and codebase are available at [17].

REFERENCES
[1] 2017. Amazon Machine Learning - Predictive Analytics with AWS. (2017).

https://aws.amazon.com/machine-learning/

[2] 2017. Google Cloud Prediction API Documentation. (2017). https://cloud.google.

com/prediction/docs/

[3] 2017. HAProxy: The Reliable, High Performance TCP/HTTP Load Balancer.

(2017). http://www.haproxy.org/

[4] 2017. Instance-based learning. (2017). https://en.wikipedia.org/wiki/

Instance-based_learning

[5] 2017. Machine Learning - Predictive Analytics with Microsoft Azure. (2017).

https://azure.microsoft.com/en-us/services/machine-learning/

[6] 2017. Smartphone-Based Recognition of Human Activities and Postural Transi-

tions Data Set. (2017). http://archive.ics.uci.edu/ml/datasets/Smartphone-Based+

Recognition+of+Human+Activities+and+Postural+Transitions

[7] 2017. Watson Machine Learning. (2017). http://datascience.ibm.com/features#

machinelearning

[8] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jerey

Dean, Matthieu Devin, Sanjay Ghemawat, Georey Irving, Michael Isard, et al.

2016. TensorFlow: A system for large-scale machine learning. In Proceedings of
the 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI). Savannah, Georgia, USA.

[9] Constantin Adam and Rolf Stadler. 2007. Service middleware for self-managing

large-scale systems. IEEE Transactions on Network and Service Management 4, 3
(2007), 50–64.

[10] Enda Barrett, Enda Howley, and Jim Duggan. 2013. Applying Reinforcement

Learning Towards Automating Resource Allocation and Application Scalability

in the Cloud. Concurrency and Computation: Practice and Experience 25, 12 (2013),
1656–1674.

[11] Lawrence Brown, Noah Gans, Avishai Mandelbaum, Anat Sakov, Haipeng Shen,

Sergey Zeltyn, and Linda Zhao. 2005. Statistical analysis of a telephone call center:

A queueing-science perspective. Journal of the American statistical association
100, 469 (2005), 36–50.

[12] G. Chen, W. He, J. Liu, S. Nath, L. Rigas, L. Xiao, and F. Zhao. 2008. Energy-Aware

Server Provisioning and Load Dispatching for Connection-Intensive Internet

Services. In NSDI. 338–350.
[13] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen,

and Olivier Temam. 2014. Diannao: A small-footprint high-throughput accelera-

tor for ubiquitous machine-learning. In ASPLOS. 269–284.
[14] Daniel Crankshaw, XinWang, Giulio Zhou, Michael J Franklin, Joseph E Gonzalez,

and Ion Stoica. 2016. Clipper: A Low-Latency Online Prediction Serving System.

arXiv preprint arXiv:1612.03079 (2016).

[15] Jerey Dean and Luiz André Barroso. 2013. The Tail at Scale. Commun. ACM 56,

2 (2013), 74–80.

[16] Anshul Gandhi, Mor Harchol-Balter, Ram Raghunathan, and Michael Kozuch.

2011. Distributed, Robust Auto-Scaling Policies for Power Management in Com-

pute Intensive Server Farms. In OCS.
[17] Arpan Gujarati, Sameh Elnikety, Yuxiong He, Kathryn S. McKinley, and Björn B.

Brandenburg. 2017. Swayam: online appendix. (2017). https://people.mpi-sws.

org/~bbb/papers/details/middleware17

[18] Varun Gupta, Mor Harchol-Balter, JG Dai, and Bert Zwart. 2010. On the inapprox-

imability of M/G/K: why two moments of job size distribution are not enough.

Queueing Systems 64, 1 (2010), 5–48.
[19] Rui Han, Moustafa M Ghanem, Li Guo, Yike Guo, and Michelle Osmond. 2014.

Enabling Cost-Aware and Adaptive Elasticity of Multi-Tier Cloud Applications.

Future Generation Computer Systems 32 (2014), 82–98.
[20] Brendan Jennings and Rolf Stadler. 2014. ResourceManagement in Clouds: Survey

and Research Challenges. Journal of Network and Systems Management (2014),
1–53.

[21] Chung Laung Liu and James W Layland. 1973. Scheduling algorithms for multi-

programming in a hard-real-time environment. Journal of the ACM (JACM) 20, 1
(1973), 46–61.

[22] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A Lozano. 2014. A Review of

Auto-Scaling Techniques for Elastic Applications in Cloud Environments. Journal
of Grid Computing 12, 4 (2014), 559–592.

[23] Yi Lu, Qiaomin Xie, Gabriel Kliot, Alan Geller, James R Larus, and Albert Green-

berg. 2011. Join-Idle-Queue: A novel load balancing algorithm for dynamically

scalable web services. Performance Evaluation 68, 11 (2011), 1056–1071.

[24] Michael Copeland. 2016. WhatâĂŹs the Dierence Between Deep Learning

Training and Inference? (2016). https://blogs.nvidia.com/blog/2016/08/22/

dierence-deep-learning-training-inference-ai/

[25] Michael Mitzenmacher. 2001. The power of two choices in randomized load

balancing. IEEE Transactions on Parallel and Distributed Systems 12, 10 (2001),
1094–1104.

[26] Michael David Mitzenmacher. 1996. The Power of Two Choices in Randomized
Load Balancing. Ph.D. Dissertation. UNIVERSITY of CALIFORNIA at BERKELEY.

[27] Ohad Shamir. 2014. Fundamental limits of online and distributed algorithms for

statistical learning and estimation. In Advances in Neural Information Processing
Systems. 163–171.

[28] Christopher Stewart, Aniket Chakrabarti, and Rean Grith. 2013. Zoolander:

Eciently Meeting Very Strict, Low-Latency SLOs. In ICAC.
[29] Chandramohan A Thekkath, TimothyMann, and Edward K Lee. 1997. Frangipani:

A scalable distributed le system. In ACM Symposium on Operating Systems
Principles (SOSP). 224–237.

[30] Beth Trushkowsky, Peter Bodík, Armando Fox, Michael J Franklin, Michael I

Jordan, and David A Patterson. 2011. The SCADS Director: Scaling a Distributed

Storage System Under Stringent Performance Requirements.. In FAST. 163–176.
[31] Bhuvan Urgaonkar, Prashant Shenoy, Abhishek Chandra, Pawan Goyal, and

Timothy Wood. 2008. Agile Dynamic Provisioning of Multi-Tier Internet Ap-

plications. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 3, 1
(2008), 1.

[32] Fetahi Wuhib, Rolf Stadler, and Mike Spreitzer. 2010. Gossip-based resource

management for cloud environments. In 2010 International Conference on Network
and Service Management. IEEE, 1–8.

https://aws.amazon.com/machine-learning/
https://cloud.google.com/prediction/docs/
https://cloud.google.com/prediction/docs/
http://www.haproxy.org/
https://en.wikipedia.org/wiki/Instance-based_learning
https://en.wikipedia.org/wiki/Instance-based_learning
https://azure.microsoft.com/en-us/services/machine-learning/
http://archive.ics.uci.edu/ml/datasets/Smartphone-Based+Recognition+of+Human+Activities+and+Postural+Transitions
http://archive.ics.uci.edu/ml/datasets/Smartphone-Based+Recognition+of+Human+Activities+and+Postural+Transitions
http://datascience.ibm.com/features#machinelearning
http://datascience.ibm.com/features#machinelearning
https://people.mpi-sws.org/~bbb/papers/details/middleware17
https://people.mpi-sws.org/~bbb/papers/details/middleware17
https://blogs.nvidia.com/blog/2016/08/22/difference-deep-learning-training-inference-ai/
https://blogs.nvidia.com/blog/2016/08/22/difference-deep-learning-training-inference-ai/

	Abstract
	1 Introduction
	2 Related Work
	3 Architecture, Workload, and SLAs
	3.1 System Architecture
	3.2 Workload Characterization
	3.3 Service Level Agreements (SLAs)

	4 Swayam
	4.1 Overview
	4.2 Request Rate Prediction
	4.3 Backend Resource Estimation Model
	4.4 Distributed Autoscaling Protocol
	4.5 Load Balancing

	5 Evaluation
	5.1 Mechanisms for Prediction and Scaling
	5.2 SLA Compliance with Autoscaling
	5.3 Fault Tolerance
	5.4 Autoscaling and Resource Usage

	6 Conclusion
	References

